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Abstract. The paradox that appears under Burali–Forti’s name in many textbooks of set theory is
a clever piece of reasoning leading to an unproblematic theorem. The theorem asserts that the ordinals
do not form a set. For such a set would be–absurdly–an ordinal greater than any ordinal in the set of
all ordinals. In this article, we argue that the paradox of Burali–Forti is first and foremost a problem
about concept formation by abstraction, not about sets. We contend, furthermore, that some hundred
years after its discovery the paradox is still without any fully satisfactory resolution. A survey of
the current literature reveals one key assumption of the paradox that has gone unquestioned, namely
the assumption that ordinals are objects. Taking the lead from Russell’s no class theory, we interpret
talk of ordinals as an efficient way of conveying higher-order logical truths. The resulting theory
of ordinals is formally adequate to standard intuitions about ordinals, expresses a conception of
ordinal number capable of resolving Burali–Forti’s paradox, and offers a novel contribution to the
longstanding program of reducing mathematics to higher-order logic.

§1. Introduction. A simple, informal statement of the paradox of the greatest
ordinal—the paradox commonly attributed to Cesare Burali–Forti—might be this:

Given any well-ordered collection of objects, we may ask which posi-
tion an object in the collection occupies. Indeed, since the collection is
well-ordered, an object will come first (the least object in the ordering),
another will come second (the least object in the ordering besides the
first), yet another will come third (the least object in the ordering besides
the first and the second), and so on. Other objects might come after those
occupying the finite positions. So there might be the least object besides
those occupying the finite positions, another object after that, and so
on again. Ordinal numbers are objects representing positions in well-
ordered collections of objects. Evidently, there is natural ordering of the
ordinal numbers: the object representing a certain position comes before
the object representing later positions (e.g., the object representing the
first position comes before the one representing the second positions).
And so each ordinal occupies the position it represents.
However, we can define well-orderings that extend the natural ordering
of the ordinal numbers. For example, we can place some other object r
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immediately after all the ordinals. But now the object r is left without a
position. Since this collection is well-ordered, there should be an ordinal
representing the position of r . But that cannot be: the ordinals have
already been ‘used up’ to represent their own positions. This calls into
question the coherence of our intuitive talk of ordering and positions.

The form of the paradox which appears under Burali–Forti’s name in many textbooks of
set theory goes something like this:

Consider the class of Von Neumann ordinals—transitive sets well-ordered
by the membership relation, each one representing the ordinal giving
the count of its own members ordered by ∈. Since it is easy to verify
that for any two Von Neumann ordinals, one is a member of the other,
and since the restriction of ∈ to this class is transitive and well-founded
almost by definition, this class, if it were a set, would be another Von
Neumann ordinal, representing the count of the whole ordinal sequence.
But then it would contain itself (since it contains all Von Neumann
ordinals) contradicting the earlier claim that it was well-ordered by ∈.
Thus, the class of Von Neumann ordinals is not a set.

Stated in this way, Burali–Forti’s paradox leads to an unproblematic theorem of
Zermelo-Fraenkel set theory with the Axiom of Choice (henceforth ZFC), and indeed
of much weaker set theories. The ordinals constructed in set theory do not form a set.
For, such a set would be—absurdly—an ordinal greater than any ordinal in the set of all
ordinals.

In what follows, we shall argue that the standard set-theoretic rendering of the paradox
of Burali–Forti conceals the conceptual difficulty that the paradox discloses, and that this
difficulty is, some hundred years after its discovery, still without any fully satisfactory
resolution. In the course of our argument, we will propose an analysis of this paradox, and
show how the extant approaches to the paradox can be helpfully classified by means of
this analysis. Our classification will highlight one possible resolution to the paradox—an
account of the ordinals along the lines of Russell’s no class theory—which seems to be
both promising, and neglected by the current literature. In the final sections of the paper,
we will develop and motivate a no class theory of ordinals which is formally adequate
to standard intuitions about ordinals, expresses a conception of ordinal number capable
of resolving Burali–Forti’s paradox, and offers a novel contribution to the longstanding
program of reducing mathematics to higher-order logic.

1.1. Why set theory does not resolve the paradox of Burali–Forti. To see why the
paradox of Burali–Forti is not resolved by set theory alone, it may be helpful to compare
it to another paradox that set theory can in some sense resolve. A good example of such a
paradox would be Cantor’s paradox:

Consider the set of all sets, the universal set U . By Cantor’s theorem, we
know that the set of all the subsets of U , P(U ) cannot be placed into one-
to-one correspondence with U . Yet, there is obviously an embedding of
U into P(U ) (by mapping each set to its singleton), and of P(U ) into U
(by mapping each set to itself). So by the Schröder-Bernstein theorem,
there is a one-to-one correspondence between U and P(U ).

Most set theorists will say that this argument goes wrong in the very first sentence. There
is no universal set.
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It seems that ZFC supports this standard diagnosis. It licenses every other part
of the paradoxical reasoning above, but does not prove that there is a universal set. So
by process of elimination, the claim that there is a set of all sets must be rejected—
and indeed, “by Cantor’s paradox”, it is a theorem that there is no such set. But diag-
nosing the paradoxical reasoning above by appealing to ZFC only pushes the problem
back to the justification of ZFC. For, why should we think that ZFC is right to say there
is no universal set? There are, after all, alternative set theories in which such a set is
countenanced.

The solution to this trouble is to give a conception of set: a picture of the universe of
sets on which our axioms and much of our naïve reasoning about sets can be seen to be
justified. Such a picture helps fix a clear subject matter for the axioms, and elevate them
from a set of so-far-consistent assertions to a well-motivated account of the nature of that
subject matter.

The conception of set traditionally favored by set theorists who are in the business of
justifying their axioms is called the iterative conception. Here is how Gödel describes it:

When theorems about all sets (or the existence of sets in general) are
asserted, they can always be interpreted without any difficulty to mean
that they hold for sets of integers as well as for sets of sets of integers,
etc. (respectively, that there either exist sets of integers, or sets of sets of
integers, or . . . etc., which have the asserted property). This concept of
set, according to which a set is something obtainable from the integers
(or some other well-defined objects) by iterated application of the oper-
ation “set of”. . . has never led to any antinomy whatsoever; that is, the
perfectly “naïve” and uncritical working with this concept of set has so
far proved completely self-consistent. (Gödel, 1964, 180)

This is a description of an iterative hierarchy of sets that begins from the integers. ZFC is
the theory of the iterative hierarchy of sets that begins from the empty set.

The iterative conception, when elaborated in sufficient detail, supports most or all of
the axioms of ZFC. It also explains why there is no universal set. Such a set would have
to contain itself. But a set containing itself cannot arise at any point in the accumula-
tion process: each set is built out of previously built sets, and no set is built before it
is built.

The iterative conception also explains why there is no set of all Von Neumann ordinals.
The Von Neumann ordinals constructed at any given point in the accumulation process,
when assembled into a set at the next stage, always form a new Von Neumann ordinal.
So a stage never occurs at which all the Von Neumann ordinals are at previous stages.
Hence, the Von Neumann ordinals are never available all at once to be assembled into
a set.

Does this explanation of the fact that there is no set of all Von Neumann ordinals
constitute a solution to the original paradox of Burali–Forti? We think not, at least in the
sense that the paradox of Burali–Forti is not directly resolved by the iterative conception in
the same way as Cantor’s paradox is. We do not mean to deny that the iterative conception
could be part of some solution to the paradox of Burali–Forti. But Cantor’s paradox is
about the properties of a certain set, whereas the paradox of Burali–Forti is about ordinal
numbers. A conception of set, at least in isolation, suffices to address a paradox of the
former kind but not of the latter kind. If ordinal numbers are not Von Neumann ordinals,
there is a gap here that needs to be bridged before we can claim to have resolved the
paradox. We need to be told why a feature of the represented structure (the progression of
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ordinal numbers) can be explained by features of a certain representational medium (the
Von Neumann ordinals). In the next section, we offer some reasons to think that ordinal
numbers are not Von Neumann ordinals.

1.2. Origins of the ordinal number concept. Are the ordinals literally the Von
Neumann ordinals? No, for at least two reasons. First, the notion of transfinite iteration
that gives us the iterative hierarchy of sets in which the Von Neumann ordinals are situated
appears to presuppose ordinals—or something akin to them—to index the stages of the
process. If we revise our usage to refer only to Von Neumann ordinals, we lose sight of the
ordinals that give us the iterative conception. Second, even if one denies that the ordinals
are presupposed or denies the iterative conception, say by embracing an alternative con-
ception of set, the Von Neumann ordinals are still not the ordinals as they were historically
conceived. One is free to adopt a new terminology on which ordinals are just Von Neumann
ordinals. But to do so would be to disown the fruitful tradition that originally gave us the
concept of ordinal number. In this section, we review some features of the tradition that
will be important to our analysis of the paradox of Burali–Forti.

Let us begin by recalling a definition associated with cardinal numbers, rather than
ordinal numbers. This is Hume’s principle, the principle that the number of As is the same
as the number of Bs, just in case there is a one-to-one correspondence between the As and
the Bs. In symbols:

∀A ∀B (#A = #B ↔ A ≈ B). (HP)

The left-hand side expresses the literal equality of an object, the number of As (denoted
by the “number of” abstraction operator # applied to the variable A), to another object,
the number of Bs. The right-hand side abbreviates the statement that there is a function
witnessing the equinumerosity of A and B.

While Frege sometimes gets credit for this principle—perhaps, ironically, because he
was the first to attribute it to Hume (1884), perhaps because he indirectly showed how
this principle, over second-order logic, has the strength of second-order Peano Arithmetic,
or perhaps because he sometimes refers to it in the Grundlagen as “my definition”—its
lineage appears to considerably predate the attribution.

It would take us much too far afield to fully explore Frege’s sources and influences,
although there’s much to be said.1 According to recent historical work by Paolo
Mancosu, Frege here is at least partly influenced by the innovations of Grassmann’s
Ausdehnungslehre—originally published about forty years before Frege’s Grundlangen—
which includes a number of definitions by abstraction exactly analogous to Hume’s prin-
ciple. For example, Frege’s definition of direction is as the thing that two parallel lines
have in common (so that two directions are equal when two lines having them are parallel)
can be found in texts by Grassmann, e.g., Grassmann, 1844 and Grassmann, 1847 (see
Mancosu, 2015 for details). Mancosu’s work strongly suggests that this style of definition
would likely have been recognizable to a reader of Frege’s time.

1 When Hume’s principle is introduced in the Grundlagen, Frege alludes the work of others, both
for the idea that number should be defined in terms of a one-to-one correspondence (Frege,
1884, 73–74), and for the idea that in general, a new type of entity can be introduced by giving
sense to identity statements (like “the number of As is equal to the number of Bs”) concerning
that type of entity. (Frege ultimately rejected the latter claim.) Frege’s allusion to the work of
other mathematicians using one-to-one correspondence in the elucidation of the number concept
mentions Cantor, Schröder, and Kossak. The reference to Cantor is especially important to what
follows.
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And, indeed, the basic idea of definition by abstraction seemed to have been clear to
Leibniz.2 He explains his own use of an abstraction-like procedure in his correspondence
with Clarke:

I have here done much like Euclid, who, not being able to make his
readers understand what ratio is absolutely in the sense of the geome-
tricians, defines what are the same ratios. Thus in like manner, in order
the explain what place is, I have been content to define what is the same
place. (Leibniz, 1989, 704)

Leibniz is referring to Euclid’s definition 5, from the fifth book of the Elements:

Magnitudes are said to be in the same ratio, the first to the second and
the third to the fourth, when if any equimultiples whatever be taken of the
first and the third, and any equimultiples whatever of the second and the
fourth, the former equimultiples alike exceed, alike are equal to, or alike
fall short of, the latter equimultiples respectively taken in corresponding
order. (Translated in Heath, 1908, 114)

We have approximately what one might call Euclid’s principle:3

∀m1,m2,m3,m4
(
r(m1,m2) = r(m3,m4) ↔

∀a, b ((a · m1 > b · m2 ∧ a · m3 > b · m4)

∨ (a · m1 = b · m2 ∧ a · m3 = b · m4)

∨ (a · m1 < b · m2 ∧ a · m3 < b · m4))
)
.

(EP)

So, in formulating Hume’s principle, Frege had a number of influential antecedents.
It should not be too surprising, then, that in 1878, six years before the publication

of Frege’s Grundlagen, Cantor offered the following definition of “power” or cardinal
number:

If two well-defined manifolds M and N can be coordinated with each
other univocally and completely, element by element (which, if possible
in one way, can always happen in many others), we shall employ in
the sequel the expression, that those manifolds have the same power.
(Cantor, 1878; see Ferreirós, 2007, 188)

2 Leibniz at least indirectly influenced Frege and Grassmann. Indeed, both defend the adequacy
of their definitions by abstraction in precisely the same way: by pointing to Leibniz. Frege
quotes Leibniz’s dictum that “Things are the same as each other when one can be substituted
for the other without loss of truth” (Frege, 1884, 76) and takes the justification of definition by
abstraction to consist, as least in part, in showing that the abstracts obey this principle. Grassmann
took himself to be improving on Leibniz’s geometrical calculus by introducing new symbols
(in hindsight, abstraction operators) that would allow one to subsume the transfer of properties
between congruent geometrical figures to simple operations of substitution of identicals. As in
Frege, this maneuver is justified by a Leibnizian conception of equality “in which we just set as
simply equal that which we can substitute for the other in each proposition.” (Grassmann, 1844,
321). Whether Leibniz’s idea of definition by abstraction had a direct influence on either figure,
or whether Leibniz’s influence is confined to the laws of identity, remains an interesting historical
question which we do not attempt to answer here.

