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We consider the use of sparsity-promoting norms in obtaining localised forcing structures
from resolvent analysis. By formulating the optimal forcing problem as a Riemannian
optimisation, we are able to maximise cost functionals whilst maintaining a unit-energy
forcing. Taking the cost functional to be the energy norm of the driven response results in a
traditional resolvent analysis and is solvable by a singular value decomposition (SVD). By
modifying this cost functional with the L;-norm, we target spatially localised structures
that provide an efficient amplification in the energy of the response. We showcase this
optimisation procedure on two flows: plane Poiseuille flow at Reynolds number Re =
4000, and turbulent flow past a NACA 0012 aerofoil at Re = 23 000. In both cases, the
optimisation yields sparse forcing modes that maintain important features of the structures
arising from an SVD in order to provide a gain in energy. These results showcase the
benefits of utilising a sparsity-promoting resolvent formulation to uncover sparse forcings,
specifically with a view to using them as actuation locations for flow control.
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1. Introduction

Resolvent analysis is a framework in which harmonic forcings that provide maximal
amplification in their harmonic response can be determined on a frequency-by-frequency
basis (Farrell & loannou 1993; Trefethen et al. 1993). By sweeping through frequencies,
structural mechanisms that provide efficient means of flow amplification, as well as
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effective frequencies at which to provide such forcings, can be identified. While the
original resolvent analysis focused on perturbation dynamics about steady states, recent
studies have extended the analysis to system dynamics about the mean-flow, with
emphasis on examining the self-sustaining fluctuations that are characteristic of turbulent
flows (McKeon & Sharma 2010). With the resolvent analysis being able to reveal the
input—output relationship with respect to the chosen base state (Jovanovi¢ & Bamieh
2005), it serves naturally as a valuable tool to design flow control techniques. Past
studies, including Luhar, Sharma & McKeon (2014), Yeh & Taira (2019), Toedtli, Luhar
& McKeon (2019) and Liu et al. (2021), have demonstrated that physical insights revealed
from resolvent analysis provide valuable guidance on developing effective and efficient
actuation strategies.

Traditionally, modal analysis techniques for fluid flows (Taira et al. 2017, 2020) have
been founded on L,-based norms, which can lead to global spatial structures. For the
resolvent analysis, this translates to having forcing modes that are supported spatially over
a large region. It should, however, be realised that actuation inputs cannot be applied
over a large spatial region in practical engineering flow control settings. In general,
flow control inputs can be introduced only as localised actuation inputs. To address this
point, we consider sparsity-promoting approaches to target specifically resolvent forcing
modes that have spatially compact support, i.e. are spatially sparse. We also note that
sparsity-promoting techniques may also help to identify appropriate variables through
which control inputs can be added to the flow for enhanced amplification. This piece of
information is important in selecting the appropriate type of actuators to introduce control
input to the flow field (Cattafesta & Sheplak 2011).

To sparsify the resolvent forcing mode, we adopt an approach similar to that of Foures,
Caulfield & Schmid (2013), who used alternative norms for studying transient growth
in plane Poiseuille flow. In their work, transient growth analysis has been treated as a
gradient-based optimisation problem, where the goal is to find the initial condition that
has the most growth as measured by an appropriate norm. Choosing the Ly-norm leads
to the usual transient growth analysis (Trefethen et al. 1993) that can be solved using a
singular value decomposition. However, choosing an alternative norm can tune the analysis
to reveal different mechanisms that would be sub-optimal in terms of the L;-norm.

Foures et al. (2013) found more localised transient growth mechanisms using the
infinity-norm, i.e. by measuring the norm of the response by its maximum value rather
than energy. The result of this is that the identified initial conditions are localised spatially
in order to achieve responses that are focused around local ‘hot spots’. Further to this, the
non-convex nature of this optimisation problem means that there exist different branches of
optimal initial conditions, with some representing local maximums of the cost functional.
Physically, these localisations manifested themselves in the form of initial conditions that
focused either in the middle of the channel or towards the walls.

Following this approach, our study considers resolvent analysis as an optimisation
problem where forcing modes are sought that maximise a prescribed cost functional. In
order to obtain spatially sparse forcing modes, we propose a gradient-based algorithm
that maximises the energy of the output whilst minimising the L;-norm of the forcing,
which is also constrained to have unit energy. To provide an initial assessment of our
proposed method, we consider two examples. First, we consider the same plane Poiseuille
set-up as in Foures et al. (2013), allowing us to assess qualitatively the differences between
localisation strategies for initial conditions and for forced problems. Second, we consider
turbulent flow past an aerofoil using the same mean-flow as Yeh & Taira (2019), providing
an assessment of the method in a higher-Reynolds-number turbulent flow.
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The structure of the paper is as follows. Section 2 outlines the mathematical formulation
of the paper and contains an introduction to the resolvent operator, background on
Riemannian optimisation and how we utilise it to find optimal sparse resolvent modes,
and a discussion of wavemakers in the context of a resolvent analysis. In § 3, we discuss
the numerical set-up, with the results being presented subsequently in § 4. Conclusions are
offered in § 5.

2. Formulation
2.1. The resolvent operator

Let us consider the Navier—Stokes equations in the general, spatially discretised form
dg
G =N, 2.1)

where g is the spatially discretised state vector, and N represents the right-hand side
of the unforced Navier—Stokes equations. Including the mass-matrix G in (2.1) means
that this form could represent either the compressible Navier—Stokes equations or the
incompressible equations where there is no time derivative in the continuity equation.
By linearising this equation about a base-flow g, we can write the system in input—output
form as

dg

G = Laq+ 8. (2.2)

y=2Cq, (2.3)

where Ly is the linearised Navier—Stokes operator (Jeun, Nichols & Jovanovi¢ 2016). The
matrix B allows for the introduced forcing f (input) to be windowed in space or restricted
to specific equations or state variables. In an analogous manner, the matrix C allows for a
similar windowing to be applied to the output y.

The relationship between harmonic inputs and outputs with frequency @ can be obtained
by Laplace transforming the input—output system in time, giving the relation

y = C(~iwG — Lg,) "' Bf. (2.4)

Through this equation, the resolvent operator is defined via Hy, = C(—iwG — qu)*1 B.
The form of (2.4) shows that the resolvent operator is equivalent to a transfer function that
maps the forcing to its time-asymptotic response. Before we discuss the meaning of the
resolvent in fluid dynamics, it is worth considering the Laplace variable w. If the operator
L,, is stable, then w is real and (2.4) is obtainable via the Fourier transform. However, if
Ly, is unstable, then more care is needed. Indeed, for unstable L, , the time-asymptotic
response is not given via (2.4) and is instead a combination of the exponentially growing
disturbance given by the most unstable eigenvector and the forced response given by the
resolvent. In order to separate these two mechanisms, a complex value for w can be used,
leading to the concept of a time-discounted resolvent analysis (Jovanovi¢ 2004). Choosing
complex values for @ means that the imaginary part can be chosen such that the forced
response ‘rises above’ the exponentially growing disturbance due to the unstable nature of
Ly, allowing for the forced dynamics to be probed (see Yeh ef al. (2020) for more details).

