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Direct simulations of two-dimensional plane channel flow of a viscoelastic fluid at
Reynolds number Re = 3000 reveal the existence of a family of attractors whose
structure closely resembles the linear Tollmien–Schlichting (TS) mode, and in
particular exhibits strongly localized stress fluctuations at the critical layer position of
the TS mode. At the parameter values chosen, this solution branch is not connected
to the nonlinear TS solution branch found for Newtonian flow, and thus represents a
solution family that is nonlinearly self-sustained by viscoelasticity. The ratio between
stress and velocity fluctuations is in quantitative agreement for the attractor and the
linear TS mode, and increases strongly with Weissenberg number, Wi. For the latter,
there is a transition in the scaling of this ratio as Wi increases, and the Wi at which
the nonlinear solution family comes into existence is just above this transition. Finally,
evidence indicates that this branch is connected through an unstable solution branch
to two-dimensional elastoinertial turbulence (EIT). These results suggest that, in the
parameter range considered here, the bypass transition leading to EIT is mediated by
nonlinear amplification and self-sustenance of perturbations that excite the TS mode.

Key words: drag reduction, turbulent transition

1. Introduction
Adding minute quantities (parts per million) of long-chain polymer additives can

dramatically change the turbulent flow of Newtonian fluids, the most significant
consequence being the considerable drop in friction factor, which is commonly
referred to as the Toms effect (Virk 1975; White & Mungal 2008; Graham 2014).
Accompanying this overall change is a structural change to the flow. At high levels
of viscoelasticity, Dubief, Terrapon & Soria (2013) and Samanta et al. (2013)
have shown that trains of weak spanwise-oriented flow structures with inclined
sheets of polymer stretch dominate the flow, denoting this regime as elastoinertial
turbulence (EIT). These sheets of polymer stretch correspond to a layer near each
wall of localized spanwise vortex motion. In further contrast to the three-dimensional

† Email address for correspondence: mdgraham@wisc.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

37
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-4220-1583
https://orcid.org/0000-0003-4983-4949
mailto:mdgraham@wisc.edu
https://doi.org/10.1017/jfm.2020.372


897 A3-2 A. Shekar, R. M. McMullen, B. J. McKeon and M. D. Graham

(3-D) structures that sustain Newtonian turbulence, Sid, Terrapon & Dubief (2018)
demonstrated that EIT is fundamentally two-dimensional (2-D) in nature by showing
that the structures sustaining 2-D EIT in channel flow simulations are similar to those
in three dimensions. In a computational study of EIT in pipe flow, Lopez, Choueiri
& Hof (2019) also observe nearly 2-D spanwise vortices in the near-wall region,
indicating the structural similarities between EIT in channels and pipes.

Choueiri, Lopez & Hof (2018) experimentally studied the path to EIT in pipe flow
by varying polymer concentration at fixed Reynolds number, Re. For sufficiently low
Re, they observed an initial drop in friction factor (i.e. modification of Newtonian
turbulence) as concentration increased, followed by relaminarization and eventually
by a re-entrant transition to EIT, where the flow had very different structure from
Newtonian turbulence. These observations point at two distinct types of turbulence
in dilute polymer solutions – one that is suppressed by viscoelasticity (Newtonian
turbulence) and one that is promoted (EIT).

Shekar et al. (2019) corroborated this observation of a re-entrant transition to
EIT in simulations of channel flow with increasing Weissenberg number, Wi, the
ratio between the polymer relaxation time scale and the shear time scale. They
further showed that, close to its inception, EIT exhibits localized polymer stress
fluctuations that bear strong resemblance to critical layer structures predicted by
linear analyses, i.e. sheetlike fluctuations localized at wall-normal locations where the
disturbance wave speed equals the base flow velocity. In particular, they demonstrated
that the fluctuation structure corresponding to the dominant spectral content strongly
resembles the viscoelastic extension of the linear Tollmien–Schlichting (TS) wave.
This is perhaps a surprising result, as the flow in the parameter regime considered is
linearly stable, and in Newtonian turbulence the TS mode plays a very limited role.
Some light is shed on this issue through resolvent analysis, i.e. determination of the
response of the linearized dynamics to harmonic-in-time disturbances, which shows
that the linear TS mode becomes highly amplified in the presence of viscoelasticity.
This strong amplification implies that even very weak disturbances may be sufficient
to trigger the nonlinear effects necessary to sustain EIT.

We note that similar structures have been observed by other researchers in different
contexts. Page & Zaki (2015) analysed the evolution of vortical perturbations in 2-D
viscoelastic simple shear flow. Their analysis reveals a viscoelastic analogue of the
Newtonian Orr mechanism. This ‘reverse-Orr’ mechanism generates tilted sheets of
polymer stress fluctuations resembling those seen at EIT and thus may play some role
in this phenomenon.

