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ABSTRACT

Although longevity risk arises from both the variation surrounding the trend
in future mortality and the uncertainty about the trend itself, the latter is often
left unmodeled. In this paper, we address this problem by introducing the lo-
cally linear CBD model, in which the drifts that govern the expected mortality
trend are allowed to follow a stochastic process. This specification results in me-
dian forecasts that are more consistent with the recent trends and more robust
relative to changes in the data sample period. It also yields wider prediction
intervals that may better reflect the possibilities of future trend changes. The
treatment of the drifts as a stochastic process naturally calls for nuga hedging, a
method proposed by Cairns (2013) to hedge the risk associated with changes in
drifts. To improve the existing nuga-hedging method, we propose a new hedg-
ing method which demands less stringent assumptions. The proposed method
allows hedgers to extract more hedge effectiveness out of a hedging instrument,
and is therefore useful when there are only a few traded longevity securities in
the market.
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1. INTRODUCTION

Depending on the context and intention, longevity risk can be defined in dif-
ferent ways. From a statistical viewpoint, Coughlan et al. (2013) provided the
following concise yet complete definition: “It is a combination of (i) uncertainty
surrounding the trend increases in life expectancy and (ii) variations around this
uncertain trend that is the real problem. This is what is meant by longevity risk
and it arises as a result of unanticipated changes in mortality rates”. Despite the
risk encompasses two components, most existing stochastic mortality models
capture only the latter. For instance, in the Lee–Carter model (Lee and Carter,
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1992), the evolution of mortality over time is typically captured by an autore-
gressive integrated moving average process, with the special case — random
walk with drift — being used the most often. What this modeling method cap-
tures is “diffusion risk”, which arises from the variations around a fixed drift
that determines the expected trend, but not the uncertainty associated with the
trend itself. The collection of models (Models M1–M8) considered by Cairns
et al. (2009, 2011a) andDowd et al. (2010a,b) are subject to the same limitation.

Although often left unmodeled, the risk associated with the trend in mor-
tality improvement does exist. There is profound empirical evidence for trend
changes in mortality, exemplified by the findings of Gallop (2006) concerning
the mortality improvement in the United Kingdom over the past century. It was
found that the average rate of mortality improvement for British males was gen-
tly fluctuating around 0.7% per annum over the period of 1930–32 to 1970–72,
after which the rate increased substantially, reaching 2.0% per annum over the
period of 1990–92 to 2001–03. Similar trend changes are also observed in other
developed countries (see, e.g., Kannisto et al., 1994; Vaupel, 1997). A number of
researchers have further confirmed the trend changes in mortality by rigorous
statistical tests, including Li et al. (2011) who considered Zivot and Andrew’s
test, Ahmadi and Li (2014) who used a non-parametric change-point test, and
O’Hare and Li (2015) who utilized the CUSUM test that is based on cumulative
sums of standardized residuals.

Researchers have also developed mortality models that incorporate trend
changes in the past (Renshaw and Haberman, 2003; Coelho and Nunes, 2011;
Li et al., 2011; Ahmadi and Li, 2014, O’Hare and Li, 2015; van Berkum et al.,
2014), but thesemodels at best can only reflect how historical trend changesmay
affect the best estimate forecast. They do not capture trend changes as a risk,
as they do not allow historical trend changes to recur at random future time
points with random extents. For example, in the broken-trend stationary model
proposed by Li et al. (2011), it is assumed that the future trend in mortality im-
provement is always the same as the historical trend after the detected structural
break point. The model proposed recently by van Berkum et al. (2014) is less
stringent in the sense that multiple trend changes are permitted during the data
sample period, but still the drift is assumed to be fixed beyond the last estimated
structural break point. An alternative way that has been used to deal with trend
changes is to optimize the calibration window, so that the model is fitted to the
period of time during which the trend is the most linear (Booth et al., 2002;
Denuit and Goderniaux, 2005; Li et al., 2015a). However, excluding a portion
of the data does not address the random nature of trend changes.

On the modeling front, we may address the risk associated with trend
changes by permitting the drift term(s) in the assumed mortality model to be
stochastic. A previous attempt to introduce a stochastic drift was made by
Milidonis et al. (2011), who modeled the time-varying factor in the Lee–Carter
model using a regime-switching log-normal process with two regimes. The drift
term in each regime is permitted to be different, so that the drift of the process
may vary as the system switches between the two regimes under an assumed
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Markov chain. However, as indicated in the estimation results ofMilidonis et al.
(2011), it is the volatility rather than the drift that separates the two regimes.
Therefore, the regime-switching process may be suitable for capturing short-
term catastrophic mortality events which are generally accompanied with high
mortality volatility, but may not be adequate for capturing the risk arising from
drift changes. Another attempt was made by Sweeting (2011), who considered a
piece-wise linear regression. Although the slope of the regression line is permit-
ted to change in the future, the probability and extent of future slope changes
are calculated in an ad hoc manner. In particular, the probability is taken as
the ratio of the number of observed break points to the total number of data
points, while the extent is estimated using the root mean square of the annual
changes in the underlying dynamic factor. Alternative mortality models which
more explicitly and rigorously address the risk associated with trend changes
are yet to be developed.

The first objective of this paper is to develop a stochastic mortality model
that permits the user to quantify not only “diffusion risk” but also “drift risk”.
Our proposedmodel is based on the original Cairns–Blake–Dowd (CBD)model
(Cairns et al., 2006), under which the dynamics of mortality are driven by
two time-varying factors. As usual, the evolution of the time-varying factors
is modeled by a bivariate random walk with drift, but on top of that, we permit
the drifts themselves to follow another bivariate random walk. This modeling
method is justified by the results of Nyblom and Mäkeläinen’s (1983) test for
random walk coefficients. We call our proposed model the locally linear CBD
model (thereafter the LLCBD model), because the drifts governing the linear
increments in the two CBD time-varying factors are different in different time
steps. To enable estimation, we first formulate our proposed model in a state-
space representation, just as howMavros et al. (2014),Hári et al. (2008), Pedroza
(2006), de Jong and Tickle (2006) and Carter (1996) specified the models they
considered.We then use theKalman filtering technique (Kalman, 1960;Kalman
andBucy, 1961) to estimate the unknownmodel parameters and retrieve the hid-
den states (i.e., the two CBD time-varying factors and the two varying drifts)
in a recursive manner. The method we use can estimate all parameters in the
proposed model in one single stage.

Although the extension of the Lee–Carter model proposed by Hári et al.
(2008) possesses a time-varying drift, it is different from our proposed model in
various aspects. In terms of objectives, the extension ofHári et al. (2008) was not
designed with a motivation to quantify trend risk, and possibly for this reason,
it assumes that the drift would fluctuate around its long-termmean. In contrast,
with a goal of assessing drift risk, we postulate the dynamics of the drift vector
as a random walk. The use of a random walk is in part because of the support
from the random walk coefficient test and in part because we have no a priori
knowledge about the value and more importantly the existence of the mean of
the drift vector. In terms of model structure, the extension of Hári et al. (2008)
is built on a reformulation introduced by Girosi and King (2005) whereby the
vector of log central death rates are structured to follow a multidimensional
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randomwalk, whose drifts are driven by a vector of latent factors which follows
a stationary multivariate autoregressive moving average process. To maximize
comparability with the original CBD model, our state-space model requires no
reformulation and has an observation equation that preserves the parameter-
ization of the original CBD model. Compared to the extension of Hári et al.
(2008) in which the latent factors are not straightforward to interpret, our pro-
posed model contains richer demographical intuitions as all four hidden states
in it have their own physical meanings. In spite of the mentioned differences, the
estimation results for both models indicate one thing in common: The permis-
sion of time-varying drift(s) results in mortality projections that are more robust
with respect to changes in the data sample period. Both models can therefore
ameliorate the well-known problem that the usual estimator of the drift(s) of a
random walk is highly sensitive to (and indeed completely dependent on) the
first and last observations of the data series (see, e.g., Li and Chan, 2005; Zhou
and Li, 2013).

Having addressed drift risk in modeling, our second objective is to develop
a method to manage it. To our knowledge, Cairns (2013) was the first to study
how an index-based longevity hedge may be constructed to reduce the hedger’s
exposure to drift risk. He extended the existing “delta” hedgingmethod (Cairns,
2011; Luciano et al., 2012; Zhou and Li, 2014) to the “delta–nuga” hedging
method, in which the sensitivities of the liability being hedged and the portfolio
of hedging instruments to changes in drifts are matched. While the delta–nuga
hedging method has some appeals, it is subject to a few limitations. First, in
deriving the delta–nuga hedging strategies, it is assumed that the future values
of the time-varying factors in the underlying model are related to the current
values in a deterministically linear manner. Hence, if the linear relation does
not hold, the hedging results would be sub-optimal. Second, when applied to
the CBD/LLCBD model, the delta–nuga hedging method requires exactly four
hedging instruments. This stringent requirement may render the method im-
practical in the early stages of market development when the market does not
provide the required number of standardized hedging instruments. Third, as
we are going to demonstrate in Section 5.5, the delta–nuga hedging method is
subject to the singularity problem, which means that the solution to the hedg-
ing strategies does not exist when certain combinations of hedging instruments
are used. To mitigate these limitations, we propose in this paper the generalized
state-space hedging method.

In the generalized state-space hedging method, we waive the linearity as-
sumption by considering the sensitivities of the liability being hedged and the
portfolio of hedging instruments to all future hidden states that are relevant.
Similar to the work of Cairns et al. (2014), we derive the hedging strategies by
variance minimization. We regard our proposed method as a generalization,
because it degenerates to the traditional delta and delta–nuga hedging methods
when all future hidden states are deterministically linearly related to the cur-
rent ones. Based on the sensitivities to all relevant hidden states, the proposed
method may also be seen as a complement to several existing static hedging
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methods, including the methods of q-duration (Coughlan, 2009) and key q-
duration (Li and Hardy, 2011; Li and Luo, 2012) that are based on the sensitivi-
ties to the death probabilities at selected ages and the method of key K-duration
(Tan et al., 2014) that is based on the sensitivities to the CBDmortality indexes
at selected time points. In comparison to the traditional delta and delta–nuga
hedging methods, the proposed method is more flexible in terms of the number
and type of hedging instruments. Our empirical results indicate that when popu-
lation basis risk is assumed to be absent, the proposed hedging method can lead
to a greater than 85% hedge effectiveness even if only one hedging instrument
is used.

The rest of this paper is organized as follows. In Section 2, we explore statis-
tical evidence for stochastic drifts. In Section 3, we detail the specification of the
proposed LLCBDmodel. In the same section, we also analyze the performance
of the proposed model by estimating it to some real mortality data. In Section
4, we discuss several additional issues about modeling. In Section 5, we present
the generalized state-space hedging method and compare it with the traditional
delta and delta–nuga hedging methods. In Section 6, we illustrate the proposed
hedging method with a hypothetical example. Finally, in Section 7, we conclude
with some suggestions for future research.

2. EVIDENCE FOR STOCHASTIC DRIFTS

Let qx,t be the crude probability that an individual dies between time t− 1 and t
(during year t), given that he/she has survived to age x at time t−1.We calculate
qx,t by the following approximation:

qx,t ≈ 1
1 + 0.5mx,t

,

wheremx,t is the crude central rate of death at age x and in year t.1 The simplest
version of the CBD model can be expressed as

ln
(

qx,t
1 − qx,t

)
= κ1(t) + κ2(t)(x− x̄) + εx,t,

where x̄ represents the average over the sample age range to which the model
is fitted, εx,t’s are the sampling errors, which are assumed to be i.i.d. normally
distributed with a zero mean and a constant variance of σ 2

ε , and κ1(t) and κ2(t)
are time-varying stochastic factors, of which the dynamics are assumed to follow
a bivariate random walk with constant drifts C1 and C2.

We estimate the abovemodel to themortality data fromCanadianmale pop-
ulation over a sample age range of 50 to 89 (40 ages) and a sample period of 1941
to 2010 (70 years), using the method of least squares; that is, the time-varying
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FIGURE 1: The estimated values of �κ1(t) and �κ2(t) and their respective means C1 and C2 (the upper
panels), and the 5-year and 10-year moving averages of �κ1(t) and �κ2(t) (the lower panels).

stochastic factors are obtained using the following objective function:

min
κ1(t),κ2(t)

89∑
x=50

(
ln

(
qx,t

1 − qx,t

)
− κ1(t) − κ2(t)(x− x̄)

)2

, t = 1941, . . . , 2010.

The data are obtained from the Human Mortality Database (2014). Let � be
the difference operator. If the assumption of constant drifts holds, then the es-
timated values of �κ1(t) and �κ2(t) should fluctuate around their respective
sample means Ĉ1 and Ĉ2. However, as shown in upper panels of Figure 1, the
estimates of �κ1(t) and �κ2(t) do not seem to follow the expected pattern.

The lower panels of Figure 1 depict the 5- and 10-year moving averages of
�κ1(t) and �κ2(t). These moving averages may be considered as proxies for
the drifts at different time points. It is clear that the moving averages are time-
varying and exhibit random patterns. The observations we made from Figure 1
lead to the question as to whether the drifts themselves are stochastic.

We further investigate the stochastic nature of the drift terms by applying a
statistical test for random walk coefficients. The following description focuses
on C1, but the test for C2 can be conducted in a similar manner. Suppose that
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κ1(t) follows a random walk, with a drift C1(t) that also follows a random walk
itself. The dynamics of κ1(t) can be expressed by the following system of equa-
tions: {

�κ1(t) = C1(t) + ξ(t),

C1(t) = C1(t − 1) + υ(t), t = ta + 1, ta + 2, . . . , tb,
(2.1)

where ta = 1941 and tb = 2010 represent the beginning and end points of the
calibration window, respectively. It is assumed that ξ(t)’s and v(t)’s are i.i.d.
normally distributed with a zero mean and constant variances, and that ξ(t)
and υ(t) are mutually independent.

We let σ 2
ξ and σ 2

υ be the variances of ξ(t) and υ(t), respectively. If σ 2
υ = 0,

then C1(t) is constant over time rather than following a random walk. It is thus
obvious that our goal is to test the null hypothesis H0 : σ 2

υ = 0 against the
alternative hypothesis H1 : σ 2

υ > 0. However, as pointed out by LaMotte and
McWhorter (1978), it impossible to evaluate the power of such a test. For this
reason, they recommended basing the test on the ratio σ 2

υ /σ 2
ξ , which makes the

computation of the test’s power possible.
We use the locally most powerful invariant (LMPI) test developed by Ny-

blom and Mäkeläinen (1983) to test H0 : σ 2
υ /σ 2

ξ = 0 against H1 : σ 2
υ /σ 2

ξ > 0. It
follows from Equation (2.1) that we can rewrite �κ1(t) as a sum of past inno-
vations:

�κ1(t) = C1(ta) +
t∑

i=ta+1

υ(i) + ξ(t), t = ta + 1, ta + 2, . . . , tb.

Consequently,

cov(�κ1(s), �κ1(t)) = σ 2
υ · (min(s, t) − ta) + δs,tσ

2
ξ ,

where δs,t equals 1 if s = t and 0 otherwise, and s, t = ta + 1, ta +
2, . . . , tb. It immediately follows that ��κ1 = (�κ1(ta + 1), . . . , �κ1(tb))′ ∼
MVN

(
XC1(ta), σ 2

ξ (Itb−ta + σ 2
υ /σ 2

ξ · V)
)
, where

X =

⎛
⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎠ , V =

⎛
⎜⎜⎝

1 1 · · · 1
1 2 · · · 2
...

...
. . .

...

1 2 · · · tb − ta

⎞
⎟⎟⎠ ,

MVN represents a multivariate normal distribution, and Ik denotes a k-by-k
identity matrix.

Using the generalized Neyman–Pearson lemma, the LMPI test rejects when
the LMPI test statistic is greater than some constant that defines the rejec-
tion region. On the basis of our set-up, the LMPI test statistic under the null
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hypothesis can be expressed as

LLMPI = (��κ1 − XĈ1)
′V(��κ1 − XĈ1)

(��κ1 − XĈ1)′(��κ1 − XĈ1)

=

tb∑ tb∑
s,t=ta+1

(min(s, t) − ta)
(
�κ1(s) − Ĉ1

) (
�κ1(t) − Ĉ1

)
tb∑

t=ta+1

(
�κ1(t) − Ĉ1

)2

=

tb∑
t=ta+1

(
tb∑
s=t

(�κ1(s) − Ĉ1)

)2

tb∑
t=ta+1

(
�κ1(t) − Ĉ1

)2 .

The derivation of the distribution of LLMPI is based on the property of in-
variance in translation. In particular, the denominator of LLMPI can be trans-
formed into a χ2 variable, while the numerator can be transformed into a lin-
ear combination of independent χ2 variables. Using the results of Nyblom and
Mäkeläinen (1983), LLMPI follows the same distribution as

tb−ta−1∑
k=1

λk,tb−ta
(
1 + λk,tb−taσ

2
υ /σ 2

ξ

)
u2k

tb−ta−1∑
k=1

(
1 + λk,tb−taσ 2

υ /σ 2
ξ

)
u2k

,

where uk’s are i.i.d. standard normal random variables and λ−1
k,tb−ta = 2(1 −

cos(πk/(tb − ta))) for k = 1, 2, . . . , (tb − ta − 1). At a significance level of α, the
rejection region cα for the LMPI test can be constructed by solving following
equation:

α = Pr
(

LLMPI

tb − ta − 1
> cα

)
= Pr

(
tb−ta−1∑
k=1

(
λk,tb−ta

tb − ta − 1
− cα

)
u2k > 0

)
.

The value of cα can be solved numerically by applying Imhof’s (1961) method
of inversing the characteristic functions. It is found that at α = 0.05, the value
of c0.05 for our tests is 0.4689.

The calculated values of LLMPI/(tb−ta−1) for testing stochastic drifts in κ1(t)
and κ2(t) are 2.0949 and 0.5087, respectively. Because these values are strictly
greater than c0.05 = 0.4689, the null hypotheses for both tests are rejected at a
5% level of significance. The test results recommend modeling both κ1(t) and
κ2(t) with stochastic drifts.
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3. THE LLCBD MODEL

3.1. Model specification

Motivated by the results of the LMPI test, we propose the LLCBD model
whereby the drifts in κ1(t) and κ2(t) are stochastic. For notational convenience,
we define

yx,t := ln
(

qx,t
1 − qx,t

)
.

As with the original CBD model, the LLCBD model assumes that

yx,t = κ1(t) + κ2(t)(x− x̄) + εx,t, for x = xc, xc + 1, . . . , xd , (3.1)

where [xc, xd ] represents the age range to which the model is being applied, x̄
represents the average over the sample age range [xa, xb] to which the model is
fitted, and εx,t’s are the sampling errors, which are assumed to be i.i.d. normally
distributedwith a zeromean and a constant variance of σ 2

ε . Note that [xc, xd ] can
be wider than the sample age range [xa, xb], because the smooth age-interaction
function x − x̄ in the model permits extrapolation across the age dimension.
Note also that the quantity being modeled (qx,t) is the crude conditional death
probability, so εx,t in Equation (3.1) measures the uncertainty due to variation
in the actual number of deaths, provided that the unobserved underlying death
probability

q̃x,t = eκ1(t)+(x−x̄)κ2(t)

1 + eκ1(t)+(x−x̄)κ2(t) (3.2)

is known. The variability of εx,t’s depends critically on the size of the population
being modeled. Other things equal, the larger the population size is, the smaller
the variance of εx,t (i.e., σ 2

ε ) is.
The difference between the original CBD and the LLCBDmodels lies in the

way in which the time-varying stochastic factors κ1(t) and κ2(t) are modeled.
Specifically, for i = 1, 2, κi (t) in the LLCBDmodel follows the following system
of stochastic processes:{

κi (t) = Ci (t − 1) + κi (t − 1) + ηi (t),

Ci (t) = Ci (t − 1) + ηi+2(t).

