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A LOWER ESTIMATE FOR CENTRAL PROBABILITIES 
ON POLYCYCLIC GROUPS 

G. ALEXOPOULOS 

ABSTRACT. We give a lower estimate for the central value n*n(e) of the nth convo­
lution power //*•••* [i of a symmetric probability measure \i on a polycyclic group G of 
exponential growth whose support is finite and generates G. We also give a similar large 
time diagonal estimate for the fundamendal solution of the equation (d/dt + L)u = 0, 
where L is a left invariant sub-Laplacian on a unimodular amenable Lie group G of 
exponential growth. 

0. Introduction. 
0.1 The discrete case. Let G be a discrete finitely generated group, e its identity element 
and [i a probability measure on G. 

We assume that /z is symmetric i.e. that \i(g) — [i(g~x),g G G and that its support 
supp/x = {g G G : fj,(g) ^ 0} generates G. 

We denote by fin the nth convolution power /i * • • • * /x of /i (/i * v(g) = 

We fix a set of generators {x\,..., xp } of G and we denote by 7(w) the volume growth 
function of G defined by 

1(h) = {geG:g=tf- •<",£ = ±1,1 < (/ < P , 1 <y < n}, n G N. 

We say that G has polynomial volume growth, if there are constants c, d > 0 such that 
7(n) < cnd

y n G N and exponential volume growth if 7(n) > c^n , n G N. 
We say that G is polycyclic (cf. [13]) if it admits a finite sequence of subgroups 

G = G0 > Gi > • • • > Gk = {e} 

such that G( is normal in G/_i and G,_i /G, is cyclic. 
The polycyclic groups are "essentially" those discrete groups that can be realised as 

lattices of connected solvable Lie groups (cf. [13]). They have either polynomial or ex­
ponential volume growth (cf. [ 11 ]), a result that it is not true for general finitely generated 
discrete groups (cf. [7]). 

We say that G is virtually polycyclic (or polycyclic by finite) if it admits a normal 
polycyclic subgroup T such that G/T is finite. 

In this article we shall prove the following: 
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THEOREM 1. Let G be a virtually polycyclic group of exponential volume growth 
and [i a symmetric probability measure on G whose support is finite and generates G. 
Then there are constants A, a > 0 such that 

Vn(e)>Ae-an\ ne2N. 

The same ideas also give the following result, which has also been proved by 
V. A. Kaimanovich [10] (cf. also A. Raugi [12]) 

COROLLARY 2. Let G and /i be as in Theorem 1. Then every bounded harmonic 
function u (i.e. such that u(g) — T,X<EG

 u(gx)p(x)> g £ G), is constant. 

Theorem 1 should be compared with the following: 

THEOREM 3 (cf. N. TH. VAROPOULOS [21]). Let G be a discrete group of exponential 
volume growth and \x a symmetric probability measure on G, whose support is finite and 
generates G. Then there are constants B,b > 0 such that 

/ i » < Be~bnl, neN 

So Theorem 1 shows that the exponent | is indeed optimal. 

0.2 The continuous case. The above results have continuous analogues. More precisely, 
let G be a connected Lie group and dg a left invariant Haar measure on G. Let q be the 
Lie algebra of G which we identify with the left invariant vector fields on G. 

Having fixed a compact neighborhood V of the identity element e of G, we define the 
volume growth function l(n),n G N and the distance function p(x,y),x,y G G as follows 

l(n) = ^-measure (Vn)y n G N 

p(x,y) = p(x~xy), p(x) = inf{n G N : x G Vn}, Jt, v G G. 

We say that G has polynomial volume growth if there are constants c, d > 0 such that 

l(n) < cnd, n G N 

and exponential volume growth if 

l(n) > cedn, neN. 

Connected Lie groups have either polynomial or exponential volume growth (cf. [8]), 
a property not shared by the discrete finitely generated groups (cf. [7]). 

In this article we shall assume that G is unimodular, amenable and has exponential vol­
ume growth. In our context, amenability means that if Q is the radical of G (i.e. the max­
imal solvable subgroup of G), then G/Q is a compact semisimple Lie group (cf. [15]). 
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Let Xi, . . . ,Xn be left invariant vector fields on G that satisfy Hormander's condi­
tion, i.e. together with their successive Lie brackets X,,, [X/2, [• • • [X,5] ,X,J • • •] , they 
generate q. Then according to a classical theorem of L.Hormander [9] the operators 
L = — (Xj + • • • + X\) and d/dt + L are hypoelliptic. 

