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Can Quantum Thermodynamics
Save Time?
Noel Swanson*y

The thermal time hypothesis (TTH) is a proposed solution to the problemof time: a coarse-
grained state determines a thermal dynamics according to which it is in equilibrium, and
this defines the flow of time in generally covariant quantum theories. This article raises a
series of objections to the TTH as developed by Alain Connes and Carlo Rovelli. Two
technical challenges concern the relationship between thermal time and proper time and
the possibility of implementing the TTH in classical theories. Three conceptual problems
concern the flow of time in nonequilibrium states and the extent to which the TTH is back-
ground independent and gauge invariant.
1. Introduction. In both classical and quantum theories defined on fixed
background space-times, the physical flow of time is represented in much
the same way. Time translations correspond to a continuous one-parameter
subgroup of space-time symmetries, and the dynamics are implemented ei-
ther as a parametrized flow on state space (Schrödinger picture) or a param-
etrized group of automorphisms of the algebra of observables (Heisenberg
picture). In generally covariant theories, where diffeomorphisms of the un-
derlying space-time manifold are treated as gauge symmetries, this picture
breaks down. There is no longer a canonical time-translation subgroup at the
global level, nor is there a gauge-invariant way to represent dynamics locally
in terms of the Schrödinger orHeisenberg pictures.Without a preferredflowon
the space of states representing time, the standard way to represent physical
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change via functions on this space taking different values at different times also
fails. This is the infamous problem of time.1

Connes and Rovelli (1994) propose a radical solution to the problem: the
flow of time (not just its direction) has a thermodynamic origin. Any coarse-
grained, statistical state naturally defines a notion of time according to which
it is in equilibrium. The thermal time hypothesis (TTH) identifies this state-
dependent thermal time with physical time. Drawing on tools from Tomita-
Takesaki modular theory, Connes and Rovelli demonstrate how the TTH can
be rigorously implemented in generally covariant quantum theories.

The idea is an intriguing one that, to date, has received little attention from
philosophers. Not only does the TTH represent a striking conjecture about the
origins of time, it also supplies tantalizing clues about the physical significance
of Tomita-Takesaki modular theory. One of the most powerful mathematical
tools we have to study the structure of operator algebras used in quantum the-
ory, modular theory has found an increasingly diverse array of physical ap-
plications.2 Despite its importance, the basic physical ideas behind modular
theory remainmurky. If the TTH is right, thenmodular automorphism groups
are employed by generally covariant quantum theories to characterize emer-
gent dynamics.

This article represents a modest initial attempt to sally forth into rich phil-
osophical territory. Its goal is to voice a number of technical and conceptual
challenges faced by the TTH and to propose some strategies to respond. In
section 2, I provide a self-contained introduction to the TTH, emphasizing
the connection between Connes andRovelli’s original proposal and Rovelli’s
later work on timelessmechanics. (This enables us to clearly separate out var-
ious components of the TTH that are easily conflated.) In sections 3 and 4,
I explore two technical challenges concerning the relationship between ther-
mal time and proper time conjectured by the TTH and the possibility of im-
plementing the TTH in classical theories. Finally, in section 5, I examine a
trio of deeper conceptual problems concerning the flow of time in nonequi-
librium states and the extent to which the TTH is background independent
and gauge invariant. The outlook is mixed. I argue that while there are poten-
tially viable strategies for addressing the two technical challenges, the three
conceptual problems present a tougher hurdle for the defender of the TTH.
1. Although this problem already arises as an interpretive puzzle in classical theories like
general relativity, the clash between treating diffeomorphisms as gauge symmetries and
standard quantization procedures transforms the puzzle into a deep conceptual challenge
for quantum theories of gravity. There is an extensive literature on the problemof time. For
surveys, see Belot (2005), Thébault (2021), and the references therein.

2. See Swanson (2014, chap. 2) for a philosophically oriented introduction tomodular the-
ory and Borchers (2000) for a more detailed mathematical survey focusing on physical
applications.
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2. The Thermal Time Hypothesis. We usually think of theories of me-
chanics as describing the evolution of states and observables through time.
Rovelli (2011) advocates replacing this picture with a more general timeless
one that conceives of mechanics as describing relative correlations between
physical quantities divided into two classes, partial and full observables. Par-
tial observables are quantities that physical measuring devices can be respon-
sive to but whose value cannot be predicted given a state alone. Proper time
along a world line is an example of a partial observable. A clock carried by
astronauts measures their proper time, but the question “What is the astro-
naut’s proper time?” is ill posed. In contrast, a full observable is a coincidence
or correlation of partial observables whose value can be determined given a
state. Proper time along a world line between points where it intersects two
other world lines is an example of a full observable. The question, “What is
the proper time our astronaut experiences between launching from Earth and
landing on themoon?” is well posed and can be determinately answered once
a state is specified. In general, only measurements of full observables can be
directly compared to the predictions made by a mechanical theory.

For Hamiltonian systems, Rovelli’s proposed timeless mechanics takes the
following form: C is a configuration space of partial observables. Amotion of
the system is given by an unparametrized curve in C, representing a sequence
of correlations between partial observables. The dynamically possible mo-
tions are determined by the equationH 5 0, whereH : T*C→R is a suitably
smooth function, the timeless Hamiltonian, and the cotangent bundle, T*C,
represents the space of partial observables and their conjugate momenta.3

If the system has a privileged time variable, the Hamiltonian can be nat-
urally decomposed into

H 5 pt 1 H0(q
i, pi, t), (1)

where t is the partial observable in C that corresponds to time, and pt is its
conjugate momentum (i.e., the energy). The value of t can then be used to
naturally parametrize the motions of the system in a manner similar to stan-
dard Hamiltonian mechanics.

In generally covariant systems, however, there is no privileged time var-
iable, and the Hamiltonian lacks a canonical decomposition of the form (1).
Although these systems are fundamentally timeless, it is possible for a notion
of time to emerge thermodynamically. According to the second law of ther-
modynamics, a closed systemwill eventually settle into a thermal equilibrium
state. Such states possess a range of unique properties. They are invariant with
3. This is a special case of Rovelli’s more general presymplectic framework for timeless
mechanics.