Equivalently speaking, κi (t) follows a random walk with a stochastic drift,
which itself follows another random walk. We describe this extension of the
CBD model as “locally linear”, since the drifts in κ1(t) and κ2(t) at different
discrete time steps are different. We further assume that the vector of innova-
tions �ηt = (η1(t), η2(t), η3(t), η4(t))′ possesses no serial correlation and follows
a multivariate normal distribution with a zero mean vector and a covariance
matrix Q. Note that �ηt measures the uncertainty surrounding the unobserved
underlying death probability (i.e., systematic longevity risk). This piece of un-
certainty exists even if the number of persons-at-risk is infinitely large.

https://doi.org/10.1017/asb.2016.33 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.33


88 Y. LIU AND J. S.-H. LI

By design, all four hidden states, κ1(t), κ2(t), C1(t) and C2(t), in the LL-
CBD model are stochastic. Therefore, Q in the LLCBD model must be pos-
itive definite, so that the multivariate normal distribution which �ηt follows is
non-degenerate. Let Qi, j be the (i, j)th element in matrix Q. We permit the
off-diagonal elements in Q (i.e., Qi, j for i �= j ) to be non-zero so that the inno-
vations can be statically correlated with one another.

All four hidden states in the LLCBDmodel are interpretable. As in the orig-
inal CBDmodel, κ1(t) and κ2(t), respectively represent the level and slope of the
mortality curve (the curve of qx,t in year t) after a logit transformation. Hence, a
reduction in κ1(t) indicates an overall mortality improvement, while an increase
in κ2(t) means that mortality (in logit scale) at younger ages (below the mean
x̄ of the sample age range) improves more rapidly than at older ages. Because
C1(t) and C1(t), respectively govern the rates of change in κ1(t) and κ2(t), we
can interpretC1(t) to mean the (local) pace of mortality improvement andC2(t)
to mean the (local) change in the age distribution of mortality improvements.

To facilitate estimation and analyses, it is more convenient to express
the LLCBD model as a linear Gaussian state-space model comprising of
an observation equation and an unobservable state process. We let �yt =
(yxc,t, yxc+1,t, . . . , yxd ,t)

′ be the vector of observations at time t. The observation
equation is given by

�yt = B�αt + �εt,
where

B =

⎛
⎜⎜⎝

1 xc − x̄ 0 0
1 xc + 1 − x̄ 0 0
...

...
...

...

1 xd − x̄ 0 0

⎞
⎟⎟⎠ ,

�αt = (κ1(t), κ2(t),C1(t),C2(t))′ is the vector of unobservable states at time t
and �εt = (εxc,t, εxc+1,t, . . . , εxd ,t)

′ is the vector of error terms at time t. Given the

distributional assumptions we made, �εt i.i.d.∼ MVN(0, σ 2
ε · Ixd−xc+1).

The unobservable state process can be expressed as

�αt = A�αt−1 + �ηt,
where

A=

⎛
⎜⎝

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

⎞
⎟⎠

and �ηt, as previously defined, is the time-t innovation vector which follows
MVN(0, Q).

The state-space specification above is quite general and can be adapted easily
to yield different model variants.Most notably, we can recover the original CBD
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model by setting

Q =

⎛
⎜⎝
Q1,1 Q1,2 0 0
Q2,1 Q2,2 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ ,

where Qi, j for i, j = 1, 2 are free parameters, so that the drift terms are forced
to be constant. In this special case, �ηt follows a degenerate multivariate normal
distribution. Tomaintain the stochastic nature of κ1(t) and κ2(t), the sub-matrix

Q∗ :=
(
Q11 Q12
Q21 Q22

)
(3.3)

must be positive definite.

3.2. Estimation

To illustrate, we fit the LLCBD model to the mortality data of Canadian males
over a calibration window of 1941–2010 and an age range of 50–89. As a com-
parison, we also fit the original CBDmodel to the same data set. The estimation
of unknown parameters and retrieval of the hidden states are accomplished by
the EM algorithm and the Kalman filter, the details of which are provided in
the Appendix.

Table 1 displays the estimated parameters (i.e., σ 2
ε and Q) for both the origi-

nal CBDmodel and the LLCBDmodel. Also shown in the table are the param-
eters’ confidence intervals, which are computed by bootstrapping (Stoffer and
Wall, 1991; Cavanaugh and Shumway, 1997). We observe that the permission
of stochastic drifts leads to only a minimal change in σ 2

ε , but results in rather
significant reductions in Q1,1 and Q2,2. The latter observation is because in the
LLCBD model, part of the volatilities of �κ1(t) and �κ2(t) is captured by Q3,3
and Q4,4.

In Figure 2, we show the values of the hidden states in both estimatedmodels.
The values for years 1941 to 2010 are retrieved from the historical data, whereas
those for years 2011 and onwards are forecasted. The degree of forecast uncer-
tainty for each hidden state can be seen from the corresponding fan chart, which
shows the central 10% prediction interval with the heaviest shading, surrounded
by the 20%, 30%, . . . , 90% prediction intervals with progressively lighter shad-
ings. The line in the middle of each fan chart represents the corresponding me-
dian forecast.

Let us first focus onC1(t) andC2(t). Under the LLCBDmodel, the retrieved
values of C1(t) and C2(t) vary considerably over the calibration window, pro-
viding another piece of evidence against the assumption of constant drifts; the
median forecasts ofC1(t) andC2(t) are in line with the retrieved values in the re-
cent past, and are surrounded by ample forecast uncertainty. In sharp contrast,
under the original CBDmodel, the retrieved and forecasted values of C1(t) and
C2(t) are constant over time, and are roughly equal to the average values of
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TABLE 1

THE ESTIMATED VALUES OF σ 2
ε AND Q AND THE CORRESPONDING 95% CONFIDENCE INTERVALS, THE

ORIGINAL CBD MODEL AND THE LLCBD MODEL.

Parameter Estimate 95% Confidence Interval

The Original CBDModel

σ 2
ε 2.2462 × 10−3 (2.1291 × 10−3, 2.3664 × 10−3)

Q1,1 2.0164 × 10−4 (1.1644 × 10−4, 3.0781 × 10−4)

Q1,2 8.3876 × 10−7 (−3.5692 × 10−6, 5.0612 × 10−6)

Q2,2 7.0298 × 10−7 (3.4742 × 10−7, 1.1430 × 10−6)

The LLCBDModel

σ 2
ε 2.2109 × 10−3 (2.1237 × 10−3, 2.3735 × 10−3)

Q1,1 6.6911 × 10−5 (2.4100 × 10−5, 1.3649 × 10−4)

Q1,2 3.2010 × 10−6 (6.1500 × 10−7, 6.1600 × 10−6)

Q1,3 −7.0967 × 10−6 (−1.6900 × 10−5, 1.3950 × 10−5)

Q1,4 −1.0880 × 10−6 (−2.0000 × 10−6, 1.6600 × 10−7)

Q2,2 1.7979 × 10−7 (4.9750 × 10−8, 4.8300 × 10−7)

Q2,3 −1.3259 × 10−7 (−7.7000 × 10−7, 1.1300 × 10−6)

Q2,4 −6.4419 × 10−8 (−1.0600 × 10−7, 8.0700 × 10−9)

Q3,3 4.4151 × 10−6 (2.0650 × 10−7, 1.1300 × 10−5)

Q3,4 −4.3974 × 10−8 (−2.7950 × 10−7, 2.8450 × 10−7)

Q4,4 2.5681 × 10−8 (2.6850 × 10−9, 5.5850 × 10−8)

C1(t) and C2(t) in the LLCBD model retrieved over the calibration window;
the forecasted values are apparently biased high.

The patterns of the retrieved values of C1(t) and C2(t) in the LLCBDmodel
are informative. The trend inC1(t) appears to fluctuate around a constant prior
to the 1970s, but then reduces rapidly over the next two decades. The rapid re-
duction in C1(t) echoes the observations made by Kannisto et al. (1994) and
Vaupel (1997) that the rates of mortality improvement in the developed world
significantly accelerated in the 1970s. The trend in C2(t) also seems stable prior
to the 1970s, but then the stability ceases. The pattern of C2(t) suggests that the
age distribution of mortality improvements for Canadian males has undergone
rapid changes over the past four decades.

Next, we turn to the patterns of κ1(t) and κ2(t) over time. The dynamics of
these two hidden states are of our particular interest, because the death probabil-
ities for all ages at time t are determined entirely by the values of κ1(t) and κ2(t).
For κ1(t) and κ2(t), the two models yield similar retrieved values, but highly dif-
ferent forecasts. For the LLCBD model, the gradients of the median forecasts
and the retrieved values in the recent past are quite consistent with each other,
but this consistency does not apply to the original CBD model. These obser-
vations are the consequences of the aforementioned differences in the patterns
of C1(t) and C2(t) — which determine the expected speed at which κ1(t) and
κ2(t) vary — generated from the two models. It is also noteworthy to compare
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FIGURE 2: The retrieved (1941–2010) and forecasted (2011–2060) values of the hidden states, κ1(t), κ2(t),
C1(t) and C2(t), in the original CBD model and the LLCBD model.

the levels of forecast uncertainty. By permitting stochastic drifts, the LLCBD
model results in more conservative prediction intervals for κ1(t) and κ2(t) (and
hence for qx,t) in the long run. This outcome is not surprising, because the ran-
domness associated with the drifts contributes to the uncertainty surrounding
the forecasts of κ1(t) and κ2(t).

Finally, we remark that the hidden states retrieved over 1941–2010 are sub-
ject to uncertainty. Figure 3 shows the 95% confidence intervals for the retrieved
hidden states in the LLCBDmodel. Following Shumway and Stoffer (2006), the
95% confidence interval for κ1(t) is calculated as κ1(t) ± 1.96

√
Var(κ1(t)), and

those for the other hidden states are calculated in a similar manner. The vari-
ances of the retrieved states are computed using the Kalman filter and Kalman
smoother, which are detailed in the Appendix.

3.3. Goodness-of-fit

We first evaluate the fit of the LLCBD model to the historical data with a test
suggested byHarvey (1990). The test is based on themodel’s vector of prediction
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FIGURE 3: The retrieved hidden states (solid lines) in the LLCBD model and their 95% confidence intervals
(dashed lines), 1941–2010.

errors, �wt = (wxa ,t, wxa+1,t, . . . , wxb,t)
′, which can be computed as

�wt = �̃yt − BAE[�αt−1], t = ta + 1, ta + 2, . . . , tb,

where �̃yt denotes the realization of �yt, E[�αt−1] represents the retrieved vector of
hidden states at time t−1, and BAE[�αt−1] is the one-step ahead predicted value
of �yt. According to Harvey (1990), the goodness-of-fit of a state-space model
can be evaluated through the prediction error variance σ 2

p and the prediction
error mean deviation D, which can approximated as

σ 2
p ≈ 1

(xb − xa + 1)(tb − ta)

xb∑
x=xa

tb∑
t=ta+1

w2
x,t

and

D ≈ 1
(xb − xa + 1)(tb − ta)

xd∑
x=xa

tb∑
t=ta+1

|wx,t|,

respectively. If the sample size is large and the model is specified correctly,
then wx,t’s are i.i.d. normal random variables with a zero mean and a constant
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TABLE 2

THE VALUES OF N , ln(L̂) AND AIC FOR THE ORIGINAL CBD MODEL AND THE LLCBD MODEL.

Model ln(L̂) AIC N
CBD 4465.05 −8922.11 4
LLCBD 4487.89 −8953.78 11

variance σ 2
p . Under this condition,2 the prediction error mean deviation D

would converge in probability to (2/π)0.5σp. Therefore, if the model provides
an adequate fit to the historical data, then the value of (2/π)σ 2

p/(D2) should
be close to 1. For the fitted LLCBD model, σ 2

p = 0.0023, D = 0.0370 and
thus (2/π)σ 2

p/(D2) = 1.07. The calculated value of (2/π)σ 2
p/(D2) indicates an

adequate fit.
Next, we compare the fit of the LLCBDmodel with that of the original CBD

model. When formulated as a Gaussian state-space model, the original CBD
model is nested in the LLCBD model. Therefore, we can evaluate the relative
goodness-of-fit of the two models by the Akaike information criterion (AIC),
which is defined as

AIC = 2(N − ln(L̂)),

where N and L̂ represent the number of parameters and the maximized likeli-
hood value, respectively. A model with a smaller AIC value is more preferred.
We remark here that in a state-space formulation, κ1(t), κ2(t), C1(t) and C2(t)
are regarded as hidden states rather thanmodel parameters. Hence, for example,
the total number of parameters in the LLCBD model is 11, encompassing σ 2

ε

and 10 distinct elements of matrix Q.
In Table 2, we report the values of N , ln(L̂) and AIC for each model we

estimated. The results indicate that the LLCBD model provides a significantly
better fit than the original CBD model, taken into account the additional pa-
rameters it contains.

3.4. Forecasting performance

Wenow perform two tests to evaluate the forecasting performance of themodels
under consideration. The first test is the “contracting horizon backtest” previ-
ously considered by Dowd et al. (2010b) and Lee and Miller (2001). The test is
based on the accuracy of the projections of ln(qx,t/1−qx,t) in year t = 2010, us-
ing models that are estimated to data over different calibration windows. In par-
ticular, the first forecast is derived fromdata over 1941–1971, the second forecast
is derived from data over 1941–1972, and so on. As the end point of calibration,
window becomes closer to 2010, the forecasted value of ln(qx,2010/1 − qx,2010)
should converge to the actual value.Wemay regard the forecasting performance
of a model as good if the model yields projections that are close to the actual
value, nomatter what the calibration window is. The result of this test for x = 60
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FIGURE 4: The median and 95% interval forecasts of ln(q60,2010/1 − q60,2010), generated from the CBD and
LLCBD models that estimated to data over different calibration windows. The starting point of the

calibration windows is always 1941 but end points range from 1971 to 2009.

is shown in Figure 4. Except the first few, the median forecasts produced by the
LLCBDmodel are fairly close to the actual value realized in 2010, but those gen-
erated from the original CBD model are consistently biased high. In addition,
by comparing the proportions of the 95% prediction intervals that encompass
the actual value, we may infer that the LLCBDmodel provides a more adequate
provision of uncertainty. The results for other values of x in the sample age range
are similar and are therefore not shown.

In the second test, we estimate the models to restricted calibration windows,
and then compare the forecasted values produced by the models with the actual
values that are not used in fitting the models. We consider 39 restricted sample
periods, ranging from 1941–1971 to 1941–2009. The comparisons are made on
the basis of two metrics: Mean Error (ME) and Mean Squared Error (MSE).
The results of this test are tabulated in Table 3. For instance, theME of−0.0675
for the LLCBD model with a calibration window of 1941–1995 is computed by
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TABLE 3

THE MEAN ERRORS (ME) AND MEAN SQUARED ERRORS (MSE) FOR THE FORECASTS OF ln(qx,t/1 − qx,t)
PRODUCED BY THE ORIGINAL CBD MODEL AND THE LLCBD MODEL, USING DATA OVER DIFFERENT

CALIBRATION WINDOWS.

ME MSE ME MSE
Calibration Calibration
Window LLCBD CBD LLCBD CBD Window LLCBD CBD LLCBD CBD

1941–1971 −0.1956 −0.2267 0.0927 0.1120 1941–1991 −0.0054 −0.1204 0.0195 0.0250
1941–1972 −0.1775 −0.2493 0.0797 0.1209 1941–1992 0.0009 −0.1116 0.0169 0.0225
1941–1973 −0.1925 −0.2563 0.0850 0.1230 1941–1993 −0.0534 −0.1267 0.0155 0.0256
1941–1974 −0.2409 −0.2661 0.1027 0.1262 1941–1994 −0.0528 −0.1215 0.0136 0.0238
1941–1975 −0.2223 −0.2611 0.0871 0.1203 1941–1995 −0.0675 −0.1239 0.0139 0.0239
1941–1976 −0.2025 −0.2623 0.0755 0.1192 1941–1996 −0.0616 −0.1183 0.0131 0.0222
1941–1977 −0.1264 −0.2434 0.0548 0.1119 1941–1997 −0.0638 −0.1163 0.0144 0.0216
1941–1978 −0.1151 −0.2338 0.0521 0.1059 1941–1998 −0.0587 −0.1107 0.0177 0.0210
1941–1979 −0.0567 −0.2046 0.0407 0.0909 1941–1999 −0.0507 −0.1057 0.0187 0.0201
1941–1980 −0.0691 −0.2049 0.0117 0.0826 1941–2000 −0.0095 −0.0842 0.0143 0.0145
1941–1981 −0.0232 −0.1848 0.0112 0.0683 1941–2001 0.0047 −0.0688 0.0107 0.0116
1941–1982 −0.0668 −0.1933 0.0146 0.0686 1941–2002 −0.0089 −0.0669 0.0079 0.0112
1941–1983 −0.0386 −0.1768 0.0135 0.0584 1941–2003 −0.0199 −0.0657 0.0069 0.0109
1941–1984 −0.0213 −0.1649 0.0146 0.0513 1941–2004 −0.0059 −0.0506 0.0055 0.0087
1941–1985 −0.0683 −0.1741 0.0171 0.0512 1941–2005 −0.0020 −0.0411 0.0057 0.0079
1941–1986 −0.0822 −0.1745 0.0159 0.0499 1941–2006 0.0244 −0.0143 0.0061 0.0064
1941–1987 −0.0389 −0.1545 0.0130 0.0409 1941–2007 0.0001 −0.0289 0.0059 0.0071
1941–1988 −0.0835 −0.1644 0.0224 0.0407 1941–2008 −0.0187 −0.0375 0.0062 0.0074
1941–1989 −0.0554 −0.1507 0.0190 0.0353 1941–2009 −0.0171 −0.0293 0.0059 0.0065
1941–1990 −0.0043 −0.1277 0.0176 0.0281

averaging the errors (defined as the actual value less the forecasted value) made
in the forecasts of ln(qx,t/1−qx,t) for x = 50, . . . , 89 and t = 1996, . . . , 2010. It
can be seen that on the basis of all three metrics, the LLCBDmodel consistently
yields better forecast accuracy in comparison to the original CBD model.

3.5. Robustness

When modeling mortality dynamics, it is reasonable to incorporate the most re-
cent data. However, there is no consensus among researchers as to what length
of calibration window should be used. It has been demonstrated extensively that
mortality forecasts produced by traditional projectionmodels, in which the drift
term(s) is/are assumed to be constant, are highly sensitive to the length of the
calibrationwindowused.While a longer calibrationwindowpermits us to incor-
porate more information from the historical data, it generally leads to a forecast
that is not sufficiently consistent with the recent trend. This problem, as we are
about to demonstrate, may be ameliorated by permitting stochastic drifts.
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TABLE 4

THE LMPI TEST RESULTS (TEST STATISTIC AND CRITICAL VALUES AT 5% AND 10% SIGNIFICANCE LEVELS)
FOR DIFFERENT CALIBRATION WINDOWS.

