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Random vibration of floating ice tongues 
E.H. GUI and V.A. SQUIRE 

Department of Mathematics and Statistics, University of Otago, P.O. Box 56, Dunedin, New Zealand 

Abstract: A normal mode approach is used to model the behaviour of a linearly-damped, elastic, ice beam 
floating on a fluid foundation and subjected to a random distributed loading. As an example, two loading 
regimes are considered to act on the Erebus Glacier Tongue, McMurdo Sound: broad bandwidth (‘white 
noise’) loading, and an ocean wave-type pressure distribution beneath the tongue. For white noise input, the 
root mean square (rms) deflexion is found to good accuracy within the first few modes, but the rms bending 
moment increases with the number of modes included in the summation due to the unlimited frequency 
content of the forcing. Solutions for the rms deflexion and bending moments quickly converge to their 
mathematical limit after six modes when the forcing is due to ocean waves. A local maximum in rms bending 
moment near the end of the beam confirms that waves may be important as a mechanism for iceberg calving. 
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Introduction 

The work of Holdsworth (1%9,1974), Goodman & Holdsworth 
(1978), Holdsworth & Holdsworth (1978), Holdsworth & 
Glynn (1981)andVinogradov & Holdsworth( 1985),applied 
mainly to Erebus Glacier Tongue, McMurdo Sound, Antarc- 
tica has indicated a causal link between natural oscillations 
of ice tongues and iceberg calving. These oscillations can be 
set up by any forcing mechanism which can provide energy 
at the natural modal frequencies, e.g. ocean waves, the local 
passage of storms, or storm surges. A current long-term 
experiment on Erebus Glacier Tongue (W.H. Robinson, 
personal communication 1988) carried out by the Physics 
and Engineering Laboratory, Department of Scientific and 
Industrial Research, New Zealand, may provide a data set to 
test the hypothesized link between glacier oscillations and 
calving. Work concerned with random loading of structures 
and structural dynamics, such as reported in Newland (1984) 
or Lin (1967), enables various geophysical loading regimes 
to be considered in more detail, permitting the mean square 
deflexion, velocity and bending moment responses to be 
found for any continuous system subjected to a distributed 
random load. We apply these theories to a simple, linearly- 
damped, clamped-free beam configuration using as an 
example the flexural motion of the Erebus Glacier Tongue. 

Theory 

The beam equation and boundary conditions 

We require to find the mean square deflexion and mean 
square bending moment along an ice tongue subjected to a 
stationary and homogeneous, randomly distributed loading 

p(x.t). It is assumed that the two-dimensional spectral 
density P(k,  o) of the loading, where k is the wave number 
and o is radian frequency, is known. 

We begin by assuming that the motion of an ice tongue of 
thickness h may be modelled by a thin elastic beam equation 
of the form 

(see Fung 1965, p. 319, for derivation and assumptions). In 
equation (1) y(x,tj is the deflexion of the beam at time t ,  
distancex from its end, E is Young’s modulus,l is the second 
moment of areaof the beam, p is the foundation modulus for 
the fluid beneath the ice tongue, p is the mean density of the 
ice, A is the cross-sectional area andp(x,t) is the loading per 
unit length on the beam. For generality, equation (1) is 
expressed in its derived form allowing variation of E and I 
with x ,  although in this paper we shall restrict our attention 
to beams of uniform cross-section so that E and I are 
constant. For uniform cross-section the first term on the left 
hand side of equation (1) becomes EIa4y/d$. In modelling 
the fluid foundation contribution as buoyancy alone (i.e. by 
py), we are neglecting any inertial effects in the fluid which 
would derive from the equations of fluid mechanics - in the 
inviscid case, Bernoulli’s pressure equation. The Winkler 
foundation, as it is known, is used on the grounds that 
frequencics and amplitudes of oscillation are small. 

There is no doubt that the use of an elastic beam equation 
to model the behaviour of ice in flexure is a gross approxi- 
mation, as the material properties of ice are rate-dependent 
-ice is a non-linear viscoelastic fluid. The elastic approxi- 
mation would, for example, be totally invalid if we were 
considering deformations of an ice tongue which were 
sufficiently slow to allow the ice to creep. A power 3 rate- 
dependent rheology (Glen 1955) would then be more 
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appropriate. In the present paper, where small amplitude 
oscillations of an ice tongue rather than its long-term flow 
are being considered, the ice will also undoubtedly creep at 
the lower frequencies, leading to irrecoverable strains and 
energy dissipation. This energy dissipation will be included 
later, albeit in a very inadequate manner, with the introduction 
of a Newtonian viscosity term into the beam equation. 

