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Flexural-gravity wave interactions with multiple cracks in an ice sheet of infinite
extent are considered, based on the linearized velocity potential theory for fluid
flow and thin elastic plate model for an ice sheet. Both the shape and location
of the cracks can be arbitrary, while an individual crack can be either open or
closed. Free edge conditions are imposed at the crack. For open cracks, zero corner
force conditions are further applied at the crack tips. The solution procedure starts
from series expansion in the vertical direction based on separation of variables,
which decomposes the three-dimensional problem into an infinite number of coupled
two-dimensional problems in the horizontal plane. For each two-dimensional problem,
an integral equation is derived along the cracks, with the jumps of displacement and
slope of the ice sheet as unknowns in the integrand. By extending the crack in the
vertical direction into the fluid domain, an artificial vertical surface is formed, on
which an orthogonal inner product is adopted for the vertical modes. Through this,
the edge conditions at the cracks are satisfied, together with continuous conditions
of pressure and velocity on the vertical surface. The integral differential equations
are solved numerically through the boundary element method together with the finite
difference scheme for the derivatives along the crack. Extensive results are provided
and analysed for cracks with various shapes and locations, including the jumps of
displacement and slope, diffraction wave coefficient, and the scattered cross-section.

Key words: ice sheets, surface gravity waves, wave scattering

1. Introduction
A typical feature of both polar regions is that vast areas of ocean are covered by ice.

Observations showed that the waves generated in open sea could penetrate far into the
ice-covered region (Squire et al. 1995). The features of the wave will change due to
its interaction with the ice sheet. One example is that the reduction of the ice extent
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and thickness will lead to an overall uptrend of the wave height. The topic of coupled
ocean wave and sea ice interactions has increasingly attracted research interests over
the last two decades. This is due to the fact the polar ice cover can be greatly affected
by the global climate change, which will in turn affect the global environment (Squire
2020). It is also due to the requirement of safe navigation of the potential shipping
routes and offshore operations in Arctic region (Eliasson et al. 2017).

Field experiments conducted by Robin (1963) and Squire et al. (1988) have
confirmed that the large ice sheet would bend to let the energy pass through in form
of flexural-gravity waves. Based on the linear velocity potential theory for fluid flow
and thin elastic plate model for ice sheet deflection, a number of solution approaches
have been developed for wave scattering in icy waters. When waves propagate from
open sea to the ice-covered water or the other way around, the energy will be partially
reflected and transmitted due to the change of the dispersion relation. The problem
of wave interactions with an homogeneous semi-infinite ice sheet, was solved for the
normal incident wave by Fox & Squire (1990) and for the oblique incident wave
by Fox & Squire (1994), based on the method of matched eigenfunction expansions
(MEE). It was found that strong transmission would be more likely for long waves.
For the oblique case, when the incident wave angle was larger than a critical value,
no wave would transmit into the ice. Matched eigenfunction expansions were also
used by Sahoo, Yip & Chwang (2001) to the same problem, but with the unknowns
found through introducing an orthogonal inner product. In addition, the problem can
be solved by the Wiener–Hopf method (WHM), as was given by an unpublished
report of Evans & Davies (1968). Later, some modifications were introduced into
the WHM, which enabled the numerical computations to be more easily carried out,
e.g. Balmforth & Craster (1999), Chung & Fox (2002) and Tkacheva (2001, 2004). In
Balmforth & Craster (1999), the Timoshenko–Mindlin model, which further included
the effects of rotary inertia and transverse shear of the plate, was adopted for the
ice sheet. The authors then showed that the Kirchhoff–Love model for a thin elastic
plate would give similar results to those by the Timoshenko–Mindlin model for a
wide range of thickness of the ice sheet. In addition to the MEE and WHM, Linton
& Chung (2003) applied the residue calculus technique (RCT) to the semi-infinite ice
sheet, and obtained solutions which were equivalent to those provided by WHM. In
some cases, the ice sheet may not extend to infinity. It may have a section of free
surface and then continue with ice cover. Chung & Linton (2005) considered wave
propagations through an ice polynya by RCT, and found that perfect transmission
could occur at an infinite number of discrete wave frequencies. Based on the Green
function method (GFM), Squire & Dixon (2001b) studied flexural-gravity wave
interactions with an embedded iceberg. It may be noted that the GFM can be also
used to solve the wave propagation through an ice floe, as for example in Meylan
& Squire (1994). Williams & Squire (2006) considered a more general problem by
RCT and WHM, i.e. three connected ice sheets with the first and last ones being
semi-infinite. The above individual scatters can be also assembled together to model
the wave evolutions through icy waters in a large scale, as has been done in Bennetts
& Squire (2012).

Apart from the above two-dimensional (2-D) problems, three-dimensional (3-D)
problems have also been considered, which reflect more accurately the physics in
many cases. For a circular ice floe, Meylan & Squire (1996) solved the problem by
the boundary integral equation method, based on either the eigenfunction expansions
of the potential and its normal derivative on the circular ice floe or by writing
the normal derivative in terms of another integral equation. The problem was then
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extended to finite water depth by Peter, Meylan & Chung (2004). To simulate the
propagation of waves through marginal ice zone (MIZ), ice floe with a complicated
shape needs to be considered. This was done by Meylan (2002) and Wang & Meylan
(2004) through the boundary element method for fluid flow and a finite element
method for the ice sheet. Instead of determining the free modes of vibration or the
dry modes of the floe independently, Bennetts & Williams (2010) solved the fluid
motion and ice sheet flexure together, i.e. the governing equation for ice sheet flexure
was incorporated into the water surface condition for fluid flow through kinematic and
dynamic conditions at the interface, as done in most of the other works. In Bennetts
& Williams (2010), the wave interactions with a polynya embedded in an infinite
ice sheet were also solved. Based on the solution of a single ice floe and the slab
clustering method (known as SCM), originally for multiple structures interaction in
open sea, Montiel, Squire & Bennetts (2016) investigated the wave spectra evolution
features in the MIZ which were comprised of tens of thousands of ice floes.

Ice sheets in nature are rarely homogeneous and perfect. One of the imperfections
is the crack. Based on the MEE originally developed by Fox & Squire (1990), Barrett
& Squire (1996) solved the problem of an infinitely long straight-line crack in an ice
sheet on the water surface. Numerical results showed that for short waves most of the
energy would be reflected back, which was similar to the case of a wave impinging
a semi-infinite ice sheet. It was found that there would be a frequency at which
perfect transmission would occur. Based on the Green function for an ice sheet
without a crack, an analytical solution for reflection and transmission coefficients
could be derived, e.g. by Squire & Dixon (2000) for a single crack through an
explicit formulae and by Squire & Dixon (2001a) for multiple cracks through a
matrix equation. Single or multiple parallel infinitely long cracks were also solved by
Evans & Porter (2003) and Porter & Evans (2006) for a finite water depth. Li, Wu
& Ji (2018b) derived a Green function which satisfied the conditions at the crack.
This enabled the expression for the diffraction potential to be written explicitly. The
advantage of this method was that it allowed a multipole for a circle to be constructed
directly (Li et al. 2018b), and the obtained Green function could be easily extended
to multiple cracks and used for a body of arbitrary shape (Li, Wu & Ji 2018a).

