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1. Introduction

For a positive integer N let FN be the field of all meromorphic modular functions
of level N whose Fourier coefficients lie in the Nth cyclotomic field Q(ζN ) with
ζN = e2πi/N . Then it is well known that F1 is generated over Q by the elliptic
modular function

j(τ) = 1/q + 744 + 196884q + 21493760q2 + · · ·
(τ ∈ H, the complex upper half-plane),

where q = e2πiτ . Furthermore, FN is a Galois extension of F1, whose Galois group
is isomorphic to GL2(Z/NZ)/{±I2} (see [9, §§ 6.1 and 6.2]).

For N � 2 we let

VN = {v ∈ Q2 | v has primitive denominator N},
∗Corresponding author.
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that is, v ∈ Q2 belongs to VN if and only if N is the smallest positive integer
satisfying Nv ∈ Z2. We call a family {hv(τ)}v∈VN

of functions in FN a Fricke
family of level N if

(F1) hv(τ) is weakly holomorphic (namely, hv(τ) is holomorphic on H);

(F2) hv(τ) depends only on ±v (mod Z2);

(F3) hv(τ)γ = htγv(τ) for all γ ∈ GL2(Z/NZ)/{±I2} � Gal(FN/F1), where tγ
indicates the transpose of γ.

In this paper we deal with two kinds of Fricke families,

{fv(τ)}v∈VN
and {gv(τ)12N}v∈VN

,

one consisting of Fricke functions and the other consisting of 12Nth powers of Siegel
functions (see § 2).

Let K be an imaginary quadratic field of discriminant dK other than Q(
√

−1)
and Q(

√
−3), and let n be a proper non-trivial ideal of the ring of integers OK of

K. Furthermore, let N (greater than or equal to 2) be the smallest positive integer
in n and let C be a ray class in the ray class group Cl(n) of K modulo n. For a
Fricke family {hv(τ)}v∈VN

of level N we shall define in § 3 the Fricke invariant
hn(C), which depends only on n and C. The first main theorem of this paper then
asserts that fn(C) generates the ray class field Kn of K modulo n over the Hilbert
class field HK of K (see theorem 3.2).

On the other hand, Lang [5, p. 292] and Schertz [7] conjectured that g12N
n (C),

which is called the Siegel–Ramachandra invariant modulo n at C, generates Kn over
HK (in fact, even over K). See also [1] and [8]. Recently, Cho [2] gave a conditional
proof by adopting Schertz’s idea and using the second Kronecker limit formula as
follows. Let n =

∏r
k=1 p

ek

k be the prime ideal factorization of n. If the exponent
of the quotient group (OK/p

ek

k )×/{α + p
ek

k | α ∈ O×
K} is greater than 2 for every

k = 1, . . . , r, then g12N
n (C) generates Kn over K.

As the second main theorem, we present a new conditional proof of the Lang–
Schertz conjecture (theorem 4.1 and corollary 4.3). We furthermore show that the
6Nth root, which will give a relatively small power, of a certain quotient of Siegel–
Ramachandra invariants generates Kn over HK when dK ≡ N ≡ 0 (mod 4), |dK | �
4N4/3 and n = NOK (theorem 6.2). To this end, we shall find some relations
between Fricke and Siegel functions (lemma 2.5), and make use of an explicit version
of Shimura’s reciprocity law due to Stevenhagen (proposition 5.2). Finally, we note
that these invariants have minimal polynomials with (relatively) small coefficients
(example 6.4).

2. Fricke families

Let Λ be a lattice in C. The Weierstrass ℘-function relative to Λ is defined by

℘(z; Λ) =
1
z2 +

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)
(z ∈ C).

Then it is a meromorphic function on z and is periodic with respect to Λ.
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Lemma 2.1. If z1, z2 ∈ C \ Λ, then ℘(z1; Λ) = ℘(z2; Λ) if and only if z1 ≡ ±z2
(mod Λ).

Proof. See [10, ch. IV, § 3].

Let N (greater than or equal to 2) be an integer and let v = [ v1
v2 ] ∈ VN . We

define
℘v(τ) = ℘(v1τ + v2; [τ, 1]) (τ ∈ H), (2.1)

which is a weakly holomorphic modular form of level N and weight 2 [5, ch. 6]. We
furthermore define auxiliary functions g2(τ), g3(τ) and Δ(τ) on H by

g2(τ) = 60
∑

ω∈[τ,1]\{0}

1
ω4 , g3(τ) = 140

∑
ω∈[τ,1]\{0}

1
ω6

and

Δ(τ) = g2(τ)3 − 27g3(τ)2,

which are holomorphic modular forms of level 1 and weight 4, 6 and 12, respectively
(see [5, ch. 3, § 2]). Now, we define the Fricke function (or the first Weber function)
fv(τ) by

fv(τ) = −2735 g2(τ)g3(τ)
Δ(τ)

℘v(τ) (τ ∈ H). (2.2)

Proposition 2.2. The family {fv(τ)}v∈VN
is a Fricke family of level N .