If the deflexion y(x,t) is large we should include an 
additional term -Na2y/dx2 on the left hand side of equation 
(I), where N represents the axial force due to large deflexions. 
We do not include this term in the present analysis as it can 
introduce further complications which we do not believe are 
revelant in the context of this paper - an ice shelf is unlikely 
to experience deflexions of sufficient magnitude for elastic 
softening to be important. The assumption that the beam is 
thin is reasonable because the only oscillatory modes which 
can be excited by wind or wave pressure forces acting on the 
tongue will be long compared to the beam's thickness, and 
therefore rotary inertia and transverse shear contributions 
will be small. 

The beam is assumed to float freely on the sea-water 
foundation, and to be in a clamped-free configuration, i.e. it 
is clamped at the hinge line and free to oscillate at its open 
water end. Thus, at the hinge line the deflexion and its 
derivative with respect to x vanish, and at the free end the 
bending moment and transverse shear vanish. Boundary 
conditions are therefore 

where 1 is the length of the beam. 

Normal modes 

The method of analysis initially follows that described by 
Timoshenko et a1.(1974), and subsequently applied to an ice 
island by Goodman el a/.( 198O), whereby separable modal 
solutions of the form 

(3) 

are considered such that the functions $ jx )  are orthogonal, 
i.e. they satisfy 

Y (x, t) = f- 4J (XI Y, ( 2 )  
J = 1  

J)J(X)w)dX = ' 6 J k  (4) 

Conditionsfor orthogonalit yaregiven by Lin (1967,~. 209). 
Substitution of expression (3) into equation (l), followed by 
multiplication by $J(x) and then integration over the length 
of the beam gives, using the orthogonality condition (4), 

where p, ( t )  = 0; ( x )  p (x, 1 )  d x, and 

The quantity pj(t) is the modal exciting force per unit length. 
The J" natural frequency, w j ,  is related to the J" modal 
wave number, k, ,  by 

(7) 

In equation (7) we note that the introduction of a Winkler 
foundation of modulus p beneath the beam alters thej" 
modal frequency. This is in fact the only effect the foun- 
dation has on the solution as pointed out by Timoshenko et 
aL(1974, p. 455). 

Some linear damping is now introduced into equation (5). 
In reality, as discussed above, the ice responds non-linearly 
and with large deflexions an extra term -Nd2yldx2should be 
included in equation (1). In this case an equivalent equation 
to (5)  which includes an additional term proportional to y3  
(Duffing's equation) may be found for the first mode using 
Galerkin's method (Mei & Prasad 1976). It is well known 
that this non-linear equation can lead to solutions with the 
same period as the forcing, to sub-harmonic solutions, and to 
chaotic solutions. Various models of non-linear damping, 
e.g. terms proportional to y 2 y  and yy2may also be included, 
and in the general case the equation for y becomes 

(8) 
where m is the modal mass. The technique of stochastic 
linearization (Selcuk Atalik & Utku 1976) may then be used 
to reduce the equation to its optimal linear equivalent (Mei 
& Prasad 1976). This will be the subject of a later investi- 
gation, and for now we rest content with the sub-optimal 
linear model. Thus equation (5) becomes 

Y + f ( Y , Y )  = p ( t ) l m  

which is the usual equation for a single degree of freedom 
damped oscillator. The modal damping coefficient Bj can be 
different for each mode as long as orthogonality is satisfied 
(Lin 1967, p. 209). The introduction of damping could have 
been done earlier, i.e. directly into the beam equation (1). In 
that case a term proportional to ay/& would be included in 
(1) to represent viscous dissipation. 

Solution for the normal modes 

We require to find the form of the functions $,(x) which 
satisfy equation (6), the modal boundary conditions for the 
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and the orthogonality condition (4). This is straight forward 
(see Timoshenko et al. 1974, p. 426). The general solution 
for each mode is 

$ j ( ~ )  =C,(COS k;X + cash k,X) + C,(COS k,X - cash k,x) + 

C,(sinkjx + sinhkjx) + C,(sinkjx - sinhkjx) (11) 
The boundary conditions require that C, = C, = 0 for each 
mode, and give a condition on each modal wave number as 
follows 

This has been solved to high precision (for reasons discussed 
below), and the results are presented in Table I. The 
boundary conditions give a further condition between C, and 
C,, namely that 