Test Statistic Critical Value

Calibration Window �κ1(t) �κ2(t) 5% 10%

1941–2010 2.0949 0.5087 0.4689 0.3485
1951–2010 2.2383 0.3515 0.4709 0.3503
1961–2010 1.9063 0.2661 0.4719 0.3529
1971–2010 0.9425 0.4444 0.4728 0.3544

We consider four calibration windows which have the same end point but
different starting points: 1941–2010, 1951–2010, 1961–2010 and 1971–2010.We
first perform the LMPI test for the four calibration windows (see Table 4). For
all four calibration windows, the null hypothesis of a constant drift in κ1(t) is
rejected at the 5% significant level; and for all but only one calibration window,
the null hypothesis of a constant drift in κ2(t) is rejected at the 10% significant
level.

Then, we estimate both the original CBD model and the LLCBD model to
data over the four calibration windows. For each model, we examine how the
resulting forecasts may change as the starting point of the calibration window
moves.

Figure 5 depicts the forecasts of the hidden states in both models on the
basis of the four different calibration windows. For the original CBD model,
the four calibration windows lead to noticeably different estimates of C1(t) and
C2(t), and hence considerably different rates of change in κ1(t) and κ2(t). The
four median forecasts of κ1(t) and κ2(t) are clearly diverging, while the four fan
charts are far from being overlapping one another. Despite the forecasts based
on the calibration window starting in 1971 are somewhat consistent with the
recent trends, the consistency diminishes significantly as the calibration window
begins earlier.

Compared to the original CBD model, the LLCBD model produces me-
dian forecasts that are substantially more robust with respect to changes in the
beginning point of the calibration window. Regardless of how long the calibra-
tion window is, the consistency of the median forecasts with the recent trends
remains. These features may be attributed again to the permission of varying
drifts, so that the projected rates of change in κ1(t) and κ2(t) are in line with the
rates of change in the recent past rather than being close to the average rates of
change over the calibration window.

The widths of the fan charts for C1(t) and C2(t) in the LLCBD model de-
serve a few comments. ForC1(t), the longer the calibration window is, the wider
the fan chart is. This relationship is expected, as more historical variations are
incorporated into the model when the calibration window lengthens. However,
the opposite is true for C2(t). This apparently non-intuitive relationship may be
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FIGURE 5: Forecasts of the hidden states in the original CBD model and the LLCBD model that are fitted to
data over four calibration windows: 1941–2010, 1951–2010, 1961–2010, 1971–2010.
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FIGURE 6: Forecasts of ln(qx,t) at x = 65, 75 produced by the original CBD model and the LLCBD model
that are fitted to data over four calibration windows: 1941–2010, 1951–2010, 1961–2010, 1971–2010.

attributed to the fact that volatility of the retrieved values of C2(t) in the earlier
decades is much smaller. As we begin the calibration window earlier, the cali-
bration window covers a longer period of lowC2(t) volatility while the period of
highC2(t) volatility covered remains unchanged, so the (average)C2(t) volatility
captured by estimated model becomes smaller.

Figure 6 shows, for both models, the forecasts of qx,t at ages 65 and 75
that are based on the four different calibration windows. In terms of qx,t, the
difference between the robustness of the two models is even more apparent.

Still, there exists small variation in the width of the LLCBD fan charts. As
ln(qx,t) is a function of κ1(t) and κ2(t), the uncertainty surrounding ln(qx,t) de-
pends on the uncertainty surroundingC1(t) andC2(t). In Figure 6, the two ages,
x = 65 and x = 75, considered are close to x̄ = 69.5. When x is close to x̄, the
coefficient (x − x̄) of κ2(t) is small, which means the uncertainty surrounding
C2(t) has a relatively small impact on the uncertainty surrounding ln(qx,t). For
this reason, the fan charts of ln(qx,t) have similar patterns to the fan charts of
C1(t): The longer the calibration window is, the wider the fan chart is.

As in the forecasts of the hidden states, in the long run the interval fore-
casts of qx,t produced by the LLCBD model are more conservative than those
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generated from the original CBD model. The fan charts derived from the
LLCBD model encompass a larger collection of possible long-term mortality
scenarios, ranging from a zeromortality improvement rate to improvement rates
that are even greater that those realized in the recent past. As explained below,
we view the provision of fan charts that are wider in the long run as an advan-
tage.

When developing a mortality model, it is important to consider biological
reasonableness, a concept that was first raised by Cairns et al. (2006) in the
context of median mortality forecasts. Simply put, this concept means that the
collective views of experts in mortality should be taken into account. For exam-
ple, one should rule out a model that projects a strictly positive probability of
immortality.

The concept of biological reasonableness should also be applicable to inter-
val forecasts. In the context interval mortality forecasting, we believe that it is
legitimate to interpret biological reasonableness as follows: If the collective view
of experts is that future life expectancies should not exceed a certain range, then
a biologically reasonable interval forecast should not be wider than the range
possible of outcomes that experts agree on; in contrast, if experts have rather
different opinions on the prospect of longevity, then a biologically reasonable
interval forecast should take a shape that encompasses as much as possible the
range of opinions. We use two examples to explain why we regard the interval
mortality forecasts produced by our LLCBD model are more biologically rea-
sonable.

The seminal work of Oeppen and Vaupel (2002) found that the trend in
record life expectancy since 1840 is close to perfectly linear, showing no sign
of deceleration. It was then argued that the linear trend would continue in the
coming decades. To achieve a linear climb in life expectancy, age-specific death
probabilities need to decline at an increasing pace. As shown in Figure 6, the
plausibility of an increasing rate of mortality recline can be captured in the fan
charts derived from the LLCBD model, but not in those generated from the
original CBD model.

The recent reports produced by the Society of Actuaries (2014) and the
Canadian Institute of Actuaries (2014) suggest that (at least part of) the actuar-
ial profession in North America believes that mortality improvement rates will
reduce to 0–1% after a transitional period of some 20–30 years. The profession’s
view means that trajectories of future mortality rates will become flat or almost
flat a few decades from now. Such an outcome does not seem to be captured
by the fan charts generated using the original CBD model, but may possibly
be contained in the LLCBD fan charts whose widths increase with time more
quickly.

3.6. Excluding variation in death counts

As the quantity being modeled (qx,t) by the LLCBD model is the crude condi-
tional death probability, the fan charts in Figure 6 incorporate both systematic
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FIGURE 7: Forecasts of ln(qx,t) at x = 65, 75 produced by the LLCBD models with σ 2
ε = 0 (excluding

variation in death counts) and with σ 2
ε > 0 (including variation in death counts).

longevity risk and variation in the actual number of deaths. They reflect the level
of uncertainty surrounding the future crude death probabilities, assuming that
the population size remains stable in the future.

To exclude the uncertainty due to variation in the actual number of deaths,
we can generate fan charts of future death probabilities under the assumption
that σ 2

ε = 0. Figure 7 compares the fan charts that incorporate only systematic
longevity risk with those that incorporate both sources of uncertainty. It can
be observed that systematic longevity risk accounts for most of the total un-
certainty. This outcome is not overly surprising, because the population being
modeled is a national population with a reasonably large number of persons-at-
risk at each age over the age range under consideration.

3.7. Further comments on the dynamics of C1(t) and C2(t)

We assume that Ci (t), i = 1, 2 follows a random walk rather than a mean-
reverting stationary process (e.g., anAR(1)), on grounds that we have no a priori
knowledge about the value and more importantly the existence of the mean of
the drift vector. To substantiate the random walk assumption with statistical
evidence, we consider the Dickey–Fuller test, which tests the null hypothesis of

z(t) = z(t − 1) + εz(t)

against the alternative hypothesis of

z(t) = μz + φzz(t − 1) + εz(t)
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TABLE 5

THE RESULTS OF THE DICKEY–FULLER TESTS FOR A RANDOM WALK AGAINST AN AR(1), APPLIED TO THE
5- AND 10-YEAR MOVING AVERAGES OF �κ1(t) AND �κ2(t) IN THE ORIGINAL CBD MODEL AND THE

RETRIEVED VALUES OF C1(t) AND C2(t) IN THE LLCBD MODEL. A 5% LEVEL OF SIGNIFICANCE IS USED.

p-value Test Statistic Critical Value p-value Test Statistic Critical Value

5-Year Moving Averages of �κ1(t) 5-Year Moving Averages of �κ2(t)

0.6293 −1.2349 −2.9097 0.1596 −2.3529 −2.9097

10-Year Moving Averages of �κ1(t) 10-Year Moving Averages of �κ2(t)

0.9572 0.0316 −2.9141 0.5815 −1.3441 −2.9141

Retrieved Values of C1(t) Retrieved Values of C2(t)

0.9802 0.3685 −2.9054 0.7115 −1.0467 −2.9054

for a generic time-series {z(t)}, whereμz is a constant and φz is another constant
with an absolute value that is strictly smaller than 1. The test is applied to the
following:

1. 5-year moving averages of �κ1(t) and �κ2(t) in the original CBD model,
estimated using the least squares method;

2. 10-year moving averages of �κ1(t) and �κ2(t) in the original CBD model,
estimated using the least squares method;

3. the retrieved values of C1(t) and C2(t) in the LLCBD model.

As mentioned in Section 2, (a) and (b) may be regarded as proxies for the drifts
at different time points. The results of all tests performed (see Table 5) are in
favour of a random walk.

4. OTHER MODELING CONSIDERATIONS

4.1. A comparison with models with additional dynamic factors and/or age
effect structures

One may wonder if the benefits of using a stochastic drift process can be
achieved by using models with additional dynamic factors and/or differ-
ent age effect structures. For this reason, we further compare the proposed
LLCBD model against the following four discrete-time stochastic mortality
models, which have been considered extensively in the literature (see, e.g., Cairns
et al., 2009, 2011a; Dowd et al., 2010a,b).3

• The original Lee–Carter model (Model M1):

ln(mx,t) = a(x) + b(x)κ(t) + εx,t,

https://doi.org/10.1017/asb.2016.33 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.33


102 Y. LIU AND J. S.-H. LI

where a(x) and b(x) are age-specific parameters, κ(t) is a time-varying dy-
namic factor, and εx,t is the error term. Compared to the CBD/LLCBD
model, Model M1 has one fewer dynamic factor and a different age effect
structure (specified by parameters a(x) and b(x)).

• The Renshaw–Haberman model (Model M2):

ln(mx,t) = a(x) + b1(x)κ(t) + b2(x)γ (t − x) + εx,t,

where a(x), b1(x) and b2(x) are age-specific parameters, κ(t) is a time-varying
dynamic factor, γ (t − x) is a cohort-varying dynamic factor, and εx,t is the
error term. Compared to the CBD/LLCBD model, Model M2 has the same
number of dynamic factors, but one of which is cohort-related rather than
time-related. It has also a different age effect structure.

• The CBD model with a cohort effect (Model M6):

ln
(

qx,t
1 − qx,t

)
= κ1(t) + κ2(t)(x− x̄) + γ (t − x) + εx,t,

where x̄ is the average of the age range [xa, xb] to which the model is cal-
ibrated, k1(t) and k2(t) are time-varying dynamic factors, γ (t − x) is a
cohort-varying dynamic factor, and εx,t is the error term. Compared to the
CBD/LLCBD model, Model M6 contains one extra dynamic factor, which
varies with year-of-birth.

• The CBD model with quadratic and cohort effects (Model M7):

ln
(

qx,t
1 − qx,t

)
= κ

(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ̂ 2

x ) + γ (t − x) + εx,t,

where σ̂ 2
x is the mean of (x− x̄)2 over [xa, xb]. Compared to the CBD/LLCBD

model, Model M7 contains two extra dynamic factors, one of which varies
with time and the other of which varies with year-of-birth.

As what we did for the CBD and LLCBDmodels in Section 3.4, we evaluate
the forecasting performance of the four additional models by

i. using the “contracting horizon backtest” considered inDowd et al. (2010b),
and

ii. fitting the models to restricted calibration windows and then comparing
the resulting forecasts with the actual values that are not used in fitting the
models.

The result of (i) is shown in Figure 8. By comparing Figure 8 with the upper
panel of Figure 4, we can conclude that none of the four additional models can
produce forecasts with the desirable properties (more accurate median forecasts
and more adequate provisions of uncertainty) possessed by the LLCBD fore-
casts.
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FIGURE 8: The median and 95% interval forecasts of ln(q60,2010/1 − q60,2010), generated from Models M1,
M2, M6 and M7 that are estimated to data over different calibration windows. The starting point of the

calibration windows is always 1941 but end points range from 1971 to 2009.

The result of (ii) is reported in Figure 9. The LLCBDmodel generally yields
ME and MSE with smaller magnitudes compared to any one of the alternative
models. The benefit of using the LLCBD model is the most apparent when the
end point of the calibration window is between 1980 and 1990.

The additional evaluation work indicates that the benefit of using a stochas-
tic drift process cannot be obtained simply by using more dynamic factors or
tweaking the age-effect structures. Of course, it may be possible to further im-
prove the forecasting performance by adding more dynamic factors (e.g., a co-
hort effect) to the LLCBD model. These possible extensions are left for future
research.

4.2. Sensitivity to the choice of age range

The baseline estimation result is based on an age range of [xa, xb] = [50, 89].
This age range is chosen for the following reasons.

First, the age range of [50, 89] is often used in the literature (see, e.g., Cairns
et al., 2009) to calibrate stochastic mortality models for pension and annuity
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FIGURE 9: The Mean Error (ME) and Mean Squared Error (MSE) for the forecasts of ln(qx,t/1 − qx,t)
produced by the LLCBD model and Models M1, M2, M5 (the original CBD), M6 and M7.

valuations. Using this age range enables readers to compare the estimation re-
sults in this and other papers more readily.

Second, according to the Human Mortality Database documentation
(Wilmoth et al., 2005), raw population counts for Canadians are available up
to age 89 only. Population counts beyond age 89 are not “real” but estimated
using the extinct cohort method.
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FIGURE 10: The retrieved values of the hidden states, κ1(t), κ2(t), C1(t) and C2(t), in the LLCBD model
when different age ranges are used in estimation.

Third, as themodels are built formodeling longevity risk at pensionable ages,
beginning the sample age range at 50 prevents the models from being influenced
by the (possibly different) mortality improvement dynamics at younger ages.
Also, the age effect structure in the CBD/LLCBD model does not capture the
accident hump at younger ages.

In this sub-section, we examine how the estimation results may be different
if different age ranges are used. We consider the following six age ranges: 45–94,
46–93, 47–92, 48–91, 49–90 and 50–89 (the baseline age range). Note that the
average age over each of the six age ranges is x̄ = 69.5. It is necessary to keep x̄
fixed, because otherwise κ1(t) and κ2(t) would be scaled differently.

Figure 10 shows the retrieved values of the hidden states, κ1(t), κ2(t), C1(t)
and C2(t), in the LLCBD model for each age range under consideration. For
most of the time, the retrieved hidden states are robust relative to the choice of
age range. Over the last 10 years of the calibration window, the retrieved drifts
are arguably quite sensitive to the age range used. However, compared to the
widths of the confidence intervals (Figure 3), the changes in the retrieved drifts
due to changes in age range are small.
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TABLE 6

THE LMPI TEST RESULTS (TEST STATISTIC AND CRITICAL VALUES AT 5% AND 10% LEVELS OF
SIGNIFICANCE) FOR κ1(t) AND κ2(t) ESTIMATED FROM THE FOUR ADDITIONAL DATA SETS.

Test Statistic Critical Value

Data Set κ1(t) κ2(t) 5% 10%

Dutch Male 1.4714 0.5775 0.4709 0.3503
English and Welsh Male 0.5909 0.0312 0.4689 0.3485
Japanese Unisex 0.0450 0.5258 0.4709 0.3503
Canadian Female 0.0210 0.0567 0.4689 0.3485

4.3. Application to other data sets

It would be interesting to see if stochastic drifts apply to the mortality dynam-
ics of other populations, and if the LLCBD model still outperforms when it is
fitted to other data sets. In this sub-section, we apply the testing and modeling
methods to the following additional data sets:

Population Age Range Sample Period
Dutch Male 50 to 89 1951 to 2010

English and Welsh Male 50 to 89 1941 to 2010
Japanese Unisex 50 to 89 1951 to 2010
Canadian Female 50 to 89 1941 to 2010

These data sets cover different geographical locations (Europe, North America
and Asia), genders (male, female and unisex) and sample periods (1941–2010
and 1951–2010). They are also obtained from the Human Mortality Database.

First, we apply the LMPI test to the least square estimates of the CBD
dynamic factors κ1(t) and κ2(t). The test results are reported in Table 6. For
Dutch males, the test results indicate that the drifts for both κ1(t) and κ2(t) are
stochastic. More interestingly, the test results suggest that it is possible to have
only one drift being stochastic (κ1(t) for English and Welsh males and κ2(t) for
Japanese unisex). For Canadian females, the test results conclude that none of
the two drifts is stochastic. This conclusion highlights a noteworthy fact: Just
as cohort effect (which is highly significant in the United Kingdom but not
so much in Asian populations) and jump effect (which can only be detected if
the calibration window is long enough), stochastic drift is not a universal phe-
nomenon.Whether a stochastic drift is needed depends critically on the data set
considered.

Next, we use the AIC to compare the goodness-of-fit produced by the
LLCBD models (with one and two stochastic drift(s)) and the original CBD
model. The results are shown in Table 7. For Dutch males, the optimal model
is the LLCBD model with two stochastic drifts; for English and Welsh males,
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TABLE 7

THE VALUES OF N , ln(L̂) AND AIC FOR THE MODELS FITTED TO THE FOUR ADDITIONAL DATA SETS.
(“CBD”: THE ORIGINAL CBD MODEL; “LLCBD”: THE LLCBD MODEL WITH TWO STOCHASTIC
DRIFTS; “LLCBD∗”: THE LLCBD MODEL WITH C2 BEING CONSTANT; “LLCBD∗∗”: THE LLCBD

MODEL WITH C1 BEING CONSTANT.)

Dutch Male English and Welsh Male

Model ln(L̂) AIC N ln(L̂) AIC N
CBD 3547.7047 −7087.4093 4 4146.5332 −8285.0664 4
LLCBD∗ 3556.3097 −7098.6194 7 4149.9301 −8285.8603 7
LLCBD∗∗ 3554.6960 −7095.3920 7 4149.4382 −8284.8764 7
LLCBD 3562.7838 −7103.5676 11 4153.3105 −8284.6209 11

Japanese Unisex Canadian Female

Model ln(L̂) AIC N ln(L̂) AIC N
CBD 2662.9849 −5317.9698 4 3304.2798 −6600.55951 4
LLCBD∗ 2666.4540 −5318.9079 7 3305.5235 -6597.04696 7
LLCBD∗∗ 2671.2966 −5328.5931 7 3306.0631 −6598.12613 7
LLCBD 2671.7738 −5321.5476 11 3307.2052 −6592.41038 11

the optimal model is the LLCBD model with C2 being constant; for Japanese
unisex, the optimal model is the LLCBDmodel with C1 being constant and for
Canadian females, the optimal model is the original CBDmodel. These conclu-
sions are in line with the LMPI test results.