In the context of fluid dynamics, the resolvent can be interpreted in two main ways.
First, choosing ¢ to be a steady solution of the unforced Navier—Stokes equations leads
to a non-normal stability study of the flow. In this manner, the resolvent identifies forcing
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structures that lead to particularly efficient amplification in the dynamics despite the stable
nature of the flow (Trefethen et al. 1993). Second, using a time-averaged mean-flow for g,
leads to the resolvent formulation of turbulence (McKeon & Sharma 2010). The resolvent
in this instance can be used to identify the coherent structures that arise via disturbances
caused by the nonlinear terms.

For both steady base-flows and time-averaged mean-flows, the resolvent provides critical
insights into how forcings can cause an amplification in the dynamics. This amplification
can occur both from resonant frequencies and also from particularly effective structural

mechanisms. Whilst one could choose a variety of forcings f at each frequency to
determine the most effective structures, it is more efficient to solve directly for the optimal
forcing. This can be formulated mathematically as

yllw,

1 llw,

where the norms are defined as ||a||3, = a" Wa, with W being a positive definite weight
matrix. We allow for the weight matrices for the forcing (W) and response (W,) to
be different. These matrices are problem-dependent, and are chosen so that the norms
represent appropriate measures of the energy (see §§ 3.1 and 3.2 for examples). The cost
functional in this case is the gain. To link the weighted norms to the two norms, it is
useful to also consider the Cholesky decomposition W = M M. The optimal forcing
has the corresponding output y,,, = Hf,,, with the amount of amplification being
measured by the gain o = ||5’opz||wq/ If Uptllw - This problem can be solved by taking

Sopr = arg max (2.5)
f

the singular value decomposition (SVD) of Mq’HM_l, whose maximum singular triplet is
(O" M‘Iyopt’ Mffopt)‘

While a resolvent analysis in this manner can provide useful information about
frequencies and forcing structures that can provide a large amplification, and therefore
identify good candidates for flow control, the forcing structures are often global. This
means that implementing them in a practical situation is infeasible. In the present study,
we present an approach to finding sparse (spatially compact) resolvent forcings that induce
large amplifications in the underlying dynamics. In this manner, particularly sensitive
spatial locations in the flow field are identified, providing a guide for effective and efficient
actuation.

2.2. Sparsification via Riemannian optimisation

To seek a spatially sparse resolvent forcing mode, we first generalise the optimal forcing
problem. We start by realising that finding the greatest singular value of the resolvent
matrix is equivalent to maximising the gain

I Hf N3
o= # (2.6)
11y,

Therefore, instead of carrying out an SVD, we could instead maximise the gain via a
gradient ascent algorithm. It is useful to phrase this optimisation as follows: maximise the
gain

o = IHf I, 2.7)
where the forcing is confined to the manifold given by the constraint || f II%Vf = 1. This
problem is equivalent to (2.6) because the resolvent is linear and hence will produce the
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same gain defined by (2.6) if we choose the forcing to have a unit-energy norm. In effect, by
constraining our forcing to this manifold, we are ensuring that we search for the maximum
amplification in dynamics with the forcing having the same energy budget.

Whilst we could conduct an unconstrained optimisation by enforcing | f ”%/vf = 1 with
a Lagrange multiplier (Pringle, Willis & Kerswell 2012), we instead take account of this
constraint directly in the update step. This results in an approach similar to that of Foures
et al. (2013), where a geometric approach (Douglas, Amari & Kung 1998) was used to
ensure that the unit-norm condition is satisfied when stepping in the search direction. In
general, carrying out an optimisation where the input is constrained to a manifold is known
as Riemannian optimisation (Absil, Mahony & Sepulchre 2007).

Let us first discuss the optimisation problem considered thus far. We seek to maximise
the gain

o) = ||Mq’HMflef||2, (2.8)

subject to [Mg fl> = 1. By expressing the problem in this form, we have reformulated
the problem in terms of the Ly-norm, hence we are optimising with respect to the vector
S'm = Mg f, which we constrain to have unit L-norm. The manifold for this problem then
becomes the complex hypersphere S = {y | yly = 1}.

For an unconstrained optimisation, we generally work with the Euclidean gradient

9o (L2

v, o) = .
Tu W m

By stepping in the direction of the conjugate of this gradient, we would be increasing
the value of o/2), assuming that we use a sufficiently small step size for which a linear
approximation is appropriate. The problem with this approach is that stepping in such a
direction would most likely result in a vector that is no longer on the manifold.

To carry out a gradient descent on the hypersphere, we must therefore define
the gradients appropriately. Riemannian optimisation will not work directly with the
Euclidean gradient, but instead all gradients must be tangent to the hypersphere at the
evaluation points. The set of all vectors tangent to the manifold at a point x is known as the
tangent space TS, with the set of all tangent spaces being referred to as the tangent bundle
Tx =), .5 TxS (see figure 1, which shows schematically the Riemannian optimisation
procedure). For the hypersphere, the Riemannian gradient can be written as

(2.9)

grado ) () = Vo2 — ( i VfMa<L2>) fu = Projs, (VfMa(L2>) . (.10)

where the function Proj is the projection that links the Riemannian gradient to the
Euclidean one.

Now that we have defined appropriate gradients, we must also define how to step in
the direction of steepest ascent. For the unconstrained optimisation, we may simply add
a scalar multiple (the step size) of this gradient onto our current value of the forcing.
However, for the Riemannian optimisation, this will result in a vector that no longer falls
on the manifold, as noted above. The equivalent procedure in this case is the notion
of a retraction. A retraction is a mapping Ry (&) : TS — S such that R,(0) = x and
DR, (0) = id7,s. In other words, a retraction maps vectors tangent to the manifold at x
to other vectors on the manifold such that for & = 0 it maps x to itself, and such that
the derivative of the mapping at & = 0 is the identity. For the hypersphere, we have the
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Figure 1. A sketchillustrating the concept of Riemannian optimisation. First, the Euclidean gradient V ¢ o (L2)
is found from the vector f7, that is situated on the hypersphere S. This vector is then mapped to the tangent
space Ty, S via the projection Proj e Next, the Riemannian gradient is extended along the tangent space by
the step size o. Finally, we map this gradient back to the manifold via the retraction Rz , yielding the updated

forcing vector f° ',L,H. For varying values of «, the retraction traces out a smooth curve over the manifold,

displayed as a dotted line. The link between « and 0 is also shown.

retraction
x4+ &

lx+ &I’
Once the gradient is found, we can then update the forcing using the map

Ry, (cx grado(LZ)(fM)), where a denotes the step size. By writing cos(f) = 1/+/1 + a2,
we can also express the update step as

Ry (§) = (2.11)

ml=Ren (a grad o 12)( f’,;,,)) = cos(0) fy + sin(0) grad o ‘12 (f7), (2.12)

which is exactly the geometric form used by Foures er al. (2013). Note that we have
described a steepest ascent approach here. However, many alternative gradient-based
optimisation algorithms, such as the conjugate gradient and Broyden—Fletcher—Goldfarb—
Shanno (BFGS) algorithms, are applicable to Riemannian optimisation with faster
convergence (Boumal & Absil 2015; Huang, Absil & Gallivan 2016).