COskjlCoshk+ =-1 (12) 

C, A . = - = -  - 
C, 

sin kjl + sinh kjl cos kjl + cosh kjl 
coskjl +cash kjl - sin kjl - sinh kjl (13) 

where CJC,is different for each mode. The orthogonality 
condition (4) is then used to obtain C,. After much algebra 
we find 

and can therefore write down the solution we require using 
equation (13) to determine A,= C,/C,for each mode (Table 
I). Some care has to be taken in finding the values ofAj, since 
it is particularly easy to introduce numerical instability as 
odd kjl  lay just above x(i - %) and even k, 1 lay just below 
x(i - %). A small numerical error can flip kjl  to the wrong 
side of x(i - %) and lead to serious numerical instability 
because of sine or cosine sign changes in equation (13). As 
i -+ large, kjl  + x(i -%), andAj -+ -1. 

(C$= 1 (14) 

Mean square def exion and mean square bending moment 
response 

In common with other similar examples of random loading 
of structures, and following Newland (1984), the frequency 
response function for equation (9) is evaluated first. This is 
done by applying a distributed load per unit length of the 

Table I. Non-dimensionalized modal wave number k,land A, satisfying 
modal boundary conditions (10). 

A; = C2K, Mode k,' 

1 1.8751040687 
2 4.694091 1330 
3 7.8547574382 
4 10.9955407349 
5 14.1371683910 
6 17.2787595321 
7 20.42035225 I0 
8 23.5619449018 
9 26.7035375555 

10 29.845 1302091 

-1.3622205575 
4.9818675392 

4.9999664479 
-1.000001 4499 
4.9999999373 
-1.0000000027 
-0.9999999999 
-1 .0000000000 
-1.0000000000 

-1.0007761054 

form pfx ,r )  = eior 6(x - s )  where 6 is the Dirac delta function 
and i2 = -1. Then 

(15) 
and on substitution into equation (9) we obtain the frequency 
response function 

pi ( t )  = @ j  (s) eiot 

We assume a two-dimensional forcing spectral density 
which is correlated in time but is uncorrelated (white) in 
space, viz. of the form P(k, 0) = P(o) where we have sup- 
pressed a constant whose dimensions are metres. Then the 
force-per-unit-length cross-spectral density exciting the ice 
tongue will take the form P(s,, s,, w) = 2xP(w)6(s2-s,), i.e. 
it will bezero unless s,= s2 when its value will be infinite. Its 
units are N2 m-2 s as 6(s,- sl) has units m-l. The cross-spectral 
density of the response will be given by 

P ( ~ ) G ( S , - S J ~ S ~ ~ ~ ~  (17) 
We obtain, after substitution of the frequency response 
function and utilizing orthogonality and the properties of the 
delta function, 

Thus we find the mean square deflexion using 

E [y2 (x , t ) l=  J-~(x,x,w)dw 4 (19) 

1j = J- 
This involves the evaluation of 

(20) - P(w)dw 
(a2 - m y  4- (pjo)2 

for each mode. We have done this numerically for general 
P(w) using a Romberg scheme to allow maximum flexibility 
in the choice of P(o), and precision in evaluation of the 
integral. The final expression for mean square deflexion is 
therefore, 

(sin kj x - sinh 

The bending moment M(x,t)  is given by 

Thus we require to define a new frequency response function 
H,(x,s, w)eiW, where 
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(Newland 1984). Then the mean square bending moment is 
given by 

1 
-(sink,x 
4 

The forcing 

Equations (21) and (24) allow us to calculate the rms 
deflexion and rms bending moment response for a two- 
dimensional spectral density which is uncorrelated in space 
and correlated in time, i.e. P(k,w) is a function of o alone. 
This is an approximation. However, it is a reasonable 
approximation for the types of pressure distribution we wish 
to study. 

In the first instance we shall consider a further approxi- 
mation, which will be relaxed later, namely that P(w) = Po= 
constant. Then the forcing is uncorrelated in both space and 
time and is said to be white. In this case the integral Zl may 
be evaluated analytically to give 

and the two expressions (21) and (24) become 

E[y*(x,t)l =- '* C [(coskjx-coshk,x)+ 
IC j = 1  (Elk,?+P) 

1 
- (sink, x - sinh 
Aj 

where c = mp is assumed constant for all modes, and 

(cosk,x + coshkjx) + 2 2n"E2I2 5 k," 
E[M ( ~ , f ) ]  =- 

I C  j = 1  (Elk:+~) 

1 (27) 
1 
- (sin k, x + sinh kj x) 
A j 

White noise may be a good model to use for wind-induced 
oscillations of the ice tongue, where the fluctuating applied 
pressure spectrum might be expected to be broad band, and 
uncorrelated in space and time (Newland 1984). In the 
simpler case of a beam which does not rest on a fluid 
(Winkler) foundation, these expressions can be further 
simplified as p = 0. 