Because prior work on EIT reveals structures similar to those seen in the linear
TS mode, the present work focuses on TS waves, but in the fully nonlinear context
of self-sustained solutions in the channel flow geometry. (In the parameter regime
here, the laminar flow is always linearly stable.) After introducing the formulation
and computational methods, we show how the Newtonian nonlinear TS wave branch
is modified by viscoelasticity, resulting in its disappearance as Wi increases. At
still higher Wi, however, we demonstrate the onset of a new, viscoelasticity-driven,
nonlinear solution branch that strongly resembles the linear TS mode, and illustrate
how it is related to the TS mode of linear theory and to EIT.

2. Formulation

This study focuses on 2-D pressure-driven channel flow with constant mass flux. The
x and y axes are aligned with the streamwise and wall-normal directions, respectively.
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Lengths are scaled by the half channel height l, so the dimensionless channel height
Ly = 2. The domain is periodic in x with length Lx. Velocity v is scaled with the
Newtonian laminar centreline velocity U, time t with l/U, and pressure p with ρU2,
where ρ is the fluid density. The polymer stress tensor τp is related to the polymer
conformation tensor α through the FENE-P constitutive relation, which models each
polymer molecule as a pair of beads connected by a nonlinear spring with maximum
extensibility b.

We solve the momentum, continuity and FENE-P equations:

∂v

∂t
+ v · ∇v =−∇p+

β

Re
∇

2v +
(1− β)
ReWi

(∇ · τp), (2.1)

∇ · v = 0, (2.2)

τp =
α

1−
tr(α)

b

− I, (2.3)

∂α

∂t
+ v · ∇α − α · ∇v − (α · ∇v)T =

−1
Wi

τp. (2.4)

Here Re= ρUl/(ηs + ηp), where ηs and ηp are the solvent and polymer contributions
to the zero-shear-rate viscosity. The viscosity ratio β = ηs/(ηs + ηp). We fix β = 0.97
and b = 6400. Since 1 − β is proportional to polymer concentration and b to the
number of monomer units, this parameter set corresponds to a dilute solution of a
high-molecular-weight polymer. The Weissenberg number Wi= λU/l, where λ is the
polymer relaxation time.

For the nonlinear direct numerical simulations (DNS) described below, a finite
difference scheme and a fractional time-step method are adopted for integrating the
Navier–Stokes equation. Second-order Adams–Bashforth and Crank–Nicolson methods
are used for convection and diffusion terms, respectively. The FENE-P equation is
discretized using a high-resolution central difference scheme (Kurganov & Tadmor
2000; Vaithianathan et al. 2006; Dallas, Vassilicos & Hewitt 2010) that guarantees
positive definiteness of the polymer conformation tensor without the need for any
artificial diffusion. In any case, the nonlinear solution branch on which we focus
in this paper displays weak fluctuations far from the limit of positive definiteness
even at the highest Wi of existence. A typical resolution for the following results is
(Nx, Ny) = (79, 402). This resolution used was based on mesh convergence results
at Wi = 45. When the resolution was increased to (Nx, Ny) = (131, 602), the mean
polymer stretch deviations from the laminar base state change by less than 1 %.

We also consider the linearized evolution of infinitesimal perturbations to the
laminar state with given streamwise wavenumber k. Two approaches are used. The first
is classical linear stability analysis, in which solutions of the form φ̂(y) exp[ik(x− ct)]
are sought, resulting in an eigenvalue problem for the complex wave speed c at a
given k. In the present study, a hat ˆ always indicates deviation from the laminar state.
If all ci < 0, which is the case for all conditions considered in the present study, the
flow is linearly stable. A linearized version of the DNS code was also developed
using the numerical schemes described above. Results were validated against linear
stability analysis, and agreement to three significant digits was obtained for the value
of c for the viscoelastic TS mode at the parameters of interest.

The second linear approach used here determines the linear response of the laminar
flow to external forcing with given wavenumber k and frequency ω using the resolvent
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operator of the linearized equations (Schmid 2007; McKeon & Sharma 2010). The
norm used in the resolvent calculations is

‖φ̂‖2
A =

∫ 1

−1
[v̂
∗
v̂ + tr(A−1α̂∗A−1α̂)] dy, (2.5)

where A is the conformation tensor in the laminar state. The second term provides a
measure of the conformation tensor perturbation magnitude that is motivated by the
non-Euclidean geometry of positive definite tensors (Hameduddin, Gayme & Zaki
2019). For both the linear stability and resolvent analyses, the equations are discretized
with a Chebyshev pseudospectral method using 401 Chebyshev polynomials. This
number was arrived at by ensuring convergence of the TS eigenvalue.