86/711569 Published online by Cambridge University Press

https://doi.org/10.1086/711569


284 NOEL SWANSON

https://doi.org/10.1086/71156
respect to the flow of time, stable under perturbations, and passive (i.e., me-
chanical work cannot be extracted by cyclic processes). Viewed as part of a
definition of equilibrium, this thermalization principle requires an antecedent
notion of time. The TTH inverts this definition and uses the notion of an equi-
librium state to select a partial observable in C and identify it as time.

Suppose we know the full microstate of a generally covariant Hamiltonian
system. Since the fundamental dynamics are given by the timeless Hamilto-
nian, and no special time variable is singled out, the flow of time is absent in
our description of the system at the fundamental level. Suppose instead that
we have a coarse-grained description of the system. If we somehow knew that
this coarse-grained state were an equilibrium state, we could go on to identify
the one-parameter group of state space automorphisms with respect to which
it is invariant, stable, and passive. The TTH conjectures that this interpretive
move is always available. Given an arbitrary coarse-grained, statistical state it
is possible to find a privileged one-parameter group of state space automor-
phisms with respect to which it is in equilibrium. In this sense, the flow of time
is a local, emergent phenomenon arising from our ignorance of the system’s full
state. Rovelli (2011) comments: “When we say that a certain variable is ‘the
time,’ we are not making a statement concerning the fundamental mechanical
structure of reality. Rather, we are making a statement about the statistical dis-
tribution we use to describe the macroscopic properties of the system that we
describe macroscopically” (1486). This is the theoretical motivation for the
TTH. While no partial observable plays a privileged temporal role in the
fundamental physics, any coarse-graining will give rise to an emergent equi-
librium dynamics that naturally selects a time parameter.

In practice, three hurdles present themselves. The first is providing a coher-
ent mathematical characterization of equilibrium states. The second is finding
a method for extracting information about the associated time flow from a
specification of the coarse-grained state. Finally, in order for it to count as
an emergent explanation of time, one has to show that the partial observable
selected behaves as a traditional time variable in relevant limits.

For generally covariant quantum theories, Connes andRovelli (1994) pro-
pose a concrete strategy to overcome these hurdles. Inspired by algebraic for-
mulations of quantum field theory in curved space-time, they propose treat-
ing a generally covariant quantum theory as a noncommutativeC*-algebra of
diffeomorphically invariant observables, A, along with a collection of phys-
ically possible states, {r}.4 The states are (positive, normalized) linear func-
tionals, r :A→C, encoding the expectation values of the observables in A.
Choosing a state allowsus to naturally expandA to formavonNeumann algebra
4. See Brunetti, Fredenhagen, and Verch (2003) for a development of this basic theoret-
ical framework.
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and represent it concretely as an algebra of bounded linear operators acting on
a Hilbert space. This extra step is both physically and mathematically impor-
tant, needed to handle boundary conditions in infinite quantum systems and
to develop the tools of Tomita-Takesaki modular theory, but our discussion
here will not hinge on the details.

In this setting, the properties of equilibrium states are captured by the Kubo-
Martin-Schwinger (KMS) condition. Letting at be a one-parameter group of
automorphisms ofA representing the dynamics in theHeisenberg picture and
b 5 1=T the inverse temperature, the condition requires that

r(at(A)B) 5 r(Bat1ib(A)), (2)

for all A, B ∈ A. The left-hand side, r(at(A)B), represents the correlation be-
tween an arbitrary time-evolved observable, A, and another arbitrary observ-
able, B, in the state r. In general, r(at(A)B) ≠ r(Bat(A)), but for equilibrium
states, the KMS condition says that these reordered correlations can be ob-
tained from one another by substituting t ↦ t 1 ib.5 The physical significance
of this fact is not immediately obvious, but it turns out that (2) guarantees that
r is stable, passive, and invariant under at. It is also a consequence of the
more familiar Gibbs postulate,

r 5
e2bH

Tr½e2bH � , (3)

which can be used to characterize equilibrium states in finite quantum sys-
tems governed by a discrete Hamiltonian, H. In order for (3) to be well de-
fined, the trace in the denominator must be finite for all values of b, but in
infinite quantum systems whereH can have a continuous spectrum (or might
not exist at all), this cannot be guaranteed. The KMS condition, however, re-
mains valid and thus provides a mathematically tractable generalization of
the Gibbs postulate for infinite quantum systems.6

The KMS condition allows Connes and Rovelli to clear the first hurdle. In
order to clear the second, they appeal to the technical machinery of Tomita-
Takesaki modular theory. A state is said to be faithful if r(A*A) 5 0 entails
that A 5 0. Since every nonzero observable has nonzero expectation value,
a faithful state retains information about the full algebra, A. In this case, the
5. In order for this substitution to make sense, there must exist a complex function, FA,B(z),
analytic on the strip {z ∈ Cj0 < Im z < b} and continuous on the boundary of the strip,
such that FA,B(t) 5 r(at(A)B) and FA,B(t 1 ib) 5 r(Bat(A)) for all t ∈ R.

6. See Bratteli and Robinson (1981, chap. 5.3–4) for a thorough introduction to the phys-
ics of KMS states, including their connection to the Gibbs postulate and proofs of stabil-
ity and passivity properties.
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tools of modular theory can be applied.7 Its main theorem guarantees the
existence of two unique modular invariants that depend on r, an antiunitary
operator, J, and a positive operator,Δ. (Here we will only be concerned with
the latter.) The theorem goes on to say that the set of unitary operators,
fDisjs ∈ Rg, forms a (strongly continuous) one-parameter group,

js(A) ≔ DisAD2is, (4)

called the modular automorphism group. The defining state is invariant un-
der the flow of the modular automorphism group, r(js(A)) 5 r(A). Further-
more, it can be shown that r(js(A)B) 5 r(Bjs1i(A)). Thus, r satisfies the
KMS condition relative to {js} for inverse temperature b 5 1.

This is Connes and Rovelli’s central observation: in a generally covariant
quantum theory, every faithful state determines a canonical one-parameter
group of automorphisms according to which it is a KMS state. This singles
out a partial observable, the thermal time, tr ≔ s, parametrizing the flow of
the (unbounded) thermal Hamiltonian,Hr ≔2 lnD. We can go on to decom-
pose the timeless Hamiltonian, H 5 ptr 1 Hr. Associated with any faithful
state, there is a natural “flow of time” according to which the system is in
equilibrium.