We denote bypt(x, y),x,y G G, t > 0 the fundamental solution of the equation (d/dt+ 
L)u — 0 . Observe that the fact that L is a left invariant and symmetric operator implies 
that/?,(*, y) = pt(x~ly) and/?,(*, y) = pt(y,x), x,y G G, y > 0. 

THEOREM 4. L̂ f G be a connected, unimodular, amenable Lie group of exponential 
volume growth andL, pt(x,y) as above. Then there are constants a, A > 0 such that 

(0.1) pt(x,x) > Ae~ati, xeG,t>l. 

A consequence of the proof of the above theorem is the following: 

COROLLARY 5. Let G and L be as in Theorem 4. Then every bounded harmonic 
function (i.e. every u G C°°(G) satisfying ||M||OO < +°° and Lu — 0 in G) is constant. 

As in the discrete case, we also have the following: 

THEOREM 6 (cf. N. TH. VAROPOULOS [20]). Let G, L andpt(x, y) be as in Theorem 4. 
Then for all s > 0 there are constants Z?, b > 0 such that 

(0.2) pt(x, y) < Bebti e~ $$, JC, y G G, r > 1. 

So, putting together (0.1) and (0.2) we have a description of the asymptotic behavior 
of the central value pt(x, JC), X G G of the kernel /?,(*, y), JC, y G G, as t —• oo. 

Of course, one could ask the question, if a similar lower Gaussian estimate for pt(x, y), 
i.e. an estimate of the type 

(0.3) Ae-Btae-^ <pt(x,y\ x,y G G, f > 1. 

for some a G (0,1), could be true. 
It is easy to see that (0.3) is not true. Indeed, if we fix a (3 G ( ̂ , 1 ), then (0.3) would 

imply that there are constants A\ B' > 0 such that 

tie-B'P-x <pt(x,yi jc,y G G, p(x,y) < ^ , t>\. 

This estimate, together with the assumption that G has exponential volume growth, would 
imply that there is a constant C > 0 such that 

1 > f pt(x9 y) dy > A'e-8'^'1 eCtP, t>\ 

which is absurd. 
Finally, we point out that results similar to Theorem 1 and Corollary 2 can be stated 

for the heat kernel and the bounded harmonic functions on the covering M of a com­
pact Riemannian manifold M when the group of the covering is polycyclic. They can be 
proved in a similar way. 
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1. Some technical lemmas for random walks in W. This section is directly in­
spired from [18]. 

Let Xk, k G N be independent, identically distributed random variables, with values 
in W such that 

E[Xk] = 0, E[X2
k]<+oo, k<EN. 

Also let 

and 

X1 + ---+X*, it G N, ZQ = 0a.s. 

Mn = sup |Z/|, i G N . 
\<i<k 

LEMMA 1.1. There are constants e > 0, ao > 0 an d ko G N swc/i that for all k>k$, 
m > 1 and Xi,\2 G Rp satisfying \X\\ < ^ , | A |̂ £ f̂, aVk < m anda > ao we have 

(1.1) 
y/k 

sup |Ai+Z/| <2m, |A2+Z*| < —— 
Ll <i<k *UU 

> £ . 

PROOF. It follows from Kolmogorov's inequality that there is a constant b > 0 such 
that 

and from this that 

P[Mk<m] >l-b-^ 

Mk 

Hence 

(1.2) 
y/k 

<a 

mz 

> i * = i - * 
a2k 2' 

<a 1 (a —> +oo). 

On the other hand it follows from the central limit theorem that there is e\ > 0 and 
ko G N such that for all k G N and A G RP satisfying k > ko and | A| < ^ we have 

(1.3) 
y/k Vk 

< 
1 

1000 
> £ l . 

Putting (1.2) and (1.3) together we have (1.1). 

LEMMA 1.2. There are constants c\,C2 > 0, mo > 1 and ko G N s«c/z that for all 
k > no, k G N and m > mo we nave 

(1.4) P[Mk <m] >ci^~ C 2 ^. 