3. Results and discussion
3.1. Origin of Newtonian and viscoelastic nonlinear Tollmien–Schlichting attractors

In Newtonian flow, a family of nonlinear TS waves bifurcates subcritically from
the laminar branch at Re ≈ 5772 with Lx ≈ 2π/1.02 ≈ 6.15. The lower limit
of the parameter regime for which this solution family exists is Re ≈ 2800,
Lx ≈ 2π/1.3 ≈ 4.83 (Jiménez 1990). Furthermore, in prior work on EIT (Shekar
et al. 2019), as well as in more recent simulations in long 2-D domains, a strong
peak in the spatial spectrum is found at Lx ≈ 5. Based on these observations, all
of the results presented in this study will be at Re = 3000, Lx = 5. (At Lx = 5,
Newtonian channel flow is linearly stable at all Re.) In the Newtonian limit at these
parameters, there are upper and lower branch solutions (which merge in a saddle-node
bifurcation as Re is lowered); the upper branch travelling wave solution is linearly
stable with respect to 2-D perturbations and is thus easily computed via DNS. We
call this solution branch, including its viscoelastic extension, the Newtonian nonlinear
Tollmien–Schlichting attractor (NNTSA). (The word ‘attractor’ is chosen rather than
‘wave’ because, depending on parameters, one can observe a pure travelling wave
state or one with periodic or non-periodic modulations.)

On increasing Wi, the self-sustained nonlinear viscoelastic TS wave at Re = 3000
develops sheets of high polymer stretch that start out from near the wall. These
observations are evidence of the capability of nonlinear TS critical layer mechanisms
in generating sheets of polymer stretch. Figure 1 illustrates this point with a snapshot
of α̂xx on the NNTSA branch at Wi = 3. The sheets originate in the nonlinear
Kelvin cat’s eye kinematics of TS waves at finite amplitude, as detailed in Shekar
et al. (2019). The NNTSA continues to display wall-normal velocity fluctuations that
extend across the channel centreline – a signature of TS kinematics. Some of the
observations made in Shekar et al. (2019) are repeated here for completeness, as they
form the background for the new results of the present study.

At the parameters chosen, the solution branch originating in the self-sustained
Newtonian TS wave bifurcates to a periodic orbit at Wi≈ 3.5 (cf. Lee & Zaki 2017)
before turning back into a travelling wave and losing existence beyond Wi = 3.875,
evidently in a saddle-node bifurcation yielding a lower branch TS wave solution that
becomes the Newtonian solution as Wi→ 0. Consistent with a saddle-node bifurcation,
if the solution at Wi= 3.875 is used as an initial condition for a simulation at slightly
higher Wi, the flow laminarizes. This bifurcation scenario is shown in figure 2(a)
in terms of average wall shear rate versus Wi. The unstable lower branch (dashed
blue) was found using edge tracking (Zammert & Eckhardt 2014) between NNTSA
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FIGURE 1. Structure of NNTSA at Re= 3000, Wi= 3. Streamlines (blue) in a reference
frame moving at the wave speed c = 0.39 are superimposed on colour contours of α̂xx,
where the hat ˆ denotes deviations from the laminar state. Blue dots indicate the locations
of hyperbolic stagnation points (in the travelling frame). Black contour lines of v̂ are also
shown. For v̂, dashed = negative and solid = positive.
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FIGURE 2. (a) Bifurcation diagram showing the evolution of the space- and time-averaged
wall shear rate with Wi for the 2-D nonlinear NNTSA and EIT branches at Re = 3000,
Lx= 5. Point (a) corresponds to the structure shown in figure 1. Labels ‘L’ and ‘VNTSA’
indicate that initial conditions starting at the arrows evolve to laminar or VNTSA states,
respectively. (b) Bifurcation diagram of the L∞-norm of α̂xx with Wi for VNTSA and
EIT. Points (a)–( f ) correspond to structures shown later in figure 6. The label ‘EIT’
indicates that initial conditions evolve to EIT. In both panels, dashed lines correspond to
the unstable solution branches obtained from edge tracking.

and laminar solutions at a given Wi. A bisection technique was used to arrive at
arbitrarily close initial conditions that are on either side of the edge. DNS trajectories
starting from such points stay on the edge for a while before diverging to NNTSA
and laminar.

As shown in Shekar et al. (2019), if Wi is large, sufficiently energetic initial
conditions lead to 2-D EIT. Figure 2(a) also shows the mean wall shear rate for the
EIT solution branch, which loses existence at finite amplitude when Wi . 13. The
bifurcation underlying this transition is presumably also of saddle-node form.

