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Abstract. It has been shown that sufficiently well mixing dynamical systems with
positive entropy have extreme-value laws which in the limit converge to one of the
three standard distributions known for independently and identically distributed processes,
namely Gumbel, Fréchet and Weibull distributions. In this short note, we give an example
which has a non-standard limiting distribution for its extreme values. Rotations of the
circle by irrational numbers are used and it will be shown that the limiting distribution
is a step function where the limit has to be taken along a suitable sequence given by the
convergents.

1. Introduction
For independently and identically distributed (i.i.d.) random variables, extreme-value
theory is a well-established topic. Given a sequence of random variables X j , one forms
the maximum random variable Mn =max1≤ j≤n X j . If there exists a sequence of numbers
an, bn , such that an(Mn − bn) converges in distribution to a limit, then one says that the
sequence (X j ) j∈N has the extreme-value property. It is known that for i.i.d. random
variables X j satisfying some weak condition, the limiting distribution is one of three:
Gumbel (the distribution function is e−e−t

), Fréchet (with the distribution function e−t−β

for t > 0 and a parameter β > 0) or Weibull (with the distribution function e−(−t)β for
t < 0 and a parameter β > 0).

In a dynamical system with map T on a space �, the random variable chosen is a
given function X0 evaluated along the orbit, that is X j = X0 ◦ T j . The function chosen
is rotational symmetric: a base point x is selected and then X0(y)= g(d(x, y)), where
g is a function defined on R+. Typically, g(s)=− log s is chosen. The pursuit of
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extreme values in dynamics is quite recent, with the most notable first paper in this domain
being [2], where for non-uniformly expanding C2 maps on the interval, the limiting
extreme-value law for g(s)=− log s was proven to be Gumbel. For the quadratic map
on the interval and Benedicks–Carleson parameters, it was shown in [5] that the extreme-
value statistics for g(s)= C − sβ , for a constant C > 0 and a parameter β, tend in the limit
to a Weibull distribution. For more general non-uniformly hyperbolic maps, the extreme-
value law statistics was addressed in [10]. For higher dimensional hyperbolic maps with
discontinuities, such as dispersing billiards, Lozi maps and Lorenz-type maps, the limiting
extreme-value law was established in [8]. Since the functions g are always connected to
the metric, the fact that Mn is large for some time geometrically means that a point does
not enter the neighborhood of x for this time. The extreme-value law property and the
distribution of hitting or return times are therefore intimately connected to each other. In
fact, the equivalence was formally established first for absolutely continuous measures
in [6] and then for more general measures in [7].

Here, we provide an example that is contrary to all the quoted results. It yields a non-
standard limiting extreme-value law. Since we use circle rotations, we do not obtain the
good mixing properties of the systems mentioned, nor a good decay of correlations. In fact,
it is known [11] that the hitting times distribution for circle maps are ‘non-standard’. The
limiting distributions turn out to be locally constant and not exponential, as is witnessed
by many hyperbolic systems or those that at least display a sufficiently fast decay of
correlations (see, e.g., [1, 9]).

2. General settings
Let us consider a ‘probability’ dynamical system (�, B, P, T ) with invariant measure P
and a measurable function X from � to R. Denote the maximum value in the first n
trials by Mn , i.e., Mn =max1≤ j≤n X j , where X j (x)= X ◦ T j . The question is whether
there exist sequences (an) and (bn) such that the rescaled random variables an(Mn − bn)

converge in distribution, and what the limit is.
Let us recall that real random variables Yn , n ∈ N, converge to a real random variable

Y in distribution if and only if the distribution functions FXn (t)= P(Xn ≤ t) converges to
the distribution function FX (t)= P(X ≤ t) at every point t , where the limiting distribution
FX is continuous. It is a simple observation that the convergence in distribution can be
expressed in the same way in the terms of functions P(Xn > t) and P(X > t).

Hence, we ask if the functions

Hn(y) := P((Mn − bn)an > y), y ∈ R

converge to a right-continuous decreasing (not necessarily strictly) function H(y) at every
point y ∈ R, where the function H is continuous. Since any right-continuous function has
at most countably many points of discontinuity, the limiting distribution H is uniquely
determined (if it exists). It represents a real random variable if the limits of H(y) at plus
and minus infinity are 1 and 0, respectively.