Proof. See [5, ch. 6, §§ 2 and 3].

The Weierstrass σ-function relative to Λ is defined by

σ(z; Λ) = z
∏

ω∈Λ\{0}

(
1 − z

ω

)
ez/ω+ 1

2 (z/ω)2 (z ∈ C).

Taking the logarithmic derivative we obtain the Weierstrass ζ-function as

ζ(z; Λ) =
σ′(z; Λ)
σ(z; Λ)

=
1
z

+
∑

ω∈Λ\{0}

(
1

z − ω
+

1
ω

+
z

ω2

)
.

Since ζ ′(z; Λ) = −℘(z; Λ) is periodic with respect to Λ, for any ω ∈ Λ there is a
constant η(ω; Λ) so that

ζ(z + ω; Λ) − ζ(z; Λ) = η(ω; Λ).

Next we define the Siegel function gv(τ) by

gv(τ) = exp{− 1
2 (v1η(τ ; [τ, 1]) + v2η(1; [τ, 1]))(v1τ + v2)}σ(v1τ + v2; [τ, 1])η(τ)2

(τ ∈ H),

where

η(τ) =
√

2πζ8q
1/24

∞∏
n=1

(1 − qn) (q = e2πiτ , τ ∈ H)
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is the Dedekind η-function. By the product formula of the Weierstrass σ-function
we obtain the q-product expression

gv(τ) = −eπiv2(v1−1)q
1
2 B2(v1)(1 − qv1e2πiv2)

×
∞∏

n=1

(1 − qn+v1e2πiv2)(1 − qn−v1e−2πiv2), (2.3)

where B2(X) = X2 − X + 1/6 is the second Bernoulli polynomial (see [5, ch. 18,
theorem 4 and ch. 19, § 2]). Furthermore, we have the q-order formula

ordq(gv(τ)) = 1
2B2(〈v1〉), (2.4)

where 〈X〉 is the fractional part of X ∈ R such that 0 � 〈X〉 < 1 (see [4, ch. 2,
§ 1]).

Lemma 2.3. Let {m(v)}v=[ v1
v2

]∈VN
be a family of integers such that m(v) = 0 except

for finitely many v. If the family satisfies∑
v

m(v)(Nv1)2 ≡
∑

v

m(v)(Nv2)2 ≡ 0 (mod gcd(2, N) · N),

∑
v

m(v)(Nv1)(Nv2) ≡ 0 (mod N),

gcd(12, N)
∑

v

m(v) ≡ 0 (mod 12),

then ζ
∏

v gv(τ)m(v) belongs to FN , where ζ =
∏

v eπiv2(1−v1)m(v) ∈ Q(ζ2N2).

Proof. See [4, ch. 3, theorems 5.2 and 5.3] and (2.3).

Proposition 2.4. The family {gv(τ)12N}v∈VN
is a Fricke family of level N .

Proof. See [4, ch. 2, proposition 1.3].

Lemma 2.5. We further obtain the following results on modular functions.

(i) If h(τ) is a weakly holomorphic function in F1, then it is a polynomial in j(τ)
over Q.

(ii) We have F1

(
f[ 0

1/N

](τ)
)

= F1

(
g[ 0

1/N

](τ)12N
)
.

(iii) We get the relation

f[ 0
1/N

](τ) =
p
(
j(τ), g[ 0

1/N

](τ)12N
)

disc
(
g[ 0

1/N

](τ)12N ,F1

)
for some polynomial p(X, Y ) ∈ Q[X, Y ].

Proof.
(i) See [5, ch. 5, theorem 2].
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(ii) Let
L = F1

(
f[ 0

1/N

](τ)
)

and R = F1

(
g[ 0

1/N

](τ)12N
)
,

which are intermediate subfields of the extension FN/F1 by propositions 2.2 and 2.4.
Let γ = [ x y

z w ] ∈ GL2(Z/NZ)/{±I2} � Gal(FN/F1). We then deduce that

γ ∈ Gal(FN/L) ⇐⇒ f[ 0
1/N

](τ)γ = f[ 0
1/N

](τ)

⇐⇒ ftγ
[ 0
1/N

](τ) = f[ 0
1/N

](τ) by proposition 2.2, (F2) and (F3)

⇐⇒ f[ z/N
w/N

](τ) = f[ 0
1/N

](τ)

⇐⇒ ℘((z/N)τ + w/N ; [τ, 1]) = ℘(1/N ; [τ, 1])
by the definitions (2.1) and (2.2)

⇐⇒ (z/N)τ + w/N ≡ ±1/N (mod [τ, 1]) by lemma 2.1
⇐⇒ z ≡ 0, w ≡ ±1 (mod N).