For the 3-D problems, the work has been mainly limited to the cracks of some
special shapes. Porter & Evans (2007) considered parallel straight-line cracks. The
jumps of the displacement and slope of the crack deflection were expanded into
Chebyshev polynomials, which took into account the behaviour at the crack ends.
Li, Wu & Shi (2018c) considered a circular crack. The jumps of the displacement
and slope of the crack deflection were expanded into Fourier series and the unknown
coefficients were found explicitly. In addition to parallel straight lines and closed
circles, the cracks in polar regions may have other shapes. Also, when there is a high
concentration of ice floes and the gaps between floes are very narrow, this could be
treated as a crack problem. For a crack in a general shape, the problem becomes
a major challenge. One of the difficulties is that the free edge conditions at the
crack contain high derivatives. When this is applied to an already singular boundary
integral equation, it becomes a high-order hypersingular equation. The solution of
such an equation is not easy to obtain and therefore the physics in such a case is
not easy to capture. In this work, we shall develop a methodology to overcome the
difficulty, and then solve the problem of wave interactions with multiple cracks of
arbitrary shapes and locations. An individual crack can be either closed or open. In
the methodology, we extend the crack in the vertical direction into the fluid domain
to form an artificial vertical surface. On this surface, continuity of the velocity and
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FIGURE 1. Coordinate system and sketch of the problem.

pressure of the fluid will be imposed. The 3-D problem is then decomposed into an
infinite number of coupled 2-D problems. The methodology is verified through the
analytical solution for the circular crack and then used for a variety of case studies.

The paper is organized as follows. The mathematical problem for flexural-gravity
wave propagations in an ice sheet with multiple arbitrary shaped cracks is formulated
in § 2, and the conditions satisfied at the crack together with those at the ends of
an open crack are described. The solution procedures are constructed in § 3, and the
numerical discretization of the hypersingular integral differential equations are given
in § 4. Extensive results for cracks with various shapes and distributions are presented
and discussed in § 5, and conclusions are made in § 6. In appendix A, the diffraction
coefficient corresponding to the far field diffracted wave is derived, and an energy
conservation relationship for the scattered cross-section is provided.

2. Mathematical model
We consider the problem of wave interaction with multiple cracks of arbitrary

shapes in an ice sheet, as sketched in figure 1. The ice sheet is horizontally infinitely
extended, and floating on water of finite depth. To describe the problem, a Cartesian
coordinate system O–xyz is defined, with the O–xy plane being the undisturbed
interface of water and ice sheet, and z-axis pointing vertically upwards. The direction
of flexural-gravity incident wave from infinity is assumed to form an angle β with
positive x-axis, and the water depth H is assumed to be constant, as shown in figure 1.
The shape of crack i can be described parametrically by

Υi(s)= (x(s), y(s)), (−γi < s<+γi, 1 6 i 6 N), (2.1)

where 2γi is the total arclength of crack i, and s is the curvilinear coordinate along
the crack.

Based on the assumption that the fluid is inviscid, incompressible and homogeneous,
and its motion is irrotational, the velocity potential Φ can be introduced to describe
the fluid flow. When the amplitude of wave motion is small compared to its length,
the linearized velocity potential theory can be further used. For sinusoidal motion in
time with radian frequency ω, we may write the total velocity potential as

Φ(x, y, z, t)=Re[φ(x, y, z)eiωt
], (2.2)
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where
φ = φI + φD, (2.3)

with φI and φD as the incident velocity potential and diffracted velocity potential by
the cracks, respectively. The conservation of mass requires that the velocity potential
φ should satisfy the following Laplace equation:

∇
2φ +

∂2φ

∂z2
= 0, (2.4)

throughout the fluid, where

∇
2
=
∂2

∂x2
+
∂2

∂y2
, (2.5)

is the Laplacian in the horizontal plane. Following Squire (2011) and others, the ice
sheet is modelled as a thin elastic plate, and its properties (i.e. Young’s modulus E,
Poisson’s ratio ν, density ρi and thickness h) are assumed to be constant. Assuming
that there is no gap between the ice sheet and the water upper surface, we can write
the boundary condition at their interface as

(L∇4
+ ρwg−mω2)

∂φ

∂z
− ρwω

2φ = 0, (r 6=Υi, z= 0), (2.6)

where r= (x, y), L=Eh3/[12(1− ν2)] is the effective flexural rigidity of the ice sheet,
m = ρih is the corresponding areal density, ρw is the density of water and g is the
acceleration due to gravity. On both sides of the crack, the edges of the ice sheet are
assumed to be free to move, which means that the following zero bending moment
and modified shear force conditions should be satisfied (Timoshenko & Woinowsky
1959):

B
(
∂φ

∂z

)
= 0 and S

(
∂φ

∂z

)
= 0, (r=Υi, z= 0), (2.7a,b)

where the operator B and S are, respectively, defined as

B=∇2
− ν0

(
sin2 Θ

∂2

∂x2
+ cos2 Θ

∂2

∂y2
− sin 2Θ

∂2

∂x∂y

)
, (2.8)

S =
∂

∂n
∇

2
+ ν0

∂

∂s

[
cos 2Θ

∂2

∂x∂y
+

sin 2Θ
2

(
∂2

∂y2
−
∂2

∂x2

)]
, (2.9)

with ν0 = 1 − ν, and n and s are the unit vectors along the normal and tangential
directions, respectively. Here, Θ(s) is the angle between positive n and the x-axis,
and thus n= (cosΘ, sinΘ) and s= (−sinΘ, cosΘ). By noticing

∂x
∂s
=−sinΘ and

∂y
∂s
= cosΘ, (2.10a,b)

the operators B and S in (2.8) and (2.9) can be also expressed in the curvilinear
coordinate system as

B=∇2
− ν0

(
∂2

∂s2
+
∂Θ

∂s
∂

∂n

)
, (2.11)

S =
∂

∂n
∇

2
+ ν0

∂

∂s

(
∂2

∂s∂n
−
∂Θ

∂s
∂

∂s

)
, (2.12)
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where the partial derivatives with respect to s are carried out with respect to the
curvilinear coordinate. It should be noticed that (2.12) is in fact an equivalent shear
force after the three boundary conditions at a plate edge having been combined into
two. The second term in (2.12) is from the twisting moment, which is equivalently
replaced by the force perpendicular to the plate. In doing so, when a plate edge has
a sharp corner, it leads to a concentrated force at the corner, which has to be set to
zero as an additional condition. For an open crack, at the ends of the crack the free
edge in fact turns 360◦. Thus this additional condition should be imposed at the sharp
corner of a plate (Timoshenko & Woinowsky 1959)(

∂2

∂s∂n
−
∂Θ

∂s
∂

∂s

)
∂φ

∂z
= 0, (s→±γi, z= 0). (2.13)

The edge conditions described above are on the basis that the ice sheets on both sides
of the crack are completely detached from each other, which is suitable when the ratio
of width of the gap to the typical length scale of the ice sheet is small (Li et al.
2018b). It might be noticed that the implications of the mathematical model for the
ice crack have been reviewed and discussed by Squire (2007). On the flat seabed, the
impermeable condition provides

∂φ

∂z
= 0, (z=−H). (2.14)

At infinity the radiation condition is imposed, which requires that the diffracted wave
should propagate outwards, or

lim
r→∞

√
r
(
∂φD

∂r
+ iκ0φD

)
= 0, (2.15)

where κ0 is the flexural-gravity wavenumber. It may be noticed that κ0 is the purely
positive real root of the dispersion equation K(ω, κ) = 0 for a flexural-gravity wave
in the ice sheet, with

K(ω, κ)≡ (Lκ4
+ ρwg−mω2)κ tanh(κH)− ρwω

2. (2.16)

3. Solution procedures

To solve the boundary value problem described in the section above, through using
a variable separation method, we may write the diffracted velocity potential φD in the
following form:

φD =
∑

m

ϕm(x, y)ψm(z). (3.1)

Substituting (3.1) into the governing Laplace equation (2.4), we can obtain (∇2ϕm)/ϕm

=−(d2ψm/dz2)/ψm. This equation has to be equal to a constant. Letting it be −κ2
m,

we have
∇

2ϕm + κ
2
mϕm = 0, (3.2)

and
d2ψm

dz2
− κ2

mψm = 0, (3.3)
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for ϕm and ψm, respectively. By further applying the boundary conditions in (2.6) and
(2.14) to (3.3), we have

ψm(z)=
cosh[κm(z+H)]

cosh(κmH)
. (3.4)

Here, κm are the roots of the dispersion equation (2.16), with κ−2 and κ−1 as two
complex roots with negative imaginary parts and symmetric about the imaginary axis,
κ0 as the purely positive real root, κm (m= 1, . . . ,∞) as an infinite number of purely
negative imaginary roots. Taking the summation in (3.1) through all possible
eigenvalues and eigenfunctions, we have

φD =

∞∑
m=−2

ϕm(x, y)ψm(z). (3.5)

Then the three-dimensional boundary value problems for φD are transformed into
the two-dimensional ones for ϕm. The incident velocity potential φI in (2.3) may be
written as

φI = ϕI(x, y)ψ0(z), (3.6)

where
ϕI(x, y)= Ie−iκ0(x cos β+y sin β)/tanh(κ0H), (3.7)

with I = iωΛ/κ0 and Λ as the amplitude of the incident wave.
The two-dimensional Helmholtz equation in (3.2) may be converted into an integral

equation through using the Green function

Gm(p, q)=
π

2i
H(2)

0 (κmR), (3.8)

where H(2)
0 is the zeroth-order Hankel function of second kind (Abramowitz & Stegun

1965), and R is the distance between the field point p(x, y) and source point q(ξ , η)
in the two-dimensional horizontal plane. We may note that Gm in (3.8) satisfies the
Helmholtz equation and the radiation condition in (2.15). Applying Green’s identity
to Gm and ϕm, we have

αϕm(p)=
∫
Γ

[
Gm(p, q)

∂ϕm(q)
∂nq

−
∂Gm(p, q)
∂nq

ϕm(q)
]

dsq, (3.9)

where the integral and normal derivative are carried out with respect to the source
point q, and α is the two-dimensional solid angle at the field point p. In (3.9), Γ
should include all the lines along the ice sheet edges. However, the closed line at
infinity has been excluded due to the fact that both Gm and ϕm satisfy the radiation
condition in (2.15), and the integrand becomes zero there. For the ice crack, we may
denote the variable on its two sides with superscripts + and −, respectively. Noticing
that on the + and − sides, the n in (3.9) are opposite to each other, it can be rewritten
as

αϕm(p)=
N∑

i=1

∫
Γi

[
Gm(p, q)

∂ϕ̃m(q)
∂nq

−
∂Gm(p, q)
∂nq

ϕ̃m(q)
]

dsq, (3.10)
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where Γi is the route along the crack i, n is now from the − side to the + side.
ϕ̃m and ∂ϕ̃m/∂n are the corresponding jumps of velocity potential and its normal
derivative across the crack, or

ϕ̃m = ϕ
−

m − ϕ
+

m , (3.11)
∂ϕ̃m

∂n
=
∂ϕ−m

∂n
−
∂ϕ+m

∂n
. (3.12)

Once the values of ϕ̃m and ∂ϕ̃m/∂n along the cracks are determined, the diffraction
potential φD in any point of fluid can be obtained through (3.5) and (3.10). The main
task is then to find these two jumps. To do that, we extend each ice crack vertically
from the ice sheet to the seabed to form a vertical surface Σi, as shown in figure 1.
On both sides of the artificial surface Σi, we denote the total velocity potential φ as
φ+ and φ−, respectively, where the superscripts correspond to those of ϕm. In a fluid,
the pressure and fluid velocity should be continuous across each Σi, or

φ+ = φ−, (3.13)
∂φ+

∂n
=
∂φ−

∂n
, (3.14)

for −H 6 z 6 0. Different from the free surface problem, the eigenfunction in (3.4)
is not orthogonal in the usual sense. However, we may introduce the following
orthogonal inner product (Sahoo et al. 2001):

〈ψm, ψm̃〉 =

∫ 0

−H
ψmψm̃ dz+

L
ρwω2

(
dψm

dz
d3ψm̃

dz3
+

d3ψm

dz3

dψm̃

dz

)
z=0

, (3.15)

which provides that 〈ψm, ψm̃〉 = 0 if m 6= m̃ and 〈ψm, ψm̃〉 =Qm if m= m̃, with

Qm =
2κmH + sinh(2κmH)

4κm cosh2(κmH)
+

2Lκ4
m

ρwω2
tanh2(κmH). (3.16)

To satisfy the continuity condition of pressure in (3.13), applying the inner product to
φ− − φ+ and ψm̃, we have

〈(φ− − φ+), ψm̃〉 =

∫ 0

−H

(
φ− − φ+

)
ψm̃ dz

+
L

ρwω2

[
∂(φ− − φ+)

∂z
d3ψm̃

dz3
+
∂3(φ− − φ+)

∂z3

dψm̃

dz

]
z=0

. (3.17)

Similarly, for the continuity condition of velocity in (3.14), we have〈
∂(φ− − φ+)

∂n
, ψm̃

〉
=

∫ 0

−H

∂(φ− − φ+)

∂n
ψm̃ dz

+
L

ρwω2

[
∂2(φ− − φ+)

∂z∂n
d3ψm̃

dz3
+
∂4(φ− − φ+)

∂z3∂n
dψm̃

dz

]
z=0

. (3.18)

In the above two equations, z=0 should be understood as that the crack is approached
from ice sheet not from Σi, and therefore jumps exist. Substituting (3.5) and (3.6) into
(2.3), and then the obtained results into (3.17) and (3.18), we can get

ϕ̃m̃Qm̃ =
L

ρwω2

[
D̃

d3ψm̃

dz3
+
∂3(φ−D − φ

+

D )

∂z3

dψm̃

dz

]
z=0

(3.19)
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and
∂ϕ̃m̃

∂n
Qm̃ =

L
ρwω2

[
S̃

d3ψm̃

dz3
+
∂4(φ−D − φ

+

D )

∂z3∂n
dψm̃

dz

]
z=0

, (3.20)

where the continuity conditions (3.13) and (3.14) have been used in the first terms on
the right-hand sides of (3.17) and (3.18), and D̃ and S̃ are, respectively, the jumps of
displacement and slope across the crack or

D̃=
(
∂φ−D

∂z
−
∂φ+D

∂z

)
z=0

, (3.21)

S̃=
(
∂2φ−D

∂n∂z
−
∂2φ+D

∂n∂z

)
z=0

. (3.22)

It may be noticed that in (3.19) and (3.20), the continuity of ϕI in (3.6) across the
artificial vertical surface Σi has been implied. Since φD should satisfy the Laplace
equation in (2.4) or ∂2φD/∂z2

=−∇
2φD, we may further write (3.19) and (3.20) as

ϕ̃m̃Qm̃ =
L

ρwω2

[
D̃

d3ψm̃

dz3
−

dψm̃

dz
∇

2 ∂
(
φ−D − φ

+

D

)
∂z

]
z=0

(3.23)

and
∂ϕ̃m̃

∂n
Qm̃ =

L
ρwω2

{
S̃

d3ψm̃

dz3
−

dψm̃

dz
∂

∂n

[
∇

2 ∂(φ
−

D − φ
+

D )