The maximum-value statistics are tightly connected with the statistics of the entry times.
For a set B ∈ B, denote by τB the entry time function, which is given by

τB(x)=min{ j ≥ 1 : T j (x) ∈ B}
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(τB(x)=∞ if x never enters B). The normalized entry times distribution, is then given
by

FB(t)= P
(
τB ≤

t
P(B)

)
,

for t ∈ R, is increasing, constant on intervals [ jP(B), ( j + 1)P(B)) for j = 0, 1, . . . and
the jumps at the points jP(B), j = 1, 2, . . . , are less than or equal to P(B).

The connection between the maximum value Mn and the entry times can be expressed
in terms of level sets:

L(y)= {x ∈�, X (x) > y}, y ∈ R.

For the distribution of the maximum values we have

P(Mn > y)= P(τL(y) ≤ n),

since the sets on both sides equal.
Consequently, for sequences an, bn, n = 1, 2, . . . , the rescaled maximum value

variables Hn satisfy the following equalities:

Hn(y) := P((Mn − bn)an > y)= P
(

Mn >
1
an

y + bn

)
= P

(
τ

L
(

y/an+bn

) ≤ n
)

(1)

= FL(y/an+bn)

(
n P

(
L
(

y
an
+ bn

)))
. (2)

We will use this equality in the next section, where we calculate directly the limiting
distribution for the sequence Hn in irrational rotation of the interval.

3. Rotation of the interval
Let us consider a rotation T : [0, 1)→ [0, 1), T x = x + α mod 1, on the unit interval (or
circle) by an irrational angle α ∈ (0, 1). The Lebesgue measure µ is then the only invariant
probability measure. We consider the continued fraction expansion

α = [c1, c2, c3, . . . ] =
1

c1 +
1

c2 +
1

c3 + · · ·

.

The convergents of α are then pk/qk , where pk = ck pk−1 + pk−2, p0 = 0, p1 = 1 and
qk = ckqk−1 + qk−2, q0 = 1, q1 = c1. The numbers qkα − pk , k ∈ N, form an alternating
positive and negative sequence and their absolute values ηk = |qkα − pk | satisfy the
implicit formula ηk = ηk−2 − ckηk−1, η0 = α, η1 = 1− c1α.

Denote the following nested sequence of intervals,

Bk =

{
(−ηk+1, ηk) for k even,

(−ηk, ηk+1) for k odd.

With no danger of ambiguity, the sets Bk , k ∈ N, are considered as subsets of the state
space [0, 1), so we identify the above-mentioned intervals with their images under the
projection mod 1 : R→ [0, 1).
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FIGURE 1. Initial distribution X .

Let X be a random variable on [0, 1), defined as follows:

X (x)= qk+1 where k =min{` ∈ N | x 6∈ B`}.

The sets Bk were chosen to have nice return times, namely

τBk (x)=

{
qk+1 if x · sgn(qkα − pk) ∈ (0, ηk),

qk if x · sgn(qkα − pk) ∈ (−ηk+1, 0).

Consequently, we obtain that the distribution of the entry time satisfies the following
conditions (for the detailed proof see Proposition 3 in [3]):

µ(τBk ≤ s)=


1 if s ≥ qk+1,

qkηk+1 + ηk[s] if s ∈ [qk, qk+1),

(ηk + ηk+1)[s] if s ∈ [0, qk)

(3)

(note that qk+1ηk + ηk+1qk = 1), since qk(ηk + ηk+1)+ ηk[s − qk] = qkηk+1 + ηk+1[s].
For an infinite set of integers K ⊂ N, denote the following limits (if they exist):

lim
k∈K

qk+ j

qk
= γ j , lim

k∈K

ηk+ j

ηk
= δ j for all j ∈ N.

It is a standard fact that qk+2/qk > 2 for every k. Hence, by definition, the sequence
γ j is increasing (not necessarily strictly) and goes to infinity, whenever the limits γ j exist.
Moreover,

lim
k∈K

qkηk =
1

γ1 + δ1
, (4)

whenever γ1 and δ1 exist. Indeed,

lim
k∈K

qkηk = lim
k∈K

(
1

qkηk

)−1

= lim
k∈K

(
qk+1ηk + qkηk+1

qkηk

)−1

= lim
k∈K

(
qk+1

qk
+
ηk+1

ηk

)−1

= (γ1 + δ1)
−1.