It should be emphasized at this stage that themodularmachinery employed
by Connes and Rovelli requires r to be a mixed state. (Nontrivial C*-algebras
have no pure, faithful states.) Giving mixed states an ignorance interpretation
serves to connect their procedure to the guiding idea that a coarse-grained state
determines the flow of time. According to this interpretation, it is because r
is missing some information about the universe that a one-parameter group
of automorphisms naturally emerges. A state of maximal information would
be pure, and the same machinery could not be used to explain the emergence
of dynamics.

There are two important caveats here. First, not every mixed state is faith-
ful, so Connes and Rovelli’s proposal does not vindicate the idea that any
coarse-graining determines a flow of time.8 Second, asWallace (2012) argues,
7. The traditional mathematical setting for modular theory involves a von Neumann al-
gebra acting on a Hilbert space in standard form with respect to a cyclic, separating vec-
tor. The faithfulness assumption guarantees that these conditions will be met when A is
enlarged to form a von Neumann algebra in the canonical Gelfand-Naimark-Segal rep-
resentation defined by r.

8. Why should we assume that typical coarse-grainings will be? In relativistic quantum
field theory, the Reeh-Schlieder theorem ensures that the restriction of any global state
analytic for the energy to any region whose causal complement is nonempty will be
faithful. But this theorem relies on an antecedent specification of the dynamics as well
as the background space-time structure. In an arbitrary timeless mechanical theory, these
resources are unavailable. In light of this, the defender of the TTH might appeal to the
following argument: insofar as we have reason to believe that relativistic quantum field
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nothing in the quantum formalism forces us to givemixed states an ignorance
interpretation. On this alternative reading, the full microstate of the system
could very well be faithful, and the flow of time, while still arising from the
unique statistical features of such states, would no longer be a product of
our ignorance. Thus, there is a gap between much of the motivational rhetoric
surrounding the TTH and the current technical results. Given the latter, all we
can say is that given a statistically suitable (i.e., faithful) state, an equilibrium
dynamics naturally emerges, whether or not this is a product of informational
ignorance.

Regardless, the third hurdle remains. It is crucial to ask how this thermal
time flow corresponds to various notions of physical time. In particular, how
is thermal time related to the proper time measured by a localized observer?
Although they do not establish a general theorem linking thermal time to proper
time, Connes and Rovelli do make progress on the third hurdle in one impor-
tant special case. Consider immortal, uniformly accelerating observers inMin-
kowski space-time. Because of their acceleration, they are only causally con-
nected to a subregion of space-time known as the Rindler wedge. TheUnruh
effect, a well-known, if rather mysterious physical effect predicts that our
Rindler observers will measure a nonzero temperature in the vacuum state,

TU 5
ℏa

2pkBc
, (5)

where a is the magnitude of the observers’ acceleration, kB is Boltzmann’s
constant, ℏ is the reduced Planck constant, and c is the speed of light. An
inertial observer, in contrast, is causally connected to the entirety of
Minkowski space-time and measures TU 5 0 in the vacuum state.

Connes and Rovelli note that another deep theorem connecting modular
theory to space-time physics, the Bisognano-Wichmann theorem, provides a
direct link between thermal time and the proper time measured by a Rindler
observer. Let A(W ) be the algebra of observables localized in the Rindler
wedge, W. The vacuum state is faithful for A(W ), so there is a well-defined
modular automorphism group, {js}, associated with vacuum wedge algebra.
The Bisognano-Wichmann theorem says that {js} coincides with the group
of wedge-preserving Lorentz boosts. Since the latter implement proper time
translations along the Rindler observers’world line, we find that thermal time
is directly proportional to their proper time,

s

t
5 2TU , (6)
theory is a good approximation of our world at some scale (and that the assumptions of
the Reeh-Schlieder theorem apply to such effective field theories), we have reason to
believe that our local statistical description of reality at that scale will be a faithful state.
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leading Connes and Rovelli to propose that the Unruh temperature should be
physically interpreted as the ratio between thermal and proper time.9

We can now summarize the main content of the TTH:
9. W
theor
rectio
direc
group
minu
initio
adjoi

9 Publ
Thermal Time Hypothesis (Rovelli-Connes). In a generally covariant
quantum theory, given any faithful state, the flow of time is defined by the
state-dependentmodular automorphismgroup. TheUnruh temperaturemea-
sured by accelerating observers represents the ratio between this time and
their proper time.
The TTH has three broad pillars: (i) the motivating idea that the flow of time
is selected at the level of statistical mechanics in a fundamentally timeless,
generally covariant theory; (ii) a quantummechanical model for such a selec-
tion mechanism, identifying thermal time with the modular automorphism
group naturally associated with any faithful state; and (iii) a conjecture that
in the limit where a geometric notion of proper time exists, the Unruh tem-
perature is interpretable as the ratio of thermal time to proper time. This is
a bold idea with numerous potential implications for quantum physics and
cosmology. Over the next three sections, wewill consider a series of technical
and conceptual objections to the TTH.

3. Thermal Time and Proper Time. Much of the theoretical support for
the TTH comes from the close connection between thermal time and proper
time established by the Bisognano-Wichmann theorem. Consequently, most
of the attention that the TTH has received in the mathematical physics litera-
ture has focused on the third pillar noted above. But the Rindler observers are
highly idealized; they are immortal and uniformly accelerating. Moreover,
the Bisognano-Wichmann theorem assumes that the background global state
is the vacuum state. Loosening each of these assumptions leads to technical
complications that collectively appear quite daunting.

Realistic observers are mortal and therefore have causal access to a differ-
ent region of space-time, the double cone formed by the intersection of their
future light cone at birth and past light cone at death. What relationship
holds between thermal time and proper time for uniformly accelerating, mortal
orking in units where KB 5 ℏ 5 c 5 1 for simplicity, the Bisognano-Wichmann
em entails that D 5 e22pL1 , where L1 is the generator of Lorentz boosts in the x1 di-
n. The flow of proper time for an observer with uniform acceleration a in the x1

tion is therefore given by the adjoint action of eiL1at. The modular automorphism
is given by the adjoint action of Δis, and so it follows that s 5 2at=2p. (The

s sign is not physically significant. It results from the conventional mathematical def-
n of the modular automorphism group and can be eliminated by redefining js as the
nt action of Δ2is.)
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observers in the vacuum state? An immediate problem arises due to the fact
that their proper time is boundedwhereas thermal time is unbounded.We there-
fore cannot expect a simple, linear relationship like (6).