∂z

]}
z=0

. (3.24)

Since both φ− and φ+ satisfy the ice sheet edge conditions in (2.7), their difference
should also satisfy the same edge conditions. By further noticing that

B
(
∂φ−I

∂z

)
=B

(
∂φ+I

∂z

)
and S

(
∂φ−I

∂z

)
= S

(
∂φ+I

∂z

)
, (3.25a,b)

we can obtain

∇
2 ∂(φ

−

D − φ
+

D )

∂z
= ν0

(
∂2D̃
∂s2
+
∂Θ

∂s
S̃

)
, (3.26)

∂

∂n

[
∇

2 ∂(φ
−

D − φ
+

D )

∂z

]
=−ν0

∂

∂s

(
∂ S̃
∂s
−
∂Θ

∂s
∂D̃
∂s

)
. (3.27)

Substituting (3.26) and (3.27) into (3.23) and (3.24), we have

ϕ̃m̃ =
Lκm̃ tanh(κm̃H)

Qm̃ρwω2

[
κ2

m̃D̃− ν0

(
∂2D̃
∂s2
+
∂Θ

∂s
S̃

)]
, (3.28)

and
∂ϕ̃m̃

∂n
=

Lκm̃ tanh(κm̃H)
Qm̃ρwω2

[
κ2

m̃S̃+ ν0
∂

∂s

(
∂ S̃
∂s
−
∂Θ

∂s
∂D̃
∂s

)]
. (3.29)
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Substituting (3.28) and (3.29) into (3.10), we can obtain

ϕm = χm

N∑
i=1

∫
Γi

{
Gm

[
κ2

mS̃+ ν0
∂

∂s

(
∂ S̃
∂s
−
∂Θ

∂s
∂D̃
∂s

)]

−
∂Gm

∂nq

[
κ2

mD̃− ν0

(
∂2D̃
∂s2
+
∂Θ

∂s
S̃

)]}
dsq, (3.30)

where
χm =

Lκm tanh(κmH)
αQmρwω2

. (3.31)

We may apply integration by parts to the second term on the right-hand side of (3.30)
and use (2.13), which provides

ϕm = χm

N∑
i=1

∫
Γi

( f D
m D̃+ f S

mS̃) dsq, (3.32)

where

f D
m =

∂Gm

∂sq
ν0
∂Θ

∂s
∂

∂s
−
∂Gm

∂nq

(
κ2

m − ν0
∂2

∂s2

)
, (3.33)

f S
m =Gmκ

2
m +

∂Gm

∂nq
ν0
∂Θ

∂s
−
∂Gm

∂sq
ν0
∂

∂s
. (3.34)

Taking normal derivatives in (3.32) at point p, we further have

∂ϕm

∂n
= χm

N∑
i=1

∂

∂np

∫
Γi

( f D
m D̃+ f S

mS̃) dsq. (3.35)

Now, the integral equations contain the unknown jumps of displacement and slope
across the crack. To solve D̃ and S̃, we may substitute equations (3.32) into (3.5)
directly to obtain φD and (3.35) into the normal derivative of (3.5) to obtain ∂φD/∂n,
and then apply the crack conditions in (2.7), which gives two sets of differential
equations, or

∞∑
m=−2

[(
d3ψm

dz3
+ ν0

dψm

dz
∂2

∂s2

)
ϕm + ν0

dψm

dz
∂Θ

∂s
∂ϕm

∂n

]
=B

(
∂φI

∂z

)
, (3.36)

∞∑
m=−2

[
ν0

dψm

dz

(
∂2Θ

∂s2

∂

∂s
+
∂Θ

∂s
∂2

∂s2

)
ϕm +

(
d3ψm

dz3
− ν0

dψm

dz
∂2

∂s2

)
∂ϕm

∂n

]
= S

(
∂φI

∂z

)
, (3.37)

for r→Υi and z= 0.

4. Numerical discretization
To find the solution for the boundary integral equations (3.32) and (3.35) as well

as the differential equations (3.36) and (3.37) numerically, we may divide the ith ice
crack into Mi straight-line segments with length, respectively, as `1

i , `
2
i , . . . , `

Mi
i . On

each segment, the jumps of displacement and slope or D̃ and S̃ are also assumed
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to be constant and are taken from those at the centre of the segment, where the
crack conditions will be enforced. Here, it may be noticed that the solid angle α

in the integral equation (3.10) should always be 2π, even on the crack, due to
that the computational domain exists on both sides of the crack, which is different
from that for wave interactions with a body of non-zero thickness. For the first and
second partial derivatives with respect to s, the three-point finite difference scheme
for unequal segment will be used (Burden & Faires 2010), or at the ith segment
centre with s= s1,

∂fi

∂s

∣∣∣∣
s=s1

=
−h2

2 f0 − (h1 − h2)(h1 + h2)f1 + h2
1 f2

h1h2(h1 + h2)
(4.1)

and
∂2fi

∂s2
= 2

h2 f0 − (h1 + h2)f1 + h1 f2

h1h2(h1 + h2)
, (4.2)

where h1 = s1 − s0 and h2 = s2 − s1, s0 and s2 are the values of s at the previous and
next segments, respectively. In (4.1) and (4.2), the subscript in fi indicates the values
at the ith segment of the crack. Near the edge of an open crack, if there is no required
point beyond edge, the one sided three-point equation can be used, or

∂fi

∂s

∣∣∣∣
s=s0

=
−h2(2h1 + h2)f0 + (h1 + h2)

2f1 − h2
1 f2

h1h2(h1 + h2)
, (4.3)

∂fi

∂s

∣∣∣∣
s=s2

=
h2

2 f0 − (h1 + h2)
2f1 + h1(h1 + 2h2)f2

h1h2(h1 + h2)
. (4.4)

It should be noticed that in (3.35), the normal derivative with respect to np can
be moved into the integral. As a result, there is a hypersingular integral which
should be computed in the sense of the Hadamard finite part (Martin & Rizzo 1989).
Substituting (3.32) and (3.35) into (3.36) and (3.37), and using (4.1) and (4.2) for
the first and second partial derivatives with respect to s, we can obtain two sets of
linear equations, the total number of which is the same as that for D̃ and S̃.

When the field point p tends to the source point q, there will be a logarithmic
singularity in the Green function Gm, as (Abramowitz & Stegun 1965)

H(2)
0 (κmR)→

2
πi

ln(R)+O(1) as R→ 0. (4.5)

In such a case, the integrals in (3.32) and (3.35) should be computed in the principle
value or Hadamard finite part sense. For the logarithmic singularity, we may separate
it out from Gm and integrate it analytically (Linton & Mciver 2001). To compute the
Hadamard finite part integral, we may denote np =

(
np

1, np
2

)
and nq = (n

q
1, nq

2). Then
we have

∂2Gm

∂np∂nq
=

πκm

2iR
H(2)

1 (κmR)(np · nq)+
πκm

2iR2

[
κmH(2)

0 (κmR)−
2
R

H(2)
1 (κmR)

]
×[(ξ − x)np

1 + (η− y)np
2][(ξ − x)nq

1 + (η− y)nq
2]. (4.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

23
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.238


893 A14-12 Z. F. Li, G. X. Wu and K. Ren

For p and q on the same segment, by noticing np = nq and (ξ − x)np
1 + (η− y)np

2 = 0,
we may further simplify the above equation as

∂2Gm

∂np∂nq
=

πκm

2iR
H(2)

1 (κmR). (4.7)

