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Turbulent spots in oscillatory boundary layers
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Detailed knowledge of the dynamics of vortex structures in an oscillatory boundary
layer is essential for the correct modelling of transport processes in many engineering
problems and, in particular, of the pick-up and transport of sediments at the bottom
of sea waves. In the present contribution, the formation of turbulent spots in an
oscillatory boundary layer is investigated by means of direct numerical simulations.
Two of the laboratory experiments of Carstensen, Sumer and Fredsøe are reproduced
and, after a comparison of the numerical results with laboratory measurements, a
detailed and quantitative characterization of the turbulent spots is also given on the
basis of further simulations. The speeds of the head (u1H) and tail (u1T) of the spots
are found to scale with the instantaneous free stream velocity Ue and to be similar
to those observed in steady boundary layers. The ratios u1H/Ue and u1T/Ue seem to
increase with the Reynolds number (Rδ) while the streamwise expansion rate of the
spots appears to be independent of Rδ.

Key words: transition to turbulence

1. Introduction
Sediment transport induced by sea waves plays a central role in any morphodynamic

phenomenon of the coastal region. Although different approaches exist to evaluate
the sediment transport rate at the bottom of sea waves, the actual knowledge of
the dynamics of the sediment in the oscillatory boundary layer generated by sea
waves does not allow an accurate estimate of the sediment flux. Indeed, even though
advanced models are used to evaluate the turbulence structure and sediment dynamics,
the results obtained by applying different models disagree and often none of the
models provide reliable values of the sediment concentration far from the bottom
(Davies et al. 1997). In particular, the models find it hard to reproduce the convective
events which take place at flow reversal and pick up the sediment from the bottom
and carry it into suspension (Ribberink & Al-Salem 1995). In order to improve the
predictions of sediment dynamics, it is thus evident that it is necessary to have an
accurate description of the dynamics of both the large-scale vortex structures which
are generated by the instability of the laminar flow and the small-scale turbulent eddies
which are originated by the breakdown of the coherent vortex structures.

A first attempt to experimentally investigate turbulence structure at moderate values
of the Reynolds number Rδ was made by Fishler & Brodkey (1991) who, by following
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suspended tracer particles in the fluid, observed large vortex structures occurring
randomly in space but always near or subsequent to the beginning of the decelerating
phases. Herein, the Reynolds number Rδ is defined using the amplitude U∗0 of the
velocity oscillations just outside the boundary layer and its conventional thickness
δ∗ equal to

√
2ν∗/ω∗, where ω∗ is the angular frequency of fluid oscillations, ν∗ is

the kinematic viscosity of the fluid and an asterisk is used to indicate dimensional
quantities. For low values of Rδ, Sarpkaya (1993) observed the formation of unevenly
spaced streaks which emerged toward the end of each decelerating phase and then
completely disappeared during the accelerating phase. For larger values of Rδ, the
streaks interacted, moving towards each other and growing in amplitude and, then,
split into short segments which, in turn, began to lift. For Reynolds numbers in
the range 460–490, a larger number of vortices appeared towards the end of the
decelerating phases, and as Rδ was increased, more numerous vortex structures formed,
which penetrated further into the ambient flow.

The experimental evidence of the formation of coherent vortex structures in
oscillatory boundary layers was confirmed also by numerical simulations. Costamagna,
Vittori & Blondeaux (2003) investigated an oscillatory boundary layer with the aim of
isolating the basic flow unit and studying wall turbulence in the near-wall region. They
observed a sequence of events similar to those detected in steady boundary layers and,
in particular, towards the end of the accelerating phases they observed the formation
of high- and low-speed streaks with spacing and characteristics similar to those of
steady boundary layers. Then, the high- and low-speed streaks, located close to the
wall, twisted, interacted and broke producing small vortices which dissipated due to
viscous effects.