Since the Rindler wedge can be related to a double cone by a conformal
transformation, in conformalfield theories themodular group for Rindler ob-
servers can be used to explicitly compute the modular group for their mortal
counterparts. Using this trick, Martinetti and Rovelli (2003) prove that the
mortal analogue of (6) is given by

ds(t)

dt
5

2ℏLa2

2pKBc
3
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 1 a2L2

c4
2 cosh at

c

q � , (7)

where L is half the lifetime of the observer who is born at t 5 2L=c and dies
at t 5 L=c. For both long-lived and highly accelerating mortal observers,
(7) converges to the Unruh temperature. Moreover, (7) is approximately con-
stant for most of their lifespan, allowing the temperature to be interpreted as
the local ratio between thermal and proper time in accordance with the TTH.
Toward their birth and death, however, the two quantities rapidly diverge,
calling this interpretation into doubt and raising a host of phenomenological
questions.10

Unless our world is conformally invariant, Martinetti and Rovelli’s result
is of limited applicability. Existing results strongly suggest that double cone
modular groups in generic quantum field theories cannot usually be given a
dynamical interpretation. Any local dynamicsmust map double-cone-shaped
subregions onto double-cone-shaped subregions while preserving space-like
separation and time-like ordering. Trebels (1997) proves that, if a double cone
modular group satisfies these minimal geometric requirements, it will be re-
lated to the conformal case by a scaling transformation.11 In other words, a
relationship like (7) is the best that we can hope for. But nothing guarantees
that the double cone modular groups in a generic quantum field theory will
10. If the observers’ phenomenology is directly sensitive to thermal time rather than proper
time, a straightforward reading of the physics suggests that at birth and death they experi-
ence a moment of infinite duration. While somewhat spiritually reassuring, this is rather
physically implausible. If the observers directly experience the flow of proper time instead,
the TTH must explain how this experience emerges from the background thermal dynam-
ics. A second issue: given that the temperature measured by a mortal observer is dependent
on L, can the observers determine the date of their death by carefully measuring this tem-
perature? Martinetti (2007) proves that the Heisenberg uncertainty principle prevents this.
A finite observer will not live long enough to determine the temperature with the required
accuracy.

11. For a detailed summary of Trebels’s thesis work, see Borchers (2000, sec. 3.4).
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have these geometric properties, and Saffary (2005) has argued that in any
theory with massive particles, they will not.12

The situation only becomes thornier when nonuniform acceleration and
nonvacuum states are taken into account. In the latter case, it can be shown
that the action of themodular automorphism group for the Rindler wedge in a
nonvacuum state will differ from the vacuum action by a nontrivial automor-
phism.13 This suggests that we should not generally expect the wedge mod-
ular group to have a geometric interpretation either. Even when it does, it will
not be related to the vacuum action by some simple rescaling. In the case of
a nonuniformly accelerating observer, the flow of proper time will fluctuate
with acceleration while the flow of thermal time remains constant. If the TTH
is correct, the observer will measure a shifting temperature reflecting the chang-
ing ratio between thermal and proper time (an idea supported by limited exist-
ing results on the Unruh effect for nonuniformly accelerating observers; e.g.,
Jian-yang, Aidong, and Zheng 1995). The challenge for the TTH is to explain
the phenomenological experience of the observers, who will presumably age
along with their fluctuating proper time, not the constant thermal time flow.

In the face of these obstacles, the defenders of the TTH have at least four
options on the table. They can hold out hope for a suitably general dynamical
interpretation of modular groups for wedges and double cones in a wide class
of physically significant states. There is some indication that states of com-
pact energy (including states satisfying the physically motivated Döplicher-
Haag-Roberts and Buchholz-Fredenhagen selection criteria) give rise to well-
behaved modular structure on wedges (Borchers 2000). It is not clear that this
is sufficient to ensure that modular automorphisms act geometrically, however,
and in light of the limitations imposed by Trebels’s and Saffary’s no-go results,
this first strategy seems like a long shot.

Alternatively, they could reject the idea that the thermal time flow deter-
mines the temporal metric directly. Thermal time would only give rise to the
12. In all known cases in which the double cone modular groups act geometrically, the
group generators are ordinary differential operators of order one. In the known cases in
which they do not, Saffary proves that the generators contain a pseudodifferential term
of order less than one. He goes on to argue that such terms typically give rise to nonlocal
action, ruining any hopes of a geometric interpretation. More recently, Brunetti and
Moretti (2010) have shown that in theories with massive particles the double cone mod-
ular generators contain a pseudodifferential term of order zero. While the geometric ram-
ifications of this fact have yet to be fully explored, combined with Saffary’s analysis, it
presents a major roadblock for extending Connes and Rovelli’s original proposal to a
wider class of mortal observers.

13. The Radon-Nikodym theorem ensures that the action of the modular automorphism
group uniquely determines the generating state. If r, w are two faithful states on a von
Neumann algebra, then the associated modular automorphism groups {jr

s}, {jw
s } differ

by a nontrivial inner automorphism, jr
s (A) 5 Ujw

s (A)U*.
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order, topological, and group theoretic properties of physical time. Metrical
properties would be determined by a completely different set of physical re-
lations. Some support for this idea comes from the justification of the clock
hypothesis in general relativity. Rather than stipulating the relationship be-
tween proper time, t, and the length of a time-like curve FFgFF, Fletcher
(2013) shows that for any ε > 0, there is an idealized light clock moving
along the curve that will measure FFgFF within ε. This justifies the clock hy-
pothesis by linking the metrical properties of space-time to the readings of
tiny idealized light clocks. If the metrical properties of time experienced
by localized observers arise via some physical mechanism akin to light clock
synchronization, this would explain why the duration of time felt by the ob-
serversmatches their proper time and not the geometrical flow of thermal time.