Thus we obtain

Gal(FN/L) =
{

γ ∈ GL2(Z/NZ)
∣∣∣∣ γ ≡ ±

[
∗ ∗
0 1

]
(mod N)

}
/{±I2}, (2.5)

and it follows from proposition 2.4, (F2) and (F3) that every element of Gal(FN/L)
leaves

g[ 0
1/N

](τ)12N

fixed. This implies that Gal(FN/L) ⊆ Gal(FN/R).
Conversely, let ρ = [ a b

c d ] ∈ Gal(FN/R). We then derive by proposition 2.4, (F2)
and (F3) that

g[ c/N
d/N

](τ)12N = g[ 0
1/N

](τ)12N . (2.6)

The action of [ 0 −1
1 0 ] on both sides of (2.6) yields

g[ d/N
−c/N

](τ)12N = g[ 1/N
0

](τ)12N . (2.7)

By applying the q-order formula (2.4) to the expressions (2.6) and (2.7) we attain

6NB2(〈c/N〉) = 6NB2(0) and 6NB2(〈d/N〉) = 6NB2(1/N).

Now, we deduce by the shape of the graph Y = B2(X) that

c ≡ 0, d ≡ ±1 (mod N).

This, together with (2.5), shows that Gal(FN/L) ⊇ Gal(FN/R). Thus, we achieve
Gal(FN/L) = Gal(FN/R), and hence L = R, as desired.

(iii) For simplicity, let

f = f[ 0
1/N

](τ) and g = g[ 0
1/N

](τ)12N .
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By (i) we can express f as

f = c0 + c1g + · · · + c�−1g
�−1 for some c0, c1, . . . , c�−1 ∈ F1,

where � = [F1(g) : F1]. Multiplying both sides by gk (k = 0, 1, . . . , �−1) and taking
traces Tr = TrF1(g)/F1 yields

Tr(fgk) = c0 Tr(gk) + c1 Tr(gk+1) + · · · + c�−1 Tr(gk+�−1).

So we obtain a linear system (in unknowns c0, c1, c2, . . . , c�−1)

T

⎡
⎢⎢⎢⎣

c0

c1
...

c�−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Tr(f)
Tr(fg)

...
Tr(fg�−1)

⎤
⎥⎥⎥⎦ , where T =

⎡
⎢⎢⎢⎣

Tr(1) Tr(g) · · · Tr(g�−1)
Tr(g) Tr(g2) · · · Tr(g�)

...
...

. . .
...

Tr(g�−1) Tr(g�) · · · Tr(g2�−2)

⎤
⎥⎥⎥⎦ .

Since f and g are weakly holomorphic by (F1), so are all entries of the augmented
matrix of the above linear system. Thus, we obtain by (i) that

c0, c1, . . . , c�−1 ∈ (1/ det(T ))Q[j].

On the other hand, let g1, g2, . . . , g� be all the zeros of min(g,F1). Then we see that

det(T ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�∑
k=1

g0
k

�∑
k=1

g1
k · · ·

�∑
k=1

g�−1
k

�∑
k=1

g1
k

�∑
k=1

g2
k · · ·

�∑
k=1

g�
k

...
...

. . .
...

�∑
k=1

g�−1
k

�∑
k=1

g�
k · · ·

�∑
k=1

g2�−2
k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

g0
1 g0

2 · · · g0
�

g1
1 g1

2 · · · g1
�

...
...

. . .
...

g�−1
1 g�−1

2 · · · g�−1
�

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

g0
1 g1

1 · · · g�−1
1

g0
2 g1

2 · · · g�−1
2

...
...

. . .
...

g0
� g1

� · · · g�−1
�

∣∣∣∣∣∣∣∣∣
=

∏
1�k1<k2��

(gk1 − gk2)
2 by the Vandermonde determinant formula

= disc(g,F1).

This proves (iii).

Remark 2.6. Define an equivalence relation ∼ on VN as follows:

u ∼ v if and only if u ≡ ±v (mod Z2).

Then, in a similar way as in the proof of lemma 2.5(ii), one can readily show that

fv(τ) and gv(τ)12N for v ∈ VN/ ∼
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represent all the distinct zeros of

min
(
f[ 0

1/N

](τ),F1

)
and min

(
g[ 0

1/N

](τ)12N ,F1

)
,

respectively.

3. Generation of class fields

Let K be an imaginary quadratic field and let OK be its ring of integers. Let n be
a proper non-trivial ideal of OK , let N (greater than or equal to 2) be the smallest
positive integer in n and let C be a ray class in the ray class group Cl(n) of K
modulo n. We take an integral ideal c in the class C and let

nc
−1 = [ω1, ω2] for some ω1, ω2 ∈ C with ω = ω1/ω2 ∈ H,

1 = (a/N)ω1 + (b/N)ω2 for some a, b ∈ Z.