The main advantage of phrasing the optimal forcing output problem in this way is its
generality. Whilst we have shown how we can obtain the same result as the SVD (and it
is actually possible to get the higher-order singular values in this manner by considering a
different manifold), we are free to change how we define the gain. The SVD can find the
gain only in the Ly-norm sense. This means that the input is measured by an energy norm,
leading to the global structures seen in many studies. In order to introduce sparsification,
we consider the use of the 1-norm.

A sketch of the unit L,- and L{-norms for a vector (x, y) in R2is presented in figure 2(a).
The Lr-norm takes the form of a circle, whereas the Li-norm yields a regular diamond
inscribed within this circle. Note that the unit L;-norm touches the unit L-norm at the
coordinate axes. This indicates that the L;-norm for all vectors with unit L,-norm yields its
smallest value for sparse vectors, i.e. vectors (x, y) with either x or y equal to zero. Indeed,
if the diamond touched the circle at another location (xg, yo) with xg =0 and yg # 0, then
the Lr-norm would be unity whereas the L;-norm would have the value |xg| + |yo| > 1.
Hence optimising over the space of unit-norm forcings, whilst penalising the L{-norm, will
push the forcing vector, and hence its structure, towards more locally supported structures.
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(@) y (b) y

Figure 2. Sketches of the L;- and Lj-norms. The effect of a coordinate rotation on the norms is also
demonstrated. (a) The unit Lr-norm (circle) and Lj-norm (diamond) with respect to the coordinate system
(x,¥). (b) The Lr-norm (green dashed circle) and L;-norm (green dashed square) with respect to the coordinate
system (&, ).

One important consideration when using an alternative norm, such as the Lj-norm, is
illustrated by figure 2(b). Here, we have again shown the unit L,- and L;-norms, but this
time for the coordinate system (7, £) that is obtained via a rotation of the coordinate system
(x,y) by an angle 6. In this new coordinate system, the Ly-norm still represents a circle,
which is invariant under this transformation. However, the unit L;-norm is affected, and
its square shape is rotated by the angle 6. This means that in this new coordinate system,
the sparse vectors, where the square touches the circle, are different to those of the original
coordinate system (x, y). In other words, what is considered sparse is defined completely
by how we choose to represent our vectors. In practice, we must be careful when choosing
the vector of which we take the Li-norm. We therefore choose to take the Lj-norm of a
vector that leaves the Lr-norm unchanged, yet has appropriate axes for best defining the
sparsity that we aim to achieve. In terms of resolvent analysis, this transformation is used
to maintain the physical relevance of the sparsification. Specific examples are described in
§§3.1 and 3.2.

Based on the discussion of the previous two paragraphs, we seek to maximise the new
gain o 1) defined by

ol MyHM, fyl2
ITEwh 1Tl

still subject to the forcing f', having a unit-energy norm. The transformation 7 in the
denominator is a transformation of the vector f°, to another vector. Hence the vector in
the denominator need not be equal to the forcing vector f'y, as, based on the discussion
of the previous paragraph, this may not be relevant physically. However, by ensuring
NT(fu)ll2 = Il fmll2, we maintain the geometric interpretation of sparsity illustrated by
figure 2(a), albeit in a much higher-dimensional space. By dividing the usual gain by the
I-norm of the vector T'(f',), we are in effect promoting sparsity, with sparsity defined as
a vector T'(f'y,) with a minimal number of non-zero entries. Optimising the gain in this
form will seek a compromise between providing a large gain in energy whilst ensuring the
spatial sparsity of the forcing. Indeed, the maximal nature of o‘Z!) means that obtaining
a response with larger energy requires a forcing structure that is less sparse. Likewise,
making the forcing more sparse leads to a less energetic response.

As in the study of Foures et al. (2013), who considered a similar optimisation problem
for localising flow structures obtained in transient growth studies, our cost functional is
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non-convex. This means that any solution to the optimisation problem is guaranteed only
to be a local, rather than global, maximum of the cost functional. In the case of transient
growth, this led to multiple branches of solutions being found during the optimisation,
which could be discovered by running the problem with multiple starting guesses for
the gradient-based optimisation. However, despite running multiple instances of each
optimisation with different initial guesses in our examples, no differences in the solution
could be found apart from symmetries of the flow, which are to be expected. Whist this
does not confirm that our results are truly the global optimum, it does highlight a difference
between localising forcings for driven versus initial-condition based studies.

Another important factor is the realisation that the L;-norm is notoriously hard to
optimise due to its non-smoothness near the origin. Intuitively, we can visualise the
problem by considering the unconstrained optimisation problem of minimising the
Li-norm of a scalar a. Using our gradient-based approach, this amounts to stepping in the
direction of steepest descent, which for our simple example is the sign of a. No matter how
near or far we are to the optimal value of @ = 0, this gradient will have the same magnitude.
This means that we will step continuously over the optimal value, unless the step size is
perfect, leading to zig-zagging and ultimately causing the algorithm to converge rather
slowly. To alleviate this behaviour we replace the Li-norm with a smooth approximation,
namely /1 5(q) = hs(q)/5, where hs(q) is the pseudo-Huber-norm (Bube & Langan 1997,

Bube & Nemeth 2007)
hs(g) = > 8 1+w—1 (2.14)
s\q) = : 52 : :
J

This pseudo-Huber-norm has the property that it approximates the L;-norm for small §
and is completely smooth. Therefore, in order to achieve convergence, we will not optimise
o L) directly but perform a series of optimisations for the quantity

—1
o’(Ll) _ ”MqHMf fM”Z,
s L.s(T(fw)

for decreasing values of 6. By using the optimal forcing obtained from an optimisation
for the preceding one with a lower value of §, we are able to achieve more robustly a
converged optimisation for a sufficiently small § such that our norm (2.14) is an appropriate
approximation for the true Li-norm.

Before concluding this section, it is important to note that our choice of cost functional
is not unique. Indeed, other cost functionals such as o V) = ¢t2) — ;|| T( S ll1 can also
lead to sparse forcing modes for appropriate choices of . However, the fact that unit-norm
forcings can lead to gains in energy many orders of magnitude larger than that of the
forcing makes the choice of i, which must balance the L,-based gain against the L1-based
forcing, a difficult challenge. This is complicated further by the strong dependence of
the gain on the forcing frequency, making a universally good way of choosing p hard to
determine. In our proposed cost functional there is no such parameter to choose, meaning
that it can be applied easily to different frequencies and base-flows without change. Hence
we continue with it for the rest of the study.