In line with this idea, Rovelli makes a number of allusions to the concept
of an entropy clock as discussed by Eddington (1935). Eddington maintains
that the order of temporal events is determined by the thermodynamic arrow
of time. An entropy clockmeasures temporal order by correlating events with
decreases in entropy. He describes a simple example: “An electric circuit
is composed of two different metals with their two junctions embedded re-
spectively in a hot and cold body in contact. The circuit contains a galvanom-
eter which constitutes the dial of the entropy clock. The thermoelectric cur-
rent in the circuit is proportional to the difference of temperature of the two
bodies; so that as the shuffling of energy between them proceeds, the temper-
ature difference decreases and the galvanometer reading continually decreases”
(101). A reliable entropy clock must be in contact with its environment to
work properly. In contrast, a reliablemetrical clockmust be isolated from ther-
modynamic disturbances. Since the engineering demands pull in separate di-
rections, it might turn out that our phenomenological experience of time is
similarly bifurcated.

A third strategy would be to argue that the metrical properties of time
emerge from modular dynamics in the short-distance/high-energy limit. If a
quantum field theory has a well-defined ultraviolet completion, the renormal-
ization group flow in this regime should approach a conformal fixed point.
Buchholz and Verch (1995) prove that, in this limit, the double cone modular
operators act geometrically like wedge operators implementing proper time
translations along the observers’ world line. It is unlikely that the physics at
this scale would directly affect phenomenology, but the asymptotic connec-
tion might turn out to be important for explaining the metrical properties of
space-time (which bigger, more realistic light clocks measure) as emergent
features of some underlying theory of quantum gravity.

A final option would be to go back to the drawing board. Rovelli and
Connes briefly note that since the modular automorphism groups associated
with each faithful state are connected by inner automorphisms, they all proj-
ect down onto the same one-parameter group of outer automorphisms of
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the algebra.14 The TTH could be revised to claim that this canonical state-
independent flow represents the nonmetrical flow of physical time.

It is unclear how viable of a strategy this really is. One significant reason
for doubt is the fact that themove onlyworks to recover aflowof time in quan-
tum systems described by certain kinds of algebras, specifically type III (and
type II∞) von Neumann algebras. Only in these cases will the relevant one-
parameter group of outer automorphisms be nontrivial. In systems described
by type I (and type II1) algebras there is simply no passage of time according
to the revised TTH.15

Although various theorems in algebraic and constructive quantum field
theory indicate that the local algebras assigned to double cones and wedges
are generically type III, it is not obvious that this will save the revised TTH.
The global algebras that appear in quantum field theory are almost always
type I, and so the revised TTH lacks a coherent story about the emergence
of time at the cosmological level. Moreover, it is far from evident that observ-
ers like us actually have experimental and phenomenological access to the
type III character of the local algebras at all. At the end of the day, when we
make numerical calculations and do experiments, we use effective field theo-
ries and nonrelativistic quantum mechanics to describe the world around
us. In both cases we rely on type I algebras. The moral at the heart of the TTH
is supposed to be that time emerges from a coarse-grained description of a
fundamentally timeless reality. A moment’s reflection on the kinds of coarse-
grained descriptions that we actually give renders the idea that the flow of
time originates in the type III character of wedge and double cone algebras
rather implausible. It would be amazing if our experience of time had such
a delicate source.

Because of these difficulties, it appears that the second strategy outlined
above offers the best path forward for thedefender of theTTH.Temporal topol-
ogy and ordering is determined by the state-dependent modular automor-
phism group, while the temporal metric has a different origin yet to be ex-
plained. Although this requires either modifying or abandoning the third
pillar of the TTH, it preserve the first two pillars and appears to be more
14. An automorphism is inner if it is implemented by the adjoint action of a unitary el-
ement of the algebra. An outer automorphism is an equivalence class of automorphisms
that can be related to each other by inner automorphisms. In general, the modular auto-
morphism group for a given algebra and faithful state will not be inner and hence deter-
mines a nontrivial one-parameter flow in the space of outer automorphisms. The Radon-
Nikodym theorem, however, ensures that all of the modular automorphism groups over
a given von Neumann algebra are inner equivalent and, thus, determine the same group
of outer automorphisms.

15. Von Neumann algebras can be classified as type I, II1, II∞, or III on the basis of their
lattice of projection operators. In type I and type II1 algebras, all modular automorphism
groups are inner; hence, their image in the group of outer automorphisms is trivial.
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plausible than a fully geometric interpretation of the local modular automor-
phism groups.

4. Thermal Time in Classical Theories. Turning our attention to the first
two pillars, it is interesting to note that themotivating idea that coarse-graining
determines a thermal dynamics does not obviously require the underlying
timeless theory to be quantum mechanical. The proposed modular selection
mechanism does, however, appear to crucially rely on the noncommutativ-
ity of quantum observables. Classical observables are typically represented by
smooth functions over a state space manifold, and these can naturally be
equipped with the structure of a commutative C*-algebra. But in this case,
since all observables commute, every state over the algebra is tracial; that is,
r( fg) 5 r(g f ) for all observables f, g. As a consequence of the main
Tomita-Takesaki theorem, it follows that everymodular automorphism group
acts as the identity, trivializing the flow of thermal time.

Without a coherent mathematical procedure for extracting the thermal dy-
namics from a chosen state, a classical version of the TTH remains out of
grasp. Does one exist, or is the TTH a uniquely quantummechanical solution
to the problem of time?16 Investigating this question will help us to better un-
derstand the scope and content of the TTH. In addition, it could play a signif-
icant role in explaining the emergence of time in the classical limit, ℏ→ 0.
Of course, a full understanding of this limit requires grappling with a host
of entangled philosophical issues, most notably the measurement problem.
Our aim here is more modest, to assess a proposed classical selection mech-
anism briefly sketched by Connes and Rovelli in their original paper. As we
will go on to see, the idea stands on firmer foundational footing than onemight
initially suspect and can even be linked to a classical analogue of Tomita-
Takesaki modular theory.

Arguing by analogy with standard quantization procedures, Connes and
Rovelli suggest that in classical theories commutators should be replaced
by Poisson brackets.With respect to the Poisson bracket, the classical observ-
ables form a noncommutative algebra. Given an arbitrary coarse-grained state,
r, represented by a probability distribution over state space, and reasoning by
analogy with the Gibbs postulate, they introduce the “thermal Hamiltonian,”

Hr ≔ 2lnr: (8)

If r is nowhere vanishing (an assumption analogous to faithfulness in the quan-
tum case), (8) defines a corresponding Hamiltonian vector field parametrized
16. It should be noted that there is persistent disagreement over whether the problem of
time itself is essentially quantum mechanical. Rovelli (2011) maintains that some version
of the problem arises in any generally covariant theory, quantum or classical. For a recent
dissenting viewpoint, see Pitts (2018).
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by thermal time, s.With respect to this vectorfield, the evolution of an arbitrary
observable, f, is given by

d

ds
f 5 2lnr, ff g, (9)

where { , } denotes the Poisson bracket.
In fact, the parallels between the classical and quantum versions of the

TTH run much deeper than this ansatz hints. It is commonly thought that
the essential formal difference between classical and quantum mechanics
is whether observables commute, but this emphasis on commutativity signif-
icantly obscures the rich algebraic structures employed by each theory.