The central observation of the present paper arises from considering what happens
just below the onset of the EIT regime at Wi≈ 13. We do this by using a velocity and
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FIGURE 3. Time evolution of the L∞-norm of α̂xx for Re= 3000, Wi= 13, Lx= 5, starting
from an initial condition of laminar state + ε × TS-mode. Dashed lines correspond to
linearized runs starting from the same initial conditions for ε = 10 and 100.

stress field from EIT at Wi=13 as an initial condition for a run at Wi=12. This initial
condition persists as a slowly decaying form of EIT for hundreds of time units (TU),
consistent with behaviour just beyond a saddle-node bifurcation. As time increases
further, the structure continues to decay, but does not ultimately reach the laminar
state. Instead, it evolves to a non-trivial attractor state that is very nearly a travelling
wave, and in particular strongly resembles the linear TS mode at these parameters. We
call this new state the viscoelastic nonlinear Tollmien–Schlichting attractor (VNTSA).

3.2. Viscoelastic nonlinear Tollmien–Schlichting attractor
To elaborate on the relationship between the VNTSA and the linear TS mode, we
describe results at Re= 3000, Wi= 13, Lx = 5, i.e. close to the point where the 2-D
EIT branch first comes into existence as shown in the bifurcation diagram (figure 2a).
EIT and the VNTSA are coexisting attractors at these parameter values. Figure 3
shows the evolution of the L∞-norm of α̂xx starting from an initial condition consisting
of the laminar state plus some amplitude ε of the linear TS mode for this parameter
set. This mode, with ε = 1, is shown in figure 4(a). The structure of the velocity
field is virtually unchanged from the Newtonian case and the polymer conformations
are strongly localized to the critical layer positions y = ±0.82. Sufficiently small
perturbations, e.g. ε = 1, decay to the laminar state, as they must since that state is
linearly stable. However, for larger perturbations, ε = 5, 10 and 100, where nonlinear
mechanisms play a role, α̂xx settles to a finite value corresponding to the VNTSA.
The initial condition ε = 5 that starts from below the VNTSA in ‖α̂xx‖∞ shows an
initial growth phase before saturating onto the VNTSA, whereas ε= 10 and 100 relax
onto the VNTSA from above.

For comparison, the dashed lines in figure 3 show the linearized evolution starting
from the same initial conditions; these all decay to laminar, illustrating the role of
nonlinearity in the transition to the VNTSA. This state is robust: initial perturbation
amplitudes over a wide range will evolve to it. However, initial conditions with very
large magnitudes (e.g. ε= 6000) evolve to EIT: as noted above, both EIT and VNTSA
are attractors at the chosen parameters (as is the laminar state).
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FIGURE 4. (a) Structure of the linear TS mode at Re= 3000, Wi= 13, Lx= 5. Magnitude
of the eigenmode is arbitrary and values shown here correspond to ε= 1. (b) Snapshot of
the fluctuation structure of the VNTSA at Re= 3000, Wi= 13. (c,d) The kLx/2π= 1, 2
components, respectively, of the snapshot shown in (b). Shown are contour lines of v̂
superimposed on colour contours of α̂xx.

We have also used initial conditions of the laminar state plus velocity perturbations
somewhat similar to the ones used by Page & Zaki (2015). These perturbations
satisfied incompressibility and were sinusoidal in nature, with streamwise and
wall-normal periods equal to the domain size. When appropriate magnitudes are
used, transient growth of polymer stress followed by a decay to the VNTSA is
observed.

In 3-D channel flow simulations of Oldroyd-B fluids at Re = 3000, Wi = 4–6,
β = 0.9, Min, Choi & Yoo (2003) observe a transient (∼500 TU) before an abrupt
jump to the fully developed state. These observations were made starting from
turbulent Newtonian initial conditions. In the present work, we used an average of
approximately 2500 TU of data, and in some cases more than 5000 TU to calculate
the statistics, and have observed no similar transition in any simulations of VNTSA
in the parameter space considered here.

Figure 4(b) is a snapshot showing the typical fluctuation structure of the VNTSA
at Wi = 13. The streamwise conformation α̂xx has tilted sheets highly localized
near y = ±0.82, and contours of wall-normal velocity v̂ span the entire channel.
This structure bears strong resemblance to the TS mode shown in figure 4(a). The
VNTSA is thus a weakly nonlinear self-sustaining state whose primary structure is
the viscoelastic TS mode. We elaborate in the following section on the linear TS
mode and its connections to the VNTSA.