(2.15)

2.3. Resolvent wavemaker

One concept that we use in our subsequent analysis is that of structural sensitivity and the
wavemaker (Giannetti & Luchini 2007). The wavemaker has its origin in global stability
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analysis and provides a way to highlight regions in which flow field changes result in
changes to global modes. Specifically, the wavemaker is the structural sensitivity to a
localised flow feedback. To obtain the wavemaker, we consider the eigenvalue problem
Lx = AGx. This eigenvalue problem could arise, for instance, as a global stability problem,
in which case x would be the global mode, with the corresponding eigenvalue A giving its
frequency and growth rate. It can be shown (see the review of Schmid & Brandt (2014),
for example) that to first order, a perturbation to the eigenvalue 51 for a perturbation in the
matrix §L is given via
(xT, 8Lx)

o = m, (2.16)

where x is the solution to the adjoint eigenvalue problem LYx" = 1G"x". The wavemaker
is then obtained by specifying §L = I and instead taking the elementwise, or Hadamard

(®), product:
Xfox

A= e 2.17)

In this way, the wavemaker A can then be thought of as a vector field A(x, y) = (4, 4y, 4)
whose components represent what changes to the eigenvalue occur from localised
feedback at each location and state component in the flow field.

We note quickly that there are a few ways in which the wavemaker could be perceived.
Whilst we have stayed within a discrete setting, Giannetti & Luchini (2007) present
the wavemaker in a continuous formulation. This gives the main difference that their
wavemaker is a scalar field that is defined pointwise via A(x,y) = llx (x, WX, vl
Hence their wavemaker, by the Cauchy—Schwarz inequality, shows the maximum change
to the eigenvalue that can be achieved via localised feedback at each spatial location.
Conversely, the wavemaker presented by Schmid & Brandt (2014) is more easily related to
ours via A(x, y) = A, + Ay + A, In this manner, they obtain a complex-valued wavemaker
whose real and imaginary parts show the individual changes to the real and imaginary
parts of the eigenvalue. Additionally, the sign of these changes is retained, allowing for the
direction of the eigenvalue perturbation to be determined. However, by keeping the values
of the flow field separate, our wavemaker definition is strongly related to that of Paladini
et al. (2019), who introduce windowing matrices to allow for the selection of specific
physical components in the resulting wavemaker. Whilst they use these matrices to isolate
the contribution of the momentum to the wavemaker, we instead do this procedure for each
separate velocity component. This means that for each spatial location, our wavemaker
tells us how a specific eigenvalue will move for localised feedback restricted to each
component of the state vector.

Whilst the previous paragraph talked about a wavemaker in terms of an eigenvalue
problem, it can also be directly formulated for an SVD-based resolvent analysis (Qadri
& Schmid 2017). Indeed, by realising that taking the SVD of the matrix K = Mq’HM}1

is equivalent to taking the eigenvalues of the matrix K"K, the same procedure that yields
(2.16) can be applied, resulting in

80 = o’ Re ((f.5Lq)w,) . (2.18)

where L stands for the linearised Navier—Stokes operator (Fosas de Pando, Schmid & Lele
2014; Fosas de Pando & Schmid 2017; Qadri & Schmid 2017). Again, taking §L = I and
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Figure 3. The eigenvalue-based wavemakers and resolvent wavemakers for cylinder flow at Re = 100 shown
for illustration. Computations are performed with the immersed boundary projection method ibmos (Fosas de
Pando 2020). (a¢) Wavemaker for the real part of the u-component. (b) Wavemaker for the real part of the
v-component. (c) Resolvent wavemaker for the u-component at St = 0.162. (d) Resolvent wavemaker for the
v-component at St = 0.162.

using the Hadamard product yields
o =0’Re(f © Wyq). (2.19)

The resolvent wavemaker o is then analogous to the eigenvalue-based wavemaker, i.e. for
localised feedback at each spatial location and component of the state vector, the resolvent
wavemaker will indicate how the singular value will be perturbed.

An example of the wavemaker and resolvent wavemaker is shown for cylinder flow in
figure 3. It is important to note that for the eigenvalue-based wavemaker, the frequency
is set by the eigenvalues. However, our definition of the resolvent wavemaker allows
any frequency to be specified. Therefore, we concentrate on St = 0.162, which is the
frequency at which the most unstable eigenvalue is found. We observe that these
wavemakers have similar structures but with different gains. The fact that they have similar
structures is not surprising, since the resolvent forcing and response modes are similar
qualitatively to the direct and adjoint eigenvectors, respectively. However, the signs of the
structures are often different. This indicates that a localised feedback affects the eigenvalue
perturbation differently from the singular value perturbation, highlighting the importance
of formulating a resolvent wavemaker in order to quantify the effect of localised feedback
for resolvent analyses.

3. Numerical set-up

This section describes the numerical set-up for our flow examples. In addition to the details
given in this section, all Riemannian optimisations are managed using the Python package
pyManopt (Townsend, Koep & Weichwald 2016), the Python extension of the MATLAB
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package Manopt (Boumal et al. 2014). The optimisations are all conducted using the
conjugate gradient algorithm.

3.1. Plane Poiseuille flow

First, we consider plane Poiseuille flow to compare the differences in localisation strategies
between initial-condition-based (transient growth) and driven (resolvent) studies. The
present set-up follows that of Foures et al. (2013) in which a domain covers (x,y) €
[0, 27] x [0, 2] at Reynolds number Re = 4000. No-slip boundary conditions are applied
at y=0 and 2, and periodic boundary conditions are applied at x =0 and 2n. The
base-flow is provided analytically as u = y(2 — y). We conduct the numerical simulations
using the Python package ibmos developed by Fosas de Pando (2020). This is an immersed
boundary projection code based on the formulation of Taira & Colonius (2007) with
specific formulation for optimisation and stability analyses. The package solves the
nonlinear incompressible Navier—Stokes equations and provides directly the linearised
and adjoint codes necessary for conducting a resolvent analysis. For the plane Poiseuille
examples, the matrix B is chosen so that the forcing is added to only the momentum
equations. Similarly, the matrix C is chosen so that only velocity components constitute
the output.

As detailed in § 2.2, there is some consideration in choosing the vector for our Li-norm,
T(f ). The obvious choice would be to use the same vector used for the unit-energy
norm, fy, for the Li-norm. However, as the x- and y-components of the velocity occur in
different locations of fy,, this would result in a sparsification that not only sparsifies the
forcing mode in space, but also sparsifies between the x- and y-components of velocity.
In other words, if the sparse procedure were to locate a single spatial point for the forcing
mode, then it would also be advantageous to align the velocity vector completely with the
coordinate axes at this point, in order to achieve a further reduction in the L;-norm. As
we are interested primarily in localisation in space, as opposed to sparsifying the velocity
vector itself, we therefore design a vector for the L1-norm optimisation that does not result
in this unwanted sparsification. This is particularly pertinent to applications of this method
to flow-actuation, where the directional information obtained by keeping the x-, y- and
possibly z-components of velocity independent of the sparsification procedure will provide
additional insight into actuator design.