We express our main theorem in terms of these limits.
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THEOREM 1. Let K be an infinite set of natural numbers and the limits γ j and δ j exist
(along K ) for every j ≥ 0. Then the random variables Mqk/qk , k ∈ K , converge in
distribution to a random variable M with the following distribution:

H(y)= P(M > y)=

1 if y < 1,
δ j + δ j+1

γ1 + δ1
if y ∈ [γ j , γ j+1), j = 0, 1, 2, . . . .

Proof. Let us recall a standard fact, that convergence in distribution of the random
variables Mqk/qk to a random variable M agrees with the pointwise convergence of
distribution functions Hqk to H at every point, except the points of discontinuities of the
limiting function H . By the formula for H , its points of discontinuities are the points γ j ,
j ∈ N. In addition, γ j goes to infinity (or reaches infinity in a finite step). Thus, we need to
prove that Hqk (y) tends to H(y) for every y from the intervals (−∞, γ1) and (γ j , γ j+1),
j ∈ N0. We treat the two cases separately, as follows:

(a) Let y ≤ γ0 = 1. Then, for every k ∈ K , yqk < qk , Bk−1 ⊂ L(yqk) and

Hqk (y)= µ(Mqk/qk > y)= µ(τL(qk y) ≤ qk)≥ µ(τBk−1 ≤ qk)= 1.

The last equality follows from (3). Hence, the limit limk∈K Hqk (y) is one.
(b) Let y ∈ (γ j , γ j+1) for some j ≥ 0. By the definition of γ j , qk+ j < qk y < qk+ j+1

eventually for every k ∈ N. Hence, L(qk y)= Bk+ j for k big enough. This implies that

Hqk (y)= µ(τBk+ j ≤ qk)= qk(ηk+ j + ηk+ j+1).

The last equality follows from (3) and the fact that qk < qk+ j . By (4),

Hqk (y)= qkηk

(
ηk+ j

ηk
+
ηk+ j+1

ηk

)
→

δ j + δ j+1

γ1 + δ1
. �

Remark 1. As we mentioned above (Theorem 1), the sequence (γ j ) j∈N is increasing (not
necessarily strictly) and goes to infinity. Hence, the description of H(y) from Theorem 1
characterizes the distribution function in a correct and unique way. Note that (γ j ) j∈N can
eventually be equal to +∞. We discuss this case in §4.2.

4. The limits γ j and δ j

A natural question is, for a given irrational rotation, what is the set K and what are
the limits γ j and δ j ? Let the angle α be given in the form of a continued fraction
α = [c1, c2, . . .], and assume K ⊂ N is infinite. Put

ν j = lim
k∈K

qk+ j−1

qk+ j
, θ j = lim

k∈K

ηk+ j

ηk+ j−1
, j ≥ 1.

It is standard that
qk−1

qk
= [ck, ck−1, . . . , c1],

ηk

ηk−1
= [ck+1, ck+2, . . .], k ∈ N.

Hence, the limits ν j and θ j can be expressed in another way:

ν j = lim
k∈K
[ck+ j , ck+ j−1, . . . , c1], θ j = lim

k∈K
[ck+ j+1, ck+ j+2, . . .], j ≥ 0.
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It follows from the definition that for all j ≥ 1,

γ j =
γ j−1

ν j
=

j∏
i=1

(νi )
−1, δ j = θ jδ j−1 =

j∏
i=1

θi ,

whenever the limits used in the equalities exist (where 0−1
=∞).

4.1. Finite limits γ j . First, let us suppose that the limits γ j = limk∈K (qk+ j/qk) exist
and are finite for every j ≥ 1. This condition ensures that
(i) the limits ν j , j ≥ 1, exist and are non-zero;
(ii) the limits limk∈K ck+ j , j ≥ 1, exist and are finite, i.e., for every j ≥ 1, the sequence

(ck+ j )k∈K is eventually constant;
(iii) the limits θ j , j ≥ 1, exist and are non-zero; and
(iv) the limits δ j , j ≥ 1, exist and are non-zero.
In such settings, the limit distribution function for extremes H(y), described in the main
theorem, has countably many jumps (down) in the points γ j , j ≥ 0. Letting y go to +∞,
the function converges to 0, but never reaches this value.

4.2. Infinite limits γ j . Let us suppose that the limits γ j = limk∈K (qk+ j/qk) exist for
every j ≥ 1, and some of them are infinite. In this case, the situation is more complex. We
look separately at the two cases when γ1 is finite and infinite, as follows.