In the VNTSA state, the velocity fluctuations are very weak, and the mean wall
shear rate displays a very small change from laminar. This can be understood on the
grounds that changes of the mean wall shear rate correspond to fluctuations with k=0,
which arise only due to nonlinear interactions. Since the primary velocity structure
is very weak, the nonlinear effects will be even weaker. To illustrate nonlinear
effects, figures 4(c) and 4(d), respectively, show the kLx/2π= 1 and 2, spatial Fourier
components of the snapshot shown in figure 4(b). Figure 4(c) closely resembles the
TS mode, with a slight symmetry breaking across the centreline y= 0. The structure
at kLx/2π = 2 also displays polymer stress fluctuations localized around the critical
layer position, an observation that also holds for higher wavenumbers.
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Having established the structure of the flow on the VNTSA branch, we now
illustrate the bifurcation scenario of this solution branch by continuing in Wi. The
VNTSA branch loses existence at finite amplitude (i.e. in a saddle-node bifurcation)
for Wi . 6, as we have confirmed both by using the Wi = 6 solution as an initial
condition for simulations at lower Wi and by running simulations starting from the
laminar state perturbed by the TS mode with small ε. For Wi < 6 all these initial
conditions decay to laminar. On increasing Wi, the VNTSA branch seems to lose
existence beyond Wi≈ 49, and initial conditions that land on the VNTSA for Wi= 49
evolve to EIT at Wi= 50. Due to its weak nature in relation to EIT, the bifurcation
scenario associated with the two solution branches is shown in figure 2(b) in a log
scale using the L∞-norm of α̂xx as the amplitude measure. The EIT solutions in
figure 2(a) are depicted again in figure 2(b) as the upper stable branch (solid red)
with this measure.

Since the VNTSA and EIT are both stable states, we were also able to perform
edge tracking to find unstable solutions intermediate between these two states. Five
Wi values (13, 15, 20, 40 and 45) were studied. Repeated bisections were performed
until trajectories stayed on the edge for an average of 300 TU. The red dashed line in
figure 2(a,b) indicates solutions (all time-dependent) on this intermediate branch. The
magnitude of fluctuations along this branch monotonically decreases on increasing Wi,
displaying values close to EIT at Wi= 13 and values to close to VNTSA at Wi= 45.
Furthermore, this branch also displays fluctuations that resemble the viscoelastic TS
mode, as illustrated below. A more detailed link between VNTSA and EIT might be
established through numerical continuations of underlying travelling wave solutions;
this is a topic of future endeavours.

To complete this discussion, we note that the bifurcation scenario we observe
implies the existence of an edge between the VNTSA and the laminar state, which
could in principle also be found using edge tracking. However, the weak nature of the
VNTSA implies that this edge would be even weaker, thus making this a challenging
task.

Figure 5(a) shows the fluctuation structure of the VNTSA at Wi = 8, close to
the point where it first comes into existence. The structure closely resembles the
TS mode and does not change appreciably with time. The flow is almost a pure
nonlinear travelling wave with some weak non-periodicity, as indicated in the power
density plot of the wall-normal velocity at position (0, 0.825) shown in figure 5(b).
The spectrum is mainly composed of the dominant TS mode frequency and its
higher harmonics. The dynamics and structures get more complicated as Wi increases.
Figure 5(c) shows a typical snapshot at Wi = 20, which clearly is more complex
than a TS mode. However, at this Wi, the VNTSA still intermittently displays clear
TS-like structures, such as the snapshot in figure 5(d).

We now turn to the flow structures at various positions on the bifurcation diagram,
figure 2(b). Figures 6(a), 6(b) and 6(c) are representative snapshots of VNTSA, the
intermediate branch and EIT, respectively, at Wi= 13, i.e. near the loss of existence of
EIT. As detailed in the description of figure 4 and shown again in figure 6(a), VNTSA
exhibits a weak structure that strongly resembles the viscoelastic TS mode. At this low
Wi, the intermediate branch (figure 6b) displays a much stronger fluctuation structure,
of the same order of magnitude as the structures seen at EIT (figure 6c). Moreover,
the intermediate branch exhibits overlapping sheets of polymer stretch (especially on
the bottom side of the channel at the time instant shown) that strongly resemble those
seen at EIT.
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FIGURE 5. (a) Fluctuation structure of the VNTSA and (b) power spectral density (PSD)
of v at position (0,0.825) at Re=3000, Wi=8. Frequencies corresponding to the TS mode
(red dashed) and its higher harmonics (black dashed) are also shown. (c,d) Snapshots of
the VNTSA structure for Re= 3000, Wi= 20. Contour plots follow the same format as in
figure 4.