Recently, Carstensen, Sumer & Fredsøe (2010) performed laboratory experiments
for a wide range of values of Rδ. They observed two kind of flow structures in the
transitional regime: vortex tubes and turbulent spots. Vortex tubes are two-dimensional
vortices, with horizontal axes orthogonal to flow direction which are observed for Rδ
ranging from 374 to 775. For values of Rδ larger than 548, Carstensen et al. (2010)
also observed turbulent spots which are isolated turbulent areas close to the wall
in an otherwise laminar boundary layer and cause violent velocity and shear stress
oscillations. They observed that turbulent spots emerge from the dynamics of streaks
which develop twisting and turning motions and then break into smaller structures,
which give rise to arrowhead-shaped turbulent spots. Since Emmons (1951) observed
the formation of turbulent spots in a laminar boundary layer undergoing transition,
many results have appeared in the literature on the characterization of turbulent
spots. However, all of the investigations of turbulent spots consider steady flows
and Carstensen et al. (2010) were the first to observe turbulent spots in an unsteady
oscillatory flow.

In the present paper the results of the direct numerical simulation (DNS) of an
oscillating boundary layer are presented in order to fill the gap between the results of
Costamagna et al. (2003) and the more recent observations of Carstensen et al. (2010).
In particular, new DNSs, which reproduce two tests of Carstensen et al. (2010) as well
as a third run for a larger value of Rδ, are presented. The results show the formation
of turbulent spots, after the break-up of the high- and low-speed streaks. After a
detailed comparison of the numerical findings with the experimental measurements of
Carstensen et al. (2010), the characteristics of turbulent spots are investigated both
qualitatively and quantitatively.
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2. The problem and the numerical approach
If the linear Stokes wave theory is used to describe the inviscid irrotational flow

generated by the propagation of a monochromatic sea wave, the flow in the bottom
boundary layer can be studied by determining the flow generated close to the bed by
an oscillating pressure gradient described by

∂P∗

∂x∗1
=−ρ∗U∗0ω∗ sin(ω∗t∗); ∂P∗

∂x∗2
= 0; ∂P∗

∂x∗3
= 0, (2.1)

where (x∗1, x∗2, x∗3) is a Cartesian coordinate system with the x∗1-axis pointing in the
direction of wave propagation, the x∗2-axis is vertical and pointing in the upward
direction such that x∗2 = 0 describes the averaged bottom location. As in Blondeaux &
Vittori (1994) and Costamagna et al. (2003), we consider a wall characterized by a
small waviness such that its profile η∗ is given by the superimposition of sinusoidal
components

x∗2 = ε∗η(x∗1, x∗3)= ε∗
N∑

n=1

an cos(α∗nx∗1 + γ ∗n x∗3 + ϕn), (2.2)

where ε∗an denotes the amplitude of the nth component, which is characterized by
wavenumbers α∗n and γ ∗n in the x∗1 and x∗3 directions, respectively, and by a phase ϕn. In
the present simulations, ε∗ is taken equal to 0.005δ∗, which, considering typical values
of δ∗, corresponds to a waviness of the bottom profile which cannot be appreciated
from the macroscopic point of view. Moreover, for the chosen values of the parameters
appearing in (2.2) (see table 1), the ratio between the amplitude and the characteristic
wavelength of the bottom waviness is of order O(10−4), making the wall imperfection
quite different from a typical roughness. As discussed by Vittori & Verzicco (1998),
the characteristics of turbulence, which appears when the laminar flow turns out to be
unstable, are not affected by the values of N, an, αn and γn as long as the bottom can
be assumed smooth from a macroscopic point of view.

The Navier–Stokes and continuity equations in non-dimensional form read:

∂ui

∂t
+ Rδ

2
uj
∂ui

∂xj
=−Rδ

2
∂p

∂xi
− δi1 sin(t)+ 1

2
∂2ui

∂xk∂xk
; ∂uj

∂xj
= 0; i= 1, 2, 3, (2.3)

where the following non-dimensional variables are used:

t = t∗ω∗; (x1, x2, x3)= (x
∗
1, x∗2, x∗3)
δ∗

;
(u1, u2, u3)= (u

∗
1, u∗2, u∗3)