(a) γ1 <∞: Let N be such an index, such that γN is the first infinite member of the
sequence (γ j ) j≥1. Then N ≥ 2 and the following conditions hold.
(i) The limits ν j , 1≤ j < N , exist and are non-zero. The limit νN exists and is zero.
(ii) The limits limk∈K ck+ j , 1≤ j < N , exist and are finite, i.e., for every 1≤ j < N ,

the sequence (ck+ j )k∈K is eventually constant. The limit limk∈K ck+N is infinite.
(iii) The limits θ j , 1≤ j < N − 1, exist and are non-zero. The limit νN−1 exists and is

zero.
(iv) The limits δ j , 1≤ j < N − 1, exist and are non-zero. The limit δN−1 exists and is

zero.
In such a setting, the limit distribution function for extremes H(y), described in the main
theorem, has finitely many jumps (down) at the points γ j , 0≤ j ≤ N − 1. The function
reaches zero at the point γN−1; indeed,

H(y)=
δN−1 + δN

γ1 + δ1
= 0 for y ∈ [γN−1, γN )= [γN−1,∞).

(b) γ1 =∞: In this case, the limiting distribution H is the characteristic function
1[−∞,1) which can easily be seen following the steps in the proof of Theorem 1, even
for the case when the limits δ j , j ≥ 1, do not exist.

Theorem 1 ensures that H is non-trivial in all cases, except two: when γ1 is infinite, or
when γ1 = 1 and γ2 is infinite. The former case has already been discussed above. In the
latter case, the points of discontinuities, γ0 and γ1, are equal. Thus, there is only one point
of discontinuity, at γ0 = 1. As we already mentioned above, if γ2 is infinite, then δ1 is zero,
and so is δ2. We get that the value of the function H on the interval [1,∞)= [γ1, γ2) is
zero.
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Example. The two cases when the limiting law for the extreme values is trivial, as well as
the non-trivial case with a finite number of jumps, are illustrated by the rotation numbers

α = [

N−1︷ ︸︸ ︷
1, 1, . . . , 1, 2,

N−1︷ ︸︸ ︷
1, 1, . . . , 1, 3,

N−1︷ ︸︸ ︷
1, 1, . . . , 1, 4, . . . ],

where N ≥ 1. Here, we choose K = {k N : k ∈ N}.
If N ≥ 2,

qk N+ j−1

qk N+ j
= [

j︷ ︸︸ ︷
1, . . . , 1, k + 1,

N−1︷ ︸︸ ︷
1, . . . , 1, k,

N−1︷ ︸︸ ︷
1, . . . , 1, k − 1, . . . ]

for every j = 0, . . . , N − 1. In particular, we immediately get ν0 = 0, since

ν0 = lim
k∈N
[k + 1,

N−1︷ ︸︸ ︷
1, . . . , 1, k,

N−1︷ ︸︸ ︷
1, . . . , 1, k − 1, . . . ] ≤ lim

1
k + 1

= 0.

For j = 1, . . . , N − 1, we obtain

ν j = lim
k∈N
[

j︷ ︸︸ ︷
1, . . . , 1, k + 1,

N−1︷ ︸︸ ︷
1, . . . , 1, k,

N−1︷ ︸︸ ︷
1, . . . , 1, k − 1, . . . ]

= lim
k∈N

1

1+ [

j−1︷ ︸︸ ︷
1, . . . , 1, k + 1,

N−1︷ ︸︸ ︷
1, . . . , 1, k,

N−1︷ ︸︸ ︷
1, . . . , 1, k − 1, . . . ]

=
1

1+ ν j−1
.

This recursive formula ensures that ν j = s j/s j+1 for every j = 0, . . . , N − 1, where s j

is the Fibonacci sequence given recursively by s j+1 = s j + s j−1 and s0 = 0, s1 = 1. For
j = N , we obtain νN = ν0 = 0. Hence, γ j = s j+1 for j = 1, . . . , N − 1 and γN =∞. On
the other hand,

ηk N+ j

ηk N+ j−1
= [

N−1− j︷ ︸︸ ︷
1, . . . , 1, k + 2,

N−1︷ ︸︸ ︷
1, . . . , 1, k + 3,

N−1︷ ︸︸ ︷
1, . . . , 1, k + 4, . . . ],

for every j = 0, . . . , N − 1. For the value j = N − 1, we immediately get θN−1 = ν0 = 0.
For j = 2, . . . , N − 1, we obtain θ j = νN−1− j = sN−1− j/sN− j , and therefore δ j =

sN− j−1/sN−1 for every j = 1, . . . , N − 1. In particular, δN−1 = 0. This implies that
function H vanishes at [sN ,∞).