To this end, we consider a vector of the form T'(fy) = Mu Qu+v© v)1/2, where
©® is the Hadamard product, and the square root is taken componentwise. This vector
has the same 2-norm as f°;, but groups local contributions of the forcing mode to the
total energy together. Hence the Li-norm of this vector is small when the forcing is
localised in space, but without penalising among individual components of the velocity
vector. It should be noted that some additional care may be needed when designing
this vector, depending on the specific numerical implementation. For example, as our
immersed boundary implementation uses a staggered mesh with the x-components of
velocity lying on the east and west faces of the cell whilst the y-components lie on the north
and south faces, we form the vector T'(f,) on the cell centres by averaging the kinetic
energy contributions from the cell edges. The weight matrices are chosen to incorporate
the grid spacing (see Taira & Colonius (2007) for more information), so that the forcing
and response are measured in terms of the kinetic energy.

3.2. Flow past an aerofoil

Next, we also consider a spanwise-periodic turbulent flow over a canonical aerofoil
obtained from a large-eddy simulation (LES) with a Vremen subgrid scale model
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(Vreman 2004). The LES is conducted using the finite-volume solver CharLES that
solves the compressible Navier—Stokes equations with second-order spatial and third-order
temporal accuracies (Khalighi et al. 2011; Bres et al. 2017). The linearisation is performed
within the same solver (Sun et al. 2017), considering the time- and spanwise-averaged
turbulent flow over the aerofoil as the base-flow.

The resolvent analysis is performed on a mesh separate from that used by the LES.
The mesh for the resolvent analysis has a two-dimensional rectangular domain of extent
x/L. € [—15,16] and y/L. € [—6, 5], comprising approximately 0.11 million cells and
giving the resulting discretised linear operator dimension 540 840 x 540 840. Compared to
the LES mesh, the mesh for resolvent analysis is coarser over the aerofoil and in the wake,
but is much finer in the upstream region of the aerofoil in order to resolve the forcing mode
structures. The convergence of resolvent norm with respect to the domain extent and grid
resolution has been reported in detail in Yeh & Taira (2019). At the far-field boundary
and over the aerofoil, Dirichlet conditions are specified for the density and velocities,
and Neumann conditions are prescribed for the pressure in g. At the outlet boundary,
Neumann conditions are provided for all flow variables. The base-flow is two-dimensional,
however, in contrast to the plane Poiseuille case, and we allow the perturbations to be
three-dimensional by adopting a bi-global setting that decomposes ¢ into spanwise Fourier
modes with wavenumber f.

Even though the linear operator is sparse, its large dimension requires special care. To
deal efficiently with this operator, the Python bindings for PETSc (Balay et al. 1997,
2021a, b), petsc4py (Dalcin et al. 2011) are used. This enables us to carry out the
required linear algebra manipulations in parallel whilst keeping our code within the Python
environment. Specifically, PETSc is used together with the external library MUMPS
(Amestoy et al. 2001, 2019) in order to provide the LU decomposition of the resolvent
operator, and hence evaluate the action of the resolvent operator (and its adjoint) on
a vector. To compare our sparse method with a traditional resolvent analysis, the SVD
of the resolvent operator is found using a Lanczos SVD solver provided by the Python
bindings for SLEPc (Hernandez, Roman & Vidal 2005), slepc4py (Dalcin et al. 2011). The
numerical implementation for taking the SVD of the resolvent has been made available
(Skene, Ribeiro & Taira 2022).

As in the previous case, we need to be careful regarding the choice of the state
vector for the Li-norm. To sparsify the location of any momentum input, rather than
the individual components of the momentum, we must design our Li-norm such that the
momentum components are together. This requires some care for the aerofoil case, since
it is compressible and the modes are measured not via an Ly-norm but via the Chu-norm
(Chu 1965)

RTy 2 2 Rpo 72
lqlZ :/ (—IP/I +poollw ™+ ———— T[] dV, (3.1)
£ 2\ Po (y — DTy

which represents the energy contained in a perturbation in the absence of compression
work. In defining the Chu-norm, we have used a dash ’ to denote quantities derived
from our state vector g. Similarly, a subscript O is used to denote quantities derived
from the base-flow used for linearisation. This integral is discretised to ||q||125 =q"Wgq,
with WEg as a positive definite weight matrix. Taking the Cholesky decomposition
Wg = MM gives the matrices needed for the resolvent description (My = Mg = M).
Hence, to keep momentum grouped in our sparsification, we split the components
of the norm matrix M to form the state T(fy) = (M,p', Mxgk', M7T'), where k' =

J(pu) © (pu) + (pv) © (pv)’ + (pow) © (pw)’. Note that in defining &', we have used
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the notation (pu) = pou’ + p’'ug for the streamwise linearised momentum component,
with similar definitions for the spanwise (pv)" and transverse (ow)’ linearised momentum
components. This vector has the same L,-norm as our full state vector. However,
when taking the L;-norm, the kinetic energy is now grouped, ensuring that all velocity
components are treated equally. It should be pointed out that now we have two additional
components in the norm, specifically p’ and 7’. By not including these in the same
component of the vector for the Lj-norm, they are treated separately by the sparsification.
In essence, this means that the sparse resolvent not only sparsifies the spatial structure
of any forcing but also sparsifies the actuation mechanism by choosing between a
velocity-based, density-based or temperature-based forcing.

4. Results
4.1. Plane Poiseuille flow

Let us first consider plane Poiseuille flow. This canonical example provides a good
comparison with the work of Foures et al. (2013) and highlights the differences between
using an alternative norm for a resolvent analysis and a transient growth study. It is
important to note that as plane Poiseuille flow is a parallel flow, we could have proceeded
with a local analysis, i.e. we could specify the streamwise wavenumber « and search for
modes of the form

FOY) =fo(MNe™ and  u(x,y) = uy(y) e, (4.1a,b)

However, as we are using a global (two-dimensional) analysis, the wavenumbers that our
forcing and response can consist of are set by the aspect ratio of the domain. Taking x €
[0, 27t] with periodic boundary conditions requires our wavenumbers to be integer, i.e.
a € N. Another artefact of using a two-dimensional code for a parallel-flow is that the
results do not change if the forcing and response modes are translated along the x-axis.