3 There is an exegetical issue concerning the use of the identity sign in (EP). In proposition 11,
book 5, Euclid proves that it is legitimate to reason with the notion of sameness of ratio as one
does with the notion of identity.
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Modulo the use of “manifolds” rather than Fregean concepts, this is just Hume’s principle.
So Cantor too was a part of the tradition described above—indeed Cantor writes admiringly
of Grassmann’s style of definition (Cantor, 1883, 897).

We have now described the concept of cardinal number given in Hume’s principle and
the intellectual tradition from which that concept emerged. To summarize the crucial point:
definition by abstraction was at least a recognized technique around the time of Cantor’s
greatest innovations and was part of Cantor’s methodological repertoire. We wish to claim
that Burali–Forti’s paradox is best viewed as a paradox within this practice of concept
formation, rather than a paradox within the concept of set. With that background in place,
let us return from the concept of cardinal number to our original target: the concept of
ordinal number.

The definition of ordinal number we are interested in seems to first have been systemat-
ically presented in Georg Cantor’s Grundlagen in 1883; he arrived at the concept over the
month following his September 1882 meeting with Dedekind (see Ferreirós, 2007, 269).4

The critical idea, likely stimulated by conversation with Dedekind, is the possibility of
taking the order-theoretic aspects of numbers—their positions in the number sequence—
as their essential or defining features, as Dedekind was inclined to do. While Cantor would
continue to maintain that ordinary numbers are essentially cardinals—essentially con-
nected with considerations of size, rather than order—he was not blind to the intelligibility
of Dedekind’s point of view.

To capture the concept of number connected with order (Cantor used the term Anzahl to
express this concept), one wants a definition that establishes that order-types correspond to
numbers. Roughly, this is a principle about ordinals requiring that every well-ordering R is
represented by an ordinal number determined entirely by the order type of R. In effect, one
introduces ordinals as invariants of ordered collections, just as one introduces cardinals as
invariants of bare unstructured collections. The obvious definition is given by the following
principle of ordinal abstraction:

∀R1∀R2(ord(R1) = ord(R2) ↔ R1 ∼= R2). (O-AB)

Now the left-hand side expresses the literal equality of an object, the ordinal of R1 (denoted
by the “ordinal of” abstraction operator ord applied to the variable R1), to another object,
the ordinal of R2. The right-hand side abbreviates the statement that there is a one-to-
one order preserving correspondence between well-orderings (an order isomorphism). The
quantifiers range over well-orderings.5

The obvious definition is, indeed, precisely what Cantor proposed:

Two well-ordered sets are now said to be of the same Anzahl (with
respect to their given successions) when a reciprocal one-to-one corre-
lation of them is possible such that, if E and F are any two elements of
the one set, and E1 and F1, are the corresponding elements of the other,
then the position of E and F in the succession of the first set always

4 But it should of course be noted that the concept of ordinal, as a counting number rather than
a measure of cardinality, obviously predates Cantor, and the concept of an infinite ordinal is
prefigured by Cantor’s work on trigonometric series, where terms behaving like names for
transfinite ordinals appear in formal manipulations as uninterpreted “symbols of infinity”.

5 If one makes the restriction of the quantifiers explicit, the result is:

∀R1∀R2(WO(R1) ∧ WO(R2) → (ord(R1) = ord(R2) ↔ R1 ∼= R2)),

where WO(R) abbreviates the statement that R is a well-ordering (see Appendix A for a formal
definition).
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agrees with the position of E1, and F1 in the succession of the second set
(i.e., when E precedes F in the succession of the first set, then E1, also
precedes F1, in the succession of the second set). (Cantor, 1883, 885)

And it is this definition that leads to the original Burali–Forti paradox.

§2. The paradox of Burali–Forti. In his paper on Cantor’s ordinal number con-
cept, Burali–Forti (1897) gives us the following definition of ordinal number (in Peano’s
notation)

(u, h), (v, k) ε Ko .

C

: T ‘(u, h) = T ‘(u, k)

. = . (u, h) ∼ (v, k).

What this means, essentially, is that, if (u, h), (v, h) are pairs each consisting of a collection
and a well-ordering of that collection, then their ordinal numbers are equal so long as their
orderings are isomorphic. This is, in effect, just a notational variant on our earlier principle
of ordinal abstraction. And it was on this basis—not on the basis of any formalization
within set theory—that Burali–Forti outlined the argument that now bears his name.

Burali–Forti’s original presentation is marred by a number of difficulties. The most serious
of these is that his theorem turns on a misunderstanding of Cantor’s definition of a well-
ordering. Burali–Forti seems to have understood this to mean “ordering with no descending
ω-sequence under the predecessor relation” rather than “ordering with no descending
ω-sequence under the less-than relation”. So rather than claiming to have shown that ordinal
abstraction is inconsistent, Burali–Forti merely claimed to have established, by his paradox,
a reductio of the claim that the “ordinals” are linearly ordered. Others, however—most
notably Russell and Poincaré—soon gave Burali–Forti’s argument a sharper edge.6

Combining the findings of Burali–Forti, Russell, and Jourdain, the following paradox
emerges. Our presentation of the paradoxical reasoning relies on second-order logic to
capture talk about relations. This is to a certain extent a rational reconstruction. We do
not strive to give a fully faithful rendering of the exact thoughts of the different historical
actors. In addition to providing a simple and illuminating setting, the second-order frame-
work has the advantage of letting us see the continuity between the origins of the paradox
and contemporary work on abstraction principles.

Argument sketch. There is a natural way of comparing two ordinals. One ordinal α
is greater than another β if a well-ordering R1 represented by α is “longer” than a well-
ordering R2 represented by β (that is, if R2 is isomorphic to a proper initial segment of R1).

Using standard higher-order resources, one can demonstrate that there is a relation < on
the ordinals corresponding to this notion of greater-than, and that this relation is a well-
ordering (this was proved by Jourdain; see his 1904 article). The comprehension axioms
used in the argument are impredicative—these are instances in which the comprehending

6 The first presentation of the argument as a paradox came in 1903, in Russell’s Principles of
Mathematics. There, Russell reconstructs Burali–Forti’s argument, but with the correct Cantorian
definition of ordinal number. Apparently unaware of the difference between Burali–Forti and
Cantor’s definitions, Russell points out that one can easily establish that every initial segment of
the ordinal number sequence is well-ordered (and indicates that he believes Cantor’s proof that
the ordinals are linearly ordered is correct). Like Burali–Forti, however, he ultimately views the
argument as a reductio, this time of the claim that the entire ordinal sequence is well-ordered—an
assertion that Russell found intuitive, but not impossible to abandon. Jourdain’s proof that the
ordinals are, in fact, well-ordered would later force Russell to take more aggressive measures in
his excision of the inconsistency (see Moore & Garciadiego, 1981 for details).
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formula contains quantifiers over properties or relations. So one must at this stage assume
that to impredicative definitions there correspond relations, and furthermore, that a single
existential quantifier in a comprehension axiom can range over all such relations. For the
relation < to have the desired interpretation, it’s also necessary to read the first-order
quantifiers in the comprehension scheme as ranging over absolutely all objects. (These
presuppositions will be important later.)

Once we have the relation <, for any ordinal α, we can then show (using only a more
harmless form of comprehension) that there is a relation that restricts < to the ordinals
less than α. Call this relation <α . If one grants that <α lies within the domain of ordinal
abstraction—in particular that it is a well-ordering of objects, and so that ordinals are
objects—then it is not difficult to prove that for any ordinal α, α is the representative of<α .

By an application of O-AB—again, taking the second-order quantifiers in this principle
to range over all relations—one has that to <, there corresponds an ordinal, which we
can call �. This means that � is the representative of <. But, by the previous fact, � is
also the representative of <�. Since by definition <� is a proper initial segment of <, the
representative of <� is less than the representative of <. In other words, � < �, which
contradicts the fact that < is a well-ordering. �

A careful formalization of the proof above—rather too long and involved to be included
here, although it is outlined in Appendix B—establishes that O-AB is inconsistent over
second-order logic. The model-theoretic unsatisfiability of O-AB (in a standard model)
is a well-known fact (see, e.g., Hodes, 1986; Cook, 2003; Linnebo & Pettigrew, 2014).
A proof of the principle’s inconsistency is surprisingly intricate.7 We hope to provide a
useful reference by laying out an explicit proof, which is so far lacking in the literature.

If we are to make a proper philosophical assessment of the paradox, we must make its
assumptions fully explicit. A model-theoretic proof of the unsatisfiability of O-AB in a
standard model of second-order logic, however, already builds in far-reaching assumptions
about quantification and second-order ontology. This is why a proof-theoretic perspective
on the paradox promises to be more philosophically illuminating. A formalization of the
paradox reveals its dependence on two assumptions, which we drew attention to in the
proof sketch above:

Second-order comprehension
Every open formula defines a property or a relation.

First principle of ordinals (O-AB)
Every well-ordering R is represented by an ordinal determined entirely
by the order type of R.

Moreover, the paradox relies on three presuppositions:

First-order absolute generality
It is possible to quantify over absolutely all ordinals.

Second-order absolute generality
It is possible to quantify over absolutely all relations.

7 The step from unsatisfiability to inconsistency is not necessarily trivial. Hume’s principle and
Wright’s nuisance principle (Wright, 1999) have long been known to be jointly unsatisfiable,
while their joint inconsistency (given some assumptions about choice or pairing principles) has
only recently been established in Walsh & Ebels-Duggan (2015), Ebels-Duggan (2015), and
Walsh (in press).

https://doi.org/10.1017/S1755020316000484 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020316000484


690 SALVATORE FLORIO AND GRAHAM LEACH-KROUSE

Second principle of ordinals
Ordinals are objects representing well-orderings.

Each of these assumptions and presuppositions underwrites one or more crucial steps in
the proof above. The first principle of ordinals motivates O-AB, which is used to
establish that < is a well-ordering, to prove that ord(<α) = α, and to reason about �.
Instances of second-order comprehension are used throughout the proof that the ordinals
are well-ordered. In particular, as we noted, one needs instances in which the compre-
hending formula contains quantifiers over properties or relations, i.e., impredicative
instances of comprehension. It turns out that a full formalization of our proof that < is
a well-ordering requires what is called �1

1-comprehension.8 Moreover, the definition of <
requires an instance of comprehension that is not only impredicative but viciously so.

Intuitively, an instance of comprehension is viciously impredicative if the comprehending
formula must be taken to quantify over the very relation that it defines. But this is what is
required in the final stages of the paradox. The defining condition of the relation < is that
for any two ordinals α and β, α < β just in case there are two well-orderings R1 and R2,
such that α is a representative of R1, β is a representative of R2, and R1 is isomorphic to a
proper initial segment of R2. We conclude the paradox by moving from the fact that <� is
proper initial segment of < to the assertion that � < �. But this inference involves taking
R1 to be <� and R2 to be <. So the relation being defined, <, must be in the range of the
existential quantifier binding R2 in the comprehending formula.

Finally, throughout the proof, the use of classical inference rules for first-order and
second-order quantifiers presupposes a fixed domain for each type of variables to range
over. If different occurrences of any given quantifier ranged over different domains, some
rules of classical logic would have to be given up. For instance, universal instantiation
would fail, since there would be no guarantee that a given universal quantifier would
include in its range objects introduced by existential quantifiers occurring elsewhere. This
is illustrated by a well-known response to Russell’s paradox. The following sentence is at
the core of the paradox:

∃y ∀x (x ∈ y ↔ x /∈ x).

8 Roughly, an instance of comprehension is said to be �1
1 if it involves a formula that is equivalent

to one headed by a block of second-order existential quantifiers and containing no other second-
order quantifier. It is �1

1 if the relevant formula is headed by a block of second-order universal

quantifiers. An instance of comprehension is said to be 	1
1 if it is both �1

1 and �1
1.

The use of �1
1-comprehension shows up, for example, in Lemma 8.2 of Appendix B asserting

that if every proper initial segment of one well-ordering R1 is isomorphic to a proper initial
segment of another R2, then R1 is isomorphic to an initial segment of R2—this intuitively requires
a union of given isomorphisms, which requires �1

1-comprehension.

It’s plausible that no comprehension principle weaker than�1
1 will support the lemma. For one

cannot prove that

for any two well-orderings, one is isomorphic to an initial segment of the other (*)

using only 	1
1-comprehension. But (*) is logical consequence of the lemma. The unprovability

of (*) from 	1
1-comprehension follows from the fact that, in the language of second-order

arithmetic, (*) is equivalent over RC A0 to AT R0 (Simpson, 2009, 198), which is strictly stronger
than the theory of 	1

1-comprehension (Simpson, 2009, 338–345). However, the conclusion that

the lemma requires �1
1-comprehension is not immediate owing to the presence of O-AB. For

O-AB might add enough strength to theory of 	1
1-comprehension to allows us to derive (*).
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One might resist the reasoning that leads from this sentence to contradiction by interpreting
the range of the existential quantifier as wider than the range of the universal quantifier
(see, e.g., Parsons, 1974b; Parsons, 1974a; Glanzberg, 2004; Glanzberg, 2006). A more
perspicuous notation would thus be:

∃+y ∀x (x ∈ y ↔ x /∈ x).