PROOF. Let ao, £ and &o be as in Lemma 1.1 and put mo = 2[aov ko] + 1. 
We shall consider two cases: 
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k = k\ +&2, Jc2 < k\, k\ > JCQ, \/2a§\/k\ < m, #o\A2 + &i < m 

CASE 1. a§\fk < m, k> ko, m> mo, k,m G N. 
In this case, it follows from (1.1) that 

P[M* < m] > £ > ee~c^, Vc > 0. 

CASE 2. aoVk > m, k > ko, m > mo, £,m G N. 
Let *i = [f^] - 1. Then we have 

A 

and applying (1.1) we find that 

P[Mk < m] > E£[^]~l 

and the lemma follows. 

2. The entropy of random walks. In this section we shall recall the definition and 
some properties of the entropy of random walks on groups (cf. [2], [4], [17], [22]), which 
we shall need to prove the Corollaries 2 and 5. 

More precisely, let G be a locally compact, compactly generated group and dg a left 
invariant Haar measure on G. 

Let / be a density on G, i.e. such that/(g) > 0, g G G and Jf(g)dg = 1, whose 
support supp/ = {g e G : f(g) > 0} generates G. 

Let Zk, k = 0,1,2,. . . be the random walk on G defined by 

Zo = 0, a.s. and P[Zk+l e A \ Zk = g] = [ f(g~lx) dx, k = 0,1,2,. . . 

(A is a Borel subset of G). 
We say that a function u i s / -harmonic if and only if 

w(#) = /u(gx)f(x)àx, g EG. 

We denote by/* the kth convolution power/*/* • • •*/ of/ (f*h(g) — Jf(x)h(x~lg) dx, 
g G G) and we make the additional assumption that 

/ ïfk(8) \ogf\g)\dg < +oo, /i = 1,2,... 

(we put dog t = 0 for t = 0). 
We call the entropy of the random walk Z^ or of the pair H(G,f) the limit 

H(G,f)= lim - i Jf\g)\ogf\g)dg. 

It can be proved that the limit exists and is finite. 

THEOREM 2.1 (cf. [2], [4]). Let G andf be as above. Then H(G,f) = 0 if and only 
if every bounded f -harmonic function u (i.e. such that u(g) — f u(gx)f(x) dx, g G G) is 
constant. 

THEOREM 2.2 (cf. [2], [4]). Let G andf be as above. Then 

-j log/*(r*) — H(G,f), (k — +oo), in L\G). 
k 

Furthermore, when G is discrete orf is continuous with compact support we also have 
convergence a.s. 
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3. The proof of Theorem 1 and Corollary 2. Since G is polycyclic by finite it has 
a normal subgroup T <l G, such that G/T is finite. Now, according to the structure theory 
of the polycyclic groups (cf. [13]), T admits finitely generated subgroups P and N such 
that 

1) Nis nilpotent, N < P , N <l G and P /N is abelian 
2) P < T, P « G and T / P is finite. 

Let 7r' be the natural map IT': G —•• G/B. 
The group P /Af being a finitely generated abelian group can be written as P / N = 

DC, where D is a subgroup of P /N isomorphic with IP for some /? G N and C a finite 
subgroup of T*/N. So, if B = ( T T O ' ^ O , then P / # is isomorphic with Z*7. Using this 
isomorphism we shall identify P/Z? with Zp. #, being a finite extension of a nilpotent 
group, has polynomial volume growth. 

We shall first prove Theorem 1 and Corollary 2 in the case G = P , since the proof in 
that case is simpler and the ideas are better illustrated. The extension G/T*, being finite, 
presents only an additional technical difficulty. In Section 3.2, we shall explain how we 
can deal with it. 

3.1 Case 1: G — P . Let {e\,..., ep} be the standard basis of Zp and x\,...,xp G G 
such that 7r(jCj) = ei9 1 < i < p where n denotes the natural map IT: G —• G/B. Then 
every g G G can be written in the form 

g=yxn
p

p
 •••JC?1, withy G B and n - (np,... ,nx) elp. 

Fixing {gu...,gs} and {/ii,..., /ir} sets of generators of G and # respectively we put 

|JC|G = inf{n : x = g* • • - £ \ 1 < ij < s9ej = ±1,1 < j < n] 

\y\B = inf{n : y = ^ • • .ft£, 1 < /, < r,e7 = ±1,1 <j < n} 

0 = sup{|jcj1fej2jcp,|i,,ei = ± l , c 2 = ±1,1 <*'</?, 1 <j <r} 

6 = sup{|jcj^2jcre,jcpl^e! - ± l , e 2 = ±1,1 < i j </>}. 