The gains obtained from a full resolvent analysis (i.e. by using an SVD) are shown
in figure 4. This figure shows a strong peak at w = 0.278, followed by another peak at
o = 1.14. Examining the forcing and response modes at these two frequencies (shown
in figures 5 and 6, respectively), we observe that the first peak is associated with o = 1
structures, whereas the second peak corresponds to a higher wavenumber, o = 2. This
can be seen as a consequence of the flow being parallel and hints that by performing a
two-dimensional analysis, the optimal response is obtained at the wavenumber that has the
maximum response from the one-dimensional analysis. With this in mind, the qualitative
shape of the gain distribution agrees with those obtained in Schmid & Henningson (2001)
if the effects of perturbations in the spanwise direction, not considered in our analysis,
are neglected. In both cases, the forcing mode consists of structures slanted against the
shear, indicating that an Orr mechanism is responsible for the gain in dynamics. Another
interesting observation can be made by examining the phase velocity k = w/a. We see
that the phase velocity of the second peak is twice that of the first peak. The fact that the
second peak is a faster disturbance is also evident from the forcing mode being situated
more centrally in the y-direction where the base-flow has a higher velocity.

We now turn our attention to the resolvent analysis results from the sparse optimisation
procedure. The sparse forcing mode obtained for w = 0.278 is shown in figure 7. First,
it is clear from this figure that the forcing mode is more sparse than the full resolvent
analysis. Indeed, instead of a series of slanted structures angled against the shear, we
now have thin stripes parallel to the walls. Interestingly, even though our vector T'(f )
was chosen carefully not to sparsify the separate velocity components at a given spatial
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Figure 4. The optimal gains over frequency for Poiseuille flow. Our analysis focuses on the optimal gain that
occurs at w = 0.278, and on the second peak at @ = 1.14 (both shown with a black +).
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Figure 5. The real parts of the forcing and response modes obtained by SVD of the resolvent at v = 0.278.
The forcing is unit-norm, whereas the response mode has norm equal to the gain. (a) Real part of the full forcing
mode, u-velocity component. (b) Real part of the full forcing mode, v-velocity component. (¢) Real part of the
full response mode, u-velocity component. (d) Real part of the full response mode, v-velocity component.

location, the sparse forcing mode consists mainly of a u-component, indicating that this
forcing is primarily in the direction of the wall.

A striking feature of the sparse forcing mode is that it has maintained its « = 1 structure,
i.e. it is still 2w-periodic in the x-direction. This is particularly enlightening since the
strip structure is not as sparse as the forcing mode could be, which would consist of
just one element of the kinetic energy vector being filled, i.e. a single spatial location
forcing. Therefore, the fact that the sparse procedure has chosen a less sparse structure
indicates that forcing with this spatial wavenumber is crucial in achieving a high gain at
this frequency. The location of these stripes can be hypothesised to be intrinsically linked
to the o = 1 structure using the concept of critical layers. A critical layer occurs at y*
where the base-flow velocity U(y*) is equal to the phase velocity k of a disturbance,
and is central in causing instability in plane Poiseuille flow. Using the phase velocity k&
for a disturbance at w = 0.278 and « = 1 implies a critical layer at y* ~ 0.150, which is
close to the y-location of the stripes, which occur at y = 0.155. Hence the sparse forcing
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Figure 6. The real parts of the forcing and response modes obtained by SVD of the resolvent at @ = 1.14. The
forcing is unit-norm, whereas the response mode has norm equal to the gain. (a) Real part of the full forcing
mode, u-velocity component. (b) Real part of the full forcing mode, v-velocity component. (¢) Real part of the
full response mode, u-velocity component. (d) Real part of the full response mode, v-velocity component.
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0 21 0 27

(c) (d)
2 86.6 2 40.06
-86.6 —40.06
0 27 0 2n
X X
Figure 7. The real parts of the forcing and response modes obtained by sparsification at w = 0.278. The forcing
is unit-norm, whereas the response mode has norm equal to the gain. (a) Real part of the sparse forcing mode,

u-velocity component. (b) Real part of the sparse forcing mode, v-velocity component. (¢) Real part of the
sparse response mode, u-velocity component. (d) Real part of the sparse response mode, v-velocity component.

mechanism can be summarised as forcing along (or just above) and parallel to the critical
layer, with the v-velocity component, which does not contribute to this critical layer, being
negligible.

Further evidence for the importance of o = 1 forcing is shown in the response modes,
which are also displayed in figure 7. The figure shows that the response modes stemming
from the sparse forcing mode have the same structure as those from the full resolvent. As
well as reinforcing that the @ = 1 forcing is critical for providing optimal amplification
at this frequency, this observation also highlights the low-rank nature of the resolvent
at this frequency. Even though the forcing shape is qualitatively different in the sparse
case, the shape of the response is identical, disregarding arbitrary phase shifts, albeit with
a lower magnitude. This agrees with previous observations, such as that of Rosenberg,
Symon & McKeon (2019), where it is shown that when there is a large separation in
singular values, the shape of the forcing is less critical in exciting the dominant response.

944 A52-15


https://doi.org/10.1017/jfm.2022.519

https://doi.org/10.1017/jfm.2022.519 Published online by Cambridge University Press

C.S. Skene, C.-A. Yeh, P.J. Schmid and K. Taira

(a) (b)
2 33.73 2 0.0503
Yy
-33.73 -0.0503
0 2n 0 2n
(o) (d)
2 - 5 . 1.718 2 0.4696
-1.718 | -0.4696
0 27 0 21
X X

Figure 8. The real parts of the forcing and response modes obtained using sparsification at @ = 1.14. The
forcing is unit-norm, whereas the response mode has norm equal to the gain. The location of the sparse forcing
mode is shown with x. (a) Real part of the sparse forcing mode, u-velocity component. (b) Real part of the
sparse forcing mode, v-velocity component. (¢) Real part of the sparse response mode, u-velocity component.
(d) Real part of the sparse response mode, v-velocity component.

The lower magnitude is to be expected since our sparse forcing mode sacrifices some
amount of energy to achieve a more localised spatial structure.

To provide a comparison between the results at different wavenumbers, we also carry
out the sparse optimisation procedure at w = 1.14. Figure 8 shows the results, which differ
quite significantly from the case of w = 0.278. In this case, the sparsification procedure
has resulted in a single spatial forcing in u, with a negligible v-component that can
be disregarded safely. In fact, the structure of the v-component is an artefact of the
optimisation procedure, which initially converged to a critical-layer mechanism similar
to the previous case, before converging to a single spatial location. The reason for the
different structure in this case can be attributed to the higher-rank nature of the resolvent at

this frequency. For w = 0.278, o*l(LZ)/oz(LZ) ~ 31, whereas for w = 1.14, al(Lz)/oz(LZ) ~ 2.