Although in the course of an argument, one might consider a witness, r , to the existential
quantifier above, such a witness could lie outside of the range of the universal quantifier.
This makes the inference to

r ∈ r ↔ r /∈ r

illegitimate, since the universally bound x cannot be be instantiated by r . First-order and
second-order absolute generality secure a fixed domain for first-order and second-order
quantifiers. For if all quantifiers range over the maximal domain, no disagreement about
quantifier range is possible.

An intuitive picture of domain expansion that has been found appealing comes from
thinking of the more inclusive domains on the model of possible worlds. In some cases,
the logic of domain expansion can be thereby subsumed under standard modal logic. This
idea will be relevant below.

Now that we have identified the assumptions of the paradox, a solution will begin
by rejecting one or more of these assumptions. And indeed, the natural solutions of the
paradox that have been proposed are cleanly classified by which assumption they reject.9

§3. Options. There is a rich set of available responses to the paradox. In this section,
we introduce and discuss some of them. In the next section, we focus on our preferred
response, which is inspired by Russell’s no class theory and, more recently, by work of
Harold Hodes and Kevin Klement. After that, we defend this ‘eliminative’ approach from
a number of potential objections. We think that the existence of such a rich range of options
to deal with the paradox is of great importance for a proper philosophical assessment of its
solutions.

3.1. Restricting second-order comprehension. We have noted that at several points in
the reasoning of the paradox we appeal to instances of the axiom scheme of comprehen-
sion. Perhaps these instances of comprehension are the crucial assumptions that drive the
paradox. Russell himself observed that this is one of the conclusions that may be drawn from
the paradox. He suggested two possible criteria for problematic comprehension instances.
According to the first, an instance is to be rejected if it determines a property or relation
whose size is too big. Since comprehension on the relation< leads to paradox, one infers that
this relation is too big to be comprehended. Since an instance of comprehension introducing
< is essential to the argument above, the paradox is averted (Russell, 1905, 43–44). The
paradox may simply be regarded as a proof that < is too big to be comprehended.

Russell, however, forcefully rejected the limitation of size approach.

A great difficulty of [limitation of size] is that it does not tell us how far
up the series of ordinals it is legitimate to go. It might happen that ω was
already illegitimate: in that case all proper classes would be finite. . . Or it
might happen that ω2 was illegitimate, or ωω or ω1 or any other ordinal

9 There are points of similarity between our classification and that of Shapiro, 2007. This gives us
some confidence that we are indeed cutting logical space at the joints.
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having no immediate predecessor. We need further axioms before we can
tell where the series begins to be illegitimate. . . (Russell, 1905, 44)

Russell’s point seems to be that one can say very little about what kinds of relations are
“too big”—many different size restrictions seem to suffice to block the paradox, and there
is no principled way of making a choice between them.10

One might try to avoid this objection by implementing the limitation of size approach
in something like the following way. Perhaps a property or relation is “too big” if its
extension or field, respectively, is too big to form a set. Since set theory is supposed
to be an absolutely general theory of collections (individuated extensionally), one might
think that it would be a good guide to what sizes of collections are possible. This, of
course, presupposes a background set theory. Formally speaking, such a presupposition
is unproblematic. However, from a philosophical perspective it is unsatisfactory, for the
reasons we have discussed above. On this approach, the ordinals become just shadows of
their set-theoretic surrogates. But the paradox of Burali–Forti, as we insisted, is first and
foremost a problem about concept formation, not about sets.

More sophisticated developments of the limitation of size approach that address these
difficulties can be found in Linnebo (2010), Studd (2016), and Florio & Linnebo (in
progress). The idea is to develop a notion of definiteness and to hold that the axiom scheme
of comprehenion must be curtailed when dealing with indefinite domains.

According to the second criterion proposed by Russell, an instance of comprehension is
to be rejected if the comprehending formula is “complicated and recondite” (Russell, 1905,
38). Russell dubs this approach to the paradox the zig-zag theory, and adopts zigzaginess to
denote the feature of formulas that renders them ineligible for comprehension. His original
exposition leaves open just how zigzaginess is to be defined. One proposal for spelling out
the precise nature of zigzaginess was given by Poincaré. He writes:

[T]he definitions which should be regarded as not predicative [read:
ineligible for comprehension] are those which contain a vicious circle.
[...] Is this what Russell calls ‘zigzaginess’? (Poincaré, 1912, 534)

By ‘vicious circle’ Poincaré means an appeal to the very notion being defined. Poincaré’s
example is the paradoxical class of Richard: the set of all the decimal numbers definable
by a finite number of words. Since this set is countable, a new decimal not contained in the
set can easily be defined in a finite number of words. Thus accepting Richard’s paradoxical
class leads us to paradox. The problem with the phrase that introduced Richard’s class is
that its denotation depends on which decimal numbers are definable. However, this in turn
depends on what classes are denoted by phrases of English. Thus the phrase that introduces
Richard’s class depends for its denotation upon what classes are denoted by phrases of
English, including itself. Until a denotation for ‘Richard’s class’ is given, a denotation for
‘Richard’s class’ cannot be determined. And this is a case of vicious circularity.

The vicious circle in the phrase defining Richard’s class derives from the fact that
the phrase contains an implicit quantifier over definitions. The solution is to ban classes
introduced by phrases like this. In second-order logic, instances of comprehension can be

10 This difficulty should be familiar to the neologicist, as it arises in connection with abstraction
principles modeled on Boolos’s New V. Although the formalism associated with New V puts
the “too big” bottleneck further downstream than Russell proposed (by allowing that we might
comprehend big concepts, but denying that abstraction operators can be applied to them in the
usual way), it faces problems of arbitrariness parallel to Russell’s original challenge. See the
literature on the bad company problem—in particular Shapiro & Weir, 1999.
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regarded as definitions of properties or relations. Hence, in this context, Poincaré’s idea is
usually rendered as a ban on impredicative instances of comprehension.

Allen Hazen (1986) has advocated a modified form of Poincaré’s response, where one
also allows ramified instances of comprehension—roughly one ramifies by distinguishing
between different “levels” of variables and allowing comprehension schemes to intro-
duce relations at a certain level of this hierarchy if they contain only quantifiers ranging
over relations at lower levels. This generalizes a predicative approach, since a predicative
approach amounts to a ramified approach that includes only level zero variables. Hazen
remarks that, owing to its vicious impredicativity, < cannot be defined in the ramified
setting. He speculates that, as a result, the paradox can be avoided.

A predicative or ramified restriction of comprehension blocks the paradox of Burali–
Forti at more than one point. As noted above, the definition of the less-than relation on
ordinals (<) is impredicative. Of course, blocking one derivation of an inconsistency does
little to guarantee that there is no derivation of an inconsistency to be found. One might,
therefore, ask what can be shown in general about the safety of a predicative theory of
ordinal abstraction.

The predicative approach to ensuring consistency has recently been the subject of a great
deal of research in connection with neologicism. The basic results indicate that both the
predicative and ramified fragment of Frege’s system in Grundgesetze are consistent and
interpret Robinson arithmetic (Heck, 1996). Moreover, given Frege’s definition of number,
the resulting system proves Hume’s principle (Heck, 1996).11 Ferreira and Wehmeier
(2002) have shown that consistency is preserved even if we adjoin 	1

1-comprehension;
and furthermore, Ferreira (2005) has recently shown that by adjoining an axiom of
reducibility for finite concepts to the ramified predicative fragment of Frege’s system,
we can produce a theory which relatively interprets ACA0 (the predicative second-order
theory extending full elementary Peano arithmetic). Most recently, work by Sean Walsh
on the connection between predicative abstraction and Gödel’s constructible universe has
yielded an extension of the theorem by Ferreira and Wehmeier: in the presence of full
second-order comprehension for “pure” formulas of second-order logic together with
	1

1-comprehension for formulas containing nonlogical vocabulary, an arbitrary collection
of abstraction principles is consistent so long as these principle are based on formulas that
provably express equivalence relations on concepts.

Walsh’s result establishes that a nontrivial strengthening of the predicative theory of
ordinal abstraction is consistent. On the one hand, this result offers an insight. On the
one hand, it presents a challenge. The insight is this: since the impredicative uses of
comprehension occurring early in the paradox of Burali–Forti are pure (and therefore,
by Walsh’s result, are jointly consistent with O-AB), the locus of inconsistency can be
seen to lie with the viciously impredicative definition of the relation <. If a traditional
predicativist wishes, however, to take advantage of this insight and to endorse pure forms
of impredicative comprehension, then they must provide a clarification of the concept
of vicious impredicativity which motivates the different treatment of pure and impure
instances of impredicative second-order comprehension.

Without such a clarification, the traditional predicativist, to avoid arbitrariness, has no
choice but to renounce impredicative comprehension altogether, thus sacrificing standard
theorems about well-orderings that rely on impredicative but pure comprehension instances

11 However, it does not prove the axioms of Robinson arithmetic with respect to Frege’s definition
of addition and succession of cardinal numbers (Linnebo, 2004). The interpretation of Robinson
arithmetic is nonstandard for these definitions.
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(see footnote 8). This should perhaps not come as a surprise. Historically, the main objec-
tion to predicativism is that it must abandon standard theorems of classical mathematics.
Those who regard this sacrifice as significant have good reason to look elsewhere for a
solution to the paradox of Burali–Forti.

3.2. Rejecting the first principle of ordinals. The paradox may also be blocked by
giving up the first principle of ordinals, namely the principle that every well-ordering R is
represented by an ordinal determined entirely by the order type of R. Let us explore how
this could be done.

One could retain the principle that all well-orderings have representatives but deny that
they are entirely determined by the order-type of the associated well-orderings. While
allowing that nonisomorphic well-orderings have distinct representatives, it could be main-
tained that isomorphic well-orderings need not have the same ordinal as representative. It
could even be allowed, perhaps, that fixing a unique well-ordering fails to determine a
single ordinal. Unfortunately, this approach does not get off the ground in the presence of
an appropriate principle of choice.12

A better option for rejecting the first principle of ordinals is to give up the assumption
that all well-orderings have a representative. On this view, we retain second-order compre-
hension but exempt certain well-orderings from having a representative. If a background
set theory is available, one could exempt well-orderings that are too big to form a set.
Alternatively, one could take inspiration from Cantor’s remarks on inconsistent multiplic-
ities or from the literature on neologicism and allow only abstracta of properties that are
not too big. For Cantor, a property is too big if it has a subproperty of the same size as
the ordinals—since the ordinals are an ‘inconsistent multiplicity’ in his terminology.
For the neologicist, a property is too big if it is equinumerous with the universe. The
resulting restriction of the first-principle of ordinals has been dubbed Size-Restricted
Ordinal Abstraction Principle in Cook (2003).

The high cost of this line of response to the paradox lies in the fact that the first principle
of ordinals expresses the characterizing property of an ordinal number and thus it appears
to be central to our understanding of ordinals. If one wishes to avoid doing violence to the
concept of ordinal, one should not abandon this principle lightly.

3.3. Rejecting first-order absolute generality. A useful way to think of the role of
first-order absolute generality in the paradox is as a principle guaranteeing a uniform
reading of the first-order quantifiers. As noted above, the proof makes use of classical
inference rules for the quantifiers, which fail if different quantifiers are assigned different
ranges. If absolutely general quantification is possible, then the quantifiers in the paradox-
ical reasoning can be read as absolutely general and therefore uniform. In particular, such
a reading of the quantifiers prevents a solution to the paradox which postulates a domain
expansion.

Some have concluded that real lesson of Burali–Forti’s paradox is that absolute
generality is not possible. Geoffrey Hellman writes:

What has emerged, however, is the point that we have a choice: either
we stick with the above instance of ‘absolute generality’ and give up on
desideratum (3) [i.e., the first principle of ordinals], or we seek to enforce

12 If there is a well-ordering of the objects, we could recover the inconsistent principle of ordinal
abstraction by defining the ordinal associated with a well-ordering to be the least object
representing any well-ordering of the same order-type.

https://doi.org/10.1017/S1755020316000484 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020316000484


WHAT RUSSELL SHOULD HAVE SAID TO BURALI–FORTI 695

the latter but deny [...] that it makes sense to refer to ‘absolutely all
ordinals’, or ‘absolutely all well-order relations’. (Hellman, 2011, 633)

So Hellman maintains that if we are to uphold the first principle of ordinals, then we must
give up absolute generality. How does Hellman’s rejection of absolute generality translate
into a solution of the paradox?

Simply denying absolute generality is not enough. Absolute generality together with
the other principles identified above suffice for the contradiction. But slightly weaker
principles might suffice as well, provided that those principles license a uniform reading
of the quantifiers. For a satisfying diagnosis of the paradox, one needs to explain where
and why we have a variation in the reading of quantifiers figuring in the paradox. Hellman
responds to this challenge by postulating a domain expansion captured in modal terms.