The second forcing spectrum P(o) we shall consider is 
that due to ocean waves passing beneath the ice tongue. In 
this case we will use numerical integration, as for an arbitrary 
ocean wave energy spectrum (possibly obtained from a 
waverider or pitch-roll buoy or from a pressure transducer) 
it is unlikely that I j  will be analytically integrable. If the 
spectrum were found from data the numerical scheme we are 
using (Romberg) is definitely overly precise, as one could 

argue that a confidence interval, defined according to the 
amount of smoothing done on the original data record, 
should be aqsociated with each value in the energy spectrum. 
However, since we will be using a functionally defined 
spectrum in this instance, and we wish to retain as much 
generality as possible, we accept the additional precision 
and subsequent increase in computing time. 

The spectrum we shall use is the Pierson-Moskowitz 
spectrum. This has the form 

where a-1.2 x is Phillip's constant, g is the acceleration 
due to gravity, and opeak is the frequency at which the 
spectral peak occurs. This spectrum is a simplification of the 
more general JONSWAP spectrum (Phillips 1977, p. 139). 
We require to find the forcing beneath the ice tongue and so 
we must calculate the effect of thc Pierson-Moskowitz 
spectrum at dcpth according to 

where D is the depth to the sea bed, d is the dcpth to the 
underside of thc beam and k, the wave number, is determined 
inlcractively from the usual dispersion relation w2 = gk 
tanh kD. It is important to note that the effect of (29) is to 
bias the Pierson-Moskowitz spectrum towards long periods, 
as these periods are felt most at depth. This effect is very 
significant since it will prevent the 'high-frequency tail' of 
the surface Pierson-Moskowitz spectrum inducing modal 
oscillation in the tongue. We are now in a position la 
consider solutions for the white noise and Pierson-Moskowitz 
forcing cases. 

Results 

The above theory is now applied to thc Erebus Glacicr 
Tongue. This is an obvious choice as much work has already 
been carried out on this ice tongue, notably by Holdsworth 
(1969,1974), Holdsworth & Glynn (1981) and Vinogradov 
& Holdsworth (1985), and its dimensions and properties are 
rcasonably well known. Furthermore, an experimental 
study is presently underway to monitor flexural motions d 
the tongue until calving occurs (W.H. Robinson, personal 
communication 1988). The values used in the model are as 
follows: E = 8.0 x lo9 Pa, I = 1.1 x lo9 m4, p = 867 kg me3, 
1 = 13 000 m, A = 3.0 x 105 m2, p = 1.5 x lo7 kg m-l s2, 
D = 400 m, and d = 170 m. The damping coefficient fi has 
been set at 3.84 x s-l, which corresponds to c = 1 . 0 ~  106 
N m-2 s. This is an unknown quantity, but simulations 
suggest that the solutions are not greatly dependent on its 
value within reasonablelimits. When p = 0  the solutions will 
be unbounded if the forcing frequency coincides with a 
natural mode. 
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Figs 1 and 2 show rms deflexion and bending moment 
curves under white noise forcing conditions. The curves are 
normalized as the forcing value Po is unknown; only the 
form of the curves is important. Curves for deflexion have 
been checked for consistency against those for bending 
moment. In the case of deflexion the series in expression 
(26) converges to very close to its mathematical limit by 
about 10 modes. The rms bending moment on the other hand 
converges less rapidly. Moreover, it exhibits the effect 
described by Newland (1984) for the simpler free-free beam, 
whereby the wavelengths and wave amplitudes at the centre 
of the tongue decrease, but the level of rms bending moment 
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E 
D 

u -  
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L 

n 
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increases with the number of modes included in the sum- 
mation. This is due to the white noise input which is 
uncorrelated in space and time at all wave numbers and 
frequencies. The behaviour is analogous to Gibb’s phenom- 
enon of Fourier series, where the sum of Fourier components 
near a step contains oscillations whose frequency increases 
with the number of modes summed but whose amplitude 
remains constant (Newland 1984). If a large enough number 
of modes are included in the summation the rrns bending 
moment becomes approximately constant for most of the 
tongue expect near the clamped and free ends. 