For a given Fricke family {hv(τ)}v∈VN
of level N , we define the Fricke invariant

hn(C) modulo n at C by
hn(C) = h[ a/N

b/N

](ω). (3.1)

This value depends only on n and C, not on the choices of c, ω1 and ω2 [4, ch. 11,
§ 1].

Proposition 3.1. The Fricke invariant hn(C) lies in the ray class field Kn of K
modulo n and satisfies the following transformation formula:

hn(C)σn(C′) = hn(CC ′) for any class C ′ ∈ Cl(n),

where σn : Cl(n) → Gal(Kn/K) is the Artin reciprocity map. Furthermore, the alge-
braic number g12N

n (C)/g12N
n (C ′) is a unit.

Proof. See [4, ch. 11, theorems 1.1 and 1.2].

Theorem 3.2. Assume that K is different from Q(
√

−1) and Q(
√

−3). Then the
first Fricke invariant fn(C) generates Kn over the Hilbert class field HK of K.

Proof. Let C0 be the identity class of Cl(n). Since Kn is a finite abelian extension
of K, it suffices to show that fn(C0) generates Kn over HK . Let

IK(n) = the group of fractional ideals of K prime to n,

PK(n) = 〈αOK | α ∈ OK such that αOK is prime to n〉 (⊆ IK(n)),
PK,1(n) = 〈αOK | α ∈ OK such that α ≡ 1 (mod n)〉 (⊆ PK(n)).

Since Gal(Kn/K) � IK(n)/PK,1(n) and Gal(HK/K) � IK(n)/PK(n) [3, ch. IV
and V], we get

Gal(Kn/HK) � PK(n)/PK,1(n). (3.2)

Assume that a class D in PK(n)/PK,1(n) leaves fn(C0) fixed via the Artin reci-
procity law. Here we may assume that D = [αOK ] for some α ∈ OK such that
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αOK is prime to n, since PK(n)/PK,1(n) is a finite group. Take c = OK ∈ C0 and
let

nc
−1 = n = [ω1, ω2] for some ω1, ω2 ∈ C with ω = ω1/ω2 ∈ H, (3.3)

1 = (a/N)ω1 + (b/N)ω2 for some a, b ∈ Z. (3.4)

We then have

n(αOK)−1 = [ω1α
−1, ω2α

−1], (3.5)

1 = (r/N)(ω1α
−1) + (s/N)(ω2α

−1) for some r, s ∈ Z. (3.6)

Now we attain that

fn(C0) = f[ a/N
b/N

](ω) by (3.3), (3.4) and definition (3.1)

= fn(C0)σn(D)

= fn(D) by proposition 3.1 and the fact that C0 is
the identity class of Cl(n)

= f[ r/N
s/N

](ω1α
−1/ω2α

−1) by (3.5), (3.6) and definition (3.1)

= f[ r/N
s/N

](ω).

Note that since K is different from Q(
√

−1) and Q(
√

−3), we get g2(ω), g3(ω) �= 0 [5,
ch. 3, theorem 3]. We thus obtain by definition (2.2) and lemma 2.1 that

(a/N)ω + b/N ≡ ±((r/N)ω + s/N) (mod [ω, 1]).

It then follows that

(a/N)ω1 + (b/N)ω2 ≡ ±((r/N)ω1 + (s/N)ω2) (mod [ω1, ω2]),

and hence
1 ≡ ±α (mod n)

by (3.3), (3.4) and (3.6). This shows that the class D = [αOK ] gives rise to the
identity of Gal(Kn/HK) via the Artin reciprocity map by (3.2). Therefore, we
conclude by Galois theory that fn(C0) generates Kn over HK .

4. Siegel–Ramachandra invariants

Let K be an imaginary quadratic field other than Q(
√

−1) and Q(
√

−3). Let dK

be its discriminant and set

τK =

{
(−1 +

√
dK)/2 if dK ≡ 1 (mod 4),√

dK/2 if dK ≡ 0 (mod 4)

so that τK ∈ H and OK = [τK , 1]. Then, as is well known, the special value j(τK)
generates HK over K [5, ch. 10, theorem 1]. Let n be a proper non-trivial ideal of
OK , let N (greater than or equal to 2) be the smallest positive integer in n and let
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C ∈ Cl(n). We call the Fricke invariant g12N
n (C) the Siegel–Ramachandra invariant

modulo n at C [6]. We furthermore let

dN (τ) = disc
(
g[ 0

1/N

](τ)12N ,F1

)
.

Theorem 4.1. If the special value dN (τK) is non-zero, then g12N
n (C) generates Kn

over HK .