We also put 
\n\ = \np\ + • • • + |m| for n = (np,... ,«i) G ïp. 

Observe that if x = xp • • • xf[l and y G # then 

(3.i) | ^ " 1 U < b l B f l | n | . 

LEMMA 3.1. Letx = xp
p - -JC?1, n = (np , . . . ,ni), e G {-1,1} ant// G {1,... ,/?}. 

77ien f/iere w c > 0 such that 

(3.2) xx]x~l = yx], withy G B, \y\B < cec^. 

PROOF. The lemma will be proved by induction on | n \. It is trivially true when | n \ — 
0. So, assume that it is true for |n| < L We shall prove that it also true for |n| = I + 1. 
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Let y = min{/ : m ^ 0} and put n'j = T^T(|W/| — 1), e' = rij — nj, x* = xfi - -x.\ 

n' — (np,..., rip 0 , . . . , 0) and z = Xj xflxp'xf*. Then 

xx\x-
1 =x'x]'x€

ixre'(x/rl =x'zxe
i(x'rl = xfztfY^tfY1' 

Now, it follows from (3.1) that 

W&Y1\B<60W 

and by the inductive hypothesis that there iswGfi such that 

x'x^x'Y1 =wx% \w\B<cec^. 

So, if the constant c, chosen in the begining, is such that c > max(<5, log 0), we have 

JOJJC"1 = 3»f, y = JC'ZCJCTV |y|fl < 56^ + cec^ < cec(^+l) = cec^ 

which proves the inductive step and the lemma follows. 

LEMMA 3.2. Let n — (np,..., n\\ e G {—1,1} and i G {1,...,/?}. Then there is 
c > 0 such that 

(3.3) Xpp • • • x ^ - yxn
p
p • • -;cf+e • • -JC^1 wiïfty G 5, |y|* < cec|n|. 

PROOF. The lemma follows from (3.1), (3.2) and the observation that, if 

z = x* • • •*? *f(*?' • • -x^Y'xY, andy = xn
p
p • • - ^ z ^ • • - j f t T 1 

then 

COROLLARY 3.3. Let x = Xpp--tf, w = x^-'-tf1, n = (np,...9ni),m = 
(mp,..., mi) andy, z G B. Then there is c > 0 such that 

(3.4) yxzw = vxn
p
p+mp - - ^ m \ withveB, \v\B < c[\y\B + \z\BecH + **M+M)]. 

PROOF. The corollary follows from (3.1) and (3.3) and the observation that yxzw = 
y(xzx~l)xw. 

COROLLARY 3.4. There is a constant c > 0 such that every g G G can be written in 
the form 

g = yx?--xri\ withy eB, \y\B < cec^G, \n\ < \g\G, n = (np,... ,/ii) 
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PROOF. Since all the generators gt can be written in the form gi — zw, with z £ B 
and w — x£p • • • tfx and g — gix • • • gi with q— |g|c, the corollary follows after applying 
(3.4) |g|G times. 

Let Xfc, k = 1,2,... be independent identically distributed random variables with 
values in G and P[Xk — g] — \i(g), g G G and denote by Zk, k = 0,1,2, . . . the right 
random walk in G defined by 

Zo = e a.s. andZk = X\X2 • • -Xk, k= 1,2,... . 

Also let Sk = (SktP,...,S^\), k = 0,1,2, . . . be the random walk in Zp defined by 

So = 0 a.s. and Sk = TT(XI) + TT(X2) + • • • + 7v(Xk), k=l,2,... . 

Observe that Sk — 7r(Zk). 
We put 

YSk _ v
5*./> . . ySk,\ 

j \ A n -^1 

Then it follows from (3.4) that there is c > 0 such that 

(3.5) Zk = YkX
Sk, withF* 6 #, \Yk\B < c[ec^ + • • • + ^ - 1 ' ] . 

Let us also recall that it follows from Kolmogorov's inequality that there is b > 0 
such that 

(3.6) pfmax \St\ <m\ > 1 - b—, keN,m>0. 
l\<i<k J m1 

Also let c be as in (3.5) and put 

D% = {geG:g = yxn/..-x>l\ 

\np\ + • • • + |m| < m,y G B, \y\B < ckecm}, k E N, m > 0. 