If N ≥ 3, the function H is non-trivial and has N − 1 jumps at the points γ j = s j+1,
j = 1, . . . , N − 1. By Theorem 1, for every j = 1, . . . , N − 2, the value of H on the
interval [s j+1, s j+2) is equal to sN− j/sN . The function is zero on [sN ,∞).

If N = 2, then γ1 = s2 = 1, and γ2 is infinite. Here, we get the trivial limit
distribution H .

If N = 1, then
α = [2, 3, 4, . . . ],

and we get ν1 = 0, which implies γ1 =∞. Here, K = N. This is the second case when H
is the trivial limiting distribution.

If the sequence of entries 2, 3, 4, . . . in the continued fraction expansion are replaced
by a sequence of numbers n1, n2, n3, . . . that converges to infinity, then we will get the
same values for γ j and δ j .
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1

H(y) α+α2

1+α2 ·
1
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α+α2

1+α2 ·
1
αy

1 α−1 α−2 α−3 α−4

FIGURE 2. Limiting extreme-value law for rotation numbers of constant type.

Below, we apply Theorem 1 to two classical situations: rotation numbers of constant
type and diverging rotation numbers.

4.3. Rotation numbers of constant type. In this case, one has α = [c, c, c, . . .], i.e.,
α = 1

2 (
√

c2 + 4− c). The next corollary and Figure 2 describe the limiting extreme-value
law for these special numbers.

In this case, the sequences (ν j ) j∈N and (θ j ) j∈N are constant, namely

ν j = lim
k∈N

qk+ j−1

qk+ j
= lim

k∈N
[

k+ j︷ ︸︸ ︷
c, c, . . . , c] = [c, c, . . .] = α,

θ j = lim
k∈N
[c, c, . . .] = [c, c, . . .] = α.

Thus,
γ j = α

− j , δ j = α
j , j ∈ N.

Applying Theorem 1, we get that the random variables Mqk/qk , k ∈ N, converge in
distribution to a random variable M with the distribution

H(y)= P(M > y)=

1 if y < 1,

α j α + α
2

1+ α2 if y ∈ [α− j , α− j−1), j = 0, 1, 2, . . . .

Note that in the case when c = 1, we obtain the golden mean α = 1
2 (
√

5− 1)=
[1, 1, 1, . . . ], and for the limiting distribution (as α + α2

= 1),

H(y)= P(M > y)=

1 if y < 1,
α j

2− α
if y ∈ [α− j , α− j−1), j = 0, 1, 2, . . . .

4.4. Divergent rotation number. Let α = [c1, c2, c3, . . .] be such that cn converges to
infinity. Let K = N. In this case, the coefficient γ1 is equal to +∞ and the random
variables Mqk/qk converge in distribution to the constant random variable M = 1 (see
§4.2).
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5. Limiting behavior for rotations
In this section, we show another way to determine the limiting distribution of extreme
values, using the limiting distribution for the entry time.

Let the same parameters be as before, i.e., n = qk , bn = 0, an = 1/qk and the infinite set
K ⊂ N, according to the assumption of Theorem 1. Let us assume that the following two
conditions hold for all y ∈ R.
(i) The following limit exists:

g(y) = lim
k∈K

qkµ(L(qk y)).

(ii) The measure of the level sets µ(L(qk y)) goes to zero, when k goes to infinity.
(iii) The sequence of distribution functions for entry times FL(qk y), k ∈ K , converges

uniformly to a distribution function φy .
Note that the last two conditions imply in particular that φy is continuous.
Under these three conditions, the extreme-value distribution is

H(y)= lim
k∈K

Hqk y(y)= lim
k∈K

FL(qk y)(qkµ(L(qk y)))= φy(g(y)),

where the last equality follows from the fact that φy need to be continuous (see [12]). The
next proposition shows that these assumptions are valid for every y for which Theorem 1
ensures the existence of a non-trivial limit of Hqk (y).