Proof. As in the proof of theorem 3.2 we let C = C0 (the identity class of Cl(n))
and let

fn(C0) = f[ a/N
b/N

](ω) and g12N
n (C0) = g[ a/N

b/N

](ω)12N

for some
[
a/N

b/N

]
∈ VN and ω ∈ H.

Since dN (τ) is weakly holomorphic by remark 2.6, proposition 2.4 and (F1), we
get by lemma 2.5(i) that

dN (τ) = d(j(τ)) for some polynomial d(X) ∈ Q[X]. (4.1)

We then have dN (τK) = d(j(τK)) �= 0 by assumption, and hence d(j(ω)) �= 0
because j(ω) is a Galois conjugate of j(τK) over K [5, ch. 10, theorem 1].

Now, take an element γ ∈ GL2(Z/NZ)/{±I2} � Gal(FN/F1) such that γ ≡
±[ ∗ ∗

a b ] (mod N). We then derive that

fn(C0) = f[ a/N
b/N

](ω)

= ftγ
[ 0
1/N

](ω) by proposition 2.2 and (F2)

=
(
f[ 0

1/N

](τ)
)γ

(ω) by (F3)

=
(
p
(
j(τ), g[ 0

1/N

](τ)12N
)
/d(j(τ))

)γ
(ω)

for some polynomial p(X, Y ) ∈ Q[X, Y ] by lemma 2.5(iii)

=
(
p
(
j(τ),

(
g[ 0

1/N

](τ)12N
)γ)

/d(j(τ))
)
(ω) because γ fixes j(τ) ∈ F1

=
(
p
(
j(τ),

(
gtγ

[ 0
1/N

](τ)12N
))

/d(j(τ))
)
(ω)

by proposition 2.4, (F2) and (F3)

=
(
p
(
j(τ), g[ a/N

b/N

](τ)12N
)
/d(j(τ))

)
(ω)

= p(j(ω), g12N
n (C0))/d(j(ω)).
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Thus we achieve that

Kn = HK(fn(C0)) by theorem 3.2

= HK(p(j(ω), g12N
n (C0))/d(j(ω)))

⊆ HK(j(ω), g12N
n (C0)) since d(j(ω)) �= 0

= HK(g12N
n (C0)) because HK = K(j(ω))

⊆ Kn by proposition 3.1.

This proves that Kn = HK(g12N
n (C0)), as desired.

Remark 4.2. Here, we conjecture that dN (τK) �= 0 for all integers N � 2 and all
imaginary quadratic fields K other than Q(

√
−1) and Q(

√
−3).

Corollary 4.3. Let hK be the class number of K and

�N =
[
F1

(
g[ 0

1/N

](τ)12N
)

: F1

]
.

If hK > N�N (�N − 1)/2, then g12N
n (C) generates Kn over HK .

Proof. Letting g1, g2, . . . , g�N
be all the zeros of the polynomial

min
(
g[ 0

1/N

](τ)12N ,F1

)
∈ F1[X]

we see that

ordq(dN (τ)) = ordq

( ∏
1�k1<k2��N

(gk1 − gk2)
2
)

= 2
∑

1�k1<k2��N

ordq(gk1 − gk2)

� 2
∑

1�k1<k2��N

min{ordq(gk1), ordq(gk2)}

� 2
∑

1�k1<k2��N

6NB2(1/2)

by remark 2.6, (2.4) and the shape of the graph Y = B2(X)
= −N�N (�N − 1)/2.

Let d(X) be the polynomial in Q[X] given in (4.1). Since ordq(j(τ)) = −1, we
obtain

deg(d(X)) � N�N (�N − 1)/2.

Now, the assumption hK = deg(min(j(τK), K)) > N�N (�N − 1)/2 implies that

dN (τK) = d(j(τK)) �= 0.

Thus, the result follows from theorem 4.1.
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5. Shimura’s reciprocity law

Let K be an imaginary quadratic field other than Q(
√

−1) and Q(
√

−3). For a
positive integer N let n = NOK and let

FN,K = {h(τ) ∈ FN | h(τ) is finite at τK}.

As a consequence of the theory of complex multiplication we obtain the following
proposition.

Proposition 5.1. We have Kn = K(h(τK) | h(τ) ∈ FN,K).

Proof. See [5, ch. 10, corollary to theorem 2].

Proposition 5.2 (Shimura’s reciprocity law). Let min(τK , Q) = X2 + bX + c ∈
Z[X]. The matrix group

WN,K =
{[

t − bs −cs

s t

]
∈ GL2(Z/NZ)

∣∣∣∣ t, s ∈ Z/NZ

}

gives rise to the isomorphism

WN,K/{±I2} → Gal(Kn/HK)
α �→ h(τK) �→ h(τ)α(τK), h(τ) ∈ FN,K .

Proof. See [11, § 3].