We may also introduce a local coordinate system t∈ [−1,+1]. On each panel of crack
i, we have R= `i|t|/2. Thus

∂2Gm

∂np∂nq
=

πκmH(2)
1 (κm`i|t|/2)
i`i|t|

. (4.8)

Similar to (4.5), we have for H(2)
1 (κmR) (Abramowitz & Stegun 1965)

H(2)
1 (κmR)→

κmR
πi

[
ln(R)−

2
(κmR)2

]
+O(R) as R→ 0. (4.9)

Substituting (4.9) into (4.8), we have

∂2Gm

∂np∂nq
=

4
`2

i t2
−
κ2

m

2
ln |t| +O(1), (4.10)

for R→ 0 or t→ 0. Thus, when p and q are located at the same segment, we may
divide the integral of (4.8) into the singular part in (4.10) and the remaining regular
part with order O(1). The latter one can be computed numerically through the Gauss–
Legendre approach. For the former one or the singular part in (4.10), we have∫

`i

∂2Gm

∂np∂nq
dsq =

`i

2

∫
+1

−1

∂2Gm

∂np∂nq
dt=

κ2
m`i

2
−

4
`i
, (4.11)

where p being located at the centre of `i has been assumed. It might be noticed that
the singular term in (4.11) of order two is treated through the Hadamard finite part
integral (Martin & Rizzo 1989).

5. Results and analysis
To provide meaningful results in physics, the typical values of the parameters of the

ice sheet and fluid are taken to be

E= 5 GPa, ν = 0.3, ρi = 922.5 kg m−3, h= 1 m,
ρw = 1025 kg m−3, H = 100 m,

}
(5.1)

which are the same as those in Squire & Dixon (2000), and the considered wavelength
λ0 = 2π/κ0 will vary from 10 πm to 400 πm. The length scales of closed and open
cracks are chosen to be similar to that in Li et al. (2018c) and to that in Porter &
Evans (2007), respectively. In the following text, numerical results will be provided in
dimensionless form, based on three basic parameters: a characteristic length scale, the
density of water ρw and the acceleration due to gravity g= 9.80 m s−2. To conduct
numerical computations, in addition to the discretization of cracks, the infinite series
in (3.5) will be truncated at a finite number T − 3 or the first T terms will be kept.
Higher accuracy can be achieved through smaller segments and more terms being
kept in the eigenfunction expansions. It might be noticed that the computational
cost very much depends on the number of segments M = M1 + · · · + MN used to
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FIGURE 2. Modulus of the jump of displacement η̃/Λ and that of slope η̃n/Λ along the
crack with different Mi and T at κ0 = 3 and β = 0. Solid lines, Mi = 500 and T = 100;
dashed lines, Mi = 1000 and T = 200; open circles, analytical solution from Li et al.
(2018c).

discretize the integrals (3.32) and (3.35) and the number of terms T used to truncate
the infinite series (3.36) and (3.37). Generally, the central processing unit (CPU)
time required to construct the coefficient matrix is proportional to the square of
M and linearly to T . For the case studies here, Mi = 500 and T = 100 with N up
to 4 are found to be enough to provide convergent results for all the considered
crack shapes and wavelengths. For N = 1, the developed sequential FORTRAN
90 code WISPICE requires approximately 24.8 s to obtain the solution for each
wavelength on a computer with a CPU such as i7 6700k. When they become very
large, further refinement of the numerical method is needed, such as through a domain
decomposition method (Wu & Eatock Taylor 1995).

5.1. Convergence study and verification
Computations are first carried out for the wave diffraction by a circular crack with
radius a in an ice sheet. The case has been investigated by Li et al. (2018c) and an
explicit solution was obtained. Here, a= 20 m is taken to be the characteristic length
scale, and the same parameters as those in Li et al. (2018c) have been used, namely
κ0 = 3 and β = 0. Figure 2 shows the modulus of the jump of displacement η̃ and
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FIGURE 3. Scattered cross-section F against wavenumber κ0 at β = 0. Solid line, F from
(A 4); dashed line, F from (A 9); open circles, analytical solution from Li et al. (2018c).

that of slope η̃n across the crack against polar coordinate θ = arctan(y/x), which are
obtained through the kinematic condition on the ice sheet, or

η̃=
D̃
iω

and η̃n =
S̃
iω
. (5.2a,b)

Due to symmetry of the problem, only the results for θ ∈ [−π, 0] are provided. It can
be seen from the figure that there is no visible difference between the results obtained
by Mi = 500, T = 100 and Mi = 1000, T = 200, indicating that convergence has been
achieved. Here, it may be noticed that the results are obtained through discretizing the
crack into segments with equal length. From the figure, it can be also observed that
the numerical results are in excellent agreement with the analytical solutions from Li
et al. (2018c), which validates the proposed solution procedure. Further verification
of the solution procedure is carried out through the scattered cross-section F in (A 4),
as shown in figure 3 against wavenumber κ0. Numerical computation is carried out
through taking Mi= 500 and T = 100. It can be seen from this figure that the results
obtained by direct integration of U(θ) show good agreement with those computed by
(A 9), and both these sets of results agree well with the analytical solutions. This again
demonstrates the accuracy of the present solution procedure.

5.2. Wave diffraction by a single closed crack
In this and following sections, the ice thickness h will be taken as the characteristic
length scale, and Mi= 500 and T = 100 will be used for numerical computations, if it
is not specifically specified. We first investigate the problem of flexural-gravity wave
interactions with a closed crack, and the effect of its shapes on the scattered wave
field. For this purpose, closed cracks with elliptic shape are considered, i.e. defined
as (x/a)2 + (y/b)2 = 1, where a and b are the half-axes in the x and y directions,
respectively. To demonstrate how wave diffraction by the crack will be affected when
its shape changes and also to get a better understanding of flow physics for this type
of problem, three crack shapes are chosen, namely b/a= 0.5, 1.0, 1.5 with its confined
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FIGURE 4. Modulus of the jump of displacement η̃/Λ and that of slope η̃n/Λ along the
elliptic crack with different b/a at κ0 = 2π/

√
A and β = 0 (A=πab= 400π). Solid lines,

b/a= 0.5; dashed lines, b/a= 1.0; dash-dotted lines, b/a= 1.5.

area kept fixed at A= 400π. For discretization, the nodes of the crack are distributed
in the following form:

xj
= a cos

[
(2j−M)π

M

]
and yj

= b sin
[
(2j−M)π

M

]
with j= 0, 1, . . . ,M − 1.

(5.3a,b)
The jumps of displacement η̃ and slope η̃n along the crack are, respectively,

shown in figures 4(a) and 4(b) against curvilinear coordinate s/γ , with the incident
wavenumber taken to be κ0 = 2π/

√
A. The wavelength corresponding to this κ0 is

equal to the characteristic scale of the crack or
√

A. Here, the incident wave angle
is chosen as β = 0, and thus only half of the s range or s/γ ∈ [−1, 0] is plotted
due to symmetry. It ought to be mentioned that the results given in this figure are
convergent, namely Mi = 500 and T = 100 are found to be large enough and their
larger values give graphically indistinguishable curves. It can be seen from this figure
that the jumps of η̃ and η̃n at the crack are very much affected by the shape of the
crack, although the areas enclosed by crack are the same. Typically, η̃ and η̃n will
oscillate with s/γ , and the number of oscillations and their peaks and troughs are
different when the crack shape varies.
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FIGURE 5. Modulus of the diffraction coefficient U as a function of θ and κ0 for elliptic
cracks with different b/a at β = 0 (A = πab = 400π). (a) b/a = 0.5; (b) b/a = 1.0;
(c) b/a= 1.5.