On the quantum side, Alfsen and Shultz (1998) emphasize that the usual
operator product in a noncommutativeC*-algebra is really two different prod-
ucts in disguise. It has a natural decomposition,

AB 5 A • B 2 i(A | B), (10)

where A • B is a commutative, nonassociative Jordan product and A | B is
a noncommutative, associative Lie product. The former, defined A • B ≔
1=2(AB 1 BA), encodes all spectral information about the observables. The
latter, defined using the commutator, A | B ≔ i=2(AB 2 BA), encodes the gen-
erating relationship between observables and state space symmetries. This
observation reveals that noncommutative C*-algebras are special cases of a
more general class of Lie-Jordan algebras. Commutative C*-algebras are
not like this. Since the commutator vanishes, there is no natural Lie product,
and essentially all that is leftover is a Jordan algebra encoding spectra.

On the classical side, Noether’s theorem indicates that we should expect a
similar generating relationship between observables and symmetries to hold.
Indeed, in classical theories where state space is assumed to be a symplectic
manifold, or more generally a Poisson manifold, it turns out that the algebra
of observables also has a natural Lie-Jordan structure. Pointwise multiplica-
tion of smooth functions defines a commutative, associative Jordan product,
f • g ≔ fg, encoding spectral information. The Poisson bracket determines
a noncommutative, associative Lie product, f | g ≔ f f , gg, encoding how
classical observables generate Hamiltonian vector fields.

The moral is this. If we naively choose to model classical systems using
commutative C*-algebras, we lose an important kind of information about
the link between symmetries and observables. It is precisely this kind of in-
formation that is needed to formulate the technical details of the TTH. Re-
flecting on the physics, a much better choice is an associative Lie-Jordan al-
gebra, which can bemore directly compared to the nonassociative Lie-Jordan
algebras employed by quantum theory.

This is the perspective adopted by the deformation and geometric quanti-
zation programs, two of the most mathematically rigorous approaches to
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quantization currently on the table.17 In this setting, Gallavotti and Pulvirenti
(1976) use the Poisson bracket to define a classical analogue of theKMS con-
dition, and Basart et al. (1984) link it to the quantum KMS condition in the
ℏ→ 0 limit. This suggests that many of the tools needed for a classical ver-
sion of the TTH already exist. Perhaps most compellingly, these include ini-
tial strides toward a classical analogue of Tomita-Takesaki modular theory
made by Weinstein (1997).

Relative to a volume form, m, on classical state space (assumed here to
be a Poisson manifold), Weinstein defines the corresponding modular vec-
tor field,

fm : f → divmXf , (11)

where Xf is the Hamiltonian vector field associated with a classical observ-
able, f. Weinstein proposes fm as the classical analogue of the modular auto-
morphism group. Intuitively, it characterizes the extent to which Hamiltonian
vector fields, Xf, are divergence free with respect to the volume form m, van-
ishing if and only if all Hamiltonian vector fields are divergence free.

Connecting the dots, we can trace a direct link between Weinstein’s clas-
sical modular theory and the TTH. In the special case that state space is a
symplectic manifold, there is a natural volume form, the Liouville form, de-
fined in terms of the symplectic structure. Letting m be the Liouville form, a
quick calculation reveals that any nowhere-vanishing state, r, defines a non-
trivial modular vector field,

frm 5 X2ln r, (12)

equivalent to the vector field generated by the Hamiltonian 2lnr.18 We im-
mediately recognize this as the thermal Hamiltonian (8) postulated by Connes
and Rovelli. The defining state, r, is invariant with respect to the correspond-
ing dynamics and satisfies theGibbs postulate, r 5 e2bHr , for inverse temper-
ature b 5 1. Just as in the quantum case, the classical thermal Hamiltonian
can therefore be identified with the generator of state-dependent modular
symmetries.

This deep structural parallel suggests that the TTH is not essentially quan-
tum mechanical and that the mathematics of modular theory can provide a
17. See Landsman (1998) for an introduction to Lie-Jordan algebras and their role in
deformation and geometric quantization.

18. In general, if h is a positive nowhere-vanishing function on a Poisson manifold, hm
defines a new volume form, and there is a simple expression relating the two modular
vector fields, fhm 5 fm 1 X2 ln h. In the symplectic case, if m is the Liouville form, then
fm( f ) 5 0 for all observables f, since all Hamiltonian vector fields are divergence free
with respect to m. Since states are positive, it follows from putting these two facts together
that r defines a modular vector field, frm 5 X2lnr.
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coherent mechanism for selecting a preferred thermal time variable in classi-
cal theories too.19 In addition, beyond its potential application to the TTH,
Weinstein’s framework offers a valuable laboratory for exploring the physical
significance of modular theory in domains where the interpretational com-
plexities bedeviling quantum theories do not arise.

5. Conceptual Challenges. As we have seen in the previous two sections,
the TTH faces a number of technical challenges (some of which look easier
to overcome than others). Even if the third pillar needs to be modified in light
of the challenges discussed in section 3, the idea that a faithful state deter-
mines the nonmetrical flow of time has proven resilient, and there is a plau-
sible modular selectionmechanism at play in both classical and quantum the-
ories. There are, however, several deeper conceptual problems looming in the
background that pose a more serious challenge to the hypothesis. Three of
themost pressing raise questions about the coherence of themotivating idea be-
hind the TTH and its adequacy in providing a solution to the problem of time.

The first is the nonequilibrium problem. While the TTH provides a coher-
ent mathematical mechanism for selecting a nonmetrical time flow, it is not
clear that we should always view this flow as physical time. According to
the thermal dynamics, the defining state is always a KMS state, but if it is a
nonequilibrium state with respect to our ordinary conception of time, thermal
time and physical time do not align. Relative to thermal time, a cube of ice in
a cup of hot coffee is in an invariant equilibrium state. This is the “incredulous
stare” that often confronts the TTH. Only for states that are true equilibrium
states will the thermal time be physical time.