Remark 5.3. Let x = sτK + t ∈ OK with s, t ∈ Z. If xOK is relatively prime to n,
then the class [xOK ] in PK(n)/PK,1(n) corresponds to the matrix[

t − bs −cs

s t

]
∈ WN,K/{±I2};

see [5, ch. 11, § 1] and [11].

Lemma 5.4. Assume that N ≡ 0 (mod 4). We have

g[ 1/2
1/2+1/N

](τK)12N/g[ 0
1/N

](τK)12N = g12N
n (C)/g12N

n (C0),

where C = [((N/2)τK + N/2 + 1)OK ], C0 = [OK ] ∈ Cl(n). This value is a unit
in Kn.

Proof. If we take c = OK ∈ C0, then we have

nc
−1 = n = [NτK , N ] and 1 = 0(NτK) + (1/N)N.

So we get by definition (3.1),

g12N
n (C0) = g[ 0

1/N

](τK)12N . (5.1)
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By remark 5.3, the class C = [((N/2)τK + N/2 + 1)OK ] ∈ PK(n)/PK,1(n) corre-
sponds to

α =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
1 ((1 − dK)/4)(N/2)

N/2 N/2 + 1

]
if dK ≡ 1 (mod 4),

[
N/2 + 1 (dK/4)(N/2)

N/2 N/2 + 1

]
if dK ≡ 0 (mod 4)

in WN,K/{±I2}. We then deduce that

g12N
n (C)/g12N

n (C0) = g12N
n (C0)σn(C)/g12N

n (C0) by proposition 3.1

=
(
g[ 0

1/N

](τK)12N
)σn(C)

/g[ 0
1/N

](τK)12N by (5.1)

=
(
g[ 0

1/N

](τ)12N
)α

(τK)/g[ 0
1/N

](τK)12N by proposition 5.2

= gtα
[ 0
1/N

](τ)12N (τK)/g[ 0
1/N

](τK)12N

by proposition 2.4, (F2) and (F3)

= g[ 1/2
1/2+1/N

](τK)12N/g[ 0
1/N

](τK)12N .

And this is a unit in Kn by proposition 3.1.

6. Invariants with small exponents

Let K be an imaginary quadratic field of discriminant dK . For a positive integer N
let n = NOK . Throughout this section we assume that

(i) N � 4 and N ≡ 0 (mod 2),

(ii) |dK | � 4N4/3 (greater than 25) and dK ≡ 0 (mod 4).

Lemma 6.1. Let v = [ a/N
b/N

] ∈ VN .

(i) If v �≡ ±[ 0
1/N ] (mod Z2), then we have

|gv(τK)| >
∣∣∣g[ 0

1/N

](τK)
∣∣∣.

(ii) We also get

|gv(τK)| �
∣∣∣g[ 1/2

1/2+1/N

](τK)
∣∣∣.

Proof. Since gv(τ)12N depends only on ±v (mod Z2) by proposition 2.4 and (F2),
we may assume that 0 � a/N � 1/2 and 0 � b/N < 1. Now that dK ≡ 0 (mod 4),
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we have τK =
√

dK/2. We then obtain by (2.3) that

|gv(τK)|2 = AB2(a/N)(1 − 2 cos(2πb/N)Aa/N + A2a/N )

×
∞∏

n=1

{(1 − 2 cos(2πb/N)An+a/N + A2(n+a/N))

× (1 − 2 cos(2πb/N)An−a/N + A2(n−a/N))}, (6.1)

where A = e−π
√

|dK | (less than e−5π).

(i) If a/N = 0, then the assumption v �≡ ±[ 0
1/N ] (mod Z2) yields 2/N � b/N �

(N − 2)/N . Hence, we obtain by (6.1) and the shape of the graph Y = cos X that

|gv(τK)| >
∣∣∣g[ 0

1/N

](τK)
∣∣∣.

Now, let 1/N � a/N � 1/2. We see by (6.1) and the shape of the graph Y =
B2(X) that

|gv(τK)| �
∣∣∣g[ a/N

0

](τK)
∣∣∣. (6.2)

Furthermore, we derive by (6.1) that

∣∣∣g[ 0
1/N

](τK)
∣∣∣/∣∣∣g[ a/N

0

](τK)
∣∣∣

� A
1
2 B2(0)2 sin(π/N)

∏∞
n=1(1 + A2n)

A
1
2 B2(a/N)(1 − Aa/N )

∏∞
n=1(1 − An+a/N )(1 − An−a/N )

because cos(2π/N) � 0 for N � 4

� 2 sin(π/N)A
1
2 B2(0)

∏∞
n=1(1 + An/4)

A
1
2 B2(1/N)(1 − A1/N )