Figs 3 and 4 show the induced rms deflexion and bending 
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Fig. 3. rms deflexion induced in ice tongue due to Pierson- 
Moskowitz forcing with peak at: a. 10 s;  and b. 15 s. 

moment curves for the input Pierson-Moskowitz spectrum. 
Peak frequencies corresponding to periods of 10 s and 15 s 
are chosen to bracket the range of wave periods observcd by 
one of the authors (V.A.S.) near Erebus Glacier Tongue in 
the austral spring of 1985. At the peak frequency the spectral 
density is -2.6 m and -0.3 m respectively, so the induccd 
deflexions and bending moments will differ in magnitude. 
Summations (including all modcs) up to 10 have been 
carried out, corresponding to modal oscillation periods of 
26.2, 26.0, 25.2, 22.9, 19.4, 15.6, 12.2, 9.7, 7.7 and 6.3 
seconds for modes 1 to 10 respectively. It is found that the 
solutions for deflexion and bending moment for both input 
spectra reach their limiting form by six modes. The viscosity 
in the original beam equations serves to damp out 
unrealistically-dominant modal resonances which originate 
from negligible energy contributions, although it is not 
suggested that this is effectively modelling the viscoelastic 
nature of glacial ice. Higher frequency natural modes in the 
ice tongue-fluid foundation system are not excited because 
the pressure field, derived from the Pierson-Moskowitz 
spectrum modulated by the depth relation (29), has negligible 
energy at these frequencies. The depth relation also tends to 
favour longerperiod wave energy and make it more effective 
in exciting lower modes (see Table I). 
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Fig. 4. rms bending moment induced in ice tongue due to 
Pierson-Moskowitz forcing with peak at: a. 10 s; and b. 
15 s. 

The rms bending moment curves of Fig. 4 have a local 
maximum about 1.5 km from thc free end of the 10-s 
spectrum, and at about 2 km for the 15-s spectrum. Further- 
more, in each case the maximum is greater than other local 
maximaexcept for that at the hinge line. This would suggest 
that fracture would occur first at the hinge line. However, 
the Erebus Glacier Tongue is not of constant cross-section as 
we have assumed; it tapers from 340 m near the hinge to 
about 70 m at the free end. This thinning would have the 
effect of decreasing the stress at the hinge lineand incrcasing 
the stress further towards the frcc end, as stress is proportional 
to bending moment/thickness2. Thus wc tentativcly suggest 
that the first maximum from the free end shown in Fig. 4a, 
b could dominate stresses induced at the hinge line. These 
maxima lead to strains at the upper and lower surfaces of the 
order of 1.2 ~ . l O - ~ a n d  2.8 x lo6 for each spectrum rcspectively. 
It would therefore Seem reasonable to conclude that incoming 
ocean waves could initiate the calving of a tabular iceberg if 
the wave energy were of sufficient magnitude. The distance 
of the bending moment peak from the free end of the ice 
tongue ( I  5 2 . 0  km) roughly matches the typical s i x  for 
newly calvcd icebergs in the area. The fact that the Erebus 
Glacier Tongue has not calvcd an iceberg recently, although 
rather longer than usual, may be duc to the attcnuating 
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influence of the canopy of shore fast ice in McMurdo Sound 
which until 1986 had not broken out for several years. 

Conclusions 

A simple randomly-excited elastic beam resting on a fluid 
foundation has been used to model the deflexion and bending 
moment response of an ice tongue in terms of rms values. 
Vibrations are induced by a distributed force-per-unit-length 
spectrum which is correlated in time but not in space. The 
model has been applied to the Erebus Glacier Tongue in 
McMurdo Sound, although its geometry is such that a 
thinning from the hinge line to the free end should really be 
taken into account. As an example of the method, however, 
the Erebus Glacier Tongue is an obvious choice because of 
the large amount of data available. Results suggest that the 
random vibration normal mode theory reported in Newland 
(1984) may be an effective tool in modelling ice tongue 
deflexion and stresses, and in iceberg calving prediction. 
One of the authors (V.A.S.) is presently working on the 
removal of some of the approximations employed in this 
simplest of models with a view to including elastic softening 
and a non-linear (power 3) damping rheology (although it is 
not clear a priori how important these effects might be), and 
a more satisfactory forcing spectrum which allows for spacc 
correlation as well as time. 
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