PROPOSITION 2. Let K be an infinite set of integers K ⊂ N, such that the limits γ j and
δ j exist for every j ∈ N. Assume γ j+1 <∞ for some j ∈ N. Then, for y ∈ (γ j , γ j+1), the
following hold.
(i) The limit limk∈K µ(L(qk y)) is zero.
(ii) The limit g(y)= limk∈K qkµ(L(qk y)) exists, is finite and satisfies the following

equality:

g(y)=
δ j + δ j+1

γ1 + δ1
.

(iii) The distribution functions for entry times FL(qk y), k ∈ K , converge uniformly to the
distribution function φy that linearly interpolates the points

(0, 0),
(
(1+ θ j+1)ν j+1

1+ θ j+1ν j+1
,
(1+ θ j+1)ν j+1

1+ θ j+1ν j+1

)
,

(
1+ θ j+1

1+ θ j+1ν j+1
, 1
)
.

(iv) The sequence Hqk (y), k ∈ K , converges to a number H(y), where

H(y)= φy(g(y))= g(y).

Proof. Take y from some finite interval (γ j , γ j+1). By definition, qk+ j < qk y < qk+ j+1

for k ∈ K big enough. This implies that L(qk y)= Bk+ j .

(i) We immediately get that µ(L(qk y)) tends to zero.
(ii) Using equation (4), we get

g(y)= lim
k∈K

qkµ(Bk+ j )= lim
k∈K

qk(ηk+ j + ηk+ j+1)= lim
k∈K

qkηk

(
ηk+ j

ηk
+
ηk+ j+1

ηk

)
=
δ j + δ j+1

γ1 + δ1
≤

1+ 1
1
≤ 2.

Hence, the limit g(y) exists and is finite.
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(iii) The uniform convergence of distribution functions FL(qk y), k ∈ N, is a direct
application of a result due to Coelho and de Faria [3, Theorem I]. If we translate their
result into our settings and notation, we get that if there exist limits ν j+1 and θ j+1, the
distribution functions FBk+ j , k ∈ K , uniformly converge to the function φy described in
the statement of the proposition. Since FBk+ j = FL(qk y), eventually, for k ∈ K , we need
only to verify that the limits ν j+1 and θ j+1 exist. Since γ` exists and is finite for every
`≤ j + 1, the limits ν` must exist and be positive, for every `≤ j + 1, i.e.,

ν` = lim
k∈K
[ck+`, ck+`−1, . . . , c1]> 0.

In particular, for every `≤ j + 1,

ηk+`−1/ηk+` < ck+`+1 + 1, k ∈ K , `≤ j.

As
ηk+ j

ηk
=

j−1∏
`=0

ηk+ j+1

ηk+`
≥

j−1∏
`=0

1
ck+`+1 + 1

> 0

is a lower bound for the sequence (ηk+ j/ηk)k∈K , we conclude that δ j is strictly positive
and therefore θ j+1 exists and is equal to δ j+1/δ j .

(iv) The equality H(y)= φy(g(y)) is a direct consequence of the previous parts (ii)
and (iii). Since

(1+ ηk+ j+1/ηk+ j )(qk+ j/qk+ j+1)

1+ (ηk+ j+1/ηk+ j ) · (qk+ j/qk+ j+1)

=
(ηk+ j + ηk+ j+1)qk+ j

ηk+ j qk+ j+1 + ηk+ j+1qk+ j
= (ηk+ j + ηk+ j+1)qk+ j

=
(ηk+ j + ηk+ j+1)qk+ j

ηkqk+1 + ηk+1qk
=
(ηk+ j/ηk + ηk+ j+1/ηk)(qk+ j/qk)

qk+1/qk + ηk+1/ηk
,

passing to the limit on both sides yields

g(y)=
δ j + δ j+1

γ1 + δ1
≤
(δ j + δ j+1)γ j

γ1 + δ1
=
(1+ θ j+1)ν j+1

1+ θ j+1ν j+1
.

By the definition of φy , we conclude that φy(g(y))= g(y). �

In comparison with Theorem 1, the last proposition does not answer the question of
what happens for y ∈ (−∞, 1) and for y ∈ (γ j , γ j+1) when γ j+1 is infinite. To extend
the last proposition and use the formula H(y)= φy(g(y)) for these cases also is quite
complicated, because the limiting function φy or the limiting value g(y) need not exist for
every y from these intervals.
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