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Time series data are often well modeled by using the device of an autoregres-
sive root that is local to unity+ Unfortunately, the localizing parameter~c! is not
consistently estimable using existing time series econometric techniques and the
lack of a consistent estimator complicates inference+ This paper develops proce-
dures for the estimation of a common localizing parameter using panel data+ Pool-
ing information across individuals in a panel aids the identification and estimation
of the localizing parameter and leads to consistent estimation in simple panel
models+ However, in the important case of models with concomitant determinis-
tic trends, it is shown that pooled panel estimators of the localizing parameter
are asymptotically biased+ Some techniques are developed to overcome this dif-
ficulty, and consistent estimators ofc in the regionc , 0 are developed for
panel models with deterministic and stochastic trends+ A limit distribution theory
is also established, and test statistics are constructed for exploring interesting
hypotheses, such as the equivalence of local to unity parameters across sub-
groups of the population+ The methods are applied to the empirically important
problem of the efficient extraction of deterministic trends+ They are also shown
to deliver consistent estimates of distancing parameters in nonstationary panel
models where the initial conditions are in the distant past+ In the development of
the asymptotic theory this paper makes use of both sequential and joint limit
approaches+ An important limitation in the operation of the joint asymptotics that
is sometimes needed in our development is the rate conditionn0T r 0+ So the
results in the paper are likely to be most relevant in panels whereT is large and
n is moderately large+
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1. INTRODUCTION

Time series models with roots near unity are extremely common in economet-
ric applications, and this feature of the data is often modeled by using the de-
vice of an autoregressive root that is local to unity, so that the time series has
the property of being near integrated+ Such time series are more general than
integrated processes, and they allow more flexibility in the econometric mod-
eling of nonstationary series+ Whereas the local to unity parameter cannot be
consistently estimated using existing time series methods,1 it is useful in many
different econometric contexts+ A few examples are as follows: the analysis of
power properties of unit root tests~Phillips, 1987a!; the construction of confi-
dence intervals for the long run autoregressive coefficient~Stock, 1991!; the
development of efficient detrending methods~Phillips and Lee, 1996; Canjels
and Watson, 1997!; and the construction of point optimal invariant tests for a
unit root ~Elliott, Rothenberg, and Stock, 1996! and cointegrating rank~Xiao
and Phillips, 1999!+

This paper develops procedures for the estimation of the local to unity pa-
rameter in panel data models+ When there is a common time series local to
unity parameter across independent individuals in a panel, it is apparent that
the cross section data carry additional information that can be used to assist in
estimating a common localizing parameter~c!+ By simple pooling of time se-
ries estimates, we might expect that a common local to unity parameter could
be consistently estimated with panel data that combined independent observa-
tions across individuals+ In the case where the data generating process involves
only a near-integrated stochastic trend process, we show that a simple pooled
least-squares estimator does produce a consistent estimator for the local to unity
parameter+ However, the simple data-pooling heuristic does not hold in situa-
tions where there are both deterministic and near-integrated stochastic trends in
the model+ In such cases, it is shown that the pooled least-squares estimator of
the localizing coefficientc generates an inconsistency that depends upon the
true unknown localizing parameter+ To resolve this problem, we develop a con-
sistent estimator forc in the important case wherec , 0+ Asymptotic normal-
ity of these consistent local to unity parameter estimators is established, and
the limit theory is used to develop an inferential framework for local to unity
modeling in panel data+ In particular, test statistics are constructed for explor-
ing interesting hypotheses, such as the equivalence of the local to unity param-
eter across subgroups of the population+

Local to unity parameter estimation is useful in many empirical applications+
We illustrate the usefulness of panel estimation of the localizing coefficient with
an application to efficient deterministic trend extraction and the construction of
confidence intervals for models with roots near unity+ According to Phillips and
Lee ~1996!, when the regression errors are near integrated, efficiency gains in
the estimation of deterministic trends can be obtained by quasi-differencing the
data+ However, to implement this procedure in practice, the localizing param-
eter in the near-integrated error process must be known or be consistently esti-
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mable, neither of which normally applies+ If inconsistent estimates of the
localizing parameter are used instead, then the resulting trend coefficient esti-
mator has a highly nonstandard limit distribution, which gives rise to new dif-
ficulties, for example, in setting up confidence intervals for the trend coefficient+
Because of this problem, Cavanagh, Elliott, and Stock~1995! and Canjels and
Watson~1997! suggest the use of Bonferroni-type confidence intervals, which
are often very conservative+ In panel data models, our consistent estimate of the
local to unity parameter can be used to overcome these difficulties+ In fact, our
feasible efficient estimator based on consistent panel data estimates of the local
to unity parameter has a standard limit distribution, and this limit theory leads
to a conventional form of confidence interval for the trend+