As given in (A 1), the far field diffracted wave field may be described by a
diffraction coefficient U(θ), which can be obtained through an integral involving
jumps D̃ and S̃ along the crack, as shown in (A 3). In figure 5, U is sketched
through a contour plot as a function of polar coordinate θ and wavenumber κ0. It
can be seen from this figure that there is a strong variation of the far field diffracted
waves for cracks with different shapes. It can be also seen from figure 5 that when
κ0→ 0, there will be no diffracted wave by the crack, or the ice sheet is equivalent
to a continuous one. From a mathematical aspect, when κ0 → 0 or ω→ 0 the ice
sheet condition in (2.6) will become ∂φ/∂z = 0. This indicates that the free edge
condition in (2.7) at the crack and no concentrated force condition in (2.13) will be
automatically satisfied, or the ice sheet will be ‘continuous’. From a physical aspect,
when the wavelength λ0= 2π/κ0 tends to infinity, the dynamic effect of wave motion
will disappear, and so does the disturbance to the ice sheet, either with a crack or
without. When κ0 increases, the diffraction coefficient U becomes more pronounced,
and for a given κ0 there is an obvious difference of the distribution of U against θ
for a crack with a different shape. A common feature is that they all oscillate against
θ , and a larger κ0 will lead to more oscillatory results. This is because more wave
cycles will be encountered by a given crack when the wavelength decreases. It can
be also seen from figure 5 that for all these three situations and various κ0, a large
part of the diffracted wave energy appears near the direction of the incident wave.
From this figure, we can further observe that when θ is fixed, U will oscillate with
respect to κ0. This can be more clearly seen from figure 6 which shows the 2-D
curves of scattered cross-section F against κ0. For the specific range of κ0, three large
peaks of F can be observed in addition to some local small peaks for different crack
shapes. This is one of the typical features for a closed crack. It is well known that
for a finite elastic plate in a vacuum, after an initial disturbance of the plate, it will
oscillate forever at its natural frequencies if the structural damping effect is ignored.
The oscillation amplitude will tend to infinity if the frequency of the continuous
exciting force is equal to one of the natural frequencies of the plate. However, for an
ice plate inside the crack, when there is fluid in its lower side, its oscillations will
generate water waves. Part of energy will transmit through the crack and propagate to
infinity, which provides a damping through wave radiation. The peaks at the natural
frequencies which will be different from those in the vacuum may be very large,
instead of infinity. When the geometry of an ice plate varies, its natural frequencies
can be expected to be different (Smith, Meylan & Mcphedran 2011). Therefore, for
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FIGURE 6. Scattered cross-section F against wavenumber κ0 for elliptic cracks with
different b/a at β = 0 (A = πab = 400π). Solid line, b/a = 0.5; dashed line, b/a = 1.0;
dash-dotted line, b/a= 1.5.

a closed crack with various shapes, its near-natural frequencies will be different or
the large peaks will occur at different wavenumbers, as shown in figure 6.

5.3. Wave diffraction by a single open crack
Investigations now move to the question of how differently open cracks will affect
the diffracted wave fields. To do this, we consider circular cracks with different open
angles, i.e. x= a cos θ and y= a sin θ with θ ∈ [−θ̄ ,+θ̄ ]. Here ϑ = 2(π− θ̄ ) is the
open angle. Three different cracks are chosen, i.e. ϑ = π/20, π/3 and 39π/20, with
their length fixed as 40π. It should be noticed that the corresponding radii of these
three cracks are 800/39, 24 and 800, respectively. The incident wavenumber is chosen
as κ0 = π/20, or the incident wavelength λ0 = 2π/κ0 = 40 which is the diameter of
the case with ϑ = 0, and the incident wave angle is chosen as β = 0. From (A 8) in
appendix A, we have the asymptotic behaviours D̃=O(sα) and S̃=O(sα−1) near the
tip of the open crack, with α > 3/2, where s is the distance measured from the tip.
From this, it can be expected that their partial derivatives ∂2D̃/∂s2 and ∂ S̃/∂s involved
in the integral equations (3.32) and (3.35) could vary very sharply near the tips of
the crack. Therefore, to accelerate convergence of the results in the computations, the
nodes are distributed in a cosine form along the crack, or

sj
=−γ + γ [1− cos( jπ/M)] with j= 0, 1, . . . ,M. (5.4)

The jumps of displacement and slope at the crack are shown in figure 7 against
curvilinear coordinate s/γ . As a comparison, the results for a closed circular crack
are also provided. It can be seen that the jumps due to the diffracted wave at
the cracks with the same length but different curvatures differ from each other
significantly. Particularly, the results of larger curvature (39/800 and 1/24) are much
more oscillatory against s/γ than those of very small curvature (1/800) in the figure.
The small curvature case is closer to that of a straight-line crack parallel to the y-axis.
When its length is very large and approaches infinity, the problem tends to a 2-D
one, and η̃ and η̃n will be constant along the crack, or their variations will be zero.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

23
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.238


893 A14-18 Z. F. Li, G. X. Wu and K. Ren

0-0.2-0.4-0.6
s/©

-0.8-1.0

0-0.2-0.4-0.6-0.8-1.0

0.8

0.6

0.4

0.2

0

|̇~
n/Ò

|
8(a)

(b)

6

4

2

0

|̇~
/Ò

|

FIGURE 7. Modulus of the jump of displacement η̃/Λ and that of slope η̃n/Λ along
circular cracks with different open angle ϑ at κ0 = π/20 and β = 0 (γ = 20π). Solid
lines, ϑ =π/20; dashed lines, ϑ =π/3; dash-dotted lines, ϑ =39π/20; dotted lines, closed
circular crack.

From figure 7, it is also interesting to see that when the opening of a crack is small
and its two ends tend to merge to form a closed crack, the diffracted wave field of
the former does not tend to that of the latter, as can be seen from the solid lines
and dashed lines. In fact, although the open crack has nearly become a closed crack,
the physics is still different. For the latter one, the inside ice sheet is fully separated
from the outside ice sheet by the crack, or there is no direct connection between
the two ice sheets, and their interactions are through the fluid. However, for an open
crack, the ice sheets on both sides of the crack remain fully connected, and there
will always be a direct interaction between their motions. When the open angle tend
to zero, the connection will become a point at which the jumps η̃ and η̃n should still
be zero, as shown in figure 7, which is different from that of the closed one.

The effect of an open crack shape on the diffracted wave in far field is demonstrated
in figure 8, through the diffraction coefficient U in the contour plot as a function of
θ and κ0. It can be observed from this figure that U tends to be zero as κ0 → 0
for the reason explained in § 5.2. When κ0 increases, the diffracted wave become
more obvious. From the contour plot, we have that the diffracted wave fields differ
from each other significantly for cracks with the same length but different shapes.
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FIGURE 8. Modulus of the diffraction coefficient U as a function of θ and κ0 for circular
cracks with different open angle ϑ at β=0 (γ =20π). (a) ϑ =π/20; (b) ϑ =π/3; (c) ϑ =
39π/20; (d) closed circular crack.