Then, it follows from (3.5) and (3.6) that 

(3.7) P[YkeD^]>P sup 15/1 < m 
\<i<k 

We have the following estimate of the number of elements \H£\ of the set D%, which 
follows from the fact that B has polynomial volume growth 

(3.8) |£Ç| <axe
a^m+x^k) 

(ai,ci2 are constants, a\,a2 > 0) 

PROOF OF THEOREM 1. The first thing to observe is that 

(3.9) ii2k(e) = supfi2k(g), keN. 
gee 
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This follows from the hypothesis that \i is symmetric using the Holder inequality: 

n2k(g) = E MW(*~'S) < 
x£G 

E(/A*)) E(cV'«)) 
UeG J LcGG 

E(/A*))2 
KGG 

= H2k(e). 

Now it follows from Lemma 1.2 that there are constants c\, cj > 0, mo > 1 and 
k0 eN such that 

(3.10) P\ sup |5/| < m —c 

>c\e 2 ^ , m>mo,k>ko,ke 

Putting(3.6), (3.7), (3.8), (3.9) and (3.10) together we have that for all m > m0,k > ko 
and ke2N 

Ae) > P[Yk e Z^JlZ^r1 > ClaYle-C2%-a2m-a2logk. 

Theorem 1 follows by optimising with respect to m. 

PROOF OF COROLLARY 2. We shall prove that the entropy H(G, /x) = 0. Then Corol­
lary 2 will be a consequence of Theorem 2.1. 

Let Dk = L>f/4. Then it follows from (3.6) and (3.7) that 

(3.11) 

Hence 

P[Zk £E>k] > l-b-=, keK. 
\Jk 

P[Zk & Dk] - • 0, (fc-^+oo) 

which, in view of Theorem 2.2, implies that 

(3.12) \ YL /As) log »k(g) - 0, (* — +oo). 

On the other hand it follows from Jensen's inequality that 

-\ E Agnognk(g) = -l\Dk\ £ -L/^iog/As) 
k geDk k geDk \Ok\ 

<~\pk\ 

k 

1 

1 

•g£Dk \Dk 

--//(£>,) log 

E jhAg) 
k\ 

ADÙ 

log E TK-AS) 
LgeDk \Dk 

\Dt 

-^*(D t)log/i*(D t) +^/i*(D*) log|D t | 

which, combined with the fact that 

\DK\<ekV\ kE 
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implies that 

(3.13) 
1 

Y, Ag) iog As) — o, (fc^+oo). 
#e£* 

Putting (3.12) and (3.13) together we have that /f(G, /i) = 0 and Corollary 2 follows. 

3.2 The general case. Let n and 7r' be the natural maps 

TT: G - • G/£, and TT': G - • G/r*. 

Let X*, A; = 0,1,2, . . . and Zk, k — 0,1,2, . . . be as in Section 3.1 and put 

Sk = Tr(Zfc), £* = 7r\Zk). 

Let us also view £k as a Markov chain with state space G/T* and denote by v(k) the 
number of passages of £* from the state eF* G G/T* during the first k units of time. 
Then it follows from the theory of Markov chains with a finite number of states (cf. [14]) 
that there is a G (0,1) such that Ve > 0 

(3.14) -v(k) — a\> e 
k ' 

• 0 , (ifc —• + o o ) . 

Let rk be the time of the kth passage of £* from the state eT*. Then it follows from (3.14) 
that V/3 such that 0 < /ï < a 

(3.15) ^[T(a-/3)* < k,T(a+f3)k > k] —• 1, (A: —• +oo). 

Furthermore identifying r* / # with Zp, we have that the random variables 

^Tfc.!^» * — 1,2, . . . 

are independent identically distributed and take values in T* jB — Zp. 
Hence it follows from Kolmogorov's inequality that there is a constant b > 0 such 

that 

(3.16) ^ [ f e ^ A l <"*.(<*- £)* <*<(<* + 0)*] > 1 - 2bf3^. 

Let {vi, . . . , v^} be a set of generators of G/B and put for w G G/# 

inf {n G : v : K •vJM <(,-<$,€,• = ±1,1 < y < / i } . 