∏∞
n=1(1 − An/2)2

by the shape of the graph Y = B2(X) and the fact that 1/N � a/N � 1/2

� 2 sin(π/N)A
1
2 (B2(0)−B2(1/N))

(1 − A1/N )

∞∏
n=1

(1 + An/4)3

by the inequality (1 − An/2)(1 + An/4) > 1 due to A < e−5π

� 2 sin(π/N)A(1/2N)(1−1/N)

(1 − A1/N )
exp
{ ∞∑

n=1

3An/4
}

by the fact 1 + X < eX for X > 0

� 2 sin(π/N)e−πN−1/3(1−1/N)

(1 − e−2πN−1/3)
e3A1/4/(1−A1/4) by the assumption |dK | � 4N4/3
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< 0.4e3e−5π/4/(1−e−5π/4)

by considering the graph of Y =
2 sin(π/X)e−πX−1/3(1−1/X)

(1 − e−2πX−1/3)
at X � 4

and the fact that A < e−5π

< 1.

Thus, we attain by (6.2),

|gv(τK)| >
∣∣∣g[ 0

1/N

](τK)
∣∣∣.

(ii) Considering the shape of the graphs Y = B2(X) and Y = cos X and the fact
that v ∈ VN , we deduce that

|gv(τK)| � max
{∣∣∣g[ 1/2−1/N

1/2

](τK)
∣∣∣, ∣∣∣g[ 1/2

1/2+1/N

](τK)
∣∣∣}.

So it suffices to show that∣∣∣g[ 1/2−1/N
1/2

](τK)
∣∣∣ � ∣∣∣g[ 1/2

1/2+1/N

](τK)
∣∣∣

in order to prove that

|gv(τK)| �
∣∣∣g[ 1/2

1/2+1/N

](τK)
∣∣∣.

Now we derive that∣∣∣g[ 1/2−1/N
1/2

](τK)
∣∣∣/∣∣∣g[ 1/2

1/2+1/N

](τK)
∣∣∣

� A
1
2 B2(1/2−1/N)(1 + A1/2−1/N )

∏∞
n=1(1 + An+1/2−1/N )(1 + An−1/2+1/N )

A
1
2 B2(1/2)

by (6.1) and the fact that cos(2π/N) � 0 for N � 4

� A1/2N2
(1 + A1/4)

∞∏
n=1

(1 + An+1/4)(1 + An−1/2) because N � 4

� A1/2N2
∞∏

n=1

(1 + An/4)

� A1/2N2
exp
{ ∞∑

n=1

An/4
}

due to the fact 1 + X < eX for all X > 0

� e−π/N4/3
exp
{ ∞∑

n=1

e−(πN2/3/2)n
}

since |dK | � 4N4/3

= exp{−π/N4/3 + e−πN2/3/2/(1 − e−πN2/3/2)}

< exp{−π/N4/3 + 8/π2N4/3(1 − e−πN2/3/2)}
because e−X < 2X−2 for all X > 0
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= exp{(π/N4/3)(−1 + 8/π3(1 − e−πN2/3/2))}

� exp{(π/N4/3)(−1 + 8/π3(1 − e−π21/3
))} owing to the fact N � 4

< 1.

This proves (ii).

Theorem 6.2. The special value

ζ
−4/ gcd(4,N)
2N

(
g[ 1/2

1/2+1/N

](τK)/g[ 0
1/N

](τK)
)8/ gcd(4,N)

(6.3)

generates Kn over HK . Moreover, if N ≡ 0 (mod 4), then it is a 6N th root of the
unit g12N

n (C)/g12N
n (C0), where C = [((N/2)τK + N/2 + 1)OK ] and C0 = [OK ].

Proof. Since

ζ
−4/ gcd(4,N)
2N

(
g[ 1/2

1/2+1/N

](τ)/g[ 0
1/N

](τ)
)8/ gcd(4,N)

belongs to FN by lemma 2.3, its special value at τK lies in Kn by proposition 5.1.
Let σ ∈ Gal(Kn/HK) such that σ �= id. We observe that

∣∣∣∣∣∣∣∣

⎛
⎜⎝

g[ 1/2
1/2+1/N

](τK)12N

g[ 0
1/N

](τK)12N

⎞
⎟⎠
σ∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

(
g[ 1/2

1/2+1/N

](τK)12N
)σ

(
g[ 0

1/N

](τK)12N
)σ

∣∣∣∣∣∣∣∣∣
by lemma 2.3 and proposition 5.1

=

∣∣∣∣∣∣∣∣∣

(
g[ 1/2

1/2+1/N

](τ)12N
)α

(τK)

(
g[ 0

1/N

](τ)12N
)α

(τK)

∣∣∣∣∣∣∣∣∣
for some α ∈ WN,K/{±I2} by proposition 5.2

=
∣∣∣∣gu(τK)12N

gv(τK)12N

∣∣∣∣ for some u,v ∈ VN

by proposition 2.4, (F2) and (F3)

<

∣∣∣∣∣∣∣
g[ 1/2

1/2+1/N

](τK)12N

g[ 0
1/N

](τK)12N

∣∣∣∣∣∣∣ by lemma 6.1.