For all of the four populations except Canadian females, we compare the
forecasts generated by the original CBDmodel and the model chosen according
to the AIC. Figure 11 displays the results of the “contracting horizon backtest”
(used in Sections 3.4 and 4.1) for the three populations. In all cases, the LLCBD
model (or its variant) yields a median forecast that is less biased and a 95%
prediction interval that captures a larger proportion of the actual values.

Figure 12 shows the values ofMEandMSEproduced by the “forecasts” gen-
erated from models that are estimated to restricted calibration windows (1941–
1971, . . . , 1941–2009 for English and Welsh males; 1951–1971, . . . , 1951–2009
for Dutch males and Japanese unisex). For Dutch males, the LLCBD model
— which contains two stochastic drifts — yields significantly higher forecast
accuracy compared to the original CBD model. For the other two populations,
the LLCBD models — of which the drifts are only partially stochastic — still
provide improved forecast accuracy, but the improvement is not that remark-
able.

Finally, we evaluate the robustness of the models relative to the length of
the calibration window used. The results are provided in Figure 13. As what we
found in Sections 3.4 and 4.1, the LLCBDmodel (or its variant) is more robust
than the original CBD model. It also yields forecasts that are more consistent
with the recent trend.
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FIGURE 11: The median and 95% interval forecasts of ln(q60,2010/1 − q60,2010), generated from models
that are estimated to data over different calibration windows. The starting point of the calibration windows

is either 1951 (Dutch male and Japanese unisex) or 1941 (English and Welsh male), but end
points range from 1971 to 2009.

5. HEDGING DRIFT AND DIFFUSION RISKS

Having modeled both drift and diffusion risks with the LLCBD model, in this
section, we explain howwemay hedge these risks by using standardized hedging
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FIGURE 12: The Mean Error (ME) and Mean Squared Error (MSE) for the forecasts of ln(qx,t/(1 − qx,t)
produced by the original CBD model and the optimal LLCBD model.

instruments. We start with a sub-section which details the assumptions made,
followed by a review of the traditional delta and delta–nuga hedging methods.
We then introduce our proposed “generalized state-space hedgingmethod”, and
conclude with some comments about the distinctions between the traditional
and newly proposed methods.

5.1. The set-up

Our goal is to hedge the longevity risk associated with a T-year temporary life
annuity immediate that is just sold. Suppose that it is now time t0 (i.e., the end
of year t0) and that the annuitant is now aged x0. Ignoring sampling risk, the
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FIGURE 13: Forecasts of ln(qx,t) for x = 75 produced by the original CBD model and the optimal LLCBD
model fitted to data over different calibration windows.

(random) present value of the liability being hedged is

L =
T∑
u=1

e−ru
t0+u∏
t=t0+1

p̃x0+t−t0−1,t
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per contract, where r is the interest rate for discounting purposes,

p̃x,t = 1 − q̃x,t

and, as defined in Equation (3.2), q̃x,t is the underlying (unobserved) conditional
probability of death in year t (between age x and x+1). Note that L is a function
of κ1(t0+1), . . . , κ1(t0+T) and κ2(t0+1), . . . , κ2(t0+T), all of which are random
as of the time when the longevity hedge is established.

The standardized hedging instruments used are q-forwards. A q-forward is a
zero-coupon swap with its floating leg proportional to the realized death prob-
ability at a certain reference age in a certain reference year and its fixed leg pro-
portional to the corresponding pre-determined forward mortality rate.

We consider a hedge portfolio of m ≥ 1 q-forwards. Let xj , tj and q f
xj ,tj

be the reference age, reference year and forward mortality rate for the j th q-
forward contract, respectively. We assume t0 < t1 < . . . < tm. We also assume
that payment exchanges hands at the end of the reference year, so that tj − t0
is the time-to-maturity for the j th q-forward. For simplicity, it is assumed in
the derivations that there is no population basis risk; that is, the q-forwards
and the liability being hedged are associated with exactly the same population
of individuals. In today’s market, the LLMA’s4 LifeMetrics indexes, to which
standardized q-forwards are linked, are based on smoothed (rather than crude)
age-specific conditional death probabilities. For this reason, we assume that the
q-forwards are linked to the underlying death probabilities that are not sub-
ject to the randomness of εx,t. Under the mentioned assumptions, the (random)
present value of the payoff from the j th q-forward contract is given by

Hj = e−r(tj−t0)(q f
xj ,tj − q̃xj ,tj ), j = 1, . . . ,m.

It is obvious that Hj depends on κ1(tj ) and κ2(tj ), which are random variables
as of the time when the longevity hedge is established.

We let Nj be the notional amount of the j th q-forward and

P = L−
m∑
j=1

Nj Hj

be the (random) present value of all cash flows when the longevity hedge is in
place. If the longevity hedge is successful, then the variability in P would be sig-
nificantly less than that in L. Using this reasoning, we assess hedge effectiveness
with the following metric:

HE = 1 − Var(P)

Var(L)
.

The value of HE is close to 1 if the longevity hedge is effective, and close to 0 if
otherwise. This metric is also used by Cairns (2011, 2013), Cairns et al. (2014),
Coughlan et al. (2011) and Li and Hardy (2011).
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5.2. A review of traditional delta and delta–nuga hedging methods

5.2.1. Delta hedging. The idea behind the traditional delta hedging method,
considered by researchers including Cairns (2011, 2013) and Zhou and Li
(2014), is to match the sensitivities of the liability being hedged and the hedg-
ing portfolio with respect to changes in the time-varying factors in the as-
sumed stochastic mortality model in year t0. If the CBD model is assumed,
then the sensitivities involved are represented by the following partial deriva-
tives: ∂L/∂κi (t0), ∂Hj/∂κi (t0), i = 1, 2, j = 1, . . . ,m.

Because L and Hj are functions of κ1(t) and κ2(t) for t > t0 rather than κ1(t0)
and κ2(t0), the partial derivatives of L and Hj with respect to κ1(t0) and κ2(t0)
cannot be computed straightforwardly. To make the estimation of sensitivities
possible, the partial derivatives are calculated using the best estimates of L and
Hj on the basis of κ1(t0) and κ2(t0):

L̂ =
T∑
u=1

e−ru
t0+u∏
t=t0+1

p̂x0+t−t0−1,t and Ĥj = e−r(tj−t0)(q f
xj ,tj − q̂xj ,tj ), (5.1)

where q̂x,t = eκ̂1(t)+(x−x̄)κ̂2(t)

1+eκ̂1(t)+(x−x̄)κ̂2(t) , p̂x,t = 1 − q̂x,t and

κ̂i (t) = κi (t0) + Ci (t0) × (t − t0), t > t0, i = 1, 2,

is the best estimate of κi (t) given κi (t0) and Ci (t0).5

The partial derivatives of L̂ and Ĥj with respect to κ1(t0) and κ2(t0) can be
computed readily as follows:

∂ L̂
∂κ1(t0)

= −
T∑
u=1

e−ru

⎛
⎝ t0+u∑
t=t0+1

q̂x0+t−t0−1,t

⎞
⎠

⎛
⎝ t0+u∏
t=t0+1

p̂x0+t−t0−1,t

⎞
⎠ ;

∂ L̂
∂κ2(t0)

= −
T∑
u=1

e−ru

⎛
⎝ t0+u∑
t=t0+1

(x0 + t − t0 − 1 − x̄)q̂x0+t−t0−1,t

⎞
⎠

×
⎛
⎝ t0+u∏
t=t0+1

p̂x0+t−t0−1,t

⎞
⎠ ;

∂ Ĥj

∂κ1(t0)
= −e−r(tj−t0) p̂xj ,tj q̂xj ,tj ;

∂ Ĥj

∂κ2(t0)
= −e−r(tj−t0)(xj − x̄) p̂xj ,tj q̂xj ,tj .

These derivatives are regarded as the “deltas” of the liability being hedged and
the hedging instruments.
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We require exactly two hedging instruments to obtain a delta-neutral posi-
tion. The notional amounts of the two q-forwards in the hedge portfolio should
satisfy the following system of equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂ L̂

∂κ1(t0)
= N1 × ∂ Ĥ1

∂κ1(t0)
+ N2 × ∂ Ĥ2

∂κ1(t0)

∂ L̂
∂κ2(t0)

= N1 × ∂ Ĥ1

∂κ2(t0)
+ N2 × ∂ Ĥ2

∂κ2(t0)

,

the solution to which is given by

(
N1
N2

)
=

⎛
⎜⎜⎜⎝

∂ Ĥ1

∂κ1(t0)
∂ Ĥ2

∂κ1(t0)

∂ Ĥ1

∂κ2(t0)
∂ Ĥ2

∂κ2(t0)

⎞
⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎝

∂ L̂
∂κ1(t0)

∂ L̂
∂κ2(t0)

⎞
⎟⎟⎟⎠ ,

provided that the inverse of the square matrix on the right-hand side exists. The
invertibility of the square matrix is discussed in Section 5.5.

5.2.2. Delta–nuga hedging. Cairns (2013) acknowledged that the values of the
liability being hedged and the hedge portfolio are also affected by changes in
the estimated values of the drift terms in the processes for κ1(t) and κ2(t). To
mitigate this piece of uncertainty, he proposed the delta–nuga hedging method
in which the sensitivities of L̂ and Ĥj to the changes in the drift terms are
also considered. This method includes, additionally, the following four partial
derivatives:

∂ L̂
∂C1(t0)

= −
T∑
u=1

e−ru

⎛
⎝ t0+u∑
t=t0+1

(t − t0)q̂x0+t−t0−1,t

⎞
⎠

⎛
⎝ t0+u∏
t=t0+1

p̂x0+t−t0−1,t

⎞
⎠ ;

∂ L̂
∂C2(t0)

= −
T∑
u=1

e−ru

⎛
⎝ t0+u∑
t=t0+1

(t − t0)(x0 + t − t0 − 1 − x̄)q̂x0+t−t0−1,t

⎞
⎠

×
⎛
⎝ t0+u∏
t=t0+1

p̂x0+t−t0−1,t

⎞
⎠ ;

∂ Ĥj

∂C1(t0)
= −e−r(tj−t0)(tj − t0) p̂xj ,tj q̂xj ,tj ;

∂ Ĥj

∂C2(t0)
= −e−r(tj−t0)(tj − t0)(xj − x̄) p̂xj ,tj q̂xj ,tj .
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These additional partial derivatives are considered as the “nugas” of the liability
being hedged and the hedging instruments. To neutralize the deltas and nugas,
we need exactly four hedging instruments. The notional amounts of the four
hedging instruments should satisfy the following system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ L̂
∂κ1(t0)

= N1 × ∂ Ĥ1

∂κ1(t0)
+ N2 × ∂ Ĥ2

∂κ1(t0)
+ N3 × ∂ Ĥ3

∂κ1(t0)
+ N4 × ∂ Ĥ4

∂κ1(t0)
,

∂ L̂
∂κ2(t0)

= N1 × ∂ Ĥ1

∂κ2(t0)
+ N2 × ∂ Ĥ2

∂κ2(t0)
+ N3 × ∂ Ĥ3

∂κ2(t0)
+ N4 × ∂ Ĥ4

∂κ2(t0)
,

∂ L̂
∂C1(t0)

= N1 × ∂ Ĥ1

∂C1(t0)
+ N2 × ∂ Ĥ2

∂C1(t0)
+ N3 × ∂ Ĥ3

∂C1(t0)
+ N4 × ∂ Ĥ4

∂C1(t0)
,

∂ L̂
∂C2(t0)

= N1 × ∂ Ĥ1

∂C2(t0)
+ N2 × ∂ Ĥ2

∂C2(t0)
+ N3 × ∂ Ĥ3

∂C2(t0)
+ N4 × ∂ Ĥ4

∂C2(t0)
,

which implies

⎛
⎜⎝

N1
...

N4

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

∂ Ĥ1

∂κ1(t0)
· · · ∂ Ĥ4

∂κ1(t0)
...

. . .
...

∂ Ĥ1

∂C2(t0)
· · · ∂ Ĥ4

∂C2(t0)

⎞
⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎝

∂ L̂
∂κ1(t0)

...

∂ L̂
∂C2(t0)

⎞
⎟⎟⎟⎟⎟⎠ , (5.2)

provided that the inverse of the square matrix on the right-hand side exists. The
invertibility of the square matrix is discussed in Section 5.5.

5.3. The generalized state-space hedging method

The review presented in the previous sub-section exposes two limitations of the
traditional delta and delta–nuga hedging methods. First, in deriving the deltas
and nugas, it is assumed that κ1(t) and κ2(t) for t > t0 are linear functions of
κ1(t0), κ2(t0),C1(t0) andC2(t0). The resulting deltas and nugas therefore contain
no information about the sensitivities of L and Hj to κ1(t) and κ2(t) for any
t > t0. Second, the traditional methods have very stringent requirements on the
number of hedging instruments being used. The delta hedging method requires
exactly two distinct hedging instruments whereas the delta–nuga hedging needs
exactly four.

To overcome these limitations, we hereby introduce the generalized state-
space hedging method which better utilizes the information contained in the
hidden states at different times and is more flexible in terms of the number of
hedging instruments required. In the generalized state-space hedging method,
we work on L and Hj (rather than their best estimates) and preserve the fact
that they are functions of κ1(t) and κ2(t) for t > t0.
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TABLE 8

A SUMMARY OF THE DISTINCTIONS AMONG L, L̂, l, Hj , Ĥj AND h j .

L A Non-Linear Function of �α∗
t0+1, . . . , �α∗

t0+T
L̂ An Approximation of L, Obtained by Setting κi (t) = κi (t0) + C1(t0)(t − t0)

for i = 1, 2 and t > t0; L̂ is a Non-Linear Function of κ1(t0) and κ2(t0) (i.e., �α∗
t0 )

l An Approximation of L Based on a First-Order Taylor’s Expansion Around L̂;
l is a Linear Function of �α∗

t0+1, . . . , �α∗
t0+T

Hj A Non-Linear Function of �α∗
tj

Ĥj An Approximation of Hj , Obtained by Setting κi (tj ) = κi (t0) + C1(t0)(tj − t0)
for i = 1, 2; Ĥj is a Non-Linear Function of κ1(t0) and κ2(t0) (i.e., �α∗

t0 )
h j An Approximation of Hj Based on a First-Order Taylor’s Expansion Around Ĥj ;

h j is a Linear Function of �α∗
tj

We let �α∗
t = (κ1(t), κ2(t))′ and �α∗∗

t = (C1(t),C2(t))′. It follows that L is a
function of the sequence of {�α∗

t0+1, . . . , �α∗
t0+T} and Hj is a function of �α∗

tj , j =
1, . . . ,m. The derivation of the generalized state-space hedging strategy involves
the first-order Taylor approximations of L and Hj about all relevant vectors of
hidden states. For L, the first-order approximation l(�α∗

t0+1, . . . , �α∗
t0+T) is given

by

L ≈ l(�α∗
t0+1, . . . , �α∗

t0+T) = L̂+
t0+T∑
i=t0+1

(
∂L
∂ �α∗

i

)′
(�α∗

i − �̂α∗
i ),

where L̂ is defined in Equation (5.1) and �̂α∗
i is the expected value of �α∗

i given the
information up to and including year t0. For Hj , j = 1, . . . ,m, the first-order
approximation h j (�α∗

tj ) is given by

Hj ≈ h j (�α∗
tj ) = Ĥj +

(
∂Hj

∂ �α∗
tj

)′
(�α∗

tj − �̂α∗
tj ), (5.3)

where Ĥj is defined in Equation (5.1). For brevity, we suppress the arguments
of l and h j in the rest of this paper. Also, unless otherwise specified, the par-
tial derivatives ∂L/∂ �α∗

i and ∂Hj/∂ �α∗
tj are evaluated at �α∗

i = �̂α∗
i and �α∗

tj = �̂α∗
tj ,

respectively. To facilitate exposition, in Table 8 we summarize the distinctions
among L, L̂, l, Hj , Ĥj and h j .

The hedging strategy is obtained byminimizing the variance of l−∑m
i=1 Nihi

as of the time when the hedge is established. The variance to be minimized can
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be expressed as

Var

(
l −

m∑
i=1

Nihi

)

= Var

⎛
⎝ t0+T∑
i=t0+1

(
∂L
∂ �α∗

i

)′
(�α∗

i − �̂α∗
i ) −

m∑
j=1

Nj

(
∂Hj

∂ �α∗
tj

)′
(�α∗

tj − �̂α∗
tj )

⎞
⎠

= Var

⎛
⎜⎜⎝

t0+T∑
i=t0+1

i �=t1,t2,...,tm

(
∂L
∂ �α∗

i

)′
(�α∗

i − �̂α∗
i ) +

m∑
j=1

(
∂L
∂ �α∗

tj

− Nj
∂Hj

∂ �α∗
tj

)′
(�α∗

tj − �̂α∗
tj )

⎞
⎟⎟⎠ .

It is interesting to note that Var(l − ∑m
i=1 Nihi ) can be written as the sum of

three components:

Var

(
l −

m∑
i=1

Nihi

)
= V1 + V2 + V3,

where

V1 =
t0+T∑

i, j=t0+1
i, j �=t1,t2,...,tm

(
∂L
∂ �α∗

i

)′
Cov(�α∗

i , �α∗
j )

(
∂L
∂ �α∗

j

)

represents the variance contributed from the hidden states that are not related
to the hedging instruments,

V2 =
m∑
i=1

m∑
j=1

(
∂L
∂ �α∗

ti

− Ni
∂Hi

∂ �α∗
ti

)′
Cov(�α∗

ti , �α∗
tj )

(
∂L
∂ �α∗

tj

− Nj
∂Hj

∂ �α∗
tj

)

represents the variance contributed from the hidden states that are directly re-
lated to the hedging instruments, and

V3 = 2
t0+T∑
i=t0+1

i �=t1,t2,...,tm

m∑
j=1

(
∂L
∂ �α∗

i

)′
Cov(�α∗

i , �α∗
tj )

(
∂L
∂ �α∗

tj

− Nj
∂Hj

∂ �α∗
tj

)

represents the variance contributed from the interaction between the states that
are related and unrelated to the hedging instruments. Note that V1 is free of Nj ,
j = 1, . . . ,m. We can interpret V1 to mean the risk that cannot be hedged by
the collection of m hedging instruments.
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All partial derivatives involved in Var(l − ∑m
i=1 Nihi ) can be computed an-

alytically. First, we rewrite L in terms of �α∗
t , t = t0 + 1, . . . , t0 + T, as

L =
T∑
u=1

e−ru
t0+u∏
t=t0+1

(
1 + exp(M′

x0,t �α∗
t )

)−1
, (5.4)

where Mx0,t = (1, x0 + t − t0 − 1 − x̄)′. The partial derivative of L with respect
to �α∗

i , evaluated at �αi = �̂αi , can then be computed as

∂L
∂ �α∗

i
= Mx0,i

exp(M′
x0,i

�̂α∗
i )

1 + exp(M′
x0,i

�̂α∗
i )

⎛
⎝−

T∑
u=i−t0

e−ru
t0+u∏
t=t0+1

(
1 + exp(M′

x0,t
�̂α∗
t )

)−1

⎞
⎠ .