However, similar to the closed crack case, most of the diffracted wave will propagate
in the direction of the incident wave β for all situations. For the crack with a very
small curvature, there is also a large part of the diffracted wave in the direction of −β,
as shown in figure 8(c). This is similar to the waves normally incident to an infinitely
straight-line crack of zero curvature, in which waves will transmit in the direction 0
and be reflected back in the direction π. As discussed in the above section, there will
be near resonant motions when the crack is closed, which will lead to large amplitude
diffracted waves or U(θ). When the crack is open, no similar resonant behaviours can
be observed, even for a very small open angle. This can be seen from the comparisons
of figure 8(a) with 8(d), and more clearly be observed from figure 9 which provides
the variations of the scattered cross-section coefficient F against κ0. From the contour
plot in figure 8, we also have that when κ0 is fixed, U will oscillate with θ . As
κ0→ 0.2, there will be more cycles of U with respect to θ for a moderate open angle
in figure 8(b).

5.4. Wave diffraction by multiple cracks
The developed methodology in this paper can be applied to any crack shape and
arrangement. Here, we will consider a few cases of wave diffraction by multiple
cracks. The first case we consider is two straight-line cracks with the same finite
length of 2γi= 40π, i= 1, 2. One is parallel to the y-axis with its start and end points
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FIGURE 9. Scattered cross-section F against wavenumber κ0 for circular cracks with
different open angle ϑ at β = 0 (γ = 20π). Solid line, ϑ = π/20; dashed line, ϑ = π/3;
dash-dotted line, ϑ = 39π/20; dotted line, closed circular crack.

at (x1
s , y

1
s )= (−2.5,−20π) and (x1

e, y
1
e)= (−2.5, 20π), respectively. For the other crack,

its start point is fixed at (x2
s , y2

s )= (2.5,−20π), but its angle with respect to the x-axis
changes, namely τ =π/2, π/4 and 0. Both of these cracks are discretized with nodes
distributed in the cosine form in (5.4), which provides a very fine mesh near the tips
of crack.

Figure 10 provides the contour plot of diffraction coefficient U as a function of
polar coordinate θ and wavenumber κ0, for two straight-line cracks with different
arrangements. As a comparison, the results for a single crack or with the second
crack above being removed are also provided. Here, the incident wave angle is
taken as β = 0. Different from the case in § 5.3, since the cracks are not arranged
symmetrically about y = 0, the obtained results are asymmetric, as shown in the
figure. From the figure, it can be seen that the diffracted wave field varies differently
for cracks with different arrangements, although they all tend to be zero when κ0→ 0
for the reason discussed in § 5.2. When the two cracks are closely arranged, it is
expected that there will be stronger interactions between waves generated by the
cracks, as can be observed in figures 10(a) and 10(b). This is clearer in figure 11,
which shows the variation of the scattered cross-section F against κ0. For two cracks
parallel to each other or τ =π/2, it resembles a 2-D problem. There is much strong
variation with κ0 in this case. When the right-hand crack is arranged parallel to the
x-axis, or τ = 0, the diffracted wave in the far field is very similar to that by a single
crack. In figure 11, the dash-dotted line and the dotted line, respectively for these
two cases, are nearly overlapping each other. In fact, for a crack parallel to x-axis,
by noticing ∂Θ/∂s = 0, ∂/∂s = ∂/∂x and ∂/∂n = −∂/∂y, the operators B and S in
(2.11) and (2.12) can be rewritten as

B=
∂2

∂y2
+ ν

∂2

∂x2
, (5.5)

S =−
∂

∂y

[
∂2

∂y2
+ (2− ν)

∂2

∂x2

]
. (5.6)
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FIGURE 10. Modulus of the diffraction coefficient U as a function of θ and κ0 for
two straight-line cracks with different arrangements at β = 0. (a) τ = π/2; (b) τ = π/4;
(c) τ = 0; (d) single crack.
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FIGURE 11. Scattered cross-section F against wavenumber κ0 for two straight-line cracks
with different arrangements at β=0. Solid line, τ =π/2; dashed line, τ =π/4; dash-dotted
line, τ = 0; dotted line, single crack.
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For an incident wave with β = 0 the right-hand sides of (3.36) and (3.37) become

B
(
∂φI

∂z

)
= ν

∂3φI

∂x2∂z
and S

(
∂φI

∂z

)
= 0, (5.7a,b)

which means that only the second term in (5.5) has a contribution to the results. Then,
it can be expected that there will be more diffracted waves for β=π/2 than those for
β = 0. This feature has also been shown in the numerical results of Porter & Evans
(2007), where they considered only the straight and parallel crack lines. For the case
in figure 10(c), an incident wave propagates along the x-axis. It will arrive with normal
incident angle at the left-hand crack first, and generate a diffracted wave which will
mainly propagate along and opposite to the positive x-axis, as demonstrated in § 5.3.
The new wave field can be seen as an incident wave for the other crack. When it
arrives at the right-hand crack which is parallel to x-axis, the generated diffracted
wave will be very small, as the direction of the main component of the incident wave
field is parallel to the x-axis. This indicates that the results for two cracks will be
similar to those for a single crack in figure 10(c).

In figure 12, the jumps of displacement and slope at the left-hand crack are shown
for various arrangements of the right-hand crack. The shapes and arrangements of the
cracks as well as the incident wave angle are the same as those in figure 10, while
the incident wavenumber is taken to be κ0 = 0.1. As can be expected, the jumps of
all situations tend to be zero as the point approaches the tips of the crack. Similar to
U or F in figures 10 and 11, from figure 12, it can be observed that the jumps of
displacement and slope along the crack for τ = 0 are also close to those for a single
crack.

The cracks of a uniform ice sheet formed by the excitation of a unidirectional
regular wave might have a simple shape. Due to the random nature of the ocean
waves, the cracks in polar regions may be generally complex, which can be either
open, closed or the mixture of them. This can be partly reflected by the photos
taken on site as well as in the laboratory (Kohout et al. 2016; Herman, Evers &
Reimer 2018). Also, when there is a high concentration of ice floes with very
narrow gaps between the floes, this could be equivalently treated as a crack problem
mathematically, as noted by Squire & Dixon (2001a). The shapes of these narrow
gaps could be highly complex (e.g. figure 2, Herman et al. (2018)). Therefore, in
our final case we consider a more general situation, or the flexural-gravity wave
interactions with multiple mixed closed and open cracks, i.e. two closed circular
cracks with radius a as 20 and centre (x, y), respectively, at (−40, 0) and (20,−20),
and two straight-line cracks parallel to y-axis with length 2γi as 40 and centre (x, y),
respectively, at (−10, 20) and (50, 0). Here, an oblique incident wave with β = π/4
is considered.

Figure 13 shows the jumps of displacement η̃ and slope η̃n along the cracks against
curvilinear coordinate s/γi. Here, the incident wavenumber is taken to be κ0 = π/20,
and the corresponding wavelength is equal to the diameter of the circular crack or
length of the straight-line crack. Convergence with respect to Mi and T has been
verified, and the energy conservation relationship in (A 9) has been used as a partial
check. It can be observed from the figure that for the open cracks both η̃ and η̃n will
tend to be zero as s→±γi, as expected from the physics. For the specific wavelength
or κ0, it can be seen that η̃ and η̃n will oscillate with s/γi, and more peaks and troughs
appear for a closed circular crack than those for a straight- line crack.