The effect is that even though an o = 2 forcing is optimal, there is a less clear distinction
between this forcing and the higher-order singular vectors. The result is that, unlike the
previous case, there is less of a need for a specific « wavenumber to provide the optimal
gain, and the sparsification procedure can take advantage of this to sparsify the forcing
structure further. This is also evident in the response modes, which are quite different from
the SVD results. Finally, it is worth noting that the asymmetry of the forcing mode, with
the single spatial location being located above the centreline, is due to our optimisation
procedure converging to a local maximum. The reflection of this point about the centreline
would also achieve the same value of the cost functional, hence representing another local
optimum. Similar behaviour has been reported in the work of Foures et al. (2013).

4.2. Flow past an aerofoil

Next, we consider flow past a NACA 0012 aerofoil at angle of attack 9°, chord-based
Reynolds number Re = 23 000, and free stream Mach number M = 0.3 (see § 3.2 for the
numerical details). In contrast to the plane Poiseuille example, this flow is unsteady and
turbulent. Therefore, the mean-flow is used for linearisation. This time-averaged base-flow
is shown in figure 9. Similarly to the work of Yeh & Taira (2019) and Ribeiro, Yeh &
Taira (2020), who considered a resolvent analysis with the same base-flow, we consider
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Figure 9. The streamwise velocity component of the base-flow.
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Figure 10. The optimal gains against the Strouhal number for flow past an aerofoil. Our analysis will focus on
the optimal gain, which occurs at (a) St ~ 5.22 for f = 0, and (b) St ~ 5.90 for § = 207 (both highlighted
with a black +).

the resolvent modes at spanwise wavenumbers = 0 and 207. As the linear operator is
unstable, a discounting parameter o« = 0.63 is used (Jovanovi¢ 2004). The gain—frequency
relationships are shown in figure 10. Similarly to the previous examples, we focus our
subsequent analysis on the frequencies at which the peak gain is obtained.

Let us begin our analysis by examining briefly the modes obtained from a full resolvent
analysis for our chosen parameters. For full details, see the paper by Yeh & Taira (2019).
The spanwise linearised momentum component of the forcing mode and its corresponding
response for our two spanwise wavenumber choices are showcased in figure 11. In both
cases, the forcing is similar, consisting of slanted structures near the leading edge of the
aerofoil on the suction side. The response modes are both located in the shear layer further
downstream of the leading edge, but differ in their spatial structures. For 8 = 0, there is
a larger spatial support, with the mode shape extending both vertically and horizontally
about the shear layer, whereas for § = 20m, the response aligns much more tightly with
the shear. This agrees with the findings of Yeh & Taira (2019), who state that for an
increased forcing frequency or wavenumber, the shear layer is needed to support the
resulting smaller-scale fluctuations.

Now that we have characterised the Ly-norm SVD-based results, we turn our attention
towards the sparse-optimisation-based modes. Figure 12 shows the sparse forcing and
response modes. In both spanwise wavenumber cases, the optimisation procedure has
identified a single spatial momentum-based structure for the forcing mode, with the density
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Figure 11. The full resolvent modes for aerofoil flow at St = 5.22 for § = 0, and St = 5.90 for 8 = 207. The
linearised component of the streamwise momentum is shown. (a) Full forcing mode for 8 = 0. (b) Full response
mode for 8 = 0. (¢) Full forcing mode for 8 = 207. (d) Full response mode for g = 207.
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Figure 12. The sparse resolvent modes for aerofoil flow at St = 5.22 for f = 0, and St = 5.90 for g = 207.
The linearised component of the streamwise momentum is shown. (a) Sparse forcing mode for g = 0. (b)
Sparse response mode for f = 0. (¢) Sparse forcing mode for § = 20m. (d) Sparse response mode for § = 20m.

and pressure contributions being negligible. This illustrates the effectiveness of the sparse
procedure, which in this case was not only able to sparsify the spatial structure, but has also
sparsified the physical makeup of the forcing, indicating that a momentum-based forcing
provides the optimal sparse gain in dynamics. It is also worth highlighting that even though
we have only a single-location forcing, the response mode is qualitatively the same as the
full case.

To provide additional insight into the chosen spatial location, we now examine the
resolvent wavemakers, which are shown in figure 13. For both values of 8, the wavemakers
display a large positive region in the mean-flow shear layer. This is not unexpected, since
regions of shear translate to regions of high non-normality in the linearised Navier—Stokes
operator, which underpins sensitive areas for forcing. In fact, in the full-SVD forcing
modes, we see this directly, as the forcing modes in both cases are located primarily in
this shear region. The sparse forcing locations are also situated in this region and are
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Figure 13. The resolvent wavemakers for aerofoil flow at St = 5.22 for g = 0, and St = 5.90 for g = 207.
The linearised component of the streamwise momentum is shown. (¢) Wavemaker for 8 = 0. (b) Wavemaker
for B = 20m.
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Figure 14. The surface forcing on the suction side of the aerofoil at St = 5.22 for g = 0, and St = 5.90 for
B = 20m. The sparse components are shown with a star. () Surface forcing on the suction side of the aerofoil
for B = 0. (b) Surface forcing on the suction side of the aerofoil for g = 20.

located near the maximum value of the full-SVD forcing mode. Whilst this may show that
choosing the largest value of the forcing mode is a good candidate for the sparse forcing
mode, we emphasise that the optimisation procedure is not biased by any knowledge of the
full forcing mode, and all physical mechanisms and spatial locations are weighted equally.

Whilst forcing in the shear region may provide the optimal response, it is rather
impractical for flow actuation purposes. Therefore, we conclude this section by using the
windowing matrix B to conduct our analysis on the surface of the aerofoil. Figure 14
shows the forcing distribution along the suction side of the aerofoil as a function of
the distance along the chord x.. In the full resolvent analysis, most of the forcing is
concentrated near the leading edge of the aerofoil, agreeing with the non-windowed
case. In both spanwise wavenumber cases, the sparse mode is once again a single-point
momentum-based forcing and is located at the maximum value for the kinetic energy of
the full forcing mode. This provides the optimal compromise between forcing with (pu)’
at its maximum value and (pv)’ at its maximum, which in the full case is located to the
left of (pu)’. Even though there is a (pE)’-component, this is simply a consequence of the
kinetic part of the energy, since (pE)’ = p’||lug||>/2 + pou’ - uo + P'/(y — 1), and there is
no thermodynamic contribution to the linearised total energy. The importance of grouping
momentum together into one coherent strategy is evident from figure 14, as the directional
information of the actuation is crucial in both the full and sparse resolvent analyses to
achieve the optimal gain. This information would otherwise be lost. Moreover, by grouping
the momentum together, we strike a compromise over choosing a forcing that is optimal
for each isolated velocity component.
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5. Conclusion

By reformulating an optimal-input analysis as a Riemannian optimisation problem, we are
able to tailor a resolvent analysis to uncover sparse forcing modes and their corresponding
response modes. By designing a cost functional based on the ratio of the energy gain to
the Li-norm of the forcing, we are able to find forcing modes that provide the largest gain
whilst being spatially sparse. To test the method within the context of resolvent analyses
performed on steady base-flows and time-averaged mean-flows, we considered two flow
examples: plane Poiseuille flow in the linearly stable regime, and the turbulent flow past
an aerofoil.