Similarly, we can express Hj in terms of �α∗
tj as

Hj = e−r(tj−t0)
(
q f
xj ,tj − 1 +

(
1 + exp((M(H)

xj ,tj )
′ �α∗
tj )

)−1
)

,

where M(H)
xj ,tj = (1, xj − x̄)′. The partial derivative of Hj with respect to �α∗

tj ,

evaluated at �αtj = �̂αtj , can then be calculated as

∂Hj

∂ �α∗
tj

= −e−r(tj−t0)M(H)
xj ,tj

exp
(
(M(H)

xj ,tj )
′ �̂α∗
tj

)
(
1 + exp

(
(M(H)

xj ,tj )
′ �̂α∗
tj

))2 .

The expression for Var(l − ∑m
i=1 Nihi ) also involves Cov(�α∗

i , �α∗
j ), the co-

variance matrix of �α∗
i and �α∗

j . To compute Cov(�α∗
i , �α∗

j ), we first calculate the
covariance matrix of �αi and �α j as

�i, j := Cov(�αi , �α j )

=

⎧⎪⎨
⎪⎩

A|i− j |(Q+ AQA′ + · · · Aj−(t0+1)Q(Aj−(t0+1))′), i > j

(Q+ AQA′ + · · · Ai−(t0+1)Q(Ai−(t0+1))′)(A|i− j |)′, i < j

Q+ AQA′ + · · · Aj−(t0+1)Q(Aj−(t0+1))′, i = j

. (5.5)

Then, �i, j is decomposed into four block matrices as follows:

�i, j =
(

Cov(�α∗
i , �α∗

j ) Cov(�α∗
i , �α∗∗

j )

Cov(�α∗∗
i , �α∗

j ) Cov(�α∗∗
i , �α∗∗

j )

)
.

Finally, �∗
i, j = Cov(�α∗

i , �α∗
j ) can be obtained from the upper-left block matrix

in �i, j .
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To derive the hedging strategy, we first take partial derivative of Var(l −∑m
j=1 Njh j ) with respect to Ni for i = 1, 2, . . . ,m:

∂Var(l − ∑m
j=1 N

∗
j h j )

∂Ni

= ∂V2
∂Ni

+ ∂V3
∂Ni

= −2
m∑
j=1

(
∂Hi

∂ �α∗
ti

)′
�∗
ti ,tj

(
∂L
∂ �α∗

tj

− Nj
∂Hj

∂ �α∗
tj

)
− 2

t0+T∑
j=t0+1

j �=t1,t2,...,tm

(
∂Hi

∂ �α∗
ti

)′
�∗
ti , j

∂L
∂ �α∗

j

= 2
m∑
j=1

Nj

(
∂Hi

∂ �α∗
ti

)′
�∗
ti ,tj

∂Hj

∂ �α∗
tj

− 2
t0+T∑
j=t0+1

(
∂Hi

∂ �α∗
ti

)′
�∗
ti , j

∂L
∂ �α∗

j
.

Then, the optimal hedging strategy is obtained by setting the partial derivatives
to zero; that is,

m∑
j=1

Nj

(
∂H1

∂ �α∗
ti

)′
�∗
ti ,tj

∂Hj

∂ �α∗
tj

=
t0+T∑
j=t0+1

(
∂H1

∂ �α∗
ti

)′
�∗
ti , j

∂L
∂ �α∗

j
, i = 1, . . . ,m.

This system of linear equations can be written in matrix form as

⎛
⎜⎜⎜⎜⎜⎝

(
∂H1

∂ �α∗
t1

)′
�∗
t1,t1

∂H1

∂ �α∗
t1

· · ·
(

∂H1

∂ �α∗
t1

)′
�∗
t1,tm

∂Hm

∂ �α∗
tm

...
. . .

...(
∂Hm

∂ �α∗
tm

)′
�∗
tm,t1

∂H1

∂ �α∗
t1

· · ·
(

∂Hm

∂ �α∗
tm

)′
�∗
tm,tm

∂Hm

∂ �α∗
tm

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎝
N1

...

Nm

⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

t0+T∑
j=t0+1

(
∂H1

∂ �α∗
t1

)′
�∗
t1, j

∂L
∂ �α∗

j
...

t0+T∑
j=t0+1

(
∂Hm

∂ �α∗
tm

)′
�∗
tm, j

∂L
∂ �α∗

j

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5.6)

As to be explained in Section 5.5, the square matrix on the left-hand side of
the equation above is always invertible. Hence, the values of N1, . . . , Nm can be
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obtained readily as follows:

⎛
⎜⎝

N1
...

Nm

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

(
∂H1

∂ �α∗
t1

)′
�∗
t1,t1

∂H1

∂ �α∗
t1

· · ·
(

∂H1

∂ �α∗
t1

)′
�∗
t1,tm

∂Hm

∂ �α∗
tm

...
. . .

...(
∂Hm

∂ �α∗
tm

)′
�∗
tm,t1

∂H1

∂ �α∗
t1

· · ·
(

∂Hm

∂ �α∗
tm

)′
�∗
tm,tm

∂Hm

∂ �α∗
tm

⎞
⎟⎟⎟⎟⎟⎠

−1

×

⎛
⎜⎜⎜⎜⎜⎜⎝

t0+T∑
j=t0+1

(
∂H1

∂ �α∗
t1

)′
�∗
t1, j

∂L
∂ �α∗

j
...

t0+T∑
j=t0+1

(
∂Hm

∂ �α∗
tm

)′
�∗
tm, j

∂L
∂ �α∗

j

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5.7)

It is noteworthy that the formula above contains �∗
s,t for s, t = t1, . . . , tm. As

such, the resulting hedging strategy incorporates the static and dynamic corre-
lations between the hidden states in the observation equation.

5.4. Delta and delta–nuga hedging methods as special cases

In the generalized state-space hedging approach, we treat L and Hj as ex-
plicit functions of the state vectors �α∗

t for t > t0. The analytical minimiza-
tion of variance is made possible by approximating L and Hj with a first-order
Taylor’s expansion around all state vectors involved. In contrast, in the tradi-
tional delta and delta–nuga hedging methods, the hedging strategies are de-
rived on the basis of the best estimates L and Hj , which depend exclusively on
�α∗
t0 = (κ1(t0), κ2(t0))′.
In what follows, we show that the traditional delta and delta–nuga hedg-

ing methods are indeed special cases of the proposed generalized state-space-
hedging method when the following linear relations hold for t > t0 + 1:

{ �α∗
t = �α∗

t0+1 + (t − (t0 + 1)) × �α∗∗
t0+1

�α∗∗
t = �α∗∗

t0+1

. (5.8)

5.4.1. Connections with the traditional delta hedging method. Suppose that the
linear relations specified by Equation (5.8) hold. Assume further that m = 2
hedging instruments are used and that the vector of drift terms is constant; i.e.,
�α∗∗
t = �̂α∗∗

t0 for t ≥ t0 + 1. Then, �∗
i, j = Q∗ for i, j = t0 + 1, . . . , (t0 + T), where
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Q∗ is defined in Equation (3.3). It follows that Equation (5.6) can be reduced to

⎛
⎜⎜⎜⎜⎝

(
∂H1

∂ �α∗
t1

)′
Q∗ ∂H1

∂ �α∗
t1

(
∂H1

∂ �α∗
t1

)′
Q∗ ∂H2

∂ �α∗
t2(

∂H2

∂ �α∗
t2

)′
Q∗ ∂H1

∂ �α∗
t1

(
∂H2

∂ �α∗
t2

)′
Q∗ ∂H2

∂ �α∗
t2

⎞
⎟⎟⎟⎟⎠

(
N1
N2

)

=

⎛
⎜⎜⎜⎜⎜⎝

t0+T∑
j=t0+1

(
∂H1

∂ �α∗
t1

)′
Q∗ ∂L

∂ �α∗
j

t0+T∑
j=t0+1

(
∂H2

∂ �α∗
t2

)′
Q∗ ∂L

∂ �α∗
j

⎞
⎟⎟⎟⎟⎟⎠ . (5.9)

Also, we have

t0+T∑
i=t0+1

∂L
∂ �α∗

i
= −

t0+T∑
i=t0+1

Mx0,i q̂x0+i−t0−1,i

⎛
⎝ T∑
u=i−t0

e−ru
t0+u∏
t=t0+1

p̂x0+t−t0−1,t

⎞
⎠

= −
T∑
u=1

e−ru
t0+u∏
t=t0+1

p̂x0+t−t0−1,t

⎛
⎝ t0+u∑
t=t0+1

Mx0,tq̂x0+t−t0−1,t

⎞
⎠

= ∂ L̂
∂ �α∗

t0

(5.10)

and

∂Hj

∂ �α∗
tj

= −e−r(tj−t0)M(H)
xj ,tj q̂xj ,tj × p̂xj ,tj = ∂ Ĥj

∂ �α∗
t0

(5.11)

for j = 1, 2.
SubstitutingEquations (5.10) and (5.11) into Equation (5.9), we immediately

obtain

⎛
⎜⎜⎜⎜⎝

(
∂ Ĥ1

∂ �α∗
t0

)′

(
∂ Ĥ2

∂ �α∗
t0

)′

⎞
⎟⎟⎟⎟⎠ Q∗

(
∂ Ĥ1

∂ �α∗
t0

∂ Ĥ2

∂ �α∗
t0

)(
N1
N2

)
=

⎛
⎜⎜⎜⎜⎝

(
∂ Ĥ1

∂ �α∗
t0

)′

(
∂ Ĥ2

∂ �α∗
t0

)′

⎞
⎟⎟⎟⎟⎠ Q∗ ∂ L̂

∂ �α∗
t0

,
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or equivalently,

⎛
⎜⎜⎜⎝

∂ Ĥ1

∂κ1(t0)
∂ Ĥ1

∂κ2(t0)

∂ Ĥ2

∂κ1(t0)
∂ Ĥ2

∂κ2(t0)

⎞
⎟⎟⎟⎠ Q∗

⎛
⎜⎜⎜⎝

∂ Ĥ1

∂κ1(t0)
∂ Ĥ2

∂κ1(t0)

∂ Ĥ1

∂κ2(t0)
∂ Ĥ2

∂κ2(t0)

⎞
⎟⎟⎟⎠

(
N1
N2

)

=

⎛
⎜⎜⎜⎝

∂ Ĥ1

∂κ1(t0)
∂ Ĥ1

∂κ2(t0)

∂ Ĥ2

∂κ1(t0)
∂ Ĥ2

∂κ2(t0)

⎞
⎟⎟⎟⎠ Q∗

⎛
⎜⎜⎜⎝

∂ L̂
∂κ1(t0)

∂ L̂
∂κ2(t0)

⎞
⎟⎟⎟⎠ .

By definition, Q∗ is positive definite and hence invertible. If the matrix

⎛
⎜⎜⎜⎜⎝

∂ Ĥ1

∂κ1(t0)
∂ Ĥ1

∂κ2(t0)

∂ Ĥ2

∂κ1(t0)
∂ Ĥ2

∂κ2(t0)

⎞
⎟⎟⎟⎟⎠

is also invertible, then we have

(
N1
N2

)
=

⎛
⎜⎜⎜⎜⎝

∂ Ĥ1

∂κ1(t0)
∂ Ĥ2

∂κ1(t0)

∂ Ĥ1

∂κ2(t0)
∂ Ĥ2

∂κ2(t0)

⎞
⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎝

∂ L̂
∂κ1(t0)

∂ L̂
∂κ2(t0)

⎞
⎟⎟⎟⎟⎠ ,

which yields the same values of N1 and N2 as those implied by the tra-
ditional delta hedging method. As Q∗ is being canceled out in the deriva-
tion, the strategy developed by the delta hedging method does not incorpo-
rate any information concerning the variances and covariances of the hidden
states.

5.4.2. Connections with the traditional delta–nuga hedging method. Suppose
that the linear relations specified by Equation (5.8) hold and thatm = 4 hedging
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instruments are used. Equation (5.6) then becomes⎛
⎜⎜⎜⎜⎜⎝

(
∂H1

∂ �α∗
t1

)′
�∗
t1,t1

∂H1

∂ �α∗
t1

· · ·
(

∂H1

∂ �α∗
t1

)′
�∗
t1,tm

∂Hk

∂ �α∗
tm

...
. . .

...(
∂Hk

∂ �α∗
tm

)′
�∗
tm,t1

∂H1

∂ �α∗
t1

· · ·
(

∂Hk

∂ �α∗
tm

)′
�∗
tm,tm

∂Hk

∂ �α∗
tm

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

N1
...

N4

⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

t0+T∑
j=t0+1

(
∂H1

∂ �α∗
t1

)′
�∗
t1, j

∂L
∂ �α∗

j
...

t0+T∑
j=t0+1

(
∂H1

∂ �α∗
t4

)′
�∗
t4, j

∂L
∂ �α∗

j

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5.12)

It can be shown easily that under the assumptions made, the covariance ma-
trix �i, j can be written as

�i, j = Ai−(t0+1)Q(Aj−(t0+1))′

for i, j = t0 + 1, . . . , (t0 + T). Consequently, we have(
∂Hi

∂ �α∗
ti

)′
�∗
ti ,tj

∂Hj

∂ �α∗
tj

=
(

∂Hi

∂κ1(ti )
∂Hi

∂κ2(ti )
0 0

)
�ti ,tj

(
∂Hj

∂κ1(tj )
∂Hj

∂κ1(tj )
0 0

)′

=
(

∂Hi

∂ �αti

)′
�ti ,tj

∂Hj

∂ �αtj

=
(

∂Hi

∂ �αti

)′
Ati−t0P(Atj−t0)′

∂Hj

∂ �αtj
,

for i, j = 1, 2, . . . , 4, where P = A−1Q(A−1)′. Also, we have

(Atj−t0)′
∂Hj

∂ �αtj
=

⎛
⎜⎝

1 0 0 0
0 1 0 0

tj − t0 0 1 0
0 tj − t0 0 1

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

∂Hj

∂κ1(tj )
∂Hj

∂κ2(tj )
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝

1
xj − x̄
tj − t0

(tj − t0)(xj − x̄)

⎞
⎟⎠ (−e−r(tj−t0) p̂xj ,tj q̂xj ,tj

)

=
(

∂ Ĥj

∂κ1(t0)
∂ Ĥj

∂κ2(t0)
∂ Ĥj

∂C1(t0)
∂ Ĥj

∂C2(t0)

)′
= ∂ Ĥj

∂ �αt0
,
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for j = 1, 2, 3, 4. Hence, the left-hand side of Equation (5.12) can be reduced
to

⎛
⎜⎜⎜⎜⎜⎝

(
∂H1

∂ �αt1

)′
At1−t0

...(
∂H4

∂ �αt4

)′
At4−t0

⎞
⎟⎟⎟⎟⎟⎠ P

((
∂H1

∂ �αt1

)′
At1−t0 · · ·

(
∂H4

∂ �αt4

)′
At4−t0

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
∂ Ĥ1

∂ �αt0

)′

...(
∂ Ĥ4

∂ �αt0

)′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
P

( (
∂ Ĥ1

∂ �αt0

)′
· · ·

(
∂ Ĥ4

∂ �αt0

)′ )
.

Furthermore, from Equation (5.4), we obtain

t0+T∑
i=t0+1

(i − t0)
∂L
∂ �α∗

i

=
t0+T∑
i=t0+1

(i − t0)Mx0,i q̂x0+i−t0−1,i

⎛
⎝−

T∑
u=i−t0

e−ru
t0+u∏
t=t0+1

p̂x0+t−t0−1,t

⎞
⎠

=
T∑
u=1

e−ru(−1)
t0+u∏
t=t0+1

p̂x0+t−t0−1,t

⎛
⎝ t0+u∑
t=t0+1

(t − t0)Mx0,tq̂x0+t−t0−1,t

⎞
⎠ ,

which gives

t0+T∑
i=t0+1

(Ai−t0)′
∂L
∂ �αi = ∂ L̂

∂ �αt0
.

Therefore, the right-hand side of Equation (5.12) can be reduced to

⎛
⎜⎜⎜⎜⎜⎝

(
∂H1

∂ �αt1

)′
At1−t0

...(
∂H4

∂ �αt4

)′
At4−t0

⎞
⎟⎟⎟⎟⎟⎠ P

t0+T∑
j=t0+1

(Aj−t0)′
∂L
∂ �α j

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
∂ Ĥ1

∂ �αt0

)′

...(
∂ Ĥ4

∂ �αt0

)′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
P

∂ L̂
∂ �αt0

.
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Finally, we can rewrite Equation (5.12) as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
∂ Ĥ1

∂ �αt0

)′

...(
∂ Ĥ4

∂ �αt0

)′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
P

(
∂ Ĥ1

∂ �αt0
· · · ∂ Ĥ4

∂ �αt0

)
⎛
⎜⎜⎜⎜⎝

N1

...

N4

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
∂ Ĥ1

∂ �αt0

)′

...(
∂ Ĥ4

∂ �αt0

)′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
P

∂ L̂
∂ �αt0

,

or equivalently

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ Ĥ1

∂κ1(t0)
· · · ∂ Ĥ1

∂C2(t0)
...

. . .
...

∂ Ĥ4

∂κ1(t0)
· · · ∂ Ĥ4

∂C2(t0)

⎞
⎟⎟⎟⎟⎟⎟⎠
P

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ Ĥ1

∂κ1(t0)
· · · ∂ Ĥ4

∂κ1(t0)
...

. . .
...

∂ Ĥ1

∂C2(t0)
· · · ∂ Ĥ4

∂C2(t0)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

N1

...

N4

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ Ĥ1

∂κ1(t0)
· · · ∂ Ĥ1

∂C2(t0)
...

. . .
...

∂ Ĥ4

∂κ1(t0)
· · · ∂ Ĥ4

∂C2(t0)

⎞
⎟⎟⎟⎟⎟⎟⎠
P

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ L̂
∂κ1(t0)

...

∂ L̂
∂C2(t0)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

By definition, Q is positive definite and hence P = A−1Q(A−1)′ is invertible.
If the other matrices in the equation above are invertible, then we immediately
obtain

⎛
⎜⎜⎜⎜⎝

N1

...

N4

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ Ĥ1

∂κ1(t0)
· · · ∂ Ĥ4

∂κ1(t0)
...

. . .
...

∂ Ĥ1

∂C2(t0)
· · · ∂ Ĥ4

∂C2(t0)

⎞
⎟⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎜⎝

∂ L̂
∂κ1(t0)

...

∂ L̂
∂C2(t0)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which yields N1, N2, N3 and N4 that are exactly the same as those implied by the
traditional delta–nuga hedging method. The hedging strategy is free of Q∗ and
therefore incorporates no information concerning the variances and covariances
of the hidden states.
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5.4.3. Distinctions between the proposed method and the traditional methods.
Although the delta and delta–nuga methods can be viewed as special cases of
the generalized state-space method, they are fundamentally different from the
generalized state-space method in several ways.

First, under the generalized state-space method, the hedging strategy is de-
rived by optimizing a specific objective function: Var(L− ∑m

j=1 Nj Hj ). In con-
trast, the delta and delta–nuga methods rely merely on sensitivity matching and
involves no optimization.

Second, through �∗
s,t, the generalized state-space method incorporates

both static and dynamic correlations between different hidden states. Such
correlations are not taken into account in the delta and delta–nuga
methods.