In figure 14, contour plots are shown for the diffraction coefficient U as a function
of θ and κ0. It can be observed that similar to the single crack case, the wave energy
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FIGURE 12. Modulus of the jump of displacement η̃/Λ and that of slope η̃n/Λ along the
left-hand crack for different arrangements of the right-hand crack at κ0 = 0.1 and β = 0.
Solid lines, τ =π/2; dashed lines, τ =π/4; dash-dotted lines, τ = 0; dotted lines, single
crack.

is mainly diffracted to the direction of the wave incidence. The diffraction coefficient
for a single circular closed crack is also shown in figure 14. It is interesting to see
that the wavenumber κ0 corresponding to the large peaks in figure 14(a) for multiple
cracks are similar to those in figure 14(b) for a single crack, although the value of the
former case is generally larger than the latter case. This can be more clearly observed
from figure 15, which shows the scattered cross-section F against κ0. Here, three large
peaks appear within the range calculated. As discussed in § 5.2, for a closed crack
there will be a near resonant wave motions at a set of discrete κ0. At these κ0, the
amplitude of the diffracted wave can be very large. For multiple cracks, there will
be interactions between the waves due to different cracks. Thus, the wavenumbers
at which large motion may occur may not be exactly the same as those κ0 for an
individual crack. However, in many cases, these wavenumbers are still close to κ0.
This is reflected by the results in figure 15.

6. Conclusions
The problem of flexural-gravity wave interactions with multiple cracks in an ice

sheet of infinite extent has been solved, in which both the shape and location of
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FIGURE 13. Modulus of the jump of displacement η̃/Λ and that of slope η̃n/Λ against
curvilinear coordinate s/γi for multiple mixed closed and open cracks at κ0 = π/20 and
β =π/4. Solid lines, circular crack at (−40, 0); dashed lines, circular crack at (20,−20);
dash-dotted lines, straight-line crack at (−10, 20); dotted lines, straight-line crack
at (50, 0).

the cracks can be arbitrary, and the individual crack can be either open or closed.
The problem is first transformed into an infinite number of coupled two-dimensional
problems in a horizontal plane. Each two-dimensional problem is converted into an
integral equation along the cracks. By writing the potential in a series in the vertical
direction and adopting an orthogonal inner product, all the required conditions
including those at the crack are satisfied. The integral differential equations are
solved using the boundary element method together with the finite difference scheme
for the high derivatives along the crack.

For the interaction of wave with a closed crack, the jumps of displacement η̃ and
slope η̃n are generally smooth along the crack length. However, there are several
cycles of oscillations with peaks and troughs, and the amplitude of the oscillation is
not a constant. For a closed crack, the enclosed ice sheet becomes detached from
the external one. For an ice plate in a vacuum, it will oscillate forever at one of its
natural frequencies after an initial disturbance, if there is no structure damping. When
the excitation force has a component at one of the natural frequencies or at resonance,
the motion amplitude can be infinite. When the ice plate is on water surface, similar
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FIGURE 14. Modulus of the diffraction coefficient U as a function of θ and κ0 at β=π/4.
(a) Multiple mixed closed and open cracks; (b) single closed circular crack.
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FIGURE 15. Scattered cross-section F against wavenumber κ0 at β = π/4. Solid line,
multiple mixed closed and open cracks; dashed line, single closed circular crack.

resonant behaviour can occur. However, the motion amplitude will not be infinite
because of wave radiation damping. Instead, the motion will show a large amplitude
as reflected by the variation of the diffraction coefficient U(θ) with κ0.

For an open crack, the variations of displacement and slope jumps are less
oscillatory. Both jumps tend to zero at the tip of the crack. However, the slope
jump changes very rapidly near the tip and its high derivative is singular at the tip.
This singularity has to be treated analytically in the integral equation and numerically
in the discretization, as has been done successfully in this work. The displacement
and slope jumps are not as oscillatory as those of a closed crack. It is interesting to
see that even when the two tips of the open crack are very close, the results do not
tend to those of a closed one. A single point connection between the internal and
external ice sheets make the physics very different.

When there are multiple cracks, both the crack shapes and their arrangements will
have effects on the diffracted waves. Interactions between cracks are much stronger in
the local field flow than that in the far field flow. This is mainly due to the fact that
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the evanescent waves of each crack have strong effects only locally. For a straight-
line crack, when it is parallel to the local wave direction, its effect on the total flow
is small. Its removal does not have much effect on the overall diffraction coefficient.

The developed methodology can be also used to solve flexural-gravity wave
diffractions by cracks with corners. In such a case no concentrated force condition in
(2.13) should be imposed at the corners. However, the method is limited to the ice
sheet with constant physical properties, and the analysis is within the scope of the
linear velocity potential theory.
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Appendix A. Diffracted wave in far field and the scattered cross-section

After D̃ and S̃ have been found, similar to Li et al. (2018c) for wave diffraction by
a circular crack, we may write the diffracted velocity potential φD in the far field as

lim
r→+∞

φD =

√
2

πκ0r
e−i(κ0r−π/4)IU(θ)ψ0(z)/ tanh(κ0H), (A 1)

where x = r cos θ and y = r sin θ , ξ = r0 cos θ0 and η = r0 sin θ0, and the diffraction
coefficient U(θ) represents the scattered wave energy distribution along the circum-
ferential direction. Substituting (3.32) into (3.5) and noticing

H(2)
0 (κmR)=

√
2

πκmr
e−i(κmr−π/4)eiκmr0 cos(θ−θ0) as r→+∞, (A 2)

we have

U(θ) =
πχ0

2iI
tanh(κ0H)

N∑
i=1

∫
Γi

{[
∂G∞
∂sq

ν0
∂Θ

∂s
∂

∂s
−
∂G∞
∂nq

(
κ2

0 − ν0
∂2

∂s2

)]
D̃

+

(
G∞κ2

0 +
∂G∞
∂nq

ν0
∂Θ

∂s
−
∂G∞
∂sq

ν0
∂

∂s

)
S̃
}

dsq, (A 3)

where G∞ = exp[iκ0r0 cos(θ − θ0)]. Then the scattered cross-section F can be defined
as follows:

F=
1

2π

∫
+π

−π

|U(θ)|2 dθ, (A 4)

which is a measure of the total scattered energy.
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It may be noticed that an energy conservation relationship for F can be also derived.
Applying Green’s identity to φ and its complex conjugate φ∗, we have∫

S

(
φ
∂φ∗

∂n
− φ∗

∂φ

∂n

)
ds= 0, (A 5)

where S is comprised of seabed SH , ice sheet Si and a cylindrical surface at infinity
S∞. Invoking the corresponding boundary conditions together with the Gauss theorem,
we have

Ii +

∫
S∞

(
φ
∂φ∗

∂n
− φ∗

∂φ

∂n

)
ds

+
L

ρwω2

∫
Γ∞

[
∂φ∗

∂z
∂∇2

∂n
∂φ

∂z
−
∂φ

∂z
∂∇2

∂n
∂φ∗

∂z

+
∂2φ

∂n∂z
∇

2 ∂φ
∗

∂z
−
∂2φ∗

∂n∂z
∇

2 ∂φ

∂z

]
z=0

ds= 0, (A 6)

where

Ii =
2iν0L
ρwω2

N∑
i=1

{
Im
[

D
(
∂S∗

∂s
−
∂Θ

∂s
∂D∗

∂s

)
+
∂D∗

∂s
S
]+γi

−γi

}−
+

, (A 7)

which is due to the integral over Si. The crack conditions in (2.7) together with
integration by parts with respect to s have been used in (A 7). For a closed crack, Ii
in (A 7) is zero explicitly. Based on the argument of the energy density at the crack
tips, we have (Norris & Wang 1994)

D=O[(γi ∓ s)α] and S=O[(γi ∓ s)α−1
], (s→±γi, z= 0), (A 8a,b)

where α> 3/2. Thus, for an open crack, by noticing the asymptotic expressions of D
and S in (A 8), Ii in (A 7) is also zero. Then following the similar procedure in Li
et al. (2018c) for a closed circular crack, we have

F=−Re[U(β)], (A 9)

which can be used as a partial check of the accuracy of the numerical results.
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