He states the first principle of ordinals in roughly the same way as we do: “any well-
ordering, as a relation, should be represented by a unique ordinal” (Hellman, 2011, 632).
However, he makes it clear that the principle needs to be read with care. In particular, the
quantifiers should be read as modalized and, as he emphasizes, the second-order variables
should be interpreted plurally.

The modalized version of first principle of ordinals becomes that principle that, necessar-
ily, for any two well-orderings, there could be an ordinal determined entirely by the order
type of those well-orderings. A formal rendering of this principle might go as follows:

�∀R1∀R2 �(∃y(y = ord(R1) ∧ y = ord(R2)) ↔ R1 ∼= R2). (O-AB�)

The exact details of its proper representation will depend on the system of modal logic
one favors for reasoning about domain expansions. But the above formalization does at
least clarify Hellman’s insistence on a plural reading of the variables. For Hellman, a
well-ordering is just some ordered-pairs with the relevant properties. This has the effect of
ensuring an extensional reading to the second-order variables. Pluralities, unlike properties,
are thought to have their members necessarily.

Hellman needs to ensure an extensional reading of the second-order variables. An inten-
sional reading would reinstate the paradox in the expanded domain. If R1 and R2 could be
instantiated with the relation< on the ordinals, intensionally construed, then O-AB� would
entail that, in the expanded domain, the relation< has an ordinal. Once it is admitted, in this
way, that the well-ordering of the ordinals has an ordinal, the rest of the reasoning of the
paradox is familiar.

Note that, even with respect to the specific reading of the paradox at hand, there are—
perhaps inevitably—sacrifices that Hellman is forced to make. He can retain the first prin-
ciple of ordinals only in the modalized sense, not in the original one. Of course, Hellman
could respond by suggesting that the modalized sense is a natural one and the first principle
should have been read this way all along. However, if this is true, then one wonders
why a modalized reading should not be given to the other assumptions of the paradox.
Specifically, Hellman cannot allow a modal reading of second-order comprehension. Such
a reading isn’t plausible given a plural interpretation of the second-order variables.13 This
might come as relief to Hellman, since a modalized version of second-order comprehension

13 Consider the following modalized instance of comprhension

�∃X �∀x(X x ↔ x = x).

While it acceptable on the intensional reading—it asserts that there could be a property tracking
self-identity across worlds—it is not on the extensional reading. On this reading, it asserts that

https://doi.org/10.1017/S1755020316000484 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020316000484


696 SALVATORE FLORIO AND GRAHAM LEACH-KROUSE

in combination with O-AB� allows one to reconstruct the paradox. But it does commit
Hellman to accepting that, in spite of similarity of syntax and usage, the meanings of the
quantifiers in the first principle of ordinals and in second-order comprehension are radically
different. Hellman might, again, reply that given his plural reading of the second-order
variables, one should expect modalized comprehension to fail. Since the modalized reading
of second-order comprehension is obviously false, the nonmodal reading dominates.

So, on Hellman’s reading, we compromise in various ways on the first principle of ordi-
nals and on second-order comprehension. Hellman could argue that, at least in the context
of his particular reading, these compromises are not significant. But this raises a more fun-
damental problem. If we grant that Hellman has established the consistency of a reading
of the assumptions of the paradox, this does not provide a resolution to the inconsistency
found in the original practice of concept formation described above. In other words, we may
wonder whether the move to a plural reading of the second-order variables and a modalized
reading of the quantifiers re-directs our attention to one manifestation of the paradox while
failing to get to the heart of the problem. Ceteris paribus, a solution to the paradox that does
not require a special reading of the quantifiers and variables would be preferable.

In any case, there is one additional difficulty for Hellman’s approach. It is unnecessarily
concessive: it gives up more than is required. Recall the distinction between first-order and
second-order absolute generality. First-order absolute generality secures the possibility of
quantifying over absolutely all ordinals, while second-order absolute generality secures
the possibility of quantifying over the plurality of all ordinals. Hellman rejects first-order
absolute generality, since he denies that we can quantify over all ordinals. This is what lies
behind his reformulation of the first principle of ordinals in terms of domain expansion.
Since Hellman construes second-order variables as pluralities, he also rejects second-order
absolute generality. Given that pluralities depend on their members, if we cannot quantify
over all ordinals, we cannot quantify over the plurality of all ordinals.

As we will show in the next section, so long as one abandons second-order absolute
generality, one can in fact retain first-order absolute generality along with the other assump-
tions of the paradox (see Shapiro, 2003; Shapiro, 2007). In this sense Hellman’s approach
gives up more than is required. Abandoning second-order absolute generality is what does
the work. Ceteris paribus, an approach that avoids this formally unnecessary concession
would be preferable.

3.4. Rejecting second-order absolute generality. An alternative, less concessive
response to the paradox uses domain expansions, but only relative to the second-order
domain. The intuitive idea is that, while the first-order domain is absolute general, the
second-order domain does not include absolutely all second-order entities. Instead, we have
an increasingly inclusive series of second-order domains accessible by domain expanding
quantifiers (for alternative implementations of this line of response to the paradox, see the
‘thin straw’ of Shapiro, 2007). Following Hellman, we construe the second-order variables
extensionally—we assume that second-order entities have their members necessarily.

It is useful to introduce this new approach by means of a model-theoretic comparison
with Hellman’s position. A natural way to model Hellman’s modal axioms is to read the
modal operators in terms of possible worlds and to take these worlds to be the logical-
mathematical possibilities corresponding to the various Vκ of the iterative hierarchy of sets.
The accessibility relation is given by this rule: Vα accesses Vβ if and only if Vα is a

there could be some things encompassing all possible self-identical objects. This is in tension
with Hellman’s principle that there could always be more ordinals.
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subset of Vβ . We should emphasize that this is only a toy model of Hellman’s axioms.
Not every feature of the model is part of Hellman’s account. In particular, though in the
model ordinals are identified with Von Neumann ordinals, Hellman need not endorse this
identification.

Hellman’s axioms come out true in any world in this model. As an illustration, consider
Vω, the hereditarily finite sets. This would correspond to a possibility in which the first-
order domain is Vω and the second-order domain is Vω+1, i.e., the set of all subsets of Vω.
In this context, the first principle of ordinals amounts to the claim that, for any well-
ordering R in Vω+1, there is a Vκ containing a Von Neumann ordinal isomorphic to R.
Given the axiom of replacement, it is easy to verify that this claim is true. Therefore, the
first principle of ordinals is validated.

On this interpretation, Hellman’s rejection of modalized second-order comprehension
amounts to the requirement that, at a world w, the second-order quantifiers range only
over subsets of the Vκ corresponding to w. The restriction on the first-order quantifiers
amounts to the requirement that, at a world w, the first-order quantifiers range only over
elements of the Vκ corresponding to w. Given this constraint on the quantifiers, second-
order comprehension is true at each world.

One could modify this interpretation to “open up” the first-order quantifiers, letting them
range over the entire iterative hierarchy, while keeping the restriction on the second-order
quantifiers. The result would be another model in which the first-order domain of every
logico-mathematical possibility is absolutely general: it is the set-theoretic universe V .
The second-order domain of each possibility, however, is not absolutely general. In par-
ticular, at the world corresponding to Vκ , the second-order domain consists only of the
subsets of Vκ . The picture is the following: while the domain of objects remains the same,
the domain of concepts expands as we move from one logico-mathematical possibility to
another. Importantly, the first principle of ordinals is retained, since it is true at every world
that, for each well-ordering in the second-order domain, there is a corresponding ordinal
in the absolutely general first-order domain.

It might be thought that the fact that this approach does not yield the standard com-
prehension scheme is a disadvantage. However, the semantic reason for the failure of
standard comprehension is not that we don’t have all the second-order objects we would
otherwise have. It’s that we have more first-order objects—we have absolutely all the sets
in V . By owning up to these, a weakness that already existed in the modal comprehension
scheme is made evident. A way to recover some comprehension would be to enrich the
expressive resources of the object language. For example, if one adds the set-theoretic
membership relation to the object language, then the following scheme of comprehension
is true at every world:

∀κ �∃P ∀x (P(x) ↔ ϕ(x) ∧ x ∈ Vκ),

where κ ranges over any cardinal (or ordinal) set theoretically defined, and ϕ does not
contain any free occurrences of P . Of course, this has the disadvantage of depending on
the assumption that the structure of the underlying first-order domain is isomorphic to the
iterative hierarchy.

This difficulty can be overcome by revising the approach, for example, in the following
way. Instead of letting the second-order domain of each world be the subsets of some Vκ ,
we could let it be all subsets of cardinality less than κ . This yields a purely logical form
of comprehension. Note that, in first-order logic, one can write down a formula ∃nx ϕ(x)
expressing the fact that there are n things falling under the formula ϕ(x), for any finite n.
Pure second-order logic affords us the resources to express more cardinality facts of this
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kind. For instance, we one can write down a formula ∃κ x ϕ(x) expressing the fact that
there are κ-many things falling under the formula ϕ(x), where κ is ℵn for any finite n. The
comprehension scheme now available is the following:

�(∃κ x ϕ(x) → ∃P ∀x (P(x) ↔ ϕ(x)))

where κ and ϕ(x) are such that ∃κ x ϕ(x) is expressible in the way described just above.
This amounts, in effect, to a version of the limitation of size approach originally suggested
by Russell (see §3.1). It has the advantage of avoiding any dependence on assumptions
about the structure of the underlying first-order domain. Furthermore, it improves on the
limitation of size approach by avoiding the arbitrary choice of size that worried Russell
(see again §3.1).

The two proposals just sketched are not the only ways to deny second-order absolute
generality while retaining first-order absolute generality. To emphasize the key feature of
this style of solution, we call it the V -Vκ approach.

The following chart provides a summary of the responses to the paradox surveyed so far.

Full second-order First principle Second principle First-order Second-order
Comprehension of ordinals of ordinals AG AG

Restricting comprehension ?

Rejecting the first
principle of ordinals

Hellman’s modal approach ?

V -Vκ

We have marked some entries with a question mark to indicate that it is contentious
whether the assumption is upheld. The first question mark arises because one might insist
that restricting comprehension restores consistency by preventing us from talking about
properties that do exist. The second question mark indicates that Hellman loses intensional
forms of comprehension. Since he retains extensional forms of intra-world comprehension,
we do not count this as abandoning comprehension altogether.

The common feature of these responses is that they all uphold the second principle of
ordinals, namely the principle that ordinals are objects. We now want to explore a neglected
response that denies this principle.

§4. An alternative approach. The approach we want to explore rejects the principle
that ordinals are objects. The key idea is that, while similar on the surface to talk about
objects, talk about ordinals does not directly make assertions about objects. Rather, talk
of ordinals conveys higher-order logical content in a sense to be made precise below. Three
sources of inspiration for this approach to the paradox are Russell’s no class theory and, more
recently, Harold Hodes’s views on the content of arithmetical discourse (Hodes, 1986), and
Kevin Klement’s work on arithmetic and abstraction principles (Klement, in press).

The function of Russell’s no class theory is to eliminate apparent reference to classes
by interpreting such reference in terms of a higher-order language. This is how Russell
himself describes the aim of the theory:

The theory of classes which I set forth in my Principles was avowedly
unsatisfactory. I did not, at that time, see any way of stating the elemen-
tary propositions of Arithmetic without employing the notion of “class”.
I have, however, since that time discovered that it is possible to give an
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interpretation to all propositions which verbally employ classes, without
assuming that there really are such things as classes at all. [...] That it
is meaningless [...] to regard a class as being or not being a member
of itself, must be assumed for the avoidance of a more mathematical
contradiction; but I cannot see that this could be meaningless if there
were such things as classes. [...] The general contention that classes are a
mere façon de parler has, of course, been often advanced, but it has not
been accompanied by an exact account of what this manner of speaking
really means, or by an interpretation of arithmetic in accordance with
this contention [...]. (Russell, 1910, 376)

Here Russell highlights the indispensability of the no class theory for the resolution of the
paradox that bears his name. As early as 1905, he suggested that the no class theory could
also be deployed against the paradox of Burali–Forti (Russell, 1905).

Russell’s key idea is to reinterpret propositions that verbally employ classes. Frege,
likewise, seem to have arrived at the conclusion that some reconstruction of assertions that
superficially employ the number concept would be the key to understanding mathematical
language. Less than two years before his death, Frege wrote in a diary:

From our earliest education onwards we are so accustomed to using the
word ‘number’ and the number-words that we do not regard our way of
using them as something that stands in need of a justification. To the
mathematicians it appears beneath their dignity to concern themselves
with such childish matters. But one finds amongst them the most dif-
ferent and contradictory statements about number and numbers. Indeed,
when one has been occupied with these questions for a long time, one
comes to suspect that our way of using language is misleading, that
number-words are not proper names of objects at all and words like
‘number’, ‘square number’ and the rest are not concept-words; and that
consequently a sentence like ‘Four is a square number’ simply does not
express that an object is subsumed under a concept, and so just cannot
be construed like the sentence ‘Sirus is a fixed star’. But how then is it to
be construed? (diary entry dated March 24, 1924; see Frege, 1979, 263)

Hodes calls the last line of this passage Frege’s ‘deathbed question’. He answers it in the
spirit of Russell’s no class theory by showing how to construe arithmetical discourse as a
way of coding talk about a certain type of higher-order quantifier. On this view, arithmetical
discourse becomes

a special sort of fictional discourse: numbers are fictions “created” with
a special purpose, to encode numerical object-quantifiers and thereby
enable us to “pull down” a fragment of third-order logic, dressing it in
first-order clothing. (Hodes, 1986, 144)

The usefulness of this discourse lies in the fact that first-order logic is familiar and tractable,
while third-order logic is “notationally messy and logically complex” (Hodes, 1986, 144).