U∗0
; p= p∗

ρ∗(U∗0)2

 (2.4)

where t∗ denotes time, p∗ denotes pressure and u∗1, u∗2, u∗3 denote the fluid velocity
components along the x∗1, x∗2 and x∗3 directions, respectively. The equations are
solved numerically in a computational domain of dimensions Lx1,Lx2 and Lx3 in the
streamwise, cross-stream and spanwise directions, respectively. At the wall, having
assumed the amplitude of the wall waviness to be much smaller than the thickness
of the laminar boundary layer (ε = ε∗/δ∗ � 1), the no-slip condition is expanded
up to second order in the variable ε and it is forced at x2 = 0 (see Vittori &
Verzicco 1998). The numerical scheme is second-order accurate in space and in
all of the simulations ε has been taken to be smaller than the size of the first
computational grid in the x2 direction. As a consequence, the approximation of the
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no-slip condition is consistent with the accuracy of the numerical method employed to
solve (2.3). At the upper boundary of the computational domain, a symmetry condition
is forced, which is equivalent to require the vanishing of tangential stresses far from
the wall and to impose that the velocity tends to (−U∗0 cosω∗t∗, 0, 0). Moreover,
the turbulent flow is assumed to be homogeneous in the streamwise and spanwise
directions and periodic boundary conditions are thus forced along the x1- and x3-axes.
The computational mesh is uniform in the streamwise and spanwise directions while
in the cross-stream direction a non-uniform mesh is used to cluster the grid points
in the vicinity of the wall where velocity gradients are expected to be larger. The
minimum and maximum values of the grid size in the cross-stream direction are 0.16
and 0.59, respectively. The numerical approach uses standard centred second-order
finite difference approximations of the spatial derivatives, while the time advancement
of Navier–Stokes equations is made using the fractional-step method. Details of the
procedure are given by Orlandi (1989), Vittori & Verzicco (1998) and Costamagna
et al. (2003), where a quantitative comparison is also made between the numerical
results and the experimental measurements of Jensen, Sumer & Fredsoe (1989).
In Costamagna et al. (2003) a computational box of size equal to L∗x1 = 25.13δ∗,
L∗x2 = 25.13δ∗ and L∗x3 = 12.57δ∗ in the streamwise, vertical and spanwise directions,
respectively, was used. However, the experiments of Carstensen et al. (2010) show the
formation of turbulent spots which, during their evolution, have a size larger than that
of the computational box of Costamagna et al. (2003). Indeed, figure 9 of Carstensen
et al. (2010) shows the formation of a turbulent spot of size comparable to the size of
the picture area, which is approximately equal to 38 cm× 13 cm in the streamwise and
spanwise directions, respectively and, hence, 218δ∗ long and 76δ∗ large. It turns out
that the displayed area for test 6 of Carstensen et al. (2010) is 9.5 times larger in the
streamwise direction and 6 times larger in the spanwise directions with respect to that
considered by Costamagna et al. (2003). Hence, in present simulations the box size
has been increased, and the number of computational points (n1, n2 and n3 in the x1,
x2 and x3 directions, respectively) has been increased consequently, in order to have an
accurate reproduction of the tests 6 and 7 of Carstensen et al. (2010). Then, a further
run is made to extend the range of the Reynolds number presently investigated. By
computing the fast Fourier transform (FFT) of the velocity field, it has been verified
that the spatial resolution is adequate in the x1 and x3 directions since at each time the
amplitude of the spectral components with the largest wavenumbers is smaller than a
few per cent of the maximum amplitude.

Moreover, a few runs made with more points in the vertical direction have shown
that the vertical resolution is also adequate. The values of the numerical parameters for
each run are given in table 1.

3. Discussion of the results
3.1. Comparison with the experimental measurements of Carstensen et al. (2010)

During their experiments in the transitional regime, Carstensen et al. (2010) detected
two types of coherent flow structures: vortex tubes and turbulent spots. Vortex tubes
are two-dimensional vortices close to the bed which extend across the width of
the flow in a plane view. Turbulent spots, which appear randomly in space, are
isolated areas close to the bed where the flow velocity and wall shear stress show
violent oscillations, in an otherwise laminar flow. Figure 1 shows the bed shear
stress presently computed for values of the parameters chosen to reproduce the
fourth half-cycle of experiment 6 of Carstensen et al. (2010), along with the value
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(a) Test n Rδ Lx1 Lx2 Lx3 n1 n2 n3 n