This implies that the value in (6.3) generates Kn over HK . The second part of the
theorem follows from lemma 5.4.
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Remark 6.3.

(i) Theorem 6.2 deals with a special case of [8, conjecture 6.8.3].

(ii) Suppose that N is not a power of 2, and so N has at least two prime factors.
Then both gv(τ)12N and gv(τ)−12N are integral over Z[j(τ)] for any v ∈
VN [4, ch. 2, theorem 2.2]. Moreover, since j(τK) is an algebraic integer [9,
theorem 4.14], we see that gv(τK)12N is a unit. Therefore, the invariant in
(6.3) is a unit.

(iii) For any u,v ∈ Q2 \ Z2 such that u �≡ ±v (mod Z2) we have the relation

℘u(τ) − ℘v(τ) = −(gu+v(τ)gu−v(τ)/gu(τ)2gv(τ)2)η(τ)4;

see [4, p. 51]. This relation together with (2.2) and (2.3) yields

f[ 0
1/N

](τK) − f[ 1/2
1/2

](τK)

f[ 0
1/2

](τK) − f[ 1/2
1/2

](τK)
= −ζ2N

g[ 1/2
1/2+1/N

](τK)2

g[ 0
1/N

](τK)2
ζ3
4

g[ 0
1/2

](τK)2

g[ 1/2
0

](τK)2
. (6.4)

Since
fn(C0) = f[ 0

1/N

](τK)

generates Kn over HK by theorem 3.2, and

f[ 1/2
1/2

](τK) and f[ 0
1/2

](τK)

lie in K2OK
by propositions 2.2 and 5.1, the value in the left-hand side of

(6.4) generates Kn over K2OK
. Now, assume that N ≡ 0 (mod 4). Since

ζ3
4g[ 0

1/2

](τK)2/g[ 1/2
0

](τK)2

belongs to K4OK
by lemma 2.3 and proposition 5.1, the value

ζ2Ng[ 1/2
1/2+1/N

](τK)2/g[ 0
1/N

](τK)2

generates Kn over K4OK
.

Example 6.4. Let K = Q(
√

−10) and let n = 4OK . Consider the special value

x = ζ7
8g[ 1/2

3/4

](√−10)2/g[ 0
1/4

](√−10)2.

This value generates Kn over HK as an algebraic unit by theorem 6.2. Furthermore,
since x is a real number by (2.3), we see that

[K(x) : K] = [K(x) : Q]/[K : Q] = [K(x) : Q(x)][Q(x) : Q]/[K : Q] = [Q(x) : Q].

Hence, the minimal polynomial of x over K has integer coefficients. By using propo-
sition 5.2, [11] and [4, ch. 2, § 1] one can readily find all the Galois conjugates of x
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over K (possibly with some multiplicity) as follows:

x1 = ζ7
8g[ 1/2

3/4

](√−10)2/g[ 0
1/4

](√−10)2,

x2 = ζ5
8g[ 1/4

3/4

](√−10)2/g[ 1/4
1/4

](√−10)2,

x3 = ζ3
8g[ 0

3/4

](√−10)2/g[ 1/2
1/4

](√−10)2,

x4 = ζ7
8g[ 3/4

3/4

](√−10)2/g[ 3/4
1/4

](√−10)2,

x5 = ζ8g[ 3/4
1/2

](√−10/2)2/g[ 1/4
0

](√−10/2)2,

x6 = ζ8g[ 3/4
3/4

](√−10/2)2/g[ 1/4
3/4

](√−10/2)2,

x7 = ζ5
8g[ 3/4

0

](√−10/2)2/g[ 1/4
1/2

](√−10/2)2,

x8 = ζ3
8g[ 3/4

1/4

](√−10/2)2/g[ 1/4
1/4

](√−10/2)2.

One can also compute (by using Maple v. 16) min(x, K) as

8∏
k=1

(X − xk) = X8 − 72X7 + 12X6 + 72X5 + 38X4 + 72X3 + 12X2 − 72X + 1,

which is irreducible over Q. Therefore, x generates Kn even over K as a unit. Here,
we observe that the coefficients of min(x, K) are much smaller than those of

min
(
g[ 0

1/4

](√−10)12·4, K
)

= X8 − 181195540256817728X7 − 5775663114562606906112X6

− 27035464691637377457360896X5 + 541339076030741096821545656320X4

− 124937615343087944795342556102656X3

+ 15661918473435227713231818559848448X2

− 32831816404527400323644148540243968X + 16777216.
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