It would be incorrect to infer that the TTH rules out any thermodynamical
change. A system in aKMS state can still exhibit fluctuations away from equi-
librium. The defender of the TTH could try to argue that local nonequilibrium
behavior can be viewed as fluctuations in some thermal background state. On
this approach, the local flow of time in my office according to which the ice
melts and the coffee cools is defined not by the thermal state of the ice/coffee
system but by the thermal state of some larger enveloping system.

Hints in this direction can be found inRovelli (1993). In this paper, Rovelli
explores the notion of thermal time in a spatially homogenous, isotropic
Robertson-Walker universe filled with blackbody radiation. Such a model is
a plausible approximation of a universe much like our own. The radiation rep-
resents the cosmic microwave background (CMB), highly redshifted light left
over from a phase early in the universe’s history during which photons first
19. There is an important caveat here: we lack a classical analogue of the Bisognano-
Wichmann theorem, so the third pillar of the TTH may turn out to be essentially quan-
tum mechanical after all. Of course, the analysis in sec. 3 indicates that this third pillar is
rather shaky and will likely need some modification.
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decoupled from the cosmic plasma. In Robertson-Walker models, there is a
natural notion of cosmological time given by the proper time experienced by
a privileged class of observers comoving with the expansion of the universe,
for whom the universe always appears isotropic. (This is the time parameter
usually employed in discussions of standard big bang cosmology.) Rovelli
shows that the thermal time induced by equilibrium states of the CMB will
be related to this cosmological time by a constant rescaling.

Although this nontrivial result is exciting, there remains a large explana-
tory gap between the physics it suggests and the temporal phenomenology
of human observers. The CMB is a nearly uniform field of microwaves with
temperature 2.7 K. Without specialized equipment—radio telescopes, radio-
meters, spectrophotometers—human observers would not even know it was
there. It is highly implausible that our faculties of perception are sensitive to
the thermal features of the CMB. The proposed chain of explanation must be
longer and more complex. Thermal time explains the emergence of cosmo-
logical time, and then cosmological time is shown to be a natural measure
of time for a particular class of observers. Even if the first half of this story
can be convincingly filled out (see the related background-dependence prob-
lem introduced below), the vastly different scales involved in the second half
of the story should give us pause. It is not exactly true that the universe ap-
pears isotropic to us. In only appears isotropic at the very largest scales, when
we look beyond the earth, the solar system, the Milky Way, the local group,
and so on. This process requires significant inductive extrapolation from
what we directly experience.20 At cosmological scales humans, stars, and gal-
axies might plausibly be viewed as small fluctuations in a largely homoge-
neous, isotropic background. Consequently, equilibrium thermal dynamics
might well describe the universe at this scale. But at the scales humans occupy,
the local universe is highly nonhomogeneous and nonisotropic. If our tem-
poral phenomenology is grounded in what we directly experience, and this
experience is decidedly nonequilibrium, it is hard to see how the order of ex-
planation could plausibly run from cosmological time to local time.

Even if this challenge can be overcome, there is an additional wrinkle.
Probably themost popular explanation for the arrow of time among physicists
and philosophers alike, the past hypothesis requires that in one temporal direc-
tion the universe is in an incredibly low-entropy state. But if thermal time is
identified with physical time, this kind of asymmetric boundary condition is
ruled out. The universe is in a KMS state with respect to thermal dynamics.
It has high entropy in both of the temporal directions determined by the flow
20. Even the CMB does not appear isotropic to (sufficiently aided) human observers. The
relativemotion of the earth in theCMB rest frame introduces a significant anisotropy in the
CMB spectrum that must be factored out to reveal the usual images of a nearly smooth
radiation field that we are familiar with.
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of thermal time. The TTH is sometimes linked to the past hypothesis and mo-
tivated by parity of reasoning—if the direction of time has a thermodynamic
origin, maybe the underlying flow of time does too—but the past hypothesis
and the TTH are in fact deeply at odds with one another. The TTH forces us to
adopt a rather unappealing “Boltzmann brain” view of cosmology as large-
scale fluctuations from equilibrium.21

If defenders of the TTH balk at this conclusion, they have limited options
on the table. One is to temper the view by only allowing certain reference
states to determine the flow of thermal time, but the challenge of specifying a
class of equilibrium states without an antecedent time flow was what prompted
the permissiveness of the TTH in the first place. Furthermore, if a system is
not actually in one of these reference states, it is hard to envision how a coun-
terfactual state of affairs could determine the actual flow of time. This di-
lemmamightmotivate the defender of the TTH to explore the state-independent,
outer modular flow as a last-ditch option. Identifying physical time with this
flow would render it possible in principle to reconcile the TTH and the past
hypothesis; however, the criticisms discussed at the end of section 3 must be
overcome. In particular, if the global algebra is type I, then the triviality of the
outer modular flow presents a new puzzle for quantum cosmology to grapple
with.

A second, closely related worry to the nonequilibrium problem has been
voiced by Earman (2011) and Ruetsche (2014). In the physical situations in
which we can justify viewing the modular automorphism group as a kind of
dynamics, it seems this is only possible becausewe already have a rich spatio-
temporal structure in the background. This casts doubt on whether the TTH
can provide a coherent definition of time in situations in which such structure
is absent (as required to solve the full problem of time).

In the scenario described by the original Bisognano-Wichmann theorem,
we are focused on space-like wedges in Minkowski space-time. We imme-
diately recognize the geometric significance of the modular automorphism
group because its flow is everywhere time-like. The orbits of js correspond
to a clear class of observerworld lines, and ds=dt is constant along thoseworld
lines, yielding a simple scaling relation between s and t. Similarly, in the CMB
model discussed above, the geometric interpretation of thermal time is secured
by relating it to cosmological time in a highly symmetric Robertson-Walker
universe. In other cases, even when the modular operators act geometrically,
21. It might be possible to reconcile the TTH and the past hypothesis by treating the lat-
ter as a boundary condition for the observable universe, which is in turn viewed as a
subsystem of a larger universe in thermal equilibrium. This move effectively embraces
the Boltzmann brain cosmology one level higher up. Perhaps such a view will look more
appealing situated within the landscape of a fundamentally timeless theory of quantum
gravity. The jury is still out.
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it can be hard to recognize the modular automorphisms as dynamical. The
scaling relation for double cone modular groups in conformal field theories
(eq. [7]) shows that the relation between thermal and proper time can be highly
nontrivial (and this is the best case scenario for double cones).