Figure 6(d–f ) show the structures at Wi = 45, close to the point where the
intermediate branch seems to turn around to merge with VNTSA. The fluctuations on
the intermediate branch (figure 6e) decrease in magnitude on increasing Wi, and at
Wi= 45 become comparable to those on the VNTSA branch as shown in figure 6(d).
Furthermore, the structure on this branch goes from displaying overlapping sheets
of polymer stretch at low Wi to localized striations at high Wi similar to those of
VNTSA. In sharp contrast to the localized structures just described, EIT (figure 6f )
continues to display sheets of polymer stretch, which get stronger on increasing Wi.
All three solution branches continue to intermittently display wall-normal velocity
fluctuations that resemble the TS mode.

3.3. Linear analyses
In this section we elaborate on the linearized problem and its connection to
the attractors described above using linear stability and resolvent analyses. The
spectrum corresponding to disturbances with wavelengths equal to the DNS box size,
i.e. k = 2π/5, has a least stable eigenvalue at c ≈ 0.32–0.010i, and the associated
eigenfunction is the viscoelastic extension of the TS mode. For low values of Wi, the
mode is less stable than its Newtonian counterpart, while for Wi& 2, it becomes more
stable with increasing elasticity. This non-monotonic behaviour has been reported
by Zhang et al. (2013), who attribute it to viscoelastic modification of the phase
difference between u and v. Nevertheless, over the range of Wi considered here, the
eigenvalue varies by less than 1 % of the Newtonian value. The linear stability of the
laminar state in this range of Wi, and the very weak dependence of c on Wi, continues
up to at least Re = 6000, confirming the observations in § 3.2 that finite-amplitude
disturbances are required to trigger transition to EIT or the VNTSA. However, linear
instabilities not related to the TS mode have been found in other regions of parameter
space (Garg et al. 2018; Chaudhary et al. 2019), implying the possibility of different
attractor families in those regions.
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FIGURE 6. (a–c) Snapshots of VNTSA, intermediate branch and EIT respectively at Wi=
13. (d–f ) Snapshots of the same solution branches at Wi= 45. Deviations from the laminar
base state shown as earlier. Colour scales are intentionally centred about 0 for comparison
purposes.
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FIGURE 7. (a) Solid blue line: ratio of peak amplitudes of α̂xx and v̂ for the linear TS
mode as a function of Wi. Circles: amplitude ratio for the VNTSA. (b) Magnitude of α̂xx
for the linear TS mode for several values of Wi in the range [1, 20]. Darker lines indicate
higher values of Wi. The thick red line shows the averaged magnitude of α̂xx from the
VNTSA for Wi=13. For comparison, the linear TS mode profile for the same Wi is shown
in blue, and the vertical dashed line marks the critical layer location yc= 0.825. The arrow
indicates the value of Wi corresponding to the arrow in (a). (c) First two singular values
of the resolvent operator for k and c corresponding to the linear TS mode.

A measure of the relative importance of the conformation tensor and velocity
disturbances is the ratio of the peak amplitudes of α̂xx (the largest component of
the conformation tensor) and v̂. This ratio is shown in figure 7(a). Two distinct
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regimes are apparent, with the transition between the two occurring at Wi≈ 3.1. The
low-Wi regime scales as Wi2, which is the same scaling as in linear shear flow. The
amplitude ratio above the change in slope does not exhibit power-law scaling. The
change in slope at Wi ≈ 3.1 can be understood by examining the α̂xx mode shapes,
the magnitudes of which are plotted in figure 7(b) for several values of Wi in the
range shown in figure 7(a). For small Wi, the disturbance is largest at the wall
and decays rapidly away from it. Therefore, the Wi2 scaling in this regime can be
explained by the fact that the leading-order approximation of the base flow very near
the wall is simple shear. As Wi increases, this value decreases, while a new local
maximum emerges and grows, becoming the global maximum just above Wi = 3;
the arrow in the figure indicates the profile where this occurs. Upon further increase
in Wi, the maximum gradually shifts away from the wall, and the modes become
increasingly localized around the location of the critical layer yc, at which the real
part of the wave speed equals the base flow velocity. The critical layer for Wi= 13
is indicated by the vertical dashed line. This suggests that a critical layer mechanism
is responsible for the change in scaling at large Wi, though at present we do not
understand the specific origin of this result. Interestingly, the Wi at which the VNTSA
comes into existence is only slightly larger than that at which the transition to critical
layer scaling occurs.

Also shown in figure 7(a) is the amplitude ratio computed from the VNTSA for
several values of Wi. Excellent agreement between the linear and nonlinear results
quantitatively reinforces the TS-mode-like nature of the VNTSA. Additionally, the
profile of |α̂xx|, averaged in the streamwise direction and over many snapshots, for the
VNTSA at Wi = 13 is shown by the thick red line in figure 7(b), and the blue line
highlights the linear mode for the same Wi. The VNTSA profile exhibits the same
localization, and the location of the peak value is in close agreement with the critical
layer location.