T1 948 213.60 25.13 75.40 541 65 385 2
T2 775 226.19 25.13 94.25 572 65 480 2
T3 1220 213.60 25.13 75.40 541 65 385 2

(b) Test n a1 a2 α1 α2 γ1 γ2 ϕ1 ϕ2

T1 1 0.1 0.5 0 0 1 0 0
T2 1 0.1 0.5 0 0 1 0 0
T3 1 0.1 0.5 0 0 1 0 0

TABLE 1. Numerical parameters of the present simulations. Here αn = α∗nδ∗ and γn = γ ∗n δ∗.

of |τ ∗0 |/ρ∗ measured by Carstensen et al. (2010) and shown in figure 14 of their paper.
Figure 1 shows the dimensional quantity τ ∗0 /ρ

∗ at different positions along the central
streamwise line: the presence of spikes, which are related by Carstensen et al. (2010)
to the presence of turbulent spots passing the measuring point, can be recognized both
in the computed and measured values. It can be also observed that, because of the
randomness of the location where the turbulent spots appear as well as because of the
large variability in their intensity, the turbulent fluctuations of the bottom shear stress
are characterized by a large variability from location to location and from cycle to
cycle. Even though the time development of the bottom shear stress shows differences
as the measuring position is varied, the numerical values qualitatively agree with the
measurements by Carstensen et al. (2010) which give the shear stress averaged over
the area of the measuring probe. Figure 2 shows the modulus of the fluctuating part of
the bed shear stress for test T1, which is characterized by the same Reynolds number
as the fourth half-oscillating cycle of tests 6 of Carstensen et al. (2010). The numerical
results shown in figure 2 should be compared with figures 9 and 13 of Carstensen
et al. (2010). It is worth recalling that the size of the computed (and displayed) area
(presently expressed in non-dimensional units) corresponds to that shown in figure 9 of
Carstensen et al. (2010). Similarly to Carstensen et al. (2010), turbulent spots appear
randomly in space towards the end of the accelerating phases and grow in intensity
and size until, at the early stage of the decelerating phases, they pervade the whole
boundary layer. Later on, during the early stage of the following accelerating phases,
turbulence decays and the flow tends to recover a laminar-like behaviour.

3.2. Turbulent spots
To quantify the geometric characteristics of the turbulent spots, a quantitative analysis
was performed for a large number of spots, before they merge with their neighbours.
A preliminary analysis aimed at choosing the criterion to detect the boundaries of
the spots was made. The boundaries of a spot were defined and detected as the
boundaries of the area where an appropriate quantity exceeds a fixed value. We
considered: (i) the local value of the dimensionless production of turbulent kinetic
energy (TKEP), (ii) the local value of the dimensionless turbulent kinetic energy
(TKE), (iii) the modulus of the projection on a horizontal plane of the fluctuating
component of the dimensionless shear stress (|τ ′|), (iv) the absolute value of the
fluctuating component of the dimensionless streamwise velocity (|u′1|), (v) the absolute
value of the fluctuating component of the dimensionless spanwise velocity (|u′3|) . The
threshold values used in this comparison were fixed equal to a few per cent of the
maximum in time and space of the chosen quantity. Incidentally, let us point out that
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FIGURE 1. Time development of the streamwise component of the wall shear stress for test
T1, corresponding to the fourth half cycle of Carstensen et al. (2010). The different panels
show the results at different positions along the central streamwise line: (a) x1 = 39.5; (b)
x1 = 79.11; (c) x1 = 197.8. Panel (d) shows the experimental data by Carstensen et al. (2010).
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FIGURE 2. Modulus of the fluctuating part of the bottom shear stress τ o. First isoline
τ o = 0.2, isoline interval = 0.5; (a) t = 11.78; (b) t = 11.86; (c) t = 12.02; (d) t = 12.17.
The free stream velocity is directed from the right to the left. Values of the parameters chosen
to reproduce the fourth half-oscillation cycle of test 6 of Carstensen et al. (2010).

Criterion x1Head x1Tail u1H u1T

TKEP 50.24 77.53 −0.77 −0.56
TKE 50.24 77.53 −0.75 −0.55
|τ ′| 52.21 73.57 −0.80 −0.55
|u′1| 50.24 77.13 −0.75 −0.55
|u′3| 52.31 71.73 −0.77 −0.54

TABLE 2. Position of the head and tail of turbulent spot A (see figure 3a) at t = 5.653 and
x2 = 0.2355 and their average speeds for 5.5 6 t 6 5.7 computed using the different criteria
defined in the text (Test T1).
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FIGURE 3. (a) TKEP at t = 5.575, x2 = 0.24, ∆TKEP = 0.005Rδ; (b) position of the head and
tail of spot A and spot B, identified by means of the TKEP criterion, plotted versus time. The
lines have been obtained by linear regression. The outer flow is directed from right to left.
Test T1.
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FIGURE 4. TKEP in the plane x1–x3 at x2 = 0.4, t = 15.28, Test T2. Here
TKEPmin = 1.2 × 10−11Rδ and TKEPmax = 0.0188Rδ . The outer flow is directed from left
to right.

the TKEP term in the dimensionless turbulent kinetic energy equation, turns out to be
proportional to Rδ. The detection of the time development of the boundaries of the
spot makes it possible to evaluate their velocity. Figure 3(b) shows the evolution of the
positions of the head and tail of spots A and B which are first detected during test T1
at t = 5.3 and start to merge with their neighbours at t = 5.8. The lines indicate the
least-squares fit of the data and approximate the actual positions of the head and tail
of the spots with a root mean square (r.m.s.) error which ranges between 1.13δ∗ and
3.33δ∗. Therefore, it can be concluded that, during the time interval considered, the
speed of the head and tail of the spots can be assumed to be practically constant and
given by the slope of each line. Table 2 shows the outputs of the analysis performed
by means of the different criteria and allows to conclude that, even though differences
exist when different quantities are considered, the differences are small as far as the
location of the head/tail of the spot is concerned. Moreover, the evaluation of the
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FIGURE 5. TKEP in the plane x1–x3 at x2 = 0.4 (top row) and in the plane x1–x2 at
x3 = 77.13 (middle row). The bottom row shows the vortex structures in the plane x1–x3
at x2 = 0.4 identified by means of the λ2 criterion (Jeong & Hussain 1995). Left column,
t = 15.28, TKEPmin = 2.45 × 10−11Rδ, TKEPmax = 0.0051Rδ , λ2min = −0.0111, λ2max = 0;
right column, t = 15.51, TKEPmin = 0.88 × 10−9Rδ, TKEPmax = 0.0127Rδ , λ2min = −0.0894,
λ2max = 0. The outer flow is directed from left to right. Test T2.

speed of the head and tail of the spot with the different methods shows values which
differ by at most a few per cent. On the basis of this preliminary investigation, it was
chosen to identify the boundaries of the turbulent spots by using the TKEP criterion.
A visual analysis of many spots shows that, differently from the steady boundary
layer in which an isolated spot is excited (Schubauer & Klebanoff 1955; Singer 1996)
and similarly to the laboratory observations of Carstensen et al. (2010), the naturally
forming spots in the present flow show no general form. Moreover, figure 4 shows that
the presence of many spots often makes it difficult to distinguish one spot from the
other and in many cases the form of a spot appears to be influenced by its neighbours.
However, the spots which are detached from the others often show an arrow-like form.
Moreover, a general characteristic of the spots, observed at the early stages of their
formation, is the presence of longitudinal vortices located at the sides of the spot
itself. These vortices, which can be clearly seen in the top row of figure 5, are also
detected by means of the λ2 criterion, proposed by Jeong & Hussain (1995) to identify
vortex structures (see figure 5, bottom row). It is observed that two vortices are located
upstream of the head and two lateral structures follow the spot. Moreover, quite often,
transversal wave-like structures are observed. The vertical section of the spot shows
that the leading streamwise vortices are inclined with respect to the wall (see figure 5,
middle row). At later times, when the turbulent spot becomes mature, the system of
vortices is no longer recognizable (figure 5, right panels). Many spots appearing during
different cycles, were followed during their evolution and the dimensionless speeds
of the head (u1H), tail (u1T), left side (u3LS) and right side (u3RS) were computed for
different distances from the wall. Figure 6(a) shows the speeds computed for two spots
which form during the third half-oscillation cycle of T2. The vertical distribution of
the speeds shows some oscillations, presumably related to the difficulties in accurately
estimating the position of the borders of the spots. However, these oscillations can
be neglected and in the following only the speeds averaged in the x2 direction
are presented. Differences are found if spots at different cycles are considered (see
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FIGURE 6. (a) Speeds of the head (u1H), tail (u1T), left side (u3LS) and right side (u3RS) for two
spots in the third oscillating cycle as function of the vertical coordinate x2. (b) Speeds of the
head of different spots at different half cycles together with the average value (thick solid line)
as a function of the vertical coordinate (Test T2).

figure 6b). These differences might be partially due to a possible correlation between
the velocity of the boundaries of the spots with the external velocity which is different
because the spots appear at slightly different phases in the cycle.

Table 3 gives the average speeds of the spots for the three runs. Columns 3–6 show
u1H , u1T , u3LS and u3RS while the remaining columns show the corresponding quantities
scaled with the instantaneous value of the outer velocity U∗e ((û1H, û1T, û3LS, û3RS) =
(u∗1H, u∗1T, u∗3LS, u∗3RS)/U

∗
e ). Even though the speeds are given with two significant digits,

the second digit should be treated with caution.
The speed of the spots is smaller than the external velocity, in accordance with

results for steady boundary layers (Schubauer & Klebanoff 1955; Singer 1996).
For the Blasius boundary layer Schubauer & Klebanoff (1955), by means of an
experimental investigation of the characteristics of a turbulent spot artificially initiated,
detected values of the head and tail of the spot equal to 0.88U∗e and 0.5U∗e ,
respectively. A numerical investigation of a spot, initiated in a Blasius boundary layer
by a localized disturbance, showed values of the speed of the head and tail of the spot
equal to 0.97U∗e and 0.63U∗e , respectively (Singer 1996). Thus, it appears that, even
though the present boundary layer is unsteady, the speeds of the head and tail of the
spots, normalized with the instantaneous actual velocity, are similar to those detected
in steady boundary layers. The speeds of the two lateral boundaries of the spot are
one order of magnitude smaller than those of the head and tail because they are due
to turbulent diffusion only. Similar values of û3LS and û3RS are obtained for T1, T2 and
T3, while a significant difference is found for û1H and û1T . Indeed, even though the
values of u1H and u1T are practically constant when Rδ is increased from 775 to 948
(the reader should consider the uncertainty in the second digit), a further increase of
Rδ leads to a significant decrease of both u1H and u1T . Moreover, a monotonic growth
of û1H and û1T is observed as Rδ is increased and for run T3 (Rδ = 1220), u1H and
u1T are larger than those for run T2 (Rδ = 775) of approximately 20–30 %. The growth
of û1H and û1T with Rδ is related to an earlier appearance of turbulence during the
accelerating phase and to the consequent decrease of U∗e . Finally, it can be appreciated
that the expansion rate of the spot in the streamwise direction is significantly larger
than that in the spanwise direction even though they do not appear to significantly
depend on the Reynolds number.
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Test n Rδ u1H u1T u3LS u3RS û1H û1T û3LS û3RS

T1 948 0.68 0.41 0.02 0.03 0.87 0.53 0.03 0.04
T2 775 0.67 0.40 0.04 0.03 0.78 0.46 0.04 0.03
T3 1220 0.51 0.33 0.02 0.03 0.94 0.61 0.04 0.05

TABLE 3. Speed of the head of the spot (u1H), tail of the spot (u1T), right side of the
spot (u3RS) and left side of the spot (u3LS). The caret indicates the speed scaled with the
instantaneous outer flow.
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FIGURE 7. (a) TF versus time at x2 = 0.24; (b) r.m.s. of the bottom shear stress oscillations
versus time.

In order to quantify the area of the computational domain which is under the
influence of turbulent spots, the turbulent fraction (TF) is considered. The TF is
the ratio of the area, for a fixed value of x2, where TKEP exceeds an assigned
value Pt (Pt = 0.5 × 10−4Rδ) and the total area (Lx1 × Lx3). Even though the value of
TF depends on Pt, its qualitative time development, which is analysed in the following,
is not affected.

At this stage it is worthwhile to recall that the characteristics of the turbulent spots
have been obtained by means of the TKEP criterion; therefore TF appears to be
the most natural quantity to use in order to obtain global information on the time
evolution of turbulent spots. Figure 7, where the value of TF is plotted versus time,
shows that the turbulent production starts to grow considerably during the accelerating
phases as in the visual observations of Fishler & Brodkey (1991) and the comparable
tests in the recent experiments of Carstensen et al. (2010). TF reaches a maximum
value near the end of the accelerating phases when turbulence pervades the whole
area. Then TF remains almost constant over a time interval which depends on Rδ
and it is significant for the largest Rδ (Rδ = 1220) while it is negligible for Rδ = 775.
Finally the area with significant levels of turbulence production decreases. Hence,
the numerical simulations confirm that turbulence appears during the late accelerating
phases of the cycle and reaches the maximum intensity at about the end of the
accelerating phases or during the decelerating phases. Moreover, figure 7 shows that
the growth of TF and its maximum take place earlier if the value of Rδ is increased.
During the early stages of TF growth, when turbulent spots are detached from each
other, TF is related to the average area of each spot times the number of spots.
When turbulent spots merge no information can be obtained from TF and other
quantities should be considered to investigate turbulence structure. For example the
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FIGURE 8. First row: TF versus x2. Second row: turbulent kinetic energy versus x2.
(a) t = 15; (b) t = 15.39; (c) t = 15.79; (d) t = 16.57.

r.m.s. value of the bed shear stress oscillations, which is plotted in figure 7(b), shows
that turbulence intensity grows as Rδ is increased and turbulence affects a larger part
of the oscillating cycle. Finally, figure 8 (first row) shows that the maximum of TF
takes place at a similar distance from the wall for the three runs, indicating that the
location of the maximum of turbulent kinetic energy production does not significantly
depend on Rδ. Even though negligible values of TF are found for x2 larger than about
10δ∗, figure 8 (second row) shows that turbulence is present and significant at larger
distances, because of turbulence diffusion. Hence, the boundary layer thickness turns
out to be larger than the region where turbulence is produced.

4. Conclusions
The results of DNSs of an oscillatory boundary layer confirm the experimental

findings of Carstensen et al. (2010). In the range of the Reynolds numbers presently
investigated, turbulent spots, which are turbulent areas in an otherwise laminar
boundary layer, appear near the end of the accelerating phases and cause spikes in
the wall shear stress and velocity field. Later, turbulence pervades the whole boundary
layer and causes large values of the bottom shear stress over the whole bottom. Since
DNS gives access to velocity and pressure fields in the three-dimensional space and
time, the numerical simulations supplement the investigation carried out by Carstensen
et al. (2010). Indeed they allow new quantities to be obtained. In particular, the speed
of the head and tail of the spots can be determined along with the speed of the
lateral spreading of the spot. Even though the flow is highly unsteady, the speeds turn
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out to be similar to those found in steady boundary layers. Indeed the speed of the
head falls between 0.78U∗e and 0.94U∗e and that of the tail ranges between 0.46U∗e
and 0.61U∗e , where U∗e is the instantaneous external free stream velocity. Finally, the
speed of the lateral boundaries turns out to range between 0.03U∗e and 0.05U∗e . The
averaged bottom shear stress rapidly increases when turbulent spots start to appear.
The spatial distribution of τ is uneven and τ is larger under the spots where TKE
as well as TKEP are also larger. Hence, the area characterized by large values of the
bottom shear stress grows at the same rate of the spots. These results suggest that the
interaction of the oscillatory flow with a cohesionless bottom is largely affected by the
presence, number and intensity of turbulent spots. In particular, an investigation of the
interaction of turbulent spots with the sediment lying on the bottom, to be carried out
in the future, might lead to more physically based formulae to determine the inception
of sediment transport and to quantify the sediment transport rate.

The authors wish to acknowledge S. Carstensen, B. M. Sumer and J. Fredsøe who
provided the experimental data shown in figure 1 and the three anonymous reviewers
for their useful comments.
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