Klement (in press) recognizes that something in the vein of the no class theory can be
used to eliminate reference to entities introduced via abstraction principles. He proposes
a general method to regard talk of abstracta as mere abbreviation. In particular, Klement
shows that Hume’s principle and each axiom of second-order Peano Arithmetic, with the
exception of the successor axiom, can be regarded as abbreviations for validities of third-
order logic.
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We would like to take the no class approach back to its original Russellian application
to the resolution of the paradoxes. In particular, we would like to provide an interpretation
of talk of ordinals without assuming, to put it in Russell’s terms, that there are such things
as ordinals. On this interpretation, assertions about ordinals become ways of conveying
higher-order logical content, just as for Hodes assertions about natural numbers encode
higher-order information about numerical object-quantifiers. Our decoding of ordinal talk
involves construing ordinals as given by abstraction principles, and then showing how to
reduce ordinal abstraction and its consequences to validities of third-order logic as Klement
does to Hume’s Principle. Unlike Hodes and Klement, however, we face a potentially
inconsistent mathematical discourse. Here the no class theory serves not only to clarify
the function of the discourse in question but also to witness its consistency.

4.1. The no class conception of ordinals. The no class approach denies the second
principle of ordinals. The task for the no class approach is—to paraphrase Russell—to give
an interpretation to all propositions which verbally employ ordinals, without assuming that
there really are such things as ordinals at all. How might this be accomplished?

Concretely, our challenge is to interpret the ordinal abstraction operator and, eventu-
ally, quantification over ordinals. It is useful to begin with the case of identity statements
between ordinals presented by the abstraction operator, e.g., ord(R1) = ord(R2). If we
are interpreting the meaning of the abstraction operator in isolation, one idea might be to
interpret each ord(R) as simply referring to R. However, this option immediately wreaks
havoc on the intuitive properties of the ordinals. The standard progression of the ordinals,
characterized by <, would no longer be a well-ordering. And, what’s worse, we lose the
right-to-left direction of O-AB.

A natural way to amend this proposal would be as follows. One first selects a canonical
well-ordering for each isomorphism class. Then one interprets each ord(R) as simply
referring to the canonical well-ordering of R’s isomorphism class. This enables us to
recover O-AB. But the proposal is hardly satisfactory from either a technical or a philo-
sophical perspective. From a technical perspective, defining ord(R) along these lines within
second-order logic would require a strong principle of choice going beyond even the
existence of a global well-ordering. It would indeed require a definable third-order well-
ordering of the second-order domain, or something similar. From a philosophical perspec-
tive, the problem is, if anything, more acute. This interpretation of ord(R) requires that
there be a determinate well-ordering that the expression picks out. But there is nothing
about the usage of ordinal language that might fix such a reference.14

However, it is possible to circumvent the problem with the second proposal by taking
a page from Russell’s playbook. We can let the isomorphism class of R determine the
meaning of ord(R) if, rather than analyzing the meaning of ord(R) in isolation, we analyze
its meaning in the context of a proposition. Instead of looking for ord(R)’s referent we
look for a paraphrase of statements in which ord(R) occurs. We want an identity statement
between two ordinals to be true if the corresponding well-orderings are isomorphic. So,
rather than assigning a canonical well-ordering to ord(R1) and ord(R2), we analyze an
identity statement between two ordinals, for example ord(R1) = ord(R2), as simply

14 There is clearly nothing about actual usage that might fix reference, nor is there anything about
possible usage that might fix reference. Someone may object that we could select a choice
function and determine reference with respect to it. However, the selection of an appropriate
choice function is more easily proposed than accomplished. For it faces the same problem it
purports to solve. Even if we accept that appropriate choice functions exist, we have no means to
pick out a particular one.
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expressing that there exist well-orderings V1 and V2, isomorphic to R1 and R2 respectively,
such that V1 is identical to V2. Identity between second-order entities is cashed out, as
usual, in third-order terms.15

Next, we analyze atomic predication of the form P(ord(R)), where R is a well-ordering
and P is an atomic predicate applicable to ordinals. Recall that our current strategy is to
deny the second principle of ordinals. So we do not assume that ord(R) is a first-order
entity, and thus we do not assume that P expresses a property of first-order entities. This
opens the way to an analysis parallel to the one articulated in the previous paragraph. Just
as above, we analyze P(ord(R)) as expressing that there is a well-ordering V isomorphic
to R such that P(V ), where P is a higher-order counterpart of P .

Putting these ideas together, given well-orderings R1 and R2, we might analyze the
following statement

ord(R1) = ord(R2) ∧ P(ord(R1))

as

∃V1 ∃V2 (V1 ∼= R1 ∧ V2 ∼= R2 ∧ V1 = V2) ∧ ∃V3 ( V3 ∼= R1 ∧ P(V3)),

where the bound variables range over well-orderings.
An analysis like this can be extended to the full vocabulary of the language of ordinals.

We regiment this language in line with our denial of the second principle of ordinals. Since
ordinals are not objects, we reserve a second sort for them, distinct from the object sort.
To these basic sorts we add the standard vocabulary of second-order logic. We call the
resulting language L�. Our analysis provides a translation procedure, which we denote
by ‘∗’, mapping each formula ϕ of L� to a formula [ϕ]∗ of the language L3 of third-
order logic.16 Crucially, the intuitive properties of ordinals reduce under this translation to
pure theorems of third-order logic. Among these properties are O-AB and the structural
properties of the progression of ordinals. In this sense, we vindicate the idea that talk of
ordinals serves to convey higher-order logical content.17

In the next section, we give the details of these formal languages and of the translation
procedure. This discussion is rather technical. Readers more interested in the philosophical
implications of our findings may skip ahead to §4.3.

4.2. Implementation of the No-Class conception. We now take up the remaining task
of explaining how to extend our analysis to the entire language. We begin by introducing
the language L�. Then we provide the full translation procedure reducing this language to
the pure language of third-order logic. After that, we present an example of a formal result
that witnesses the viability of our no class approach to ordinals.

Let L2 be the standard language of second-order logic, regarded as a multi-sorted lan-
guage with object sort obj and, for every n, a sort Sn for n-ary relations between objects.
The vocabulary of the language is as follows.

15 Note that the current proposal amounts essentially to analyzing ord(R1) = ord(R2) as expressing
that R1 and R2 are isomorphic well-orderings. The particular implementation we adopt has the
advantage of generality, as we will see in a moment.

16 Here we diverge from Klement’s approach. We do not take ordinal talk to be an abbreviation.
Rather, our translation procedure shows how ordinal talk as a sui generis language could be used
to reason about and convey higher-order logical content.

17 The reader may wonder what framework we would use to cash out this notion of conveying
content. Several are available, ranging from literal interpretation to rational reconstruction. We
would prefer to remain neutral. Much of what we say can be embraced by advocates of any of
these perspectives.
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(i) Infinitely many variables x1, x2 . . . of sort obj.

(ii) Infinitely many variables Pn
1 , Pn

2 , Pn
3 . . . of sort Sn .

(iii) Standard logical symbols, including an identity sign of sort S2 between two vari-
ables of sort obj, and parentheses.

The terms of L2 are simply the variables above. The atomic formulas consist of a symbol
of sort Sn—either a variable, or, if n = 2, the identity sign—followed by a sequence of
n variables of sort obj.18 Complex formulas are then built in the usual way using logical
connectives and parentheses.

Let L� be an expansion of L2 with the these new sorts: a sort for ordinals ord and, for
every n, a sort Tn for n-ary relations over ordinals. In addition to the vocabulary of L2, we
have new symbols as follows.

(iv) Infinitely many variables α1, α2 . . . of sort ord.

(v) Infinitely many variables An
1, An

2, An
3 . . . of sort Tn .

(vi) A function symbol ord taking binary relations of sort S2 as arguments and
returning a value of sort ord (so the sort of the term ord(P2

1 ) is ord).

(vii) An identity symbol of sort T2 between two terms of sort ord.

In addition to the terms of L2 and the variables above, L� contains terms formed by
applying the symbol ord to a term of sort S2. And in addition to the atomic formulas
of L2, the atomic formulas of L� consist of those obtained by applying symbols of sort Tn

to a sequence of n terms of sort ord.
Finally, we arrive at a language L3 of third-order logic, obtained by enriching L2 with

sorts for relations between lower-level relations over objects. In particular, for every n and
every sequence of relation sorts Si1 , . . . , Sin , we have a distinct sort Ui1,...,in . As for the
vocabulary of L2, we have new symbols as follows.

(viii) For every n and every sequence of sorts Si1 , . . . , Sin , infinitely many variables:

Xi1,...,in
1 ,Xi1,...,in

2 ,Xi1,...,in
3 . . .

of sort Ui1,...,in .

(ix) Fresh second-order variables of sort S2: R2
1, R2

2, R2
3, . . . and V 2

1 , V 2
2 , V 2

3 , . . ..

The terms of L3 comprise the terms of L2 together with the variables above. The atomic
formulas of L3 are those generated by the formation rules of L2 together with those
obtained by applying symbols of sort Ui1,...,in to a sequence of n terms of sorts Si1 , . . . , Sin

respectively.
Strictly speaking ord only applies to the variables of sort S2 in L�. However, to make

the translation procedure more uniform, we do allow ord to apply to the fresh variables
R2

1, R2
2, R2

3, . . . of L3. We describe the result as a pseudoterm of sort ord of L�. Likewise,
we describe a formula containing such pseudoterms as a pseudoformula of L�.

We are now ready to define a translation ∗ from L� to L3 showing how talk of ordinals
can be eliminated. The translation is described by its action on atomic formulas and logical
symbols. In order to define this translation, we first define two auxiliary translations •
and †.

18 For simplicity, we do not include constants in the language. Moreover, we treat predication as part
of the syntax, and do not make explicit the usual application relation that characterizes predication
in multi-sorted languages. In any case, nothing important hinges on these choices.
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The translation • maps terms of sort ord to terms and pseudoterms of sort ord.

αi
•�−→ ord(Ri )

ord(P2
i )

•�−→ ord(P2
i )

Next, we define a translation † from atomic formulas and pseudoformulas of L� to
formulas of L3. This eliminates uses of the ord operator in favor of third-order vocabulary
according to the strategy outlined in the previous section. We use ζi as a metalinguistic
variable ranging over terms P2

i or R2
i , and we understand identity between such terms

in the usual third-order way. We use ζi ∼ ζ j to abbreviate the pure second-order formula
expressing that either ζi and ζ j are isomorphic or neither ζi nor ζ j is well-ordered.
Intuitively, the second clause here is intended to ensure that all relations that are not well-
ordered are assigned the same abstract.

ord(ζi ) = ord(ζ j )
†�−→ ∃V 2

i ∃V 2
j (V

2
i ∼ ζi ∧ V 2

j ∼ ζ j ∧ V 2
i = V 2

j )

An
m(ord(ζi1 ), . . . , ord(ζin ))

†�−→ ∃V 2
i1
. . . ∃V 2

in
(V 2

i1
∼ ζi1 ∧ · · · ∧ V 2

in
∼ ζin ∧ X

n-times︷ ︸︸ ︷
2, . . . ,2
m (V 2

i1
, . . . , V 2

in
)).

Note that † essentially generalizes the transformation on atomic sentences described in the
previous section. That is, a basic predication such as Am(ord(R)) is taken to express that
there is a well-ordering V isomorphic to R such that Xm(V ), where Xm is a third-order
counterpart of Am , as signaled by the matching subscripts.

Finally, we recursively define the main translation ∗, a translation from L� to L3. We
use metavariables of the form ti and xi for terms of sort ord and obj, respectively. We use
[ϕ]∗, t•i , and [ψ]† to denote the results of applying ∗, •, and † to ϕ, ti , and ψ , respectively.

Pn
m(xi1 , . . . , xin )

∗�−→ Pn
m(xi1 , . . . , xin )

xi = x j
∗�−→ xi = x j

∃xiϕ
∗�−→ ∃xi [ϕ]∗

∃Pn
mϕ

∗�−→ ∃Pn
m[ϕ]∗

ϕ ∧ ψ
∗�−→ [ϕ]∗ ∧ [ψ]∗

¬ϕ ∗�−→ ¬[ϕ]∗

An
m(ti1 , . . . , tin )

∗�−→ [An
m(t

•
i1
, . . . , t•in

)]†

ti = t j
∗�−→ [t•i = t•j ]†

∃αiϕ
∗�−→ ∃Ri [ϕ]∗

∃An
mϕ

∗�−→ ∃X

n-times︷ ︸︸ ︷
2, . . . ,2
m [ϕ]∗.

The first six clauses are just identities. So these transformations leave the second-order for-
mulas of L2 untouched. The last four act as follows. Quantification over ordinals is replaced
by quantification over relations of objects. Quantification over relations of ordinals is
replaced by third-order quantification. The atomic formulas are subject to the transfor-
mations • and † described above.