Choosing /? very small in (3.15) and then applying (1.1) together with (3.16) we have 
that there are constants c > 0 , e > 0 , f l o > 0 , ^ ) G N such that for all k > ko, m > 1 and 
w\, W2 G G/B satisfying [vt>i| < ^ , \wi\ < 4K, ay/k < m and a > ao we have 

(3.17) 
Vk 

sup |wi5,-| < 2m, |w2S*| < -— 
!</<* lull 

> c 

sup I 
(a-/?)*<i<(a+/3)* 

|wiSTi| <2m, |w25T(a_^| < ^ , 

Vk' 

sup r-i-rn _̂  —, r ' ^ v ^ i _ 9 n n , 

A l < 200 
> e 
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which is an analogue of (1.1) for the random walk S*, k — 0,1,2,.. . . Once we have 
(3.17) we can prove in exactly the same way an analogue of the inequality (1.4), i.e. that 
there are constants c\,C2 > 0,mo > 1 and ko G N such that for all k > ko,k G N and 
m > mo we have 

(3.18) p\ sup | $ | < m] > c{e~C2%. 

From now on the proof of Theorem 1 and Corollary 2 is exactly the same with their 
proof in the case when G/T* is trivial. The only modification, of course, is that now 
we shall have to fix elements z\,... ,zt G G such that G/T* = {z\T*9... ,ziT*} and 
x\,..., xp G T* as in Section 3.1 and we write every g G G in the form 

g = yxzi, with v G B, x = x\l • • -x\\ \<i<L 

4. The proof of Theorem 4 and Corollary 5. The proof of Theorem 4 and Corol­
lary 5 is similar to the proof of Theorem 1 and Corollary 2. So we shall try to use similar 
notations. 

Let Q, N and M be the radical the nil-radical and a Levi subgroup of G, respectively 
(cf. [15]). Q and N are, respectively, closed solvable and nilpotent subgroups of G. M 
is a semisimple subgroup of G. The assumption that G is amenable implies that M is 
compact. Furthermore 

(4.1) G = QMand [G,G] C NM 

([G,G] is the closed analytic subgroup of G generated by the elements [g,h] = 
ghg-lh-\g,heGofG). 

It follows from (4.1) that G/NM is a connected abelian Lie group. Hence it can be 
written as 

G/NM = DC 

where D and C are closed subgroups of G/NM, C is compact and D is isomorphic with 
BP for some p G N. Let irf be the natural map TX'\ G —• G/NM and put 

£ = 7r,_1(C). 

Then #, being a compact extension of a nilpotent group, has polynomial volume growth. 
Let 7T denote the natural map IT: G —+ G/#. Since G/B is isomorphic with DF there 

are left invariant vector fields X\,..., Xp on G such that the map 

</>: ffF —+ G/£, </>: f = (tp,..., fi) —• 7r(exp tpXp • • • exp fiXi) 

is a Lie group isomorphism. Using <j> we shall identify G/B with MP. 
Observe that every g G G can be written in the form 

g = yx with JC = exp tpXp • • • exp t\X\ and y G 5. 
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We put 
\t\ = \tp\ + . . . + |ri| fort = (tp,...,t\) G R*\ 

We fix a symmetric compact neighborhood V Ç G of the identity element e of G and 
U ÇB a. symmetric compact neighborhood of e in B and we put 

|;c|G = inf{rcG N :JCG V"} 

|y|fî = inf{n e N : y e Un} 

9 — sup{| expsX,yexp—sX;|#,y G £/, |s| < 1,1 <i<p} 

S = sup{| expsXt exprXj exp —sXi exp —rXj\B, \s\ < 1, |r| < 1,1 < 1,7 </?}• 

Observe that, if p(.,. ) is as in Section 0.1, then p(e,g) — \g\c, g G G. 
Arguing in the same way as in Section 4, we can prove successively that there is a con­

stant c > 0 such that for all v, z G #, .x = exp ̂ Xp • • • exp t\X\, w = 
expfyXp — expsiXi, f = (fp,...,fi),s = (^,.. . ,£1) G R n , r G R, |r| < 1, 1 < i <p 
we have 