Third, instead of assuming the linear relation specified in Equation (5.8),
the generalized state-space method recognizes that L and Hj are functions of
�α∗
t0+1, . . . , �α∗

t0+T and �α∗
tj , respectively. Even if the same model is assumed, the

generalized state-space method would still be different (in terms of both the
derivation and the resulting notional amounts) from the delta and delta–nuga
methods.

Finally, in the generalized state-space method, the drifts themselves are state
variables.However, in the delta–nuga hedgingmethod, the drift term in the time-
varying dynamic factor is regarded as a constant parameter which is recalibrated
from time to time.

5.5. Comments on the hedging methods

5.5.1. Sub-optimality of the traditional methods. In the previous sub-section,
we have shown that the traditional delta and delta–nuga hedging meth-
ods are special cases of the generalized state-space hedging method when
the linear relations specified in Equation (5.8) hold. Equivalently speak-
ing, if the linear relations do not hold, then the notional amounts
N1, . . . , Nm computed using delta or delta–nuga hedging methods do not
minimize

Var

⎛
⎝L−

m∑
j=1

Nj Hj

⎞
⎠ ,

the variance of the present values of all cash flows associated with the hedged
position. Therefore, in general, the hedging strategies derived from the tradi-
tional methods are sub-optimal relative to those derived from the generalized
state-space approach. The degree of sub-optimality is quantified in Section 6
where a numerical illustration is presented.
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5.5.2. The singularity problem. Recall that in the traditional delta hedging
method, the solution to N1 and N2 exists only if the followingmatrix is invertible:⎛

⎜⎜⎜⎝
∂ Ĥ1

∂κ1(t0)
∂ Ĥ2

∂κ1(t0)

∂ Ĥ1

∂κ2(t0)
∂ Ĥ2

∂κ2(t0)

⎞
⎟⎟⎟⎠

=
( −e−r(t1−t0) p̂x1,t1 q̂x1,t1 −e−r(t2−t0) p̂x2,t2 q̂x2,t2

−e−r(t1−t0)(x1 − x̄) p̂x1,t1 q̂x1,t1 −e−r(t2−t0)(x2 − x̄) p̂x2,t2 q̂x2,t2

)
.

If the references ages of both q-forwards are the same (i.e., x1 = x2), then the
second row of the matrix would become perfectly linearly dependent on the first
row and hence the square matrix is not invertible. Note that this problem exists
even though the reference years t1 and t2 of the q-forwards are different.

The same problem also applies to the traditional delta–nuga hedging
method, under which the solution to N1, . . . , N4 exists only if the square ma-
trix in Equation (5.2) is invertible. The first three rows of the square matrix in
Equation (5.2) are respectively given by

Row 1:
∂ Ĥj

∂κ1(t0)
= −e−r(tj−t0) p̂xj ,tj q̂xj ,tj , j = 1, 2, 3, 4;

Row 2:
∂ Ĥj

∂κ2(t0)
= −e−r(tj−t0)(xj − x̄) p̂xj ,tj q̂xj ,tj , j = 1, 2, 3, 4;

Row 3:
∂ Ĥj

∂C1(t0)
= −e−r(tj−t0)(tj − t0) p̂xj ,tj q̂xj ,tj , j = 1, 2, 3, 4.

It is clear that when the references ages of the q-forwards are the same (i.e.,
x1 = x2 = x3 = x4), the first and second rows in the matrix are perfectly linearly
dependent on each other, which means the inverse of the matrix does not exist.
On top of that, the problem of singularity will also occur if the q-forwards are
linked to the same cohort; that is, tj − xj = c for j = 1, . . . , 4, where c denotes
the year of birth to which the q-forwards are linked. This is because in this case,
the difference between rows 3 and 2 becomes

−e−r(tj−t0)(c − t0 + x̄) p̂xj ,tj q̂xj ,tj , j = 1, 2, 3, 4,

which is perfectly linearly dependent on row 1. This fact suggests that although
it seems natural to choose q-forwards that are linked to the same cohort (as the
one associated with the annuity liability), such a choice is not desirable if the
delta–nuga hedging method is used.

The singularity problem does not apply to the generalized state-space-
hedging methodology, provided that the state vectors beyond year t0 are not
deterministically related as specified in Equation (5.8). To explain why, let us
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have a closer scrutiny of the square matrix in Equation (5.6). Because

Cov(hi , h j ) =
(

∂Hi

∂ �α∗
ti

)′
�∗
ti ,tj

∂Hj

∂ �α∗
tj

for i, j = 1, 2, . . . ,m, the square matrix

�h :=

⎛
⎜⎜⎜⎜⎜⎝

(
∂H1

∂ �α∗
t1

)′
�∗
t1,t1

∂H1

∂ �α∗
t1

· · ·
(

∂H1

∂ �α∗
t1

)′
�∗
t1,tm

∂Hm

∂ �α∗
tm

...
. . .

...(
∂Hm

∂ �α∗
tm

)′
�∗
tm,t1

∂H1

∂ �α∗
t1

· · ·
(

∂Hm

∂ �α∗
tm

)′
�∗
tm,tm

∂Hm

∂ �α∗
tm

⎞
⎟⎟⎟⎟⎟⎠

can be viewed as the covariance matrix of �h = (h1, . . . , hm)′. By the spectral
theorem, the square matrix can be written as

�h = U�U ′,

where U is an orthogonal matrix and � is a diagonal matrix containing the
eigenvalues of �h . It immediately follows that

U ′�hU = �.

Wecan viewU ′�hU as the covariancematrix of the randomvectorU ′ �h, of which
each element is a linear combination of the elements in �h. From Equation (5.3)
and the fact that t1 < . . . < tm, we can infer that there does not exist a lin-
ear combination of h1, . . . , hm such that the linear combination is non-random.
Therefore, all diagonal elements in�must be straightly positive.With straightly
positive eigenvalues, the invertibility of �h is guaranteed.

5.5.3. The hedging instrument selection problem. In using the traditional delta-
or delta–nuga hedging method, the number of hedging instruments must be ei-
ther 2 (for delta) or 4 (for delta–nuga). In contrast, the generalized state-space-
hedging method can be implemented with any number of hedging instruments,
as the solution to Equation (5.6) exists for any m ≥ 1. In this sense, the gen-
eralized state-space hedging method may be considered as more adaptable to
different stages of market development.

As the market grows, more hedging instruments will become available. For
reasons such as transaction costs, a hedger may wish to use only a subset of
(rather than all) instruments that are available in the market. One possible cri-
terion for choosing the subset of instruments is the resulting variance of the
present values of all cash flows involved. To formulate this method mathemat-
ically, we first define a subset M which contains m element(s) out of a set of k
elements:

M = {(a1, a2, . . . , am) : ai ∈ {1, 2, . . . , k}, a1 < a2 < . . . < am},
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where m and k represent the number of instruments that the hedger wishes to
use and the total number of instruments available in the market, respectively.
The collection of m instrument(s) selected can written as

argmin
Sm∈M

⎧⎪⎪⎨
⎪⎪⎩Var

⎛
⎜⎜⎝

t0+T∑
i=t0+1

i �=tj , j∈Sm

(
∂L
∂ �α∗

i

)′
( �α∗

i −�̂α∗
i )+

∑
j∈Sm

(
∂L
∂ �α∗

tj

−Nj
∂Hj

∂ �α∗
tj

)′
(�α∗

tj −�̂α∗
tj )

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭.

6. ILLUSTRATING THE HEDGING METHODS

6.1. Assumptions

In this illustration, the liability being hedged is a 30-year life annuity immediate
(i.e., T = 30). The annuity is sold to a person aged x0 = 70 at the end of year
t0 = 2010, and a longevity hedge is established at the same time as the annuity
is sold. We assume that the annuitant is subject to exactly the same mortality as
Canadian males.

The hedging instruments under consideration are q-forwards. It is assumed
that at the time when the hedge is established, there are exactly k = 4 q-forwards
available in the market. The reference ages and years of these q-forwards are
summarized below:

j Reference Age xj Reference Year tj
1 76 2017
2 85 2026
3 92 2033
4 100 2040

The first three q-forwards are associated with the same cohort (with year-of-
birth 1941), whereas the last q-forward is associated with the cohort born one
year earlier.We intentionally avoid having all four q-forwards linked to the same
cohort, because otherwise the traditional delta–nuga hedging method would
fail due to the singularity problem. Note that the maturities of the q-forwards
are approximately T/4, T/2, 3T/4 and T, respectively. We assume that the q-
forwards are also linked to the mortality of Canadian males.

The procedure which we use to assess hedge effectiveness can be summarized
as follows:

i. Preparation
• Compute the partial derivatives involved.
• Assuming that the hedger wishes to use m q-forwards, select m out of the
k = 4 available q-forwards on the basis of variance minimization.

• Calculate the optimal notional amounts.
ii. Simulation

• Simulate 10,000 mortality scenarios from the CBD/LLCBDmodel that is
fitted to the data for Canadian males over a calibration window of 1941–
2010 and an age range of 50–89.
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• For each simulated mortality scenario, calculate the realized values of L
and Hj , j = 1, . . . ,m. An interest rate of r = 0.01 is used for discounting
purposes.

iii. Evaluation
• On the basis of the 10,000 realizations of Land Hj , j = 1, . . . ,m, compute

the value HE.

The objectives of this illustration are threefold: (1) to compare the hedge
effectiveness produced by the traditional and newly proposed methods; (2) to
assess how the negligence of stochastic drifts may affect the resulting hedge ef-
fectiveness; (3) to demonstrate the interaction among the model assumption,
the hedging method and the duration of the liability being hedged. To better
achieve these objectives, we divide the empirical results into the following four
groups, depending on the hedging method and mortality model from the hedg-
ing strategy is derived:

The mortality model on which
the hedging strategy is based Hedging method

Group 1 The original CBD model Traditional delta hedging
Group 2 The LLCBD model Traditional delta and

delta–nuga hedging
Group 3 The original CBD model Generalized state-space

hedging
Group 4 The LLCBD model Generalized state-space

hedging

6.2. Result I: A comparison of different hedging methods

In this sub-section, we focus on comparing the hedge effectiveness produced
by different hedging methods. The relevant results are displayed in Tables 9
and 10.

Let us first study Table 9, which compares the results in Groups 1 and 3. For
these two groups, the hedging strategies are based on the same model (the orig-
inal CBD model) but are derived using different hedging techniques. Here, we
intend to focus on the difference in hedging techniques, sowe assume that the ac-
tual (simulation) mortality model is also the original CBDmodel.We report the
results when m = 2 hedging instruments are used, because the results in Group
1 are derived from the traditional delta hedging method which requires exactly
two hedging instruments. For Group 1, the best hedge effectiveness obtained
is greater than 92%, but different combinations of q-forwards lead to highly
different values of HE. In the worst case when the third and fourth q-forwards
are used, the value of HE is even negative, which means the seller of the annuity
is subject to even more longevity risk when the hedge is in place. For Group 3,
the values of HE are much less sensitive to the choice of the two q-forwards.
Also, given the same choice of q-forwards, the hedge effectiveness in Group 3
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TABLE 9

THE HEDGE EFFECTIVENESS AND NOTIONAL AMOUNTS FOR ALL POSSIBLE COMBINATIONS OF m = 2
q-FORWARDS, GROUPS 1 AND 3. THE “–” SIGN INDICATES THAT THE CORRESPONDING q-FORWARD IS NOT

USED. THE SIMULATION MODEL IS THE ORIGINAL CBD MODEL.

Group 1 Group 3
Assumed Model: The Original CBDModel Assumed Model: The Original CBDModel

Method: Traditional Delta Hedging Method: Generalized State-Space Hedging

HE N1 N2 N3 N4 HE N1 N2 N3 N4

0.9230 98.0364 47.4528 − − 0.9358 71.5625 47.9503 − −
0.8997 137.3202 − 17.0804 − 0.9135 107.8487 − 18.1090 −
0.8183 154.1561 − − 7.5688 0.8322 132.5633 − − 7.0199

−0.3565 − 165.8758 −42.6257 − 0.9053 − 44.2286 8.4076 −
0.0177 − 130.3489 − −13.2221 0.8924 − 51.7275 − 2.4632

−5.2683 − − 156.3945 −61.7343 0.7463 − − 24.6273 −0.2105

TABLE 10

THE HEDGE EFFECTIVENESS AND NOTIONAL AMOUNTS FOR ALL POSSIBLE COMBINATIONS OF m = 2 AND
m = 4 q-FORWARDS, GROUPS 2 AND 4. THE “–” SIGN INDICATES THAT THE CORRESPONDING q-FORWARD IS

NOT USED. THE SIMULATION MODEL IS THE LLCBD MODEL.

Group 2 Group 4
Assumed Model: The LLCBDModel Assumed Model: The LLCBDModel

Method: Traditional Delta/Delta–Nuga Hedging Method: Generalized State-Space Hedging

HE N1 N2 N3 N4 HE N1 N2 N3 N4

Number of q-Forwards Used: m = 2

0.7209 110.4838 68.2613 − − 0.8409 −25.5044 76.0989 − −
0.8701 158.4984 − 27.8511 − 0.8957 97.7825 − 24.9453 −
0.1140 179.0761 − − 13.2179 0.6569 92.8728 − − 7.4087

−3.5174 − 225.3339 −64.0867 − 0.9579 − 41.0866 13.4239 −
−5.7736 − 178.2121 − −21.2905 0.9386 − 56.9217 − 3.3286

−32.7169 − − 242.3726 −101.8099 0.8764 − − 30.2868 −2.9065

Number of q-Forwards Used: m = 4

0.8754 157.7860 1.0128 27.4379 −0.0000 0.9737 66.7273 38.9987 13.2875 0.8685

is always higher than that in Group 1, indicating that hedgers can make better
use of the hedging instruments if they use the generalized state-space hedging
method. This advantage may be attributed to the fact that the generalized state-
space-hedging method incorporates information about the static and dynamic
correlations between the hidden states, but the delta hedging method does not.

https://doi.org/10.1017/asb.2016.33 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.33


THE LOCALLY LINEAR CAIRNS–BLAKE–DOWD MODEL 131

We then move on to studying Table 10, which compares the results from
Groups 2 and 4. As before, the hedging strategies for these two groups are
based on the same model (the LLCBDmodel) but different hedging techniques.
For Group 4, all results are derived from the generalized state-space hedging
method, whereas for Group 2, the results for m = 2 and m = 4 are respectively
obtained by using the traditional delta and delta–nuga hedging methods. The
simulation model used here is the LLCBD model, consistent with the model
on which the hedging strategies are based. Compared to the values of HE in
Group 2, the values of HE in Group 4 are consistently higher and are more
robust relative to the choice of hedging instruments. It is also noteworthy that
some values of HE in Group 2 are negative, as the traditional hedging methods
do not guarantee a reduction in variance. This problem is discussed further in
Section 6.5.1.

The results presented in this sub-section demonstrate the previously made
argument concerning the sub-optimality of the traditional hedging methods.
Other things equal, the generalized state-space hedging method yields a better
hedge effectiveness, regardless of whether the original CBD model or the LL-
CBD model is assumed.

In this sub-section, the values of HE for Groups 1 and 3 are calculated us-
ing scenarios generated from the original CBD model, while those for Groups
2 and 4 are computed using scenarios simulated from the LLCBD model. For
the readers’ information, the estimated values of Var(L) under the CBD and
LLCBD models are 0.0913 and 0.0715, respectively. The reason that Var(L)

calculated using the CBD scenarios is larger can be understood by revisiting
Figure 6, which shows that the LLCBD fan charts are initially narrower than
the corresponding CBD fan charts, but become wider about 20 years from the
forecast origin as they widen at faster rates. The reason behind can also be vi-
sualized in Figure 14, which compares the standard deviations of the cohort
death probabilities of the annuitants (in logit scale) under the two models. The
standard deviations under the CBDmodel are higher for the first half of the an-
nuity’s maximum duration, but the opposite is true for the second half. Because
cash flows in distant future are less influential (due to the effects of discounting
and survivorship), Var(L) dependsmore heavily on the uncertainty surrounding
the earlier cohort death probabilities and is consequently higher under the CBD
model.

6.3. Result II: The impact of model mis-specification

We have previously argued that compared to the original CBD model, the LL-
CBDmodel (with stochastic drifts) maymore realistically represent the true un-
derlying mortality dynamics. In this sub-section, we examine how much hedge
effectiveness may be lost if the true underlying mortality dynamics are driven by
a model with stochastic drifts while a model with constant drifts is assumed in
deriving the hedging strategies. To achieve this goal, we compare the results in
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FIGURE 14: The standard deviations of the annuitants’ cohort death probabilities in logit scale (i.e.,
ln(qt−1941,t/(1 − qt−1941,t)) for t = 2011, . . . , 2041), estimated using the CBD and LLCBD models.

TABLE 11

THE HEDGE EFFECTIVENESS AND THE CORRESPONDING NOTIONAL AMOUNTS WHEN m = 1, 2, 3, 4
q-FORWARDS ARE USED, GROUPS 3 AND 4. THE “–” SIGN INDICATES THAT THE CORRESPONDING

q-FORWARD IS NOT USED. THE SIMULATION MODEL IS THE LLCBD MODEL.

Group 3 Group 4
Assumed Model: The Original CBDModel Assumed Model: The LLCBDModel
Method: Generalized State-Space Hedging Method: Generalized State-Space Hedging

HE N1 N2 N3 N4 HE N1 N2 N3 N4

Number of q-Forwards Used: m = 1

0.8000 − 60.0893 − − 0.8575 − − 22.3178 −
Number of q-Forwards Used: m = 2

0.6496 71.5625 47.9503 − − 0.9579 − 41.0866 13.4239 −
Number of q-Forwards Used: m = 3

0.8557 75.7070 29.6824 9.3110 − 0.9732 64.1560 36.5098 16.1386 −
Number of q-Forwards Used: m = 4

0.8728 76.1325 29.7784 7.9015 0.7337 0.9737 66.7273 38.9987 13.2875 0.8685

Groups 3 and 4 (see Table 11) when the true (simulation) model is the LLCBD
model.

All results in Groups 3 and 4 are based on the generalized state-space-
hedging method and mortality scenarios simulated from the LLCBD model.
The differences between the results in these two groups are because of the
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difference in the model from which the notional amounts are derived. Since the
generalized state-space hedging method permits us to use any number of hedg-
ing instruments, we consider both the situation when all available q-forwards
are used and the situation when only a subset of the available q-forwards are
included. When less than four q-forwards are used, the q-forwards are chosen
using the method described in Section 5.5.3. For Group 3, HE does not neces-
sarily increase with m, because the model on which the hedging strategies are
based is inconsistent with the simulation model.

Compared to the corresponding values in Group 3, the values of HE in
Group 4 are consistently higher. This observation suggests that the negligence
of stochastic drifts may result in a material loss of hedge effectiveness, if the true
underlying model is one with stochastic drifts.

6.4. Result III: The interaction among different factors

In this sub-section, we demonstrate the interaction among the model assump-
tion, the hedging method and the duration of the liability being hedged. To
achieve this goal, we now consider annuity liabilities with durations ranging
from T = 25 to T = 40 years. For each annuity liability, the longevity hedge
is composed of m = 2 q-forwards, which are linked to the same cohort of indi-
viduals as the annuity liability and have maturities of (approximately) T/2 and
T/4. All other previously made assumptions, including the assumptions about
the values of x0, t0 and r , remain unchanged. The simulation model used is still
the LLCBD model. The results are presented in Figure 15.