Now that we have presented the translation, we will adopt the convention that
unsuperscripted P1, Ri , Vi are to be read as decorated by the superscript ‘2’. A similar
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convention applies to variables Xi , where the omitted superscript is the appropriate
sequence ‘2’, . . . ,‘2’.

Let us now look at a significant example of how the translation can be applied. Recall
the principle of ordinal abstraction:

∀R1∀R2(ord(R1) = ord(R2) ↔ R1 ∼= R2), (O-AB)

where the quantifiers are implicitly restricted to well-ordering. Let WO(ζi ) abbreviate the
pure second-order formula expressing that ζi is a well-ordering. We can now regiment
O-AB in L�:

∀Pi ∀Pj (WO(Pi ) ∧ WO(Pj ) → (ord(Pi ) = ord(Pj ) ↔ Pi ∼= Pj )).

Consider the result of applying ∗ to this formula:

[∀Pi ∀Pj (WO(Pi ) ∧ WO(Pj ) → (ord(Pi ) = ord(Pj ) ↔ Pi ∼= Pj ))]
∗. (1)

Because ∗ has no effect on second-order vocabulary, we have:

∀Pi ∀Pj (WO(Pi ) ∧ WO(Pj ) → ([ord(Pi ) = ord(Pj )]
∗ ↔ Pi ∼= Pj )). (2)

Let us focus, for the moment, on [ord(Pi ) = ord(Pj )]∗. This is [ord(Pi )
• = ord(Pj )

•]†.
Since • has no effect on ord(ζi ), we only need to consider the effect of †, which gives us:

∃Vi ∃Vj (Vi ∼ Pi ∧ Vj ∼ Pj ∧ Vi = Vj ). (3)

Substituting (3) into (2), we obtain:

∀Pi ∀Pj (WO(Pi ) ∧ WO(Pj ) →
(∃Vi ∃Vj (Vi ∼ Pi ∧ Vj ∼ Pj ∧ Vi = Vj ) ↔ Pi ∼= Pj )). (4)

Note that, since Pi and Pj are restricted to well-orderings, ∼ in the consequent is equivalent
to ∼=. Thus (4) is equivalent to:

∀Pi ∀Pj (WO(Pi ) ∧ WO(Pj ) →
(∃Vi ∃Vj (Vi ∼= Pi ∧ Vj ∼= Pj ∧ Vi = Vj ) ↔ Pi ∼= Pj )). (5)

It is easy to verify that (5) is a theorem of third-order logic (recall that identity between
second-order variables is cashed out in third-order terms). This result is significant. We
have just shown that the translation of O-AB under ∗ is a logical truth. This is a prime
example of how talk of ordinals can be interpreted as conveying higher-order logical
content.

4.3. The No-Class theory of the ordinals. The result that the regimentation of ordinal
abstraction in L� is carried by our translation to a validity of third-order logic is not
isolated. Instead, we find a rich theory emerging from results of this kind. Our main
contention is that this theory constitutes a robust conception of the ordinals.

Denote by No-Class the set of sentences of L� whose translation under ∗ is a theorem
of third-order logic.19 Remarkably, No-Class turns out to be closed under standard log-
ical rules concerning the connectives and the identity symbol. So it is not simply a set

19 By ‘third-order logic’ we mean the theory in the language of L3 axiomatized by the usual logical
rules for logical symbols plus the full comprehension scheme for second-order and third-order
variables.
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of sentences—it is a theory which sustains ordinary classical reasoning. And, moreover,
this theory includes all of the key properties of ordinals. This is where its philosophical
significance lies. We can regard the properties of ordinals as arising naturally from the
translation scheme rather than as given by special-purpose axioms.

Specifically, No-Class includes O-AB, as noted above, as well as the full comprehen-
sion schema for both relations over objects and relations over ordinals. In this respect, it
achieves something that none of its competitors manages to do: consistently combining
O-AB and full comprehension. Verifying the consistency of No-Class is easy. There are
sentences of L� that do not belong to No-Class. Take any sentence ϕ of second-order logic
that is not valid. Since the translation leaves the second-order formulas untouched, the
translation of ϕ is ϕ. By definition, a sentence whose translation is not valid is not included
in No-Class. Hence ϕ is not included in No-Class, which is therefore not a trivial theory. So
No-Class witnesses the consistency of the theory of ordinals axiomatized by O-AB given
the appropriate sortal restrictions characteristic of L�.20 We postpone the proofs of these
claims to the appendix.

What other facts about ordinals are contained in No-Class? Since this theory contains
each theorem of second-order logic, it contains all theorems about well-orderings provable
in pure second-order logic. In particular, it includes the key lemma in the paradox of
Burali–Forti: if every proper initial segment of one well-ordering R1 is isomorphic to
a proper initial segment of another R2, then R1 is isomorphic to an initial segment of
R2. Here No-Class seems to do better than a predicative theory of ordinals, as the latter
most likely cannot prove this lemma (see footnote 8). Moreover, contra Burali–Forti, the
ordinals can be shown to be linearly ordered. Furthermore, contra Russell (1903, 323), the
ordinals can be shown to be well-founded. So No-Class contains Jourdain’s theorem that
the ordinals are well-ordered. A corollary of this fact is that No-Class supports transfinite
induction (see Appendix C).

However, No-Class leaves open certain questions about ordinals. In particular, it leaves
open how many ordinals there are. It only allows us to prove that there are two ordinals. The
first ordinal, if we can call it that, is associated with relations that are not well-orderings.
Neologicists would call it the bad abstract of the principle of ordinal abstraction. The
second ordinal is associated with the empty relation, whose existence is provable in pure
second-order logic.

The fact that the theory does not allow us prove that there are more than two ordinals is,
we contend, unproblematic. This is in keeping with the No-Class conception of the ordinals
according to which talk of ordinals is a vehicle to convey purely logical information.
As usually conceived, third-order logic carries minimal existential information, hence we
should not expect that, without further assumptions, talk of ordinals will be ontologically
profligate. Instead, as we might hope, No-Class does carry significant conditional infor-
mation about ordinals. For example, if there are three objects, then four ordinals can be
shown to exist—counting the bad abstract as an ordinal. Assuming the standard semantics
for second-order logic, it is easy to verify that if there are countably many objects, then
there are uncountably many ordinals. So adding existential assumptions about objects to
No-Class will imply the existence of more ordinals. The same effect can be obtained on
the basis of an ontologically richer conception of logic. If one prefers nonstandard logical

20 It is worth noting that this consistency proof does not require the construction of a model of
the axioms as a witness to consistency—since the theory is deductively closed, we need only to
inspect the translation in order to verify that No-Class is nontrivial.
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axioms implying substantial existential claims, one will be able to show that the set of
sentences translating into theorems of third-order logic comprises more existential claims
about ordinals.21

No-Class recovers the intuitive properties of ordinals. But how does it diagnose the
paradox of Burali–Forti? The answer is that, while No-Class proves the main lemmas of the
paradoxical reasoning, the proof of the contradiction breaks down in the final stages of the
argument. One cannot prove in No-Class that for every ordinal α, α is the representative of
<α , i.e., that α = ord(<α). While the relation <α can be defined and proven to be a well-
ordering, <α is no longer a well-ordering of objects. Thus ord(<α) is not well-formed,
since the ord operator applies only to relations of objects.

§5. Objections. Our solution to the paradox of Burali–Forti turns on a type distinc-
tion. From the point of view of L�, ordinals are not objects but sui generis entities con-
veying information about logical constructions. One might object that this treatment does
violence to the concept of ordinal. Linguistically, we do not seem to distinguish between
talk of objects and talk of ordinals. The same predicates can be applied to ordinary noun
phrases and noun phrases referring to ordinals. This—the objection goes—is at least prima
facie reason to believe that ordinals just are objects.

To this objection we have a number of replies. First of all, it is not clear that ordinals were
always conceived this way. For instance, Zermelo seemed to have conceived them as sui
generis entities in his influential 1930 paper. Second, syntactic intuitions are notoriously
defeasible. For example, we often tend to nominalize expressions of various syntactic
categories, ranging from adjectives to verbs and sentences, but this is consistent with
the view that the best formalization of some of these expressions will assign them to a
logical category other than the category of ordinary logical subjects. A case in point is
talk of relations: even though we commonly refer to them by means of noun phrases, mere
consistency often forces us to represent them as entities of higher types. This brings us to
a third, general point: respecting syntactic intuitions opens the door to a host of paradoxes.
While the objector might have in mind a different solution to the paradox of Burali–Forti,
they will presumably have to violate naïve syntactic distinctions somewhere—if not in
the solution of Burali–Forti’s paradox, at least in the solution of paradoxes arising from
conceiving of relations as objects (e.g., Russell, 1908, 222–223).

There is another objection in a similar vein. Perhaps one could complain that while our
sortal distinctions are not conceptually problematic, they prevent us from considering order
types that evidently can be considered. Because in our framework the ord operator cannot
be applied to relations among ordinals, we cannot refer to the order type of such relations.
But—the objection continues—one obviously can refer to such order types. In fact, we just
did. Thus the proposal illegitimately restricts our ability to refer to ordinals.

This objection neglects one key feature of our proposal. We do not set out to describe
a preexisting domain of ordinals. Rather, we aim to describe how ordinal talk emerges
naturally from higher-order reasoning about a preexisting domain of objects. In principle,
after ordinals have been introduced in this way, there is no obstacle to taking them to

21 Strictly speaking, one could relativize No-Class to an arbitrary theory T in L3. So No-Class
would become the set of sentences in L� that translate to consequences of T . On this approach,
how many ordinals there are depends on the existential commitments of T . Our understanding of
No-Class sets T equal to a standard set of axioms of third-order logic. We prefer this minimalistic
approach, since it is striking and philosophically significant that third-order logic alone suffices
to capture the core facts about the ordinals.
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form a new domain of objects. New talk of ordinals would then emerge from higher-
order reasoning about this new domain. So the initial restriction on the order types one
can consider can be overcome by iterating our construction. Gödel makes essentially this
point about Russell’s no class theory:

[T]he restrictions involved do not appear as ad hoc hypotheses for avoid-
ing the paradoxes, but as unavoidable consequences of the thesis that
classes, concepts, and quantified propositions do not exist as real objects.
It is not as if the universe of things were divided into orders and then
one were prohibited to speak of all orders; but, on the contrary, it is
possible to speak of all existing things; only, classes and concepts are
not among them; and if they are introduced as a façon de parler, it turns
out that this very extension of the symbolism gives rise to the possibility
of introducing them in a more comprehensive way, and so on indefinitely.
(Gödel, 1944, 133)

This iterated construction thus leads to superordinals, super-superordinals, and so on. For
example, we are free to introduce a new abstraction operator applying to relations over
ordinals (our sort T2 from §4.2). This move will yield superordinals that regiment talk
about order types of ordinals. Further repetitions of this procedure allow us to regiment
“iterated” ordinal talk, such as talk of order types of order types of ordinals.

The objector might, at this point, chime in that this sounds like a hierarchy of proper
classes. But proper classes are often thought to signal a failure of absolute generality (see,
e.g., Parsons, 1974b; Boolos, 1998). This objection might seem particularly serious, since
the ability to capture absolute generality was an important virtue of the no class approach.

However, this version of the objection overlooks a disanalogy between our concep-
tion of ordinals and the conception of proper classes that threatens absolute generality.
Proper classes are conceived as set-like objects lying outside the domain of quantification
operative in ordinary set theory. But, as we noted above, we do not aim to describe a
preexisting domain of ordinals. Rather, we interpret talk of ordinals as conveying logical
information about a preexisting domain of objects. Quantification over objects remains
absolutely general: we can talk about absolutely all the objects that exist. The possibility
of introducing more ordinals is not a sign that there are more ordinals that lie beyond our
initial domain of quantification. As Gödel observes, it is instead a sign that every extension
of our symbolism gives rise to the possibility of introducing a more comprehensive sym-
bolism. A better analogy is perhaps one between our conception of the ordinals and the
interpretation of proper classes in terms of plural quantification, which is consistent with
absolute generality (Uzquiano, 2003; Burgess, 2004). Just like the plural interpretation can
serve to, for example, make sense of talk of proper classes, our approach could be put to
use in making sense of talk of order-types longer that the order-type of the Von Neumann
ordinals; talk of this kind is occasionally found in the practice of set theory (see Shapiro,
2003 as well as Shapiro & Wright, 2006 for discussion).

§6. Conclusion. We surveyed a number of options for dealing with the paradox of
Burali–Forti conceived as a paradox about ordinal numbers rather than sets. As we em-
phasized, all available options sacrifice one or more of the intuitive principles behind the
paradox. In the spirit of Russell’s no class theory, our proposal rejects the principle that
ordinals are objects. Rejecting this one principle allows us to provide a consistent account
of talk of ordinals. The main features of our account are well motivated by a no class
conception of the ordinals. On that conception, talk of ordinals can be seen as a vehicle
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for conveying third-order logical content. Our work shows that a translation procedure
suggested by this conception yields a theory of ordinals capturing their key structural
properties. Adding this theory into the mix, the situation appears to be the following:

Full second-order First principle Second principle First-order Second-order
Comprehension of ordinals of ordinals AG AG

Restricting comprehension ?