In general, calculating the explicit action of local modular automorphism
groups is a very hard problem. In all of the cases outlined above in which we
can perform the calculations, extracting a dynamical interpretation requires
antecedent knowledge of the background space-time structure. In generic
models of general relativitywith no global time-like killingfields and no global
isometries, such an interpretation may no longer be possible. Moreover, if the
ultimate goal is to use theTTH in conjunctionwith an eventual theory of quan-
tum gravity to explain the emergence of space-time itself, we cannot even ap-
peal to the local Lorentzian geometry of space-time to aid us. The problem is
exacerbated if the TTH is modified in response to the nonequilibrium prob-
lem by restricting the set of states in which modular automorphisms define
the flow of time. Unless themodular group can always be viewed dynamically,
the defender of the TTH will be hard-pressed to find constraints capable of
separating the dynamical cases from the nondynamical cases that are suitably
independent of background spatiotemporal structure. We will call this second
problem, the background-dependence problem.22

The third and final problem is the gauge problem. In spite of all the chal-
lenges discussed above, the TTH does succeed in providing a means to select
a privileged one-parameter flow on the space of full, gauge-invariant observ-
ables of a generally covariant theory. What makes this flow interpretable as
a dynamical flow, however, is its description as a sequence of correlations
between partial observables. The difficulty is that these partial observables are
not diffeomorphism invariant. When an object changes position, we measure
two gauge-invariant quantities, the position-of-the-object-at-s1 and the position-
of-the-object-at-s2. We can describe these as measurements of correlations
between position and time partial observables, but to do so requires a gauge-
dependent deparametrization of the timeless Hamiltonian.

Assuming that we treat diffeomorphisms in generally covariant theories as
standard gauge symmetries (which is how we got into the problem of time in
the first place), then only diffeomorphism-invariant quantities will represent
objective features of our world. The partial observables are just superfluous
22. If the TTH is revised so that thermal time only generates the nonmetrical properties
of physical time, as suggested by the analysis in sec. 3, the severity of the background-
dependence problem is reduced, but only somewhat. Complicated scaling relations be-
tween thermal time and proper time cease to be an immediate issue, but the conditions under
which local modular groups capture just the order, topological, and group theoretic prop-
erties of physical time are even less well understood. Plausibly, these conditions will de-
pend on at least the conformal geometry of space-time. On top of this, the defender of
the TTHmust supply an entirely new explanation for the emergence of the temporal metric.
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descriptive fluff. The problem is not the resultant timelessness of fundamen-
tal physics. The TTH adopts this dramatic conclusion willingly. The problem
is that the TTH is supposed to explain how the appearance of time and change
emerge from timeless foundations. But the explanation given is couched in
gauge-dependent language, and it is not apparent how we can extract a gauge-
invariant story from it.

An analogy with classical space-time physics will serve to illuminate the
central issue. It is widely thought that the invariance of Newton’s second law
with respect to Galilean boosts indicates that there are no objective facts about
absolute velocity in classical space-time. There are, however, objective facts
about relative velocities. By selecting a preferred reference frame (i.e., fixing
a gauge), we can introduce absolute velocities into our theoretical description
of the world and use them to compute gauge-invariant relative velocities. But
we cannot use correlations between absolute velocities to explain facts about
relative velocity. Objectively speaking, there are no such correlational facts
to appeal to. Instead, we must restrict ourselves to the gauge-invariant struc-
ture of classical space-time.

This structure can be captured by modeling classical space-time as Gali-
lean space-time. Intuitively, Galilean space-time consists of a time-ordered
stack of three-dimensional spatial slices. On each spatial slice, there is a met-
ric determining facts about relative spatial distance between objects at that
time. Across slices there is a temporal metric determining temporal distances
and an affine structure characterizing deviations from inertial trajectories. Cru-
cially, there is no spatial metric across slices, and as a result, there are no ob-
jective facts about absolute velocity. Despite this, there are still objective facts
about relative velocity. Since the relative spatial distance between two objects
at a given time is gauge-invariant, their relative velocity can be defined as the
rate of change of this relative distance quantity. The world lines of objects in
relativemotion correspond to nonparallel four-dimensional curves inGalilean
space-time.

Analogously, in a generally covariant setting we can freely introduce par-
tial observables and use correlations between them to calculate and predict
emergent dynamical behavior, but we cannot use these correlations to explain
that behavior. At this stage we lack a gauge-invariant picture of generally co-
variant theories akin to the one provided by Galilean space-time in the exam-
ple above. The TTH, at least in its present form, does not provide one.

A radical option is to reject the standard story about gauge symmetries.
Rovelli (2014) suggests that gauge-dependent quantities are more than just
mathematical redundancies, arguing that they are critical for understanding
interactions between physical systems: “they describe handles throughwhich
systems couple: they represent real relational structures to which the exper-
imentalist has access inmeasurement by supplying one of the relata in themea-
surement procedure itself ” (91). On this picture, gauge-invariant quantities
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are intrinsically relational. Certain gauge-dependent quantities supply the re-
lata, carrying modal information about the possible ways that free systems
can interact with each other. For example, in classical electromagnetism, the
interaction term in the Lagrangian, 2jmAm, depends explicitly on the gauge-
dependent vector potential. The Lagrangian itself is gauge invariant, but to
interpret it as describing the coupling between a charge density characterized
by jm and the electromagnetic field, wemust recognizeAm as a genuine feature
of the field, the “handle” to which charge couples (albeit in a manner that ul-
timately does not depend on the choice of a gauge-dependent coordinate sys-
tem). The details of Rovelli’s new proposal still need to be hammered out.23

It should be emphasized that it marks a significant break from the received
view on gauge.

Can a revised form of the TTH provide us with the explanatory tools to
understand the flow of thermal time without reference to gauge-dependent
partial observables, or does the framework of timeless mechanics require
us to revise our conception of how explanation, ontology, and gauge symme-
tries are related? Whether or not the TTH can save time may ultimately rest
on the solutions to these new reincarnations of vexingly familiar philosoph-
ical problems.
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