Figure 7(c) shows the first two singular values of the resolvent operator for k
and c corresponding to the linear TS mode. Shekar et al. (2019) showed that such
modes are the most-amplified 2-D disturbances in this parameter regime and that the
leading response mode is nearly identical to the TS eigenmode; for this reason the
resolvent modes are not plotted separately. The substantial increase in the leading
singular value with Wi indicates that this amplification becomes much stronger with
increasing elasticity, and consequently that considerably smaller disturbances may be
sufficient to trigger self-sustaining nonlinear mechanisms. Further, the symmetry of
the flow geometry about y = 0 means that resolvent modes typically come in pairs
having similar amplification, with one mode having a symmetric v̂ response and the
other having an antisymmetric v̂ response. However, the growing separation between
the first and second singular values with increasing Wi indicates that this pairing is
broken by elasticity, and that the symmetry exhibited by the TS mode is preferred in
terms of linear amplification.

3.4. Broader context: flow geometry and dimensionality
The results described above are limited to 2-D channel flow. Here we describe how
they may be viewed in the broader context of turbulent drag reduction, first with
regard to how they may relate to the pipe flow geometry and then in the full context
of 3-D turbulence.

As noted in the introduction, EIT with very similar features has been observed in
both channel and pipe flows. A natural question, then, is to what extent the above

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

37
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.372


897 A3-12 A. Shekar, R. M. McMullen, B. J. McKeon and M. D. Graham

channel flow results are relevant to the pipe flow case. While it is true, of course,
that there is no linear instability of Newtonian pipe flow, the general structures of
the linear stability problem for the pipe and channel are very similar. The A, P and
S (wall, centre, strongly decaying) families of modes for the channel flow problem
also arise in the pipe, as illustrated in figures 4.18 and 4.19 of Drazin & Reid (2004).
(In channel flow, one of the wall modes, the TS mode, goes unstable.) Additionally,
critical layers are a strong source of linear amplification in pipe flow, as they are in
channel flow (McKeon & Sharma 2010).

Turning to nonlinear behaviour in Newtonian pipe flow, an important difference
from channel flow is the apparent absence of subcritical travelling wave solutions that
are analogous to the nonlinear TS waves (Patera & Orszag 1981). That is, in pipe
flow there is no nonlinear solution branch that corresponds to the NNTSA described
above. Given this observation, one might wonder whether the results presented here
for viscoelastic channel flow are relevant for pipe flow.

To address this issue, we make the following remarks. The key observation of
the present work is that the TS mode is nonlinearly excited by viscoelasticity. The
resulting solution branch, the VNTSA, is not connected, at least in this part of
parameter space under consideration, to the Newtonian branch, indicating that the
nonlinear mechanism that sustains it is distinct from the nonlinear mechanisms
sustaining the Newtonian branch. So the absence of a Newtonian mechanism for
nonlinear sustainment of TS-like travelling waves does not imply the absence of
a viscoelastic mechanism. Furthermore, as noted in the introduction, pipe flow
simulations of EIT (Lopez et al. 2019) display essentially 2-D velocity fluctuations
localized near the wall that are similar to those reported in channel flow. These
are precisely what would be expected in pipe flow based on the observations we
report here for channel flow, i.e. a critical layer mechanism associated with excitation
of a TS-like mode. At the same time, in more strongly viscoelastic regimes, Garg
et al. (2018) and Chaudhary et al. (2020) have found a centre mode instability for
pipe flow; for the Oldroyd-B model with Re = 3500, β = 0.9, instability occurs
when 176.9 < Wi < 4783.6. A related instability might be present in the channel
flow problem. These results open up the possibility that other states unrelated to the
nonlinear excitation of a wall mode may also play a role at EIT in both channels
and pipes, especially at high Wi.

We now turn to the topic of how the present results are related to the fully 3-D
context, beginning with a brief overview of Newtonian near-wall turbulence.