Rejecting the first
principle of ordinals

Hellman’s modal approach ?

V -Vκ

No-Class

One might ask whether our translation procedure could provide a more general account
of mathematical entities obtained by abstraction. We regard this as an open question. Much
of the plausibility of our no class theory of the ordinals derives from the fact that the main
theorems about ordinals can be recovered in L�. The same might not be true for other kinds
of abstracta. But, then again, it might be. Perhaps there is a general theorem showing that
the main features of abstracta will be recoverable from a corresponding no class theory.
Such a theorem would be a major contribution to the longstanding program of reducing
mathematics to higher-order logic. The fact that this can be done for the ordinals gives
grounds for cautious optimism.22

§7. Appendix A: Definitions. Here we provide some basic definitions for the higher-
order languages introduced above. A field of a two-place relation R is any monadic prop-
erty M such that for any x , M(x) if and only if there is y such that R(x, y) or R(y, x). The
relation R is a well-ordering if R is (i) irreflexive, (ii) transitive, and (iii) any subproperty
P of a field of R has an R-least element.

An initial segment of a relation R1 with respect to x is any relation R2 such that, for any
y and z, R2(y, z) if and only if R1(y, z), R1(y, z), and R1(z, x). We usually denote the
restriction of R with respect to x as Rx . A relation R2 is an initial segment of R1 if there is
x such that R2 is an initial segment of R1 with respect to x . An inverse R−1 of a relation
R is defined standardly.

A relation F is a function from a monadic property P1 to a monadic property P2 if it
meets the usual conditions. The notions of domain and range are then defined as usual.
We adopt the standard abuse of notation in using F(x) to denote the unique y such that
F(x, y), i.e., the image of x under F .

Two relations R1 and R2 are said to be isomorphic if there is a function F from a field
of R1 to a field of R2 such that if R1(x, y), then R2(F(x), F(y)), and if R2(x, y), then
R1(F−1(x), F−1(y)). We use R1 ∼=F R2 to indicate that F witnesses that R1 is isomorphic
to R2. The notation R1 ∼= R2 represents that R1 ∼=F R2 for some F .

22 For helpful comments and discussion, we would like to thank Andrew Arana, Patricia Blanchette,
Francesca Boccuni, Luca Incurvati, Nick Jones, Ansten Klev, Øystein Linnebo, Richard
Pettigrew, Agustín Rayo, Ian Rumfitt, Andrea Sereni, Stewart Shapiro, Sean Walsh, and an
anonymous reviewer. We also wish to extend heartfelt thanks to audiences at the following venues:
Logica 2015, University of Bristol, University of Oslo, and FilMat 2016 at the University of
Chieti-Pescara. Their feedback helped shape the development of this article.
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§8. Appendix B: The paradox of Burali–Forti. We now outline the reasoning of the
paradox. Most of the proof is straightforward but labor-intensive. So we only provide its
most illuminating structural features. We work within a standard language of second-order
logic, parallel to L2, with one additional function symbol ‘ord’ from elements of sort S2
to elements of the object sort obj.

The first lemma guarantees that there is at most one way to extend an isomorphism
defined on an initial segment of a well-ordering.

LEMMA 8.1. Let R and R′ be well-orderings. Suppose there are functions F and G
such that for some x1, y1, x2, y2, Rx1

∼=F R′
x2

and Ry1
∼=G R′

y2
. Then if R(y1, x1), the

function F contains the function G, i.e., for all z1 and z2, G(z1, z2) only if F(z1, z2).

The second lemma, against the backdrop of the first, guarantees that there is at least one
way to extend an isomorphism defined on an initial segment of a well-ordering. This is
established via impredicative comprehension.

LEMMA 8.2. Let R and R′ be well-orderings. Suppose that for every y in the field of R,
there is an initial segment W of R′ and an isomorphism F such that Ry ∼=F W . Then R is
either isomorphic to R′ or to one of its initial segments.

Let us define an ordinal to be any object x such that, for some binary relation R,
x = ord(R). By second-order comprehension, there is a relation < between ordinals
characterized by the following condition: for every x and y, x < y if and only if there
are relations R1 and R2 such that x = ord(R1) and y = ord(R2) and either (i) R1 and R2
are well-orderings and R1 is isomorphic to a proper initial segment of R2, or (ii) R2 is a
well-ordering and R1 is not.

Recall that the first principle of ordinals, which was formalized as the principle of
ordinal abstraction O-AB, states that isomorphic well-orderings are always represented by
the same ordinal and non–isomorphic well-orderings are always represented by different
ordinals. The leaves open the behavior of the ord operator when applied to relations that
are not well-ordered. For simplicity, we assume that relations that are not well-ordered are
all represented by the same bad abstract. Thus two relations have the same ordinal if and
only if they are isomorphic well-orderings or neither of them is a well-ordering. Recall that
we used the notation R1 ∼ R2 to denote exactly this relation. So this modified principle of
abstraction, which we dub O-AB�, can be stated as:

∀R1∀R2(ord(R1) = ord(R2) ↔ R1 ∼ R2). (O-AB�)

Note that, given O-AB�, the first ordinal in the ordering <, call it 0, is the bad abstract.
The next ordinal, call it 1, is the representative of empty relations. Next, we have 2, the
representative of well-orderings with two-element fields. And so on. The progression is
a well-ordering with the interesting feature that any ordinal is the representative of the
ordering of its predecessors. For example, the portion of < before 2, i.e., <2, is a well-
ordering with a two-element field and hence is represented by 2. This is captured by the
following lemmas.

LEMMA 8.3. If O-AB�, then the relation < is a well-ordering of the ordinals.

LEMMA 8.4. Let R be a well-ordering. Given O-AB�, if x = ord(R), then there is F
such that <x ∼=F R.

LEMMA 8.5. If O-AB�, then for every ordinal x except the bad abstract, x = ord(<x ).

The paradox of Burali–Forti corresponds to the reasoning leading to the following theorem.
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THEOREM 8.6. O-AB� is inconsistent.

§9. Appendix C: The No-Class theory. Recall the definitions of §4.2. We have the
languages L2, L�, and L3. Moreover, we have a translation ∗ from L� to L3. We defined
No-Class as the set of L�-sentences such that their translation under ∗ is a theorem of
third-order logic.

The first result about the No-Class theory is that it is indeed a theory. That is, the
No-Class theory is closed under ordinary rules of inference. To demonstrate that this
is so, we need to specify a system of deduction for L�. The most convenient system
for our purposes will be the Hilbert system whose sole rule of inference is modus
ponens, and whose logical axioms are the universal closures of instances of the following
schemes 1–8.

1. ϕ → (ϕ → ψ).

2. ϕ → (ψ → χ) → ((ϕ → ψ) → (ϕ → χ)).

3. (¬ϕ → ¬ψ) → (ψ → ϕ).

In schemes 4–6, the schematic variable x ranges over variables of each sort in L� (i.e., obj,
ord, Sn , and Tn).

4. ∀x(ϕ → ψ) → (∀xϕ → ∀xψ).

5. ϕ → ∀xϕ, where x does not occur freely in ϕ.

6. ∀xϕ → ϕ(t/x) where the term t is free for x in ϕ.

In schemes 7–8, the schematic variables s, t range over terms of sort obj and ord.

7. s = s.

8. s = t → (ϕ(t/x) → ϕ(s/x)) where s, t are free for x in ϕ.

We say that ϕ implies ψ (ϕ � ψ) if there exists a sequence of L�-formulas

ϕ, χ1, . . . , χn−1, ψ

such that each formula is either the result of applying modus ponens to a pair of earlier
formulas, or the universal closure of an instance of one of the schemes above.

The first result is given by the following theorem.

THEOREM 9.1 (Fundamental translation theorem). If ϕ is in No-Class and ϕ � ψ , then ψ
is in No-Class

Proof. It is clear that if ϕ and ϕ → ψ are in No-Class, then ψ is in No-Class. For, if
each of these is in No-Class, then [ϕ]∗, and [ϕ → ψ]∗, which is the same as [ϕ]∗ → [ψ]∗,
are theorems of third-order logic. So, evidently, [ψ]∗ is a theorem of third-order logic as
well. Thus No-Class is closed under modus ponens. To verify that No-Class is closed under
�, it is then enough to show that the closure of each of the schemes above is a member of
No-Class.

We will argue directly that the translation of each scheme is provable using the corre-
sponding closures of 1–8 for each sort in the language of third-order logic. This implies
that the closure of the translated scheme is provable as well, since if a formula with a free
variable is provable using those axioms, then its universal closure is provable from them as
well. Thus the translation of the closure of each scheme is provable, as required.

For the tautologically valid schemes 1–3, this is immediate, since the translation ∗
commutes with truth functional connectives.
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For axiom 4, we have four possible cases:

∀xi (ϕ → ψ) → (∀xiϕ → ∀xiψ)
∗�−→ ∀xi ([ϕ]∗ → [ψ]∗) → (∀xi [ϕ]∗ → ∀xi [ψ]∗)

∀αi (ϕ → ψ) → (∀αiϕ → ∀αiψ)
∗�−→ ∀Ri ([ϕ]∗ → [ψ]∗) → (∀Ri [ϕ]∗ → ∀Ri [ψ]∗)

∀Pn
m(ϕ → ψ) → (∀Pn

mϕ → ∀Pn
mψ)

∗�−→ ∀Pn
m([ϕ]∗ → [ψ]∗) → (∀Pn

m [ϕ]∗ → ∀Pn
m [ψ]∗)

∀An
m(ϕ → ψ) → (∀An

m [ϕ]∗ → ∀An
m [ψ]∗) ∗�−→ ∀Xm([ϕ]∗ → [ψ]∗) → (∀Xm [ϕ]∗ → ∀Xm [ψ]∗).

It is easy to verify that all four translations are tautologies of third-order logic.
For the scheme 5, we again have four possible cases:

ϕ → ∀xiϕ
∗�−→ [ϕ]∗ → ∀xi [ϕ]∗

ϕ → ∀αiϕ
∗�−→ [ϕ]∗ → ∀Ri [ϕ]∗

ϕ → ∀Pn
mϕ

∗�−→ [ϕ]∗ → ∀Pn
m[ϕ]∗

ϕ → ∀An
mϕ

∗�−→ [ϕ]∗ → ∀Xm[ϕ]∗

In the first and third case, the fact that the listed variable does not occur freely in ϕ ensures
that it does not occur freely in [ϕ]∗, since new variables of this sort are not introduced by
∗. In the second and fourth, the fact that the first listed variable does not occur freely in ϕ
ensures that the second listed variable does not occur freely in [ϕ]∗, since it will only occur
in [ϕ]∗ if ϕ contains a free variable of the relevant sort with a matching subscript. Hence,
the resulting translations are provable in third-order logic as well.

For the scheme 6, i.e.,

∀xϕ → ϕ(t/x)

we can consider four cases: either x is xi , αi , Pn
m , or An

m . If it is xi , Pn
m , or An

m , then t must
also be a variable of that sort, since those sorts have no nonvariable terms in L�. If x is αi ,
then t must be of sort ord, i.e., either α j or ord(Pj ) for some relation Pj of sort S2.

An easy induction confirms that a first-order or second-order object variable which is
freely substitutable for x remains freely substitutable after the translation. If x is a second-
order ordinal variable, then it is replaced by a corresponding third-order variable, which
is again, by induction, freely substitutable for the third-order variable corresponding to x .
These observations handle the cases where x is xi , Pn

m , or An
m .

In the final case, namely where x is an ordinal variable αi , [∀αiϕ]∗ is
∀Ri [ϕ(ord(Ri )/αi )]∗. Now, t is either another ordinal variable, or is ord(Pj ) for some
Pj not bound by any quantifier having scope over αi .

We handle each of these cases in turn. For this argument, we will assume that ∗ has been
extended to act on complex pseudoformulas of L� (i.e., formulas containing pseudoterms)
by commuting with connectives according to the same rules used to define ∗ initially.

In the first case, when t is an ordinal variable α j , [ϕ(α j/αi )]∗ is [ϕ(ord(R j )/αi )]∗.
By the correspondence of subscripts and the fact that α j is freely substitutable for αi in ϕ,
we have that R j is freely substitutable for Ri in [ϕ(ord(Ri )/αi )]∗. So, in this case, the
translation of our initial scheme is:

∀Ri [ϕ(ord(Ri )/αi )]
∗ → [ϕ(ord(Ri )/αi )]

∗(R j/Ri ).