For plane Poiseuille flow, two forcing frequencies were considered. At the first
frequency, located at the maximum gain of the full-SVD analysis, the sparse forcing
mode consisted of an o = 1 stripe at a single y-location, just above the critical layer.
Conversely, for the second frequency located at the second peak of the full analysis, the
forcing consisted of a single spatial forcing near the « = 2 critical layer. For the first case,
utilising an o = 1 forcing is critical in obtaining a high gain, therefore the optimisation
sparsifies the forcing only in the y-direction. However, in the second case, there is a much
lower separation in the effectiveness of different forcing mechanisms, as indicated by the
ratio of the singular values, meaning that the sparse procedure is able to sparsify further
whilst still providing a large gain.

In the turbulent flow past an aerofoil, all sparse modes consisted of single spatial
locations, with the sparsification procedure also identifying momentum-based forcing as
the optimum physical mechanism. For two different spanwise wavenumbers, an analysis
of the resolvent wavemakers shows that forcing in the shear layer provides the optimal
gain, with the sparse procedure focusing on the location of the maximal value of the
full forcing modes. To identify an implementable actuator position, we also considered
a windowed analysis where the forcing modes are confined to the surface of the aerofoil.
Again, we achieve single-point momentum-based actuation positions that are found to
be a compromise among the optimal locations for each independent velocity component.
This emphasises the importance of designing an appropriate vector for the Lj-norm,
as the directional information would have been lost had we not grouped momentum
together.

Overall, the sparse optimisation procedure provides an unbiased optimal sparsification
of the flow and is able to adapt to the different forcing strategies available at different
frequencies. Although the aerofoil results show that choosing the maxima of the SVD
is a good candidate for a sparse forcing vector, the plane Poiseuille example shows
that both single-point and multi-point forcing modes can be found, depending on the
low-rank nature and physical mechanisms furnished by the resolvent. Based on our
results, it can be postulated that in more complex systems, such as those stemming
from aeroacoustic or combustion problems, where multiple physical mechanisms are at
play, the sparse resolvent would be able to adapt to the optimal physical mechanisms
present at each frequency, and would even be able to combine in an optimal sparse
way these different mechanisms in order to achieve the largest gain. Investigating the
sparse optimisation procedure on these types of flows would therefore be an interesting
future direction of study. Furthermore, as the choice of cost functional for the purpose
of sparsification is not unique, the design of other functionals, such as those that
could allow for a tuning of sparsity versus gain, provides another area for future
investigation.

Although we have not considered them in our study, we note further that recent efforts
have been made to extend resolvent analysis both to periodic flows (Padovan, Otto &
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Rowley 2020) and also to the nonlinear regime (Rigas, Sipp & Colonius 2021). As the
techniques that we have presented carry over to both these cases without significant
modification, these present interesting avenues for future investigations. Moreover, the
usefulness of Riemannian optimisation in tailoring input—output analyses to specific flow
applications is not limited to our sparse analysis. As well as being able to design cost
functionals in order to uncover different aspects of the resolvent, the manifold to which we
confine the forcing modes can be changed. The result is a rich landscape of possibilities in
which resolvent analyses can be extended, with the traditional SVD-based approach being
just one such choice.
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Appendix. Convergence results

In this appendix, we consider the numerical details of the optimisation procedure. In order
to provide an overview, we will present the results stemming from the plane Poiseuille
example at w = 0.278 considered in § 4, which is representative of all cases considered in
this paper.

Figure 15 shows how the results of the optimisation procedure depend on §. We can
see from figures 15(a) and 15(b) that there is an initial region in which the optimisation
procedure has a large L1-norm and that the gain is in line with that obtained from the SVD.
After § = 27, the pseudo-Huber-norm starts to behave more like the Li-norm, as shown
in figures 15(b) and 15(d), and both the gain and the L;-norm of the forcing decrease. At
8 = 577, the pseudo-Huber-norm and the Li-norm have converged, and we can stop the
optimisation procedure. These figures also highlight the strong dependence of the gain on
the Li-norm of the forcing for these examples, with the gain decreasing almost exactly in
line with the L;-norm.

Figures 16(a) and 16(b) show the norm of the gradient provided by the optimisation
procedure as a function of the number of iterations. For the case w = 0.278, the number of
iterations is in line with the work of Foures et al. (2013), with perhaps a few more iterations
needed in our case. The number of iterations required, as well as the non-smoothness of
the gradient norms, is indicative of the difficulty of the gradient-based optimisation. This
is especially highlighted by figure 16(b), where the optimisation terminates earlier due to a
stagnation of the cost functional. This showcases the importance of using both a relaxation
parameter § as well as an optimisation procedure such as the conjugate gradient algorithm
in order to achieve converged results.

944 A52-21


https://orcid.org/0000-0003-0994-2013
https://orcid.org/0000-0003-0994-2013
https://orcid.org/0000-0003-0426-8381
https://orcid.org/0000-0003-0426-8381
https://orcid.org/0000-0002-2257-8490
https://orcid.org/0000-0002-2257-8490
https://orcid.org/0000-0002-3762-8075
https://orcid.org/0000-0002-3762-8075
https://doi.org/10.1017/jfm.2022.519

https://doi.org/10.1017/jfm.2022.519 Published online by Cambridge University Press

C.S. Skene, C.-A. Yeh, P.J. Schmid and K. Taira

(@) ) ()
100 800 100 —LI1
80 o hs
75 600 |
111, . E 60
20 400 1
20 1
25 ‘ ‘ ‘ ‘ ‘ ‘ 01
0o 1 2 3 4 5 6 1 0 1 2 3 4 5 6 7
() (d)
200 200 1
40 150 {
A1} 100 o gloo—
: 20 z
50 |
0 ‘ ‘ ‘ : : 0 01 : ‘ ‘ : ‘ :
0 1 2 3 4 5 6 17 0o 1 2 3 4 5 6 7
—logs(8) —logs(9)

Figure 15. Dependence of the results on § for the plane Poiseuille flow examples. (a) Lj-norm and gains
with § for @ = 0.278. (b) Convergence of the pseudo-Huber-norm to the true Lj-norm for w = 0.278.
(c¢) L1-norm and gains with § for @ = 1.14. (d) Convergence of the pseudo-Huber-norm to the true L{-norm for
w=1.14.

(b)

101 10"

/\
<
=

100 4

Norm of the gradient

0 50 100 150 200 20 40 60 80
Iteration Iteration

S

Figure 16. The optimisation convergence behaviour for the plane Poiseuille flow examples. Convergence
behaviour of the conjugate gradient algorithm for plane Poiseuille flow at (a) @ = 0.278 and § =577,
(b)w=1.14and s =5".
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