(4.1) \xyx-l\B<\y\B0M 

(4.2) xexp rXtx~l = ft exp rX,-, with ft G £, |ft|z? < a?c|r| 

exp ̂ X p • • • exp t\X\ exp rX; = v exp tpXp • • • exp(f, + r)Xt • • • exp t\X\, 
(4.3) ., 

with v G B, \v\B <cé^ 

yxzw = vexp(tp + sp)Xp • • • exp(fi + sx)Xu 

with v G ft |v|fl < c[|v|fi + |z|^c'fl + e*M+H>] 

and that all g G G can be written as 

(4.5) g^vexp^Xp- '-expfiXi, with \y\B <cec]glc, \t\ < \g\G, t = (tp,... ,tx). 

l^ t / te) = Pi(^» #)> g ^G. Then it follows from (0.2) that there are constants c,d > 0 
such that 

(4.6) \f(g)\<ce-dWc, geG 

and from this that there are constants c, d > 0 such that 

(4.7) / .f(g)dg<ce-**, m > 0 . 
J{g€G:\g\G>m} 

Also, if/71 denotes the nth convolution power/* • • •*/ off (f*h(g) = Jf(x)h(x~lg) dx, 
g e G), then fn(g)=pn(e,g\ geG. 

Proceeding as in Section 3, we consider independent identically distributed random 
variables X*, k = 1,2,..., with values in G and P[Xk G A] — ̂ f{g)dg (A a Borel subset 
of G). Then it follows from (4.7) that there are constants c, d > 0 such that 

(4.8) sup \Xi\c > m 
l\<i<k 

<cke-dm\ m > 0 . 
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Let Zfc, k — 0,1,2,. . . be the right random walk in G defined by 

7^ — e a.s. and Zk — X\X2 • • -Xki k — 1,2,... . 

Also let Sic = ( S ^ , . . . , S*,i), & = 0,1,2,. . . be the random walk in Rp defined by 
(recall that G/B has been identified with W) 

S0 = 0 a.s. and Sk = ir(Xi) + TT(X2) + • • • + Tt(Xk\ k = 1,2,... 

Observe that Sk — n(Zk). 
We put 

XSk = exp 5^XP • • • exp S*,iXi. 

Then it follows from (4.4) that there is c > 0 such that 

Zk = YkX
Sk, with Yk G £, 

(4.9) \Yk\B < c[é^G + **W+I*2lc) + . . . + ^ i M * l c ] . 

It follows from Kolmogorov's inequality that there is b > 0 such that 

r , • i k 
(4.10) ? m a x 5 i < w > l - K fc G N, m > 0. 

Li<i<* J m2 

Let c be as in (4.9) and put 

&k={g€G:g= yexptpXp • • -expfiXi, \tp\ + • • • + ^ 

< m, j G £, |v|B < cke2cm}, k G N, m > 0. 

Then, it follows from (4.8), (4.9), ( 4.10) and Lemma 1.2 that there are constants 
a, b, c, d > 0 such that that 

P[Yk £Dk]>P 
(4.11) 

sup \St\ < m, sup \Xi\c < rn 
Ll<i<k \<i<k 

> ae~b% - cke~dm\ m > 0, k G N. 

We also have the following estimate of the volume \D%\ of the set D%, which follows 
from the fact that B has polynomial volume growth 

(4.12) \E%\ <aie
a2(m+l0ek) 

(ai,ci2 are constants, #1,^2 > 0). 

PROOF OF THEOREM 4. Arguing in the same way as in the proof of Theorem 1, we 
can see that 

fie) = pk(e, e) = pk(x,x) = suppk(x, v), xeG 
yeG 

and that 
pt(x,x) >P[t]+\(x,x) =f[t]+l(e) 
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([t] is the integral part of t G R). 
This observation, together with (4.11) and (4.12) implies that there are constants a, b, 

c,d,a\,ci2 > 0 such that 

Pt(x,x) > [ae'bi - cke-dm2}a{e-a2(m+l0èt\ m > 0, t > 1 

and Theorem 4 follows by optimising with respect to m. 

PROOF OF COROLLARY 5. We observe that if u is a bounded harmonic function then 
u(x) — Jpt(x,y)u(y)dy, x G G, hence u(x) = iu{xy)f{y)dy, x G G and therefore w is a 
bounded/-harmonic function. Arguing in the same way as in the proof of Corollary 2, we 
can prove that every bounded/-harmonic function is constant and the corollary follows. 
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