Another useful application of panel data for nonstationary time series lies in
the consistent estimation of the distancing parameter that arises in the formu-
lation of distant initial conditions+ The distancing parameter, which is ex-
pressed as a fraction~not necessarily less than unity! of the length of the present
time series sample, measures how far into the past the initialization extends in
terms of the shocks that have determined it+ It is shown that consistent estima-
tion of this parameter is possible with panel data when there is common dis-
tancing in the initialization across the panel and a common local to unity
parameter in the dynamics+ In effect, panel variation across individuals enables
us to learn something very specific about the nature of presample data—how
far its origins extend in relation to the historically observed data+

In other recent research~Phillips and Moon, 1999!, the authors develop some
rigorous asymptotic theory for multi-index situations in which two indices may
pass to infinity+ This general theory is applied to obtain a nonstationary panel
data limit theory where there are large numbers of cross section~n! and time
series~T ! observations+ The new limit theory allows for both sequential limits,
whereT r ` andn r ` sequentially, and joint limits whereT, n r ` simul-
taneously+ The present paper makes use of those methods in the development
of the asymptotic theory here+ An important limitation in the operation of the
joint asymptotics that is sometimes needed in our development is the rate con-
dition n0T r 0+ This condition means that the results are likely to be most
relevant in panels whereT is large andn is moderately large~as is the case in
some cross country macroeconomic panels!+

The paper is organized as follows+ Section 2 lays out the model and assump-
tions, gives some heuristic discussion, and shows how consistent estimation of
the localizing parameter is possible in panel models with no deterministic com-
ponents+ Section 3 studies the same problem in models with deterministic trend
components, shows the inconsistency of the pooled least-squares estimator, and
develops several alternative approaches to dealing with the bias problem+ A
consistent estimator is given for the case where the common localizing param-
eter satisfiesc , 0+ A limit distribution theory is developed, and matters of
inference are discussed+ Section 4 applies these methods to testing for the lo-
calizing coefficient, to the empirically important problem of the efficient esti-
mation of the deterministic trend coefficients, and to estimation of the distancing
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parameter that arises in the formulation of distant initial conditions+ Section 5
concludes the paper+ Proofs, technical derivations, and a brief review of some
double index asymptotic theory are given in the Appendixes+

2. MODELS, ASSUMPTIONS, AND HEURISTICS

We start by assuming that the time series process for individuali, zi, t , has a
decomposition into both deterministic and stochastic elements as follows:

zi, t 5 bi,0 1 bi
'gt 1 yi, t , t 5 1, + + + ,T; i 5 1, + + + , n,

yi, t 5 ayi, t21 1 «i, t , a 5 expS c

T
D, (1)

wheregt 5 ~t, + + + , t p!' is a deterministic polynomial trend, bi 5 ~bi,1, + + + ,bi, p!',
andyi, t is a near-integrated stochastic process+ The initialization is att 5 0 with
random variablesyi,0 that are independent and identically distributed~i+i+d+! across
i with mean zero and finite variancesi,0

2 for all i+ In this paper we assume that
the deterministic trendsbi,0 1 bi

'gt in ~1! are heterogeneous acrossi+2 These
heterogeneous trends reflect individual effects in the panel datazi, t +

The parameterc in the AR~1! coefficient a is the local to unity parameter,
which is assumed here to be common to all individuals+ One of the aims of
this paper is to find a consistent estimation procedure for the parameterc+ The
common localizing parameterc can be considered a common limit of individ-
ually different sequences of local parameters+ That is, we may regard theAR~1!
error process coefficienta as the limit of the sequence of coefficientsai,T 5
exp~~c 1 ci,T!0T !, whereci,T0T r 0 uniformly in i+ In this case the common
coefficienta 5 exp~c0T ! is an approximation ofai,T 5 exp~~c 1 ci,T!0T !+ In
some empirical applications, it may be too restrictive to assume a common
localizing coefficient in the panel regression model~1! for all individuals+ There-
fore, procedures that allow for some cross sectional heterogeneity in the local-
izing parameter and procedures for testing cross sectional heterogeneity in
localizing coefficients will certainly be of interest in empirical work+ As a par-
tial solution of the latter problem, this paper develops a testing procedure de-
signed to assess whether the localizing parameter is the same across subgroups
of individuals in the sample+