Newtonian turbulence is, of course, strongly 3-D, with the dominant near-wall
structure composed of coherent wavy streamwise vortices. In all of the canonical
wall-bounded shear flow geometries (pipe flow, channel flow, plane shear (Couette)
flow), families of 3-D nonlinear travelling wave solutions to the Navier–Stokes
equations have been discovered (Waleffe 1998, 2001, 2003; Hof et al. 2004; Wedin
& Kerswell 2004; Wang, Gibson & Waleffe 2007; Eckhardt et al. 2007, 2008;
Duguet, Willis & Kerswell 2008b). These solutions are often denoted ‘exact coherent
states’ (ECS), and their predominant structure is very similar to that observed in wall
turbulence: a mean shear and wavy streamwise vortices. (In particular, they bear no
structural resemblance to TS waves and do not arise from a linear instability of the
laminar state.) Related, but more complex, states have been found as well, which are
not pure travelling waves but rather ‘relative periodic orbits’ that are time-periodic
modulo a phase shift in one of the translation-invariant spatial directions (Duguet,
Pringle & Kerswell 2008a). In minimal domains at Reynolds numbers near transition,
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the turbulent dynamics has been found to be organized, at least in part, around these
solutions (see e.g. Gibson, Halcrow & Cvitanović 2008, Kawahara, Uhlmann & van
Veen 2012, Park & Graham 2015).

It has long been known that one of the effects of viscoelasticity on wall turbulence
is to weaken and broaden the near-wall streamwise vortices (Kim et al. 2007; White &
Mungal 2008). A number of studies have addressed this observation by investigating
the effect of viscoelasticity on ECS, which, as noted, capture this streamwise vortex
structure (Stone, Waleffe & Graham 2002; Stone & Graham 2003; Stone et al. 2004;
Li, Stone & Graham 2005; Li, Xi & Graham 2006; Li & Graham 2007). Indeed, the
effect of viscoelasticity is to weaken these structures; the polymer stresses directly
counteract the streamwise vortices.

In particular, Li & Graham (2007) studied the bifurcation scenario for a particular
family of channel flow ECS (Waleffe 1998) in a parameter regime very close to
that considered here. At Re = 1500, this ECS family is sufficiently weakened by
viscoelasticity to lose existence at Wi ≈ 16, somewhat above the value Wi ≈ 10
beyond which Newtonian turbulence cannot self-sustain in the DNS study of Shekar
et al. (2019). (This discrepancy is consistent with what we know about transition
in the Newtonian case: channel flow turbulence is self-sustaining above Re ≈ 1000,
while ECS can exist in that case down to Re ≈ 660 (Shekar & Graham 2018).)
Extrapolating slightly from the results of Li & Graham (2007), one can estimate that,
at Re= 3000, this ECS family loses existence at Wi≈ 25.

Given that, in the present 2-D work with Re= 3000, EIT is found at Wi & 13 and
the VNTSA above at Wi& 6, there would appear to be a regime 6.Wi. 25 in which
both 2-D and 3-D structures may exist and interact. Furthermore, existing results on
the effect of viscoelasticity on ECS are limited to one ECS family, and there certainly
may be others that can persist to higher Wi. Consistent with this analysis, a number of
studies have reported near-wall EIT-like spanwise-oriented structures, with 3-D quasi-
streamwise vortices further away from the wall (Dubief et al. 2013; Choueiri et al.
2018; Pereira, Thompson & Mompean 2019a,b). How the 2-D and 3-D structures
interact is an important topic for future work.

4. Conclusion

This study focuses on 2-D plane channel flow of a very dilute polymer solution
at Re = 3000. At sufficiently high Wi, elastoinertial turbulence (EIT) is observed
in this parameter regime, and the focus of the present work is to make progress
towards understanding the structures and mechanisms underlying the dynamics in
this regime. We report here the existence of a new attractor that is based on the
viscoelastic linear Tollmien–Schlichting (TS) mode and is nonlinearly sustained by
viscoelastic stresses. We denote this as the viscoelastic nonlinear Tollmien–Schlichting
attractor (VNTSA). At the parameters considered here, this solution branch is not
connected to the Newtonian branch of nonlinear self-sustained TS waves; it would
be interesting to learn whether they become connected at higher Re. In a domain of
dimensionless length 5, this solution comes into existence at finite but very small
amplitude when Wi& 6, increasing in amplitude until Wi≈ 49, where it loses existence
again. At higher Wi, initial conditions corresponding to this solution branch at lower
Wi evolve into EIT. In general, we do not find pure nonlinear travelling waves, but
until Wi is large, the non-periodic fluctuations are very small. The connection of the
VNTSA to the linear TS mode is established via their strong structural similarities,
including a quantitative agreement between the relative magnitudes of the velocity
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and stress fluctuations. The value of Wi at which the VNTSA comes into existence
is close to where the relative amplitude of the stress and velocity fluctuations for
the linear TS mode undergoes a change in scaling. Above this transition, the stress
fluctuations become highly localized at the position of the critical layer.

Taken together, these results suggest that, at least in the parameter range considered
here, the bypass transition leading to EIT is mediated by nonlinear amplification and
self-sustenance of perturbations that excite the TS mode. Gaining an understanding of
the mechanism underlying this phenomenon will shed light on the origin of EIT.
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