And this is an instance of the axiom 6, and hence a theorem of third-order logic.
The second case, when t is ord(Pi ) for some Pi not bound by any quantifier having

scope over αi , is handled similarly. We conclude that instances of 6 are in No-Class.
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The next axiom scheme, 7, is clear for variables of sort obj. For terms of sort ord we
have:

αi = αi
∗�−→ ∃Vi∃Vi (Vi ∼ Ri ∧ Vi ∼ Ri ∧ Vi = Vi )

ord(Pi ) = ord(Pi )
∗�−→ ∃Vi∃Vi (Vi ∼ Pi ∧ Vi ∼ Pi ∧ Vi = Vi )

and in each case the translation is an obvious theorem of third-order logic.
Finally, 8 is clear when we are not dealing with ordinal terms. When we are dealing with

ordinal terms, 8 becomes one of the following:

αi = α j → (ϕ(αi/αk) → ϕ(α j/αk))

ord(Pi ) = α j → (ϕ(ord(Pi )/αk) → ϕ(α j/αk))

ord(Pi ) = ord(Pj ) → (ϕ(ord(Pi )/αk) → ϕ(ord(Pj )/αk))

along with the obvious reversal of the second case. These schemes translate, respectively, as:

∃Vi ∃Vj (Ri ∼ Vi ∧ R j ∼ Vj ∧ Vi = Vj ) → ([ϕ(αi/αk)]
∗ → [ϕ(α j/αk)]

∗)
∃Vi ∃Vj (Pi ∼ Vi ∧ R j ∼ Vj ∧ Vi = Vj ) → ([ϕ(ord(Pi )/αk)]

∗ → [ϕ(α j/αk)]
∗)

∃Vi ∃Vj (Pi ∼ Vi ∧ Pj ∼ Vj ∧ Vi = Vj ) → ([ϕ(ord(Pi )/αk)]
∗ → [ϕ(ord(Pj )/αk)]

∗).

We argue that, in every case, the consequent will be provable, under the assumption of the
antecedent, by induction on the complexity of ϕ. If ϕ is atomic, it either fails to contain αk

(in which case the conditional is tautological) or, if it contains αk , it is either an equality or
it is the predication of a second-order variable of a sequence of ordinal variables. In each
case, verifying that the antecedent above implies the atomic consequent is an exercise
in natural deduction, and confirms that the closure of the atomic instances of 8 are in
No-Class.

If ϕ is ψ1 ∧ ψ2, we have:

∃Vi ∃Vj (Ri ∼ Vi ∧ R j ∼ Vj ∧ Vi = Vj ) →
([ψ1(αi/t)]∗ ∧ [ψ2(αi/αk)]

∗ → [ψ1(α j/t)]∗ ∧ [ψ2(α j/αk)]
∗).

By inductive hypothesis, the formulas

∃Vi ∃Vj (Ri ∼ Vi ∧ R j ∼ Vj ∧ Vi = Vj ) → ([ψ1(αi/αk)]
∗ → [ψ1(α j/αk)]

∗)

∃Vi ∃Vj (Ri ∼ Vi ∧ R j ∼ Vj ∧ Vi = Vj ) → ([ψ2(αi/αk)]
∗ → [ψ2(α j/αk)]

∗)
are theorems of third-order logic. So it is straightforward to derive the corresponding
conditional for ϕ.

The remaining case, where ϕ is ¬ψ or ϕ is ∀xψ , are similarly straightforward, requir-
ing only a mechanical application of the translation procedure and modicum of natural
deduction. �

Let us now turn to second-order comprehension. Consider the parameter-free compre-
hension scheme, which is expressed in the vocabulary of L� thus:

∃Pn
m∀x1 . . . xn(P

n
m(x1 . . . xn) ↔ ϕ). (a)

Since ∗ commutes with ∀Pn
m, ∀xi , and with the biconditional, and ∗ is the identity on

Pn
m(x1 . . . xn), we have the following translation of (a):

∃Pn
m∀x1 . . . xn(P

n
m(x1 . . . xn) ↔ [ϕ]∗). (b)

https://doi.org/10.1017/S1755020316000484 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020316000484


WHAT RUSSELL SHOULD HAVE SAID TO BURALI–FORTI 713

But (b) is just an instance of the second-order comprehension scheme now expressed in L3,
and so it is a theorem of third-order logic.

The result extends to instances of comprehension with parameters. These will be univer-
sal closures of formulas like (a), where ϕ contains one or more free variables of any sort
available in L�. Translating such formulas will yield closures of formulas like (b), since
each quantifier of the initial universal block will be carried by ∗ to a universal quantifier
(although perhaps binding a variable of a different sort). Thus we have the following.

REMARK 9.2 (Second-order comprehension). Every universal closure of the following
scheme is part of No-Class:

∃Pn
m∀x1 . . . xn(P

n
m(x1 . . . xn) ↔ ϕ(x1 . . . xn)),

where Pn
m does not occur in ϕ.

Since No-Class contains second-order comprehension and is closed under �, it also
contains any theorem of second order logic provable from the comprehension scheme. In
particular, it contains the Lemmas 8.1 and 8.2 mentioned in Appendix B, since those can
be proven without any resources going beyond comprehension.

By the argument given in §4.2, we also have that the principle of ordinal abstraction,
O-AB, is part of No-Class.

THEOREM 9.3 (O-AB). The following statement belongs to No-Class.

∀Pi , Pj (WO(Pi ) ∧ WO(Pj ) → (ord(Pi ) = ord(Pj ) ↔ Pi ∼= Pj )).

Moreover, by a similar argument, we even have that the stronger principle O-AB∗, dis-
cussed in Appendix B, is part of No-Class.

THEOREM 9.4 (O-AB∗). The following statement belongs to No-Class.

∀Pi , Pj (ord(Pi ) = ord(Pj ) ↔ Pi ∼ Pj )

COROLLARY 9.5. The claim that there is exactly one “bad ordinal” is in No-Class.

Since No-Class includes a sort for relations over ordinals, one might naturally ask
whether these relations support comprehension. It turns out that they do. But the proof
requires a bit more effort than the demonstration of the Remark above that relations over
objects support comprehension. We begin with a lemma.

LEMMA 9.6 (Substitution lemma). If [ϕ(ord(Pi1) . . . ord(Pin ))]
∗ is a translation of a

formula in L�, then the closure of

∀Pi1 . . . Pin , Pj1 . . . Pjn (Pi1 ∼ Pj1 ∧ · · · ∧ Pi1 ∼ Pj1 →
([ϕ(ord(Pi1), . . . , ord(Pin ))]

∗ ↔ [ϕ(ord(Pj1), . . . , ord(Pjn ))]
∗))

is a theorem of third-order logic.

Proof. By induction on the complexity of ϕ. This is clear for ϕ atomic, and the induction
cases are straightforward. �
Now we are ready to prove the target theorem.

THEOREM 9.7 (Ordinal comprehension). Every closure of the following scheme is part of
No-Class:

∃An
m∀αi1 . . . αin (A

n
m(αi1 . . . αin ) ↔ ϕ),

where An
m does not occur in ϕ.
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Proof. Without loss of generality, we may assume that ϕ does not contain any free
ordinal variables other than αi1 . . . αin . Otherwise, by replacing the stray ordinal variables
with appropriate terms of the form ord(Pi ), we can find another formula ϕ1 without any
free ordinal variables other than αi1 . . . αin such that

[∃An
m∀αi1 . . . αin (A

n
m(αi1 . . . αin ) ↔ ϕ)]∗

is logically equivalent to

[∃An
m∀αi1 . . . αin (A

n
m(αi1 . . . αin ) ↔ ϕ1)]

∗

A partial translation of the ordinal comprehension scheme will be a universal closure of
the following

∃Xm∀Ri1 . . . Rin

(
[An

m(ord(Ri1), . . . , ord(Rin ))]
∗ ↔ [ϕ(ord(Ri1) . . . ord(Rin ))]

∗). (a)

We can further unpack the left-hand side of the embedded biconditional to produce

∃Vi1 . . . ∃Vin (Vi1 ∼ Ri1 ∧ · · · ∧ Vin ∼ Rin ∧ Xm(Vi1 , . . . , Vin )).

Now, apply third-order comprehension to the formula:

∃R j1 . . . ∃R jn

(
Vj1 ∼ R j1 ∧ · · · ∧ Vjn ∼ R jn ∧ [ϕ(ord(R j1) . . . ord(R jk ))]

∗)

which we may abbreviate as ψ(Vj1 , . . . , Vjn ). Thus:

∃Xk ∀Vj1 . . .∀Vjn [Xk(Vj1 . . . Vjn ) ↔ ψ(Vj1 . . . Vjn )]. (b)

Pick a particular witness Xk to (b). We claim that this witness is also a witness to (a) above.
For, let Ri1 . . . Rin be arbitrary, and suppose that Xk together with these relations satisfies

the left-hand side of (a). We need to derive the right-hand side of (a). By the unpacking
of the left-hand side, we then have that there exist Vi1 . . . Vin falling under Xk , such that
Vi1 ∼ Ri1 . . . Vin ∼ Rin . Since Vi1 . . . Vin fall under Xk , we know—by the comprehen-
sion scheme (b) that introduced Xk—that there are R j1 . . . R jn such that [ϕ(ord(R j1) . . .
ord(R jn ))]

∗ and such that R j1 ∼ Vi1 , . . . , R jn ∼ Vin . Hence, by transitivity of ∼, we have
R j1 ∼ Ri1 . . . R jn ∼ Rin . But then by Lemma 9.6, we see that we have the right-hand side
of (a), [ϕ(ord(Ri1) . . . ord(Rin ))]

∗, as required.
Now we prove the other direction. Suppose that [ϕ(ord(Ri1) . . . ord(Rin ))]

∗. We then
have ψ(Ri1 , . . . , Rin ), taking the Ri1 . . . Rin themselves as witnesses to the existential
quantifiers of ψ(Ri1, . . . , Rin ). Hence Xk(Ri1 , . . . Rin ). But then, once again taking the
Ri1 . . . Rin themselves as witnesses, we see that the Ri1 . . . Rin together with Xk satisfy
the unpacking of the left-hand side of the translation of ordinal comprehension, as
required. �

We have now shown not only that No-Class is a theory, but also that it is a natural theory
of the ordinals as regimented in the language L�. On the one hand, it includes comprehen-
sion principles for each of the concept sorts in this language. On the other hand, it includes
intuitive principles concerning the notion of ordinal, chiefly that of ordinal abstraction. We
conclude by showing that these principles suffice to establish two additional intuitive facts
about the ordinals. The first is that the ordinals are well-ordered. The second is that the
ordinals support transfinite induction.

THEOREM 9.8. Let < be the ordering of ordinals defined in Appendix B. Then it is a
theorem of No-Class that < is well-ordered.

Proof. Working in No-Class, we need to establish that < is:
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(a) transitive,

(b) total,

(c) well-founded.

One proves (a) and (b) by proving in second-order logic the universal closures of the
following statements, where F , G, R, S, T can be any of the variables Pi .

R ∼=G Sx1 ∧ S ∼=F Tx2 → R ∼=F◦G TF(x1)

WO(R) ∧ WO(S) → (R ∼= S ∨ ∃x (Rx ∼= S ∨ Sx ∼= R))

These facts about well-orderings then straightforwardly imply the relevant facts about the
corresponding ordinals.

The proof that the statement asserting the well-foundedness of < belongs to No-Class
is a formalization of the following reasoning. For legibility, we use variables A and A′
as abbreviations for unary ordinal relations, the variable P as an abbreviation for a unary
object relation, variables α, β, γ as abbreviations for ordinal variables, and variables x and
R with various subscripts as abbreviations for object variables and binary object relation
variables, respectively.

Suppose there were A contained in the field of < with no least element. Let α be some
ordinal in A, and let A′ be given by the following instance of ordinal comprehension:

∀β(A′(β) ↔ β < α ∧ A(β)).

We claim that A′ has no least element. If it had one, say β, then this ordinal would not
be least in A, since A is assumed not to have a least element. So there would be some
γ < β < α with A(γ ). But then A′(γ ), contradicting the fact that β is least in A′. So A′
has no least element.

We know that α represents at least one well-ordering. Let R be some such well-ordering,
so that ord(R) = α. For each β such that A′(β), there exist R′ and x such that
ord(R′) = β, and Rx ∼= R′. Let P be a concept contained the field of R satisfying

∀x(P(x) ↔ ∃β (A′(β) ∧ ord(Rx ) = β)).

Consider an arbitrary element y such that P(y), and β such that ord(Ry) = β. It follows
from the definition of P that A′(β). Since A′ has no least element and A′(β), we know that
there is some γ such that A′(γ ) with γ < β. Since A′(γ ), γ < α, thus there exists z such
that ord(Rz) = γ . Hence P(z). Given that γ < β, ord(Rz) < ord(Ry). That implies that
R(z, y).

We have shown that, for an arbitrary y such that P(y), there is a smaller z such that
P(z). So we have confirmed that P has no least element. But this contradicts the well-
foundedness of R. So our initial assumption—that there is A contained in the field of <
with no least element—must be rejected. Thus < is well-founded. �

COROLLARY 9.9 (Transfinite induction). The universal closure of each instance of the
following scheme is in No-Class.

∀α (∀β (β < α → ϕ(β)) → ϕ(α)) → ∀α ϕ(α).
Proof. Suppose that we have the antecedent of the claim above. Towards a contradiction,

suppose that ∃α¬ϕ(α). By ordinal comprehension (Theorem 9.7), there is a nonempty
property A of ordinals satisfying:

∀α(A(α) ↔ ¬ϕ(α)).
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Since < is total, A is a subproperty of a field of <. Moreover, since < is well-founded,
there is a least ordinal in A. Call this minimal ordinal α, so that ¬ϕ(α) and (by minimality)
∀β (β < α → ϕ(β)). Hence, by the assumed antecedent, ϕ(α) obtains, contradicting our
claim that ¬ϕ(α). �
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