We first compare the trends ofHE forGroups 2 and 4.As expected, the trend
for Group 4, which is based on the generalized state-space hedging method, is
always higher than that for Group 2, which is based on the traditional delta-
hedgingmethod. Amore interesting observation is that the gap between the two
trends is roughly constant. This observation indicates that the benefit fromusing
the more general hedging method is somewhat fixed, with little dependence on
the duration of the liability being hedged.

Next, we compare the trends of HE for Groups 3 and 4. The gap between
the two trends widens rapidly as the duration of the liability being hedged in-
creases. From this observation, we can infer that when the truemodel is one with
stochastic drifts, the benefit of incorporating stochastic drifts into the hedging
strategy is more remarkable if the liability being hedged is longer dated. This
conclusion is reasonable because the assumption about the drifts, which deter-
mine the gradients of future mortality trends, should have more long-run than
short-run effects.

Finally, we compare the trends of HE for Groups 1 and 4. The gap between
the HE trends for these two groups is approximately the sum of the gap be-
tween the HE trends for Groups 2 and 4 and the gap between the HE trends
for Groups 3 and 4. It reflects the overall benefit of using both the generalized
state-space hedging method and the assumption of stochastic drifts in deriving
the hedging strategies.
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FIGURE 15: The relationship between the hedge effectiveness (HE) and the duration (T) of the liability being
hedged, Groups 1, 2, 3 and 4. The simulation model is the LLCBD model.

6.5. Further issues

6.5.1. Why delta and delta–nuga methods may perform unsatisfactorily some-
times? In Section 6.2, we reveal that the delta and delta–nuga hedging meth-
ods may sometimes lead to a low or even negative hedge effectiveness. We may
attribute this problem to the linearity assumption on which these methods are
based.

To illustrate, we construct a scenario analysis that is based on the following
assumptions:

• Mortality model on which the hedging strategy is based: the original CBD
model.

• Simulation model: the original CBD model.
• Hedging instruments: the second and third q-forward, (x2, t2) = (85, 2026)

and (x3, t3) = (92, 2033).

Under these assumptions, the values of HE produced by the delta hedg-
ing method and the generalized state-space hedging method are −0.3565 and
0.9053, respectively (see Table 9).

Six mortality scenarios — built on hypothetical sample paths of κ1(t) and
κ2(t) — are used to analyze why the two methods perform so differently (see
Figure 16). Scenarios (i) and (ii) are the most extreme “linear” scenarios within
the 95% prediction intervals, while Scenarios (iii) to (vi) are extreme “non-
linear” scenarios within the 95% prediction intervals.6 For each scenario and
hedging method, we calculate the realized values of L− N2H2 − N3H3 − L̂ (the
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FIGURE 16: Six extreme mortality scenarios: Scenarios (i) to (vi) are formed by (1) × (a), (2) × (b), (3) × (c),
(3) × (d), (4) × (c), (4) × (d), respectively. The dotted lines represent the 95% prediction intervals.

hedged position) and L− L̂ (the unhedged position). The results are tabulated in
Table 12.

For Scenarios (i) and (ii), the hedge derived using the delta hedging method
yields values of L − N2H2 − N3H3 − L̂ that are much smaller than L − L̂ in
magnitude, suggesting that the hedge canwithstand extrememortality scenarios
that are “linear”. However, for remaining four scenarios, all of which are “non-
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TABLE 12

THE VALUES OF L− N2H2 − N3H3 − L̂ AND L− L̂ UNDER THE SIX HYPOTHETICAL EXTREME MORTALITY
SCENARIOS DESCRIBED IN FIGURE 16.

Scenario Sample Paths N2H2 N3H3 L− N2H2 − N3H3 − L̂ L− L̂

Delta Hedge

(i) (1) × (a) −1.3804 0.9932 −0.1379 −0.5251
(ii) (2) × (b) 1.2271 −0.8361 0.1658 0.5568
(iii) (3) × (c) −1.9107 −0.9401 2.5764 −0.2743
(iv) (3) × (d) −0.0769 0.1562 −0.1848 −0.1055
(v) (4) × (c) 0.0511 −0.1431 0.1883 0.0963
(vi) (4) × (d) 1.6191 1.1475 −2.5397 0.2270

Generalized State-Space Hedge

(i) (1) × (a) −0.3681 −0.1959 0.0389 −0.5251
(ii) (2) × (b) 0.3272 0.1649 0.0647 0.5568
(iii) (3) × (c) −0.5095 0.1854 0.0497 −0.2743
(iv) (3) × (d) −0.0205 −0.0308 −0.0542 −0.1055
(v) (4) × (c) 0.0136 0.0282 0.0545 0.0963
(vi) (4) × (d) 0.4317 −0.2263 0.0216 0.2270

linear”, the hedge derived using the delta hedgingmethod performed very badly
(even worse than not hedging), indicating that the hedge is vulnerable to non-
linear changes in the dynamic factors.We also observe that L−N2H2−N3H3− L̂
and L − L̂ may take the same or different signs, which means that the poor
performance is sometimes because the hedge has gone in the wrong direction
and sometimes because the hedge has gone in the right direction but too far.

For all six scenarios, the generalized state-space hedging method performs
satisfactorily, yielding values of L− N2H2 − N3H3 − L̂ that are much smaller
than L− L̂ in magnitude.

6.5.2. The best achievable hedge effectiveness. Given the 10,000 mortality sce-
narios simulated from the CBD/LLCBD model, we can iteratively search for
the combination of N1, . . . , Nm what would maximize HE. The resulting value
of HE may be regarded as the “best achievable” hedge effectiveness (given the
10,000 scenarios) and can be used as a benchmark to assess the quality of the
proposed hedging strategy.

We consider hedge portfolios with m = 2, 4 q-forwards, chosen from the
collection of four q-forwards described in Section 6.1. Table 13 displays, for
each portfolio, the best achievable value of HE and the corresponding val-
ues of N1, . . . , Nm on the basis of the mortality scenarios simulated from (a)
the original CBD model and (b) the LLCBD model. The values reported in
Table 13 (a) are very close to those shown in Table 9 (Group 3), whereas the
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TABLE 13

THE “BEST ACHIEVABLE” HEDGES GIVEN THE 10,000 MORTALITY SCENARIOS SIMULATED FROM (A) THE
ORIGINAL CBD MODEL AND (B) THE LLCBD MODEL.

HE N1 N2 N3 N4

(a) Simulation Model: The Original CBDModel

0.9358 −70.9784 −47.8004 − −
0.9136 −107.4581 − −17.8760 −
0.8322 −132.2430 − − −6.9878
0.9054 − −44.4610 −8.0472 −
0.8926 − −52.0698 − −2.2432
0.7465 − − −24.3666 0.2981

(b) Simulation Model: The LLCBDModel

0.8410 −22.8565 75.3767 − −
0.8967 93.0628 − 24.1189 −
0.6609 79.1050 − − 6.8454
0.9586 − 41.4408 12.7478 −
0.9400 − 57.0345 − 3.0335
0.8769 − − 29.1619 −2.6613
0.9749 62.2898 39.3229 13.0727 0.6231

values reported in Table 13 (b) are very close to those shown in Table 10 (Group
4). The results suggest that the performance of the generalized state-space hedg-
ing strategy is nearly as good as the best achievable one.

6.5.3. Poisson risk. The baseline results assume no Poisson risk (a.k.a. sam-
pling risk). We now incorporate Poisson uncertainty into the hedging results by
treating the cohort of annuitants as a random survivorship group.

Let lx,t be the number of annuitants who survive to age x at the beginning of
year t, and dx,t be the number of annuitants who die in year t (between age x and
x+ 1). For a fixed initial number of annuitants lx0,t0+1, we have the following:

dx0+t−t0−1,t ∼ Poisson(lx0+t−t0−1,t × q̃x0+t−t0−1,t)

and

lx0+t−t0,t+1 = lx0+t−t0−1,t − dx0+t−t0−1,t,

where t = t0 + 1, . . . , t0 + T and q̃x,t is the underlying unobserved probability
of death in year t (between age x and x+ 1).

In generating the hedging results, we simulate, for each of the 10,000
simulated mortality scenarios from the LLCBD model, one realization of
{lx0+t−t0+1,t+1; t = t0, t0+1, . . . , t0+T−1}. The per contract value of the liability
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being hedged in each mortality scenario is then computed as follows:

L =
T∑
u=1

e−ru lx0+u,t0+1+u
lx0,t0+1

.

The calculation of N1, . . . , Nm remains the same as when Poisson uncertainty
is not taken into account, because the q-forward hedge aims to mitigate only
systematic longevity risk. There is also no change to the calculation of Hj ,
j = 1, . . . ,m, because the q-forwards are assumed to be linked to the smoothed
death probabilities that are free of Poisson uncertainty.

We calculate the hedge effectiveness for annuity liabilities with different ini-
tial numbers of annuitants: lx0,t0+1 = 103, 104, 105, 106, 107. The results (see
Table 14) are based on hedge portfolios with m = 1, 2, 3, 4 q-forwards, built by
applying the generalized state-space method to the original CBDmodel (Group
3) and the LLCBD model (Group 4). When there are only 1,000 annuitants
initially, Poisson risk erodes hedge effectiveness by about 30 to 40 percentage
points. The erosion in hedge effectiveness is much milder (less than 10 percent-
age points) when the initial number of annuitants is 10,000, and becomes neg-
ligible when the initial number of annuitant grows to 100,000. When the initial
number of annuitants is 107, the resulting values of HE are identical (to four
significant figures) to those when Poisson risk is assumed to be absent. Our re-
sults are in line with those produced by Li and Hardy (2011) and Cairns et al.
(2014).

6.5.4. Sensitivity to the covariance between state vectors. Recall that Q rep-
resents the covariance matrix of the innovation vectors, thereby governing the
static and dynamic correlations between the hidden states. The hedging strategy
derived from the generalized state-space method depends on Q, but those de-
rived from the delta- and delta–nuga methods do not. Hence, it is warranted to
examine how the performance of different hedging strategies may change when
Q is altered.

We consider the following five hypothetical situations:

a. all elements are scaled up or down;
b. elements related to κ1(t) (i.e., Q1,i and Qi,1 for i = 1, 2, 3, 4) are scaled up

or down;
c. elements related to κ2(t) (i.e., Q2,i and Qi,2 for i = 1, 2, 3, 4) are scaled up

or down;
d. elements related to C1(t) (i.e., Q3,i and Qi,3 for i = 1, 2, 3, 4) are scaled up

or down;
e. elements related to C2(t) (i.e., Q4,i and Qi,4 for i = 1, 2, 3, 4) are scaled up

or down.
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TABLE 14

THE CALCULATED VALUES OF HE WHEN POISSON RISK IS ABSENT AND PRESENT. THE HEDGE PORTFOLIOS
ARE COMPOSED OF m = 1, 2, 3, 4 q-FORWARDS AND ARE BUILT BY APPLYING THE GENERALIZED

STATE-SPACE METHOD TO THE ORIGINAL CBD MODEL (GROUP 3) AND THE LLCBD MODEL (GROUP 4).

Without Poisson Risk

Group 3 Group 4

HE N1 N2 N3 N4 HE N1 N2 N3 N4

m = 1 0.8000 − 60.0893 − − 0.8575 − − 22.3178 −
m = 2 0.6496 71.5625 47.9503 − − 0.9579 − 41.0866 13.4239 −
m = 3 0.8557 75.7070 29.6824 9.3110 − 0.9732 64.1560 36.5098 16.1386 −
m = 4 0.8728 76.1325 29.7784 7.9015 0.7337 0.9737 66.7273 38.9987 13.2875 0.8685

With Poisson Risk, lx0 ,t0+1 = 1, 000

Group 3 Group 4

HE N1 N2 N3 N4 HE N1 N2 N3 N4

m = 1 0.4271 − 60.0893 − − 0.4487 − − 22.3178 −
m = 2 0.3451 71.5625 47.9503 − − 0.5062 − 41.0866 13.4239 −
m = 3 0.4528 75.7070 29.6824 9.3110 − 0.5143 64.1560 36.5098 16.1386 −
m = 4 0.4618 76.1325 29.7784 7.9015 0.7337 0.5151 66.7273 38.9987 13.2875 0.8685

With Poisson Risk, lx0 ,t0+1 = 10, 000

Group 3 Group 4

HE N1 N2 N3 N4 HE N1 N2 N3 N4

m = 1 0.7358 − 60.0893 − − 0.7829 − − 22.3178 −
m = 2 0.5986 71.5625 47.9503 − − 0.8776 − 41.0866 13.4239 −
m = 3 0.7876 75.7070 29.6824 9.3110 − 0.8921 64.1560 36.5098 16.1386 −
m = 4 0.8027 76.1325 29.7784 7.9015 0.7337 0.8926 66.7273 38.9987 13.2875 0.8685

With Poisson Risk, lx0 ,t0+1 = 100, 000

Group 3 Group 4

HE N1 N2 N3 N4 HE N1 N2 N3 N4

m = 1 0.7922 − 60.0893 − − 0.8503 − − 22.3178 −
m = 2 0.6432 71.5625 47.9503 − − 0.9499 − 41.0866 13.4239 −
m = 3 0.8475 75.7070 29.6824 9.3110 − 0.9648 64.1560 36.5098 16.1386 −
m = 4 0.8644 76.1325 29.7784 7.9015 0.7337 0.9653 66.7273 38.9987 13.2875 0.8685

With Poisson Risk, lx0 ,t0+1 = 1, 000, 000

Group 3 Group 4

HE N1 N2 N3 N4 HE N1 N2 N3 N4

m = 1 0.7994 − 60.0893 − − 0.8567 − − 22.3178 −
m = 2 0.6491 71.5625 47.9503 − − 0.9570 − 41.0866 13.4239 −
m = 3 0.8550 75.7070 29.6824 9.3110 − 0.9723 64.1560 36.5098 16.1386 −
m = 4 0.8720 76.1325 29.7784 7.9015 0.7337 0.9727 66.7273 38.9987 13.2875 0.8685

With Poisson Risk, lx0 ,t0+1 = 10, 000, 000

Group 3 Group 4

HE N1 N2 N3 N4 HE N1 N2 N3 N4

m = 1 0.8000 − 60.0893 − − 0.8575 − − 22.3178 −
m = 2 0.6496 71.5625 47.9503 − − 0.9578 − 41.0866 13.4239 −
m = 3 0.8557 75.7070 29.6824 9.3110 − 0.9731 64.1560 36.5098 16.1386 −
m = 4 0.8727 76.1325 29.7784 7.9015 0.7337 0.9736 66.7273 38.9987 13.2875 0.8685
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TABLE 15

THE VALUES OF HE, N1, N2, N3 AND N4 WHEN Q IS ALTERED IN DIFFERENT MANNERS.

Group 2 Group 4
Assumed Model: The LLCBD Model Assumed Model: The LLCBDModel

Method: Traditional Delta–Nuga Hedging Method: Generalized State-Space Hedging

Multiplier HE N1 N2 N3 N4 HE N1 N2 N3 N4

(a) All Elements are Scaled Up or Down

0.2 0.8903 157.7860 1.0128 27.4379 −0.0000 0.9803 66.7273 38.9987 13.2875 0.8685
0.5 0.8849 157.7860 1.0128 27.4379 −0.0000 0.9779 66.7273 38.9987 13.2875 0.8685
2 0.8544 157.7860 1.0128 27.4379 −0.0000 0.9641 66.7273 38.9987 13.2875 0.8685
5 0.7788 157.7860 1.0128 27.4379 −0.0000 0.9287 66.7273 38.9987 13.2875 0.8685

(b) Elements Related to κ1(t) (i.e., Q1,i and Qi,1 for i = 1, 2, 3, 4) are Scaled Up or Down

0.2 0.9583 157.7860 1.0128 27.4379 −0.0000 0.9867 87.1269 41.1404 13.2163 1.1126
0.5 0.9401 157.7860 1.0128 27.4379 −0.0000 0.9838 78.9923 40.7965 13.2949 1.0401
2 0.3661 157.7860 1.0128 27.4379 −0.0000 0.9002 50.0976 33.4547 12.4363 0.1343
5 0.4538 157.7860 1.0128 27.4379 −0.0000 0.8918 62.6005 32.7750 11.8342 −2.9903

(c) Elements Related to κ2(t) (i.e., Q2,i and Qi,2 for i = 1, 2, 3, 4) are Scaled Up or Down

0.2 0.9306 157.7860 1.0128 27.4379 −0.0000 0.9821 67.7555 40.5623 13.2294 0.9485
0.5 0.9151 157.7860 1.0128 27.4379 −0.0000 0.9801 67.4009 39.9414 13.2894 0.9192
2 0.7206 157.7860 1.0128 27.4379 −0.0000 0.9450 65.5549 37.4718 13.1057 0.6844
5 0.6440 157.7860 1.0128 27.4379 −0.0000 0.9133 78.7940 37.4970 12.9966 0.4223

(d) Elements Related to C1(t) (i.e., Q3,i and Qi,3 for i = 1, 2, 3, 4) are Scaled Up or Down

0.2 0.8134 157.7860 1.0128 27.4379 −0.0000 0.9673 48.8085 33.5628 12.5653 1.0407
0.5 0.7978 157.7860 1.0128 27.4379 −0.0000 0.9745 21.5914 30.1378 12.2326 0.8986
2 0.9412 157.7860 1.0128 27.4379 −0.0000 0.9781 82.4635 41.9468 13.3386 0.9666
5 0.8541 157.7860 1.0128 27.4379 −0.0000 0.8821 85.7639 43.2876 12.6638 1.1792

(e) Elements Related to C2(t) (i.e., Q3,i and Qi,3 for i = 1, 2, 3, 4) are Scaled Up or Down

0.2 0.9161 157.7860 1.0128 27.4379 −0.0000 0.9784 84.0152 40.8037 13.4928 1.0814
0.5 0.8608 157.7860 1.0128 27.4379 −0.0000 0.9684 79.1166 40.3986 13.6192 0.7173
2 0.8781 157.7860 1.0128 27.4379 −0.0000 0.9480 53.2548 39.4064 13.2301 1.0908
5 0.1753 157.7860 1.0128 27.4379 −0.0000 0.5724 74.0987 41.8060 12.9891 1.1607

Four scaling factors, 0.2, 0.5, 2 and 5, are considered. The simulation model
used is the LLCBD model (with the altered covariance matrix). The test results
for hedges with m = 4 q-forwards are presented in Table 15.

As expected, when the delta–nuga hedging method is used, altering Q has
no impact on the values of N1, . . . , N4. However, the value of HE changes con-
siderably when Q is scaled up or down. The value of HE is the lowest (0.1753)
when the elements related to C2(t) are scaled up by a factor of 5.

When the generalized state-space hedging method is used, the values of
N1, . . . , N4 are adaptive to the modifications made to Q. As the notional
amounts are “corrected” accordingly,7 the resulting value of HE is much more
robust relative to changes in Q. For every situation under consideration, the
value of HE produced by the generalized state-space hedging method is higher
than that produced by the delta–nuga hedging method.
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TABLE 16

THE VALUES OF HE AND N1, . . . , Nm PRODUCED BY THE GENERALIZED STATE-SPACE METHOD WHEN
DIFFERENT NUMBERS OF q-FORWARDS ARE USED.