With regard to the specification of the trend component in~1!, it is important
to note that individual intercept termsbi,0 are not consistently estimable with
time series data when the stochastic componentyi, t is near integrated, as a re-
sult of the low signal to noise ratio relative to the latent stochastic trendyi, t in
~1!, namely, 10var~ yi, t ! 5 O~10t ! r 0 ast r `+ TheOp~1! assumption for the
initial conditions ofyi, t is made for convenience and could be extended in the
usual way to allow for distant initialization~Uhlig, 1994; Phillips and Lee, 1996;
Canjels and Watson, 1997!, at the cost of some additional complexity+

To develop some quick results, we first consider the simple case where the
trend coefficient vectorsbi are known~but intercept termsbi,0 are unknown!
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and the error processes«i, t are i+i+d+ ~0,s«
2! acrossi and overt+ This covers the

case where there is no deterministic trend in~1! andbi 5 0+ In this case, the
variables [zi, t 5 zi, t 2 bi

'gt are observable+ In time series regression, taking into
account the relationa . 1 1 c0T, the natural estimator forc is Ic 5 T~ Ia 2 1!
where

Ia 5 S(
t51

T

[zi, t21
2 D21S(

t51

T

[zi, t21 [zi, tD+
Then, asT r `

T~ Ia 2 a! 5 F 1

T 2 (
t51

T

[zi, t21
2 G21F 1

T (
t51

T

[zi, t21~~12 a!bi,0 1 «i, t !G
5 F 1

T 2 (
t51

T

~ yi, t21 1 bi,0!2G21

3 F 1

T (
t51

T

~ yi, t21 1 bi,0!~~12 a!bi,0 1 «i, t !G
n SE

0

1

Jc, i ~r !2drD21E
0

1

Jc, i ~r !dWi ~r !,

where Jc, i ~r ! 5 *0
r e~r2s!cdWi ~s! and Wi ~r ! is a standard Brownian motion

~e+g+, see Phillips, 1987b!+ From

a 5 expS c

T
D5 1 1

c

T
1 OS 1

T 2D, (2)

we have

Ic 2 c 5 T~ Ia 2 1! 2 c 5 T~ Ia 2 a! 1 OS 1

T
D

n SE
0

1

Jc, i ~r !2drD21E
0

1

Jc, i ~r !dWi ~r !+

Thus, as is well known, Ic is not a consistent estimator forc and has a nonde-
generate limit distribution+

Now suppose that panel data foryi, t are available+ Again, one of the natural
ways to estimate the commonAR~1! coefficienta is to pool the data and run a
least-squares regression+ Then, we would have

[a 5 S(
i51

n

(
t51

T

[zi, t21
2 D21S(

i51

n

(
t51

T

[zi, t21 [zi, tD, (3)

and, again, in view of ~2! we define

[c 5 T~ [a 2 1!+ (4)
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To take a quick look at the asymptotic behavior of[a ~or, equivalently, [c!, we
consider the sequential weak limit ofT~ [a 2 a! by lettingT r ` first, followed
by n r `, which we denote by~T, n r `!seq ~see Phillips and Moon, 1999;
and the remark that follows!+ Now we have

T~ [a 2 a! 5 F 1

n (
i51

n 1

T 2 (
t51

T

~ yi, t21 1 bi,0!2G21

3 F 1

n (
i51

n 1

T (
t51

T

~ yi, t21 1 bi,0!~~12 a!bi,0 1 «i, t !G+ (5)

As T goes to infinity whilen is fixed, we have, as earlier,

T~ [a 2 a! n S1

n (
i51

n EJc, i ~r !2D21S1

n (
i51

n EJc, i ~r !dWi ~r !D+ (6)

Note thatE~Jc, i ~r !dWi ~r !! 5 0 andE~*Jc, i ~r !2! 5 *0
1 *0

r e2c~r2s!dsdr . 0+ By
the weak law of large numbers, asnr`, 10n(i51

n *Jc, i ~r !dWi ~r ! rp 0+ There-
fore, in sequential limits as~T, n r `!seq, we find thatT~ [a 2 a! rp 0 and

[c 2 c 5 T~ [a 2 a! 1 o~1! rp 0+ (7)

That is, [c is a consistent estimator for the local to unity parameterc in sequen-
tial limits as~T, n r `!seq+

Remarks+

~a! The preceding asymptotic theory employs a sequential approach in which the
indexT passes to infinity first and then the indexn passes to infinity later, which
is denoted as~T, n r `!seq+ In general, depending on how the two indices, n
and T, are treated, it is possible to have a variety of limit results for double
indexed random sequences+ Recently, Phillips and Moon~1999! have studied
this matter and suggested various limit concepts for multi-indexed sