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Abstract

To exploit the full potential of big routine data in healthcare and to efficiently communicate and collaborate with information technology
specialists and data analysts, healthcare epidemiologists should have some knowledge of large-scale analysis techniques, particularly about
machine learning. This review focuses on the broad area of machine learning and its first applications in the emerging field of digital
healthcare epidemiology.
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Background

Healthcare epidemiology has gained in importance in the United
States and Europe due to growing financial pressure on hospitals,
rising emergence of multidrug-resistant pathogens and greater
complexity of healthcare delivery and systems,1,2 and it is likely to
evolve further in the era of big data.3

In healthcare, the continuous adoption and integration of
electronic medical records, linkage of data sources, and the advent
of new diagnostic and digital monitoring technologies have led to
an unprecedented quantity and diversity of routine, electronic
data.4 Big data in healthcare may be used to better exploit the
potential for infection prevention and control, quality improve-
ment, and optimal allocation of hospital resources.3,5

For healthcare epidemiologists to make use of big data, com-
putational systems and methods that can handle large datasets are
required. Parallel with the rising amount of routine healthcare
data and improvements in processing speed (computing power
doubles every 2 years for the same cost),6 machine learning is
increasingly being used for healthcare projects and is likely to
become a key analytical tool in healthcare epidemiology.3,7

Thus, digital healthcare epidemiology, which focuses on
healthcare populations, may become an important field of epi-
demiology, analogous to the rapidly growing field of digital epi-
demiology that uses primarily social media data and other routine
data sources within general populations.8–10 Similar to the general
field of epidemiology, the primary goals of these interrelated

fields, digital epidemiology and digital healthcare epidemiology,
are to understand the distribution and determinants of health-
related states in specific populations and to use this knowledge to
improve health and prevent disease. For simplicity, we char-
acterize the spectrum between conventional healthcare epide-
miology and digital healthcare epidemiology across 3 axes: (1)
the analytical method, (2) the data source, and (3) the data type
(Fig. 1).

To exploit the full potential of big routine data in healthcare
and to efficiently communicate and collaborate with IT specialists
and data analysts, healthcare epidemiologists require some
knowledge of large-scale analysis techniques, particularly about
machine learning. This review provides an overview on the broad
area of machine learning and its recent applications in the
emerging field of digital healthcare epidemiology for prediction,
detection of trends and patterns (eg, for surveillance purposes),
and the identification of risk factors. The main challenges and
opportunities of studies relying on routine healthcare data and big
data have been reviewed previously.11–15

Machine Learning: Introduction

Machine learning as a discipline originated in computer science
with very close ties to statistics, but it is difficult to draw a straight
line between the two. Machine learning is a young field compared
to statistics that arose from the field of mathematics, having
developed long before computers became available.16 Machine
learning and statistics share a common aim to learn from data.
Logistic regression for example, which is a standard technique in
statistics,17 is called a machine-learning algorithm within the
machine-learning community.18 The same holds true for more
recent algorithms, such as random forests, which are well known
machine-learning algorithms, developed by the statistician Leo
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Breiman.19 Most statistical algorithms have been designed to
work primarily on small and low-dimensional datasets. The huge
and complex datasets that are available today did not exist at the
time when the first statistical algorithms were built. The advent of
new techniques, and the gathering of huge and complex datasets
increasingly required including computational aspects in the
algorithms, leading to the term machine learning.

Machine learning can be broadly divided into 2 subareas:
supervised and unsupervised learning. In supervised learning,
both the input data and the corresponding target values (ie,
outcomes) are observed. An example is to classify patients into
either diseased or healthy. A domain expert (eg, a physician)
assigns an annotation (the “label”), for example, diseased or
healthy, to every patient. The aim is to find the model that best
distinguishes between those two classes, to either correctly assign
the label diseased or healthy to new, unlabeled patients, or to
identify important covariables. Problems of this kind are called
classification problems (Fig. 2). Well-known classification

algorithms include variations of logistic regression, random for-
ests, support vector machines, and neural networks.

Which classification algorithm is best to use depends on the
data type (eg, images, text, laboratory values, and genetic data), as
well as the size and the dimensionality of the data. A corre-
sponding model should be carefully selected that will generalize
well to unseen data and will not simply memorize the training
data (a phenomenon called “overfitting”). Regression algorithms
are additional, well-known, supervised machine-learning meth-
ods. In regression problems, the aim is not to separate 2 (or more)
classes, but to find the function which best describes the data, to
predict the correct value for a new data point (Fig. 3).

In unsupervised learning, the training data consists of a set of
input variables without any corresponding target values (outcome
labels) that are required in supervised learning. The goal in
unsupervised learning problems is to find patterns and to extract
hidden structure from data, completely data driven without any
expert labelling. Typical examples are clustering problems that
aim to group similar data points together (Fig. 4). Examples of

Fig. 2. Illustration of a classification task; a model learns to separate diseased from
healthy individuals in a 2-dimensional space.

Fig. 1. Spectrum between conventional and digital healthcare epidemiology. Note: Any healthcare epidemiology project may be characterized across 3 main axes: the
analytical approach, the data source, and the data type as illustrated for a fictive project ‘B.’ This project used nonroutine data from a cohort study and routine data
(laboratory and genetic routine data) to predict hospital-acquired infections, primarily via deep learning, a set of machine-learning algorithms, which requires little human
guidance for variable selection. Routine healthcare data can be defined as data that are routinely generated or collected during healthcare delivery.36 Thus, electronic medical
records and administrative claims data are typical sources of routine healthcare data.36 In contrast, nonroutine healthcare data are generated or collected for a specific
nonroutine purpose (eg, as part of a clinical trial). Surveillance programs frequently incorporate both routine and nonroutine data sources. Big data is a term used to describe
data that make conventional data processing difficult due to their size (volume), diversity (variety), and/or update frequency (velocity).37

Fig. 3. Illustration of a regression problem; a model learns the function that best fits
the data points.

1458 Jan A. Roth et al

https://doi.org/10.1017/ice.2018.265 Published online by Cambridge University Press

https://doi.org/10.1017/ice.2018.265


this type of analysis are subtype detection of patients with
hospital-acquired infections and finding similar patient sub-
groups to assign patients to clinical trials. Typical machine-
learning methods used for unsupervised learning are k-means
clustering or probabilistic Gaussian mixture models.

Machine-learning techniques have become increasingly pop-
ular in the last years in the field of healthcare epidemiology due to
the huge amount and diversity of routine electronic data that is
available in healthcare. However, there still exists a gap between
theoretical machine learning research and clinical research.
Researchers developing novel machine learning techniques
usually have a background in computer science, mathematics or
physics. They perform cutting-edge research, develop novel
algorithms, and may even apply them to healthcare data. How-
ever, they do not have comprehensive knowledge of the data
generating process in daily clinical routine. Healthcare profes-
sionals, on the other hand, have a deep understanding of the
clinical problems and of the quality of specific healthcare data.
Today, they are often able to apply some machine learning
methods by themselves using standard statistical software
packages (eg, R). However, some healthcare professionals may not
be aware of the underlying assumptions and limitations of the
models, which might lead to statistical unsound models or
overfitted models. These 2 research areas complement each other;
the advancement of digital healthcare epidemiology to a new level
requires mutual understanding, communication, and collabora-
tions between these fields.

Machine Learning: Recent Applications in Digital
Healthcare Epidemiology

Numerous recent reports illustrate the first applications of
machine learning in digital healthcare epidemiology, most fre-
quently to make predictions based on routine healthcare data
(Table 1). This goal is achievable by machine learning, particu-
larly the analysis of large and diverse data assemblages (some-
times involving thousands of variables), which could complicate
more human-guided modeling approaches.7

In a prototypical, retrospective study based on electronic
medical records data from the University of Michigan Hospitals

and the Massachusetts General Hospital, Oh et al20 used a data-
driven approach to build hospital-specific models to estimate
daily patient risk for Clostridioides difficile infection (CDI) using
L2 regularized logistic regression. These machine-learning models
were built and internally validated based on data from >150,000
adult admissions and involved several thousand time-invariant
and time-varying variables; they resulted in a good predictive
performance with areas under the receiver operating character-
istic curve ranging from 0.75 to 0.82. At both institutions, the
models identified half of true-positive cases at least 5 days prior to
diagnosis of CDI. As part of a surveillance or decision support
tool, these models could help to rapidly identify new cases of CDI,
before microbiological test become available, or to select patients
who should be tested for the presence of C. difficile. Furthermore,
a range of institution-specific predictors were identified (eg,
specific departments), which could stimulate additional investi-
gations by health care epidemiologist to generate (causal)
hypothesis about risk factors for occurrence or spread of CDI.
This study illustrates well the paradigm-shift in healthcare from
building ‘one-size-fits-all’ prediction models toward the applica-
tion of more patient-centered analytical approaches that may
result in many different data-driven prediction models. Such a
flexible approach can incorporate heterogeneous and changing
routine variables, which could complicate the development and
application of prediction models that are generalizable across
clinics; not all variables can be readily mapped when originating
from different systems. Moreover, this approach allows an insti-
tution to adjust their models during follow-up, and such flexibility
is needed because variables and respective coding practices are
subject to change in electronic medical records and because
calibration drift may be observed for models derived from
regression analysis and machine learning.21

Even using state-of-the-art machine learning algorithms based
on a wide array of potential predictors, some outcomes of interest
may not be accurately predicted. This was illustrated recently in a
retrospective study by Escobar et al22 of granular data from
electronic medical records of 21 Kaiser Permanente Northern
California hospitals. In this study, none of the conventional and
machine learning models discriminated well for prediction of
recurrent CDI. Such study results may exemplify that despite the
extensive electronic medical records available in this study, rele-
vant predictors may not be readily identified by machine learning
or may not even be available in the records.

Furthermore, the external validity and clinical effectiveness of
most machine-learning prediction models, like most prediction
models and scores in medicine, are unclear. Especially for
development and application of predictive models, models should
be carefully evaluated in a way that mirrors clinical practice.23

Compared to conventional prediction models, machine learning
is sometimes a ‘black box’ approach, such that selection of pre-
dictor variables by machine-learning algorithms may not be
transparent and can be counterintuitive.20 However, predictive
modeling via machine learning (like other statistical techniques)
does not require including only causal predictors, because accu-
rate prediction models can be derived from an abundance of
variables and proxy measures of causal factors that may not be
causally related to the outcome of interest (eg, brain natriuretic
peptide being a marker for heart failure).

Compared to prediction tasks, little has been reported about
using machine learning in healthcare epidemiology to draw causal
inferences and to identify independent risk factors (ie, causal
modeling), which requires careful consideration of bias,

Fig. 4. Illustration of an unsupervised clustering task; a model finds similar data
points and groups them together.
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Table 1. Recent Applications of Machine Learning in Digital Healthcare Epidemiology

Referencea Data Type
No. of
Participants Study Aim

Main Analytical
Methods Application Conclusion/Lessons Learned

Savin et al., 201830 Surveillance data 2,286
individuals

Identify risk factors for
healthcare–associated
ventriculitis and meningitis

– LASSO
– Random forest
– XG boost

I Tree-based machine learning algorithms performed better than multivariable
logistic regression and allowed detection of non-linear time-dependent
variables.

Allen et al, 201638 Surveillance data
and social media
(Twitter)

Not reported Influenza surveillance – SVM P SVM accurately predicted influenza-like illnesses at a local level.

Beeler et al, 201828 EMR 70,218
individuals

Prediction of CLABSI – Random forest
– Logistic regression

P Random forest had higher accuracy for prediction of CLABSI than logistic
regression.

Escobar et al,
201722

EMR 11,251
individuals

Prediction of Clostridioides
difficile recurrence

– Random forest
– Logistic regression

P/(I) Both methods had poor performance for predicting C. difficile recurrence.

Ehrentraut et al,
201839

EMR 120 individuals Prediction of healthcare-
associated infections

– SVM
– Gradient tree
boosting

P Gradient Tree Boosting performed best for predicting healthcare-associated
infections. Simple preprocessing of data increased predictive accuracy.

Kuo et al, 201840 EMR and
surveillance data

1,836
individuals

Prediction of SSI – ANN
– Logistic regression

P ANN using post-operative data performed best for prediction of SSI.

Oh et al, 201820 EMR 256,732
admissions

Prediction of daily risk for C.
difficile infection

– L2 regularized
logistic regression

P/I Machine learning can accurately predict C. difficile infection, but data-driven
predictions must be tailored locally.

Parreco et al,
201829

EMR 22,201
individuals
with a
central line

Prediction of CLABSI and
mortality

– Deep learning
– Logistic regression
– Gradient tree
boosting

P Inconclusive41: Use of crude imbalanced data was not better than best guess for
prediction of CLABSI. Other machine-learning algorithms were marginally more
predictive than logistic regression.

Sanger et al,
201642

Surveillance data 851 individuals Prediction of SSI – Naïve Bayes
classifier

– Logistic regression

P Naïve Bayes classifier predicted SSI more accurately, with marginal gain, than did
logistic regression.

Gómez-Vallejo
et al, 201643

EMR 5,385 cases Detection and classification of
healthcare-associated
infections

– Naïve Bayes
classifier

– PART algorithm

S/P Machine learning successfully classified healthcare-associated infection: an
automated rule was more accurate than a predefined definition.

Lu et al, 201844 Multiple data
sourcesb

Not reported Influenza surveillance – LASSO S/P Combining information from multiple models resulted in the best predictive
performance.

Santillana et al,
201545

Multiple data
sourcesc

Not reported Real-time influenza surveillance – SVM
– Decision tree
regression

– LASSO

S/P Decision-tree regression resulted in the most robust and accurate predictions.

Sohn et al, 201746 Surveillance data 751 individuals Detection of SSI – NLP
– Bayesian network
– Logistic regression

S/P Combination of NLP and Bayesian network provided the best accuracy to detect
SSI, and Bayesian network was more accurate than ridge estimator logistic
regression.

Pak et al, 201747 EMR 171,938 visits Estimating costs and changes in
length of hospital stay for C.
difficile infection

– Logistic regression
with elastic net
regularization

O Machine learning was used for propensity score development.

Note. ANN, artificial neural network; CLABSI, central line-associated bloodstream infection; EMR, electronic medical records; I, identification of risk factors; LASSO, least absolute shrinkage and selection operator; NLP, natural language processing; P,
prediction; O, other; S, surveillance; SSI, surgical site infection; SVM, support vector machine; XG boost, extreme gradient booster
aArticles published between October 2015 and June 2018 were included based on a Medline search and a bibliographic screening of the selected articles.
bCombines data from different sources (ie, Boston Public Health Commission, Google Trends, Twitter, FluNearYou and electronic medical records).
cCombines data from different sources (ie, Centers for Disease Control and Prevention, electronic medical records, Google Trends, Twitter, FluNearYou, and Google Flu Trends).
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confounding, interactions, reverse causality, and effects by
chance.24 Some machine-learning algorithms can detect linear
and nonlinear interactions between variables, but confounding
may be challenging to address adequately without human gui-
dance through conceptual causal frameworks and expert knowl-
edge. Implementation of machine learning algorithms that can
account for observed confounding have been proposed and may
become more advanced in the future.25–27 Thus, causal hypoth-
eses could be generated from routine healthcare data via machine
learning with little human guidance (eg, to identify a hidden
outbreak source). However, application of machine learning in
observational studies cannot replace adequately sized and well-
executed randomized controlled trials in making causal inferences
because randomized controlled trials account for both known and
unknown/unmeasured confounding.

Most recent studies applying machine learning to real-world
tasks in healthcare epidemiology relied, at least partly, on routine
data originating from electronic medical records (Table 1). Such
rich data sources have been shown to be especially useful for
developing hypotheses about previously unknown risk factors and
for building accurate prediction models for various outcome of
interest (eg, specific healthcare-acquired infections, hospital
complications).20,28–30

Linkage of electronic medical records data with high-quality
cohort or registry data has become a valuable option to add
exposures, potential confounders, effect modifiers, and outcomes
of interest with strict definition criteria that may not be present in
routine medical records.31 This option is particularly valuable
because data from electronic medical records (and other routine
data sources) have been reported to sometimes be of lower quality
than data acquired during prospective investigations due to
changing and varying definition criteria/coding practices, and
missing data.31,32 Therefore, studies relying on routinely collected
health data require careful consideration of potentials for infor-
mation bias, selection bias, and residual confounding at the design
stage and analytical stage of the study. Furthermore, reporting of
respective study results should be as transparent as possible.32

In addition to structured, routine data elements, unstructured
data (eg, clinical notes) can now provide reasonable information
when analyzed by the machine-learning method of natural lan-
guage processing; this approach can further increase the volume
of accessible, routine healthcare data.33 However, the incremental
value of healthcare data obtained from daily routine clinical notes
is not proven, and both unstructured and structured routine data
may not always be reliable and suitable.11

To utilize the increasing volumes of routine healthcare data
from health records and other routine data sources, concerns
about data quality, data heterogeneity, missing data, and selective
data collection are important to consider for any machine
learning task; the main challenges and opportunities of studies
relying on routine healthcare data and big data have been
reviewed previously.11–15

Gaps in Knowledge

To date, little has been reported about applications of state-of-
the-art machine learning to healthcare epidemiology. Specifically,
the efficacy and effectiveness of machine-learning–derived pre-
diction models to improve healthcare delivery has yet to be
proven.3 Notably, it remains largely unknown how machine
learning could be adequately translated into clinical practice.

Therefore, more research is required to elucidate the good, the
bad, and the unintended consequences of machine learning in
healthcare epidemiology and to understand how to best apply
machine learning findings to healthcare practice.34 Despite many
sensational media reports, machine learning it not a magic
technology that can convert data of poor quality into gold35 and,
as a data scientist has stated recently, “Machine learning in
healthcare is still the wild west.”

The increasing volume, variety and velocity of routine
healthcare data clearly provide massive potential for supervised
and potentially unsupervised machine learning tasks in healthcare
epidemiology. However; to make optimal use of (big) routine data
for quality improvement and healthcare research, these develop-
ments should be met by appropriate methodological, ethical, and
data security standards.

In conclusion, digital healthcare epidemiology is a growing
field in medicine that is driven by the increasing availability of big
data originating from daily routine documentation in healthcare.
Machine learning may become an important tool in the arma-
mentarium of healthcare epidemiologists to better exploit the
potential of big data for infection prevention and control, quality
improvement, and optimal allocation of hospital resources. Due
to their complexity, machine-learning projects should usually be
performed in close collaboration between domain experts and
machine-learning specialists based on best practices.
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