HE N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

0.8425 83.1379 − − − − − − − − −
0.8517 9.6612 78.6630 − − − − − − − −
0.8583 19.5117 4.3579 67.1848 − − − − − − −
0.8640 26.2820 4.5859 4.9870 57.6373 − − − − − −
0.8685 30.9677 4.7438 5.2967 5.6566 49.0497 − − − − −
0.8717 34.1813 4.8520 5.5091 5.9726 6.2574 40.9674 − − − −
0.8736 36.3330 4.9245 5.6513 6.1842 6.5404 6.7341 33.1843 − − −
0.8749 37.7136 4.9710 5.7425 6.3200 6.7220 6.9642 7.0601 25.6171 − −
0.8754 38.5350 4.9987 5.7968 6.4008 6.8301 7.1011 7.2282 7.2236 18.2404 −
0.8758 38.9536 5.0128 5.8245 6.4420 6.8851 7.1709 7.3139 7.3269 7.2210 11.0539

6.5.5. Sensitivity to the number of q-forwards used. As previously mentioned,
the generalized state-space hedging method can be implemented with any
number of q-forwards (m), because the solution to Equation (5.6) exists for
any m ≥ 1. We now examine how the performance of the generalized
state-space hedging method may change as the number of q-forwards used
increases.

We consider the following collection of q-forwards:

Reference Reference Reference Reference
j Age xj Year tj j Age xj Year tj
1 80 2025 6 80 2030
2 80 2026 7 80 2031
3 80 2027 8 80 2032
4 80 2028 9 80 2033
5 80 2029 10 80 2034

Note that it is not possible to use this collection of q-forwards to build delta or
delta–nuga hedges, because they are all linked to the same reference age.8

When m = 1, the hedge contains q-forward j = 1; when m = 2, the hedge
contains q-forwards j = 1, 2; and so on. The hedging results for m = 1, . . . , 10
are reported in Table 16. Asm increases, the value of HE increases. However, the
rate of increase in HE reduces with m, suggesting that the marginal benefit of
adding an additional q-forward becomes small when the hedge portfolio already
contains a large number of q-forwards.

When m becomes very large, inverting �h may become difficult as it may
be close to singular due to its large dimension. Users of this method should
be mindful of this potential problem, although having a very large m is not
likely.
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TABLE 17

RESULT I (A COMPARISON OF DIFFERENT HEDGING METHODS) BASED ON THE ALTERNATIVE SET OF
q-FORWARDS. FOR GROUPS 1 AND 3, THE SIMULATION MODEL USED IS THE ORIGINAL CBD MODEL. FOR

GROUPS 2 AND 4, THE SIMULATION MODEL USED IS THE LLCBD MODEL.

Group 1 Group 3
Assumed model: The Original CBDModel Assumed Model: The Original CBD Model

Method: Traditional Delta Hedging Method: Generalized State-Space Hedging

HE N1 N2 N3 N4 HE N1 N2 N3 N4

0.8510 152.5614 43.2934 − − 0.9135 112.2606 35.4131 − −
−1.6532 −378.3325 − 562.1118 − 0.7646 112.5175 − 137.0038 −
−1.2703 −168.3086 − − 367.6104 0.7597 152.6432 − − 97.0379
0.7050 − 30.8523 161.5324 − 0.9106 − 30.8712 70.1558 −
0.4764 − 22.7090 − 174.7847 0.9107 − 32.3435 − 51.5237

−2.8836 − − −450.4640 662.2052 0.7358 − − 120.3346 48.6849

Group 2 Group 4
Assumed Model: The LLCBD Model Assumed Model: The LLCBD Model

Method: Traditional Delta/Delta–Nuga Hedging Method: Generalized State-Space Hedging

HE N1 N2 N3 N4 HE N1 N2 N3 N4

0.6880 178.7526 59.9580 − − 0.7905 11.7794 57.6941 − −
−9.1519 −469.6742 − 806.0370 − 0.7086 −238.5952 − 184.9745 −

−12.2549 −213.1537 − − 575.5422 0.7694 −124.0271 − − 118.4957
0.0151 − 43.4293 222.2012 − 0.8300 − 45.7134 51.2775 −

−1.6542 − 32.6105 − 262.5109 0.8929 − 37.2561 − 58.1600
−18.8856 − − −669.7701 1053.7844 0.7267 − − −44.6941 136.6734

0.5892 349.2159 66.6085 −399.0373 221.0896 0.9132 −20.9026 37.8663 −60.2340 96.9143

6.5.6. Sensitivity to choice of q-forwards. Finally, we examine the sensitivity of
the hedging results to the choice of q-forwards. The following set of q-forwards
is considered:

j Reference Age xj Reference Year tj
1 70 2020
2 88 2025
3 75 2030
4 77 2035

In contrast to the q-forwards used in the baseline results, the q-forwards con-
sidered here are linked to distinct birth cohorts.

Table 17 shows Result I (a comparison of different hedging methods) on the
basis of the alternative set of q-forwards. The conclusion obtained in Section
6.2 remains unchanged: The generalized state-space method consistently yields
a better hedge effectiveness compared to the delta and delta–nuga methods, re-
gardless of whether the original CBD model or the LLCBD model is assumed
in the derivation.

Table 18 displays Result II (the impact of model mis-specification) on the
basis of the alternative set of q-forwards. The conclusion drawn in Section 6.3
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TABLE 18

RESULT II (THE IMPACT OF MODEL MIS-SPECIFICATION) DERIVED USING THE ALTERNATIVE SET OF
q-FORWARDS. THE SIMULATION MODEL USED IS THE LLCBD MODEL.

Group 3 Group 4
Assumed Model: The Original CBDModel Assumed Model: The LLCBDModel
Method: Generalized State-Space Hedging Method: Generalized State-Space Hedging

HE N1 N2 N3 N4 HE N1 N2 N3 N4

Number of q-Forwards Used: m = 1

0.7413 − 42.9262 − − 0.7899 − 57.7622 − −
Number of q-Forwards Used: m = 2

0.8825 − 32.3435 − 51.5237 0.8929 − 37.2561 − 58.1600

Number of q-Forwards Used: m = 3

0.7906 86.7842 28.9276 − 39.8774 0.9123 − 39.0704 −72.4252 101.2808

Number of q-Forwards Used: m = 4

0.7840 82.7462 28.4464 10.8472 34.4610 0.9132 −20.9026 37.8663 −60.2340 96.9143

still stands: Neglecting stochastic drifts may lead to a material loss of hedge
effectiveness, if the true underlying model is one with stochastic drifts.

7. CONCLUDING REMARKS

Longevity risk comprises of diffusion risk and drift risk. Although both sources
of risk are significant, the latter is often ignored in the existing stochastic mor-
tality models. In this paper, we introduce the LLCBD model which captures
drift risk by allowing the drifts themselves to follow a random walk. Written in
a state-space form, the LLCBD model contains four hidden states, κ1(t), κ2(t),
C1(t) and C2(t), all of which have demographic intuitions behind. All hidden
states and parameters in the model can be estimated in one single stage by using
the EM algorithm and the Kalman filter.

As an illustration, we estimate the LLCBD model to the historical mortal-
ity data of Canadian males. The adequacy of the model’s fit is confirmed by
Harvey’s (1990) test that is based on the model’s vector of prediction errors. In
comparison to the original CBD model, the LLCBD model provides a better
goodness-of-fit in terms of AIC, and yields more accurate short- and long-term
forecasts in terms of ME and MSE. We also find that the LLCBD model gen-
erates forecasts that are more consistent with the observed trends in the recent
past and are more robust relative to changes in the length of the calibration
window. Because the LLCBD model incorporates additionally the uncertainty
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associated with the drifts, it results in wider long-term prediction intervals that
reflect the possibilities of future trend changes.

Another contribution of this paper is the generalized state-space hedging
method, from which one can construct an index-based longevity hedge to mit-
igate both diffusion and drift risks. As explained in Section 5.5, the proposed
hedging method can ameliorate the problems of sub-optimality and singularity
that the traditional delta- and delta–nuga hedging methods are subject to. The
proposed hedging method does not impose any requirement on the number of
hedging instruments used. It also works for any combination of hedging instru-
ments, provided that the payoffs from the hedging instruments are not perfectly
correlated with one another.

As an example, we apply the generalized state-space hedging method to a
hypothetical hedging scenario. The results of this application point to three
conclusions. First, the proposed hedging method performs better than the tra-
ditional delta and delta–nuga hedging methods, no matter which of the two
models under consideration is assumed. Second, ignoring stochastic drifts in the
derivation of the hedging strategies would lead to a material reduction in hedge
effectiveness, if the true underlying model is one with stochastic drifts. Third,
the negative impact of ignoring stochastic drifts is particularly significant if the
duration of the liability being hedged is long.

To focus on the issue concerning drift risk, in this paper, we choose to build
our model on the simplest version of the CBD model, which does not take co-
hort effects into account. We acknowledge that cohort effects are significant in
certain populations, and that it is not trivial to incorporate cohort effects in a
state-space representation in which the vector of hidden states evolve over time
rather than year of birth. In future research, it would be interesting to investigate
how the LLCBD model can be further extended to incorporate cohort effects.
This goal may possibly be accomplished by using the parsimonious approach
introduced byMarvos et al. (2014), whereby cohort effects are captured through
the dependence among residuals.

To ease exposition, we have also assumed that the q-forwards and the an-
nuity liability are associated with exactly the same population. In reality, the
q-forwards are more likely to be linked to a broad-based mortality index rather
than the hedger’s own population, giving rise to population basis risk that may
reduce hedge effectiveness. Future research warrants a study on how our contri-
butions may be applied to situations when population basis risk exists. Such a
study would encompass an extension of the LLCBD model to a version which,
similar to the models contributed by Li and Lee (2005), Cairns et al. (2011b),
Dowd et al. (2011) and Li et al. (2015b), models the mortality of two popula-
tions in a coherent manner. The study would also include an adjustment of the
generalized state-space hedging method to capture the imperfect correlations
between the mortality improvements of the two populations involved.

The longevity hedging strategy presented in this paper is static, as no adjust-
ment is made to the hedge after inception. Static hedging strategies generally
require longer dated instruments, but the majority of capital market investors
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prefer to invest in shorter dated ones. It would therefore be useful to extend
the proposed hedging method from static to dynamic. The accomplishment of
this research goal is likely to computationally demanding, as nested simulations
are normally required when assessing the effectiveness of a dynamic longevity
hedge. To overcome the computational challenge, approximation methods such
as that proposed by Cairns (2011) may be required.
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NOTES

1. The approximation is exact if deaths are uniformly distributed between two consecutive in-
teger ages.

2. If vx,t ’s are i.i.d. but not normal, then D would converge to another constant instead.
3. We do not consider Model M3 (the age-period cohort model), because it is simply a special

case of Model M2 with b1(x) and b2(x) being constants instead of functions of age. Also, Model
M4 (the P-splines regression) is excluded, in part because it is based on a regression rather than
stochastic processes and in part because it does not yield sample mortality paths which are needed
for the analyses in later parts of the paper.

4. The Life and Longevity Markets Association (www.llma.org).
5. In effect, L̂ and Ĥj are respectively the values of L and Hj calculated by switching off all

random components.
6. The annuity liability and all hedging instruments used are related to ages greater than x̄ =

69.5, so the projected mortality would be high (low) when both κ1(t) and κ2(t) are high (low).
It follows that (1) and (a) are the linear sample paths that would result in the highest projected
mortality, whereas (2) and (b) are the linear sample paths that would lead to the lowest projected
mortality.

7. Situation (a) is an exception. If all elements of Q are scaled by the same factor, then according
to Equation (5.5), all elements in �∗

i, j , for any i and j , would also be scaled by exactly the same
factor. As a result, we can cancel out the scaling factor in Equation (5.7), resulting in no change
in the values of N1, . . . , N4.

8. When the q-forwards are linked to the same reference age, the delta and delta–nuga methods
are subject to the singularity problem (see Section 5.5.2).
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APPENDIX: ESTIMATION PROCEDURE

In this appendix, we detail the estimation procedure, which is adapted from the work of
Holmes (2013). As before, we use [ta, tb] and [xa, xb] to denote the sample period and sample
age range to which the model is fitted, respectively. The vector of observations at time t is
�yt = (yxa ,t, . . . , yxb ,t)

′.
Following Holmes (2013), we use an Expectation–Maximization (EM) algorithm to ob-

tain maximum likelihood parameter estimates. Under our model assumptions,

�ηt i.i.d.∼ MVN(0, Q) and �εt i.i.d.∼ MVN(0, Ixb−xa+1σ
2
ε ).

It immediately follows that the log-likelihood function is given by

ln(L) = − 1
2σ 2

ε

tb∑
t=ta

(�yt − B�αt)′
(�yt − B�αt) − (tb − ta + 1)(xb − xa + 1)

2
ln(σ 2

ε )

− 1
2

tb∑
t=ta+1

(�αt − A�αt−1)
′ Q−1 (�αt − A�αt−1) − 1

2

tb∑
t=ta+1

ln |Q| + cl ,

where cl is a constant that is free of the hidden states and parameters. When fitting the special
case with constant drifts, �αt and Q should be replaced by �α∗

t and Q
∗, respectively.
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The EM algorithm iterates over two steps until convergence. In the first step, which is
known as the Expectation step, the expectation of the log-likelihood is computed:

� = E [ln(L)]

= − 1
2σ 2

ε

tb∑
t=ta

(
E[�y′

t �yt] − 2E[�y′
t B�αt] + E[�α′

t B
′B�αt]

)

− (tb − ta + 1)(xb − xa + 1)
2

ln(σ 2
ε )

− 1
2

tb∑
t=ta+1

(
E[�α′

t Q
−1 �αt] − 2E[�α′

t−1A
′Q−1 �αt] + E[�α′

t−1A
′Q−1A�αt−1]

)

− tb − ta
2

ln |Q| + cl .

In the second step, which is known as the Maximization step, parameter estimates are ob-
tained by maximizing the expected log-likelihood �. We now derive the update equations for
parameters σ 2

ε and Q in the Maximization step.

Update equation for σ 2
ε :

Differentiating � with respect to σ 2
ε , we have

∂�

∂σ 2
ε

= −1
2

tb∑
t=ta

−E
[�y′

t �yt
] + 2E

[�y′
t B�αt

] − E
[�α′

t B
′B�αt

]
σ 4

ε

− (tb − ta + 1)(xb − xa + 1)
2σ 2

ε

.

Setting the partial derivative to 0, we can obtain the update equation for R as follows:

σ 2
ε = 1

u

tb∑
t=ta

(
E

[�y′
t �yt

] − 2E
[�y′

t B�αt
] + E

[�α′
t B

′B�αt
])

= 1
u

tb∑
t=ta

E
[
(�yt − B�αt)′(�yt − B�αt)

]

= 1
u

tb∑
t=ta

E[vec((�yt − B�αt)′Ixb−xa+1(�yt − B�αt))]

= 1
u

tb∑
t=ta

E
[
(�yt − B�αt)′ ⊗ (�yt − B�αt)′] vec (

Ixb−xa+1
)

= 1
u

tb∑
t=ta

E
[
vec((�yt − B�αt)(�yt − B�αt)′)′] vec (

Ixb−xa+1
)

= 1
u

tb∑
t=ta

(
vec(E[�yt �y′

y])
′ − 2vec(E[�yt �α′

t]B
′)′ + vec(BE[�αt �α′

t]B
′)′)vec (

Ixb−xa+1
)
,
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where vec(X) represents the vectorization of X, ⊗ is the kronecker product operator and
u = (tb − ta + 1)(xb − xa + 1).

Update equation for Q:
The partial derivative of � with respect to Q can be calculated as

∂�

∂Q
= 1

2

tb∑
t=ta+1

Q−1
(
E[�αt �α′

t]− E[�αt �α′
t−1]A

′ − AE[�αt−1 �α′
t]+ AE[�αt−1 �α′

t−1]A
′
)
Q−1

− tb − ta
2

Q−1.

Setting the partial derivative to zero, we obtain the following update equation for Q:

Q = 1
tb − ta

tb∑
t=ta+1

(
E[�αt �α′

t] − E[�αt �α′
t−1]A

′ − AE[�αt−1�α′
t] + AE[�αt−1 �α′

t−1]A
′
)
.

Calculating the expectations in the update equations:
We now explain how the expectations in the update equations for σ 2

ε and Q can be evalu-
ated. Let Et(·), Vart(·), Covt(·, ·), respectively be the expectation, variance and covariance
conditioned on the information up to and including time t. The expectations in the update
equations are calculated on the basis of all data, so that, for example, E[�αt �α′

t] is computed as
Etb [�αt �α′

t].
To calculate Etb [�αt �α′

t−1], Etb [�αt �α′
t], Etb [�αt−1�α′

t] and Etb [�αt−1�α′
t−1], we use the Kalman

smoother algorithm. The first step in the algorithm is to calculate the expectations of �αt �α′
t

and �αt, conditioned on the information up to an including time t, using the Kalman filter:⎧⎪⎨
⎪⎩

Et[�αt] = Et−1[�αt] + Kt(yt − BEt−1[�αt])
Vart(�αt) = (Im − Kt B)Vart−1(�αt)
Et[�αt �α′

t] = Vart(�αt) + Et[�αt](Et[�αt])′
,

where Et−1[�αt] = AEt−1[�αt−1], Vart−1(�αt) = AVart−1(�αt−1)A′ + Q and

Kt = Vart−1(�αt)B′ (BVart−1(�αt)B′ + Ixb−xa+1 · σ 2
ε

)−1

is the Kalman gain at time t.
The second step of the algorithm utilizes the Kalman smoother,

⎧⎪⎨
⎪⎩

Etb [�αt−1] = Et−1[�αt−1] + Jt−1(Etb [�αt] − Et−1[�αt])
Vartb (�αt−1) = Vart−1(�αt−1) + Jt−1(Vartb (�αt) − Vart−1(�αt))J ′

t

Etb [�αt �α′
t] = Vartb (�αt) + Etb [�αt](Etb [�αt])′

,

and the lag-1 covariance smoother,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Covtb (�αtb , �αtb−1) = (Im − Ktb B)AVartb−1(�αtb−1)

Covtb (�αt−1, �αt−2) = Vart−1(�αt−1)J ′
t−2 + Jt−1(Covtb (�αt, �αt−1)

−AVart−1(�αt−1))J ′
t−2

Etb [�αt �α′
t−1] = Covtb (�αt, �α′

t−1) + Etb [�αt](Etb [�αt−1])′

,
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where Jt−1 = Vart−1(�αt−1)A′(Vart−1(�αt))−1. By applying the two sets of equations above re-
cursively for t = tb, tb − 1, . . ., the required expectations can be obtained readily.

The update equation for σ 2
ε contains two additional expectations, namely E[�yt �α′

t] and
E

[�y′
t �yt

]
. These two expectations are computed as follows:

E[�yt �y′
t] = �̃yt �̃y

′
t;

E[�yt �α′
t] = �̃ytEtb [�αt]′,

where �̃yt represents the realization of �yt and Etb [�αt] can be evaluated by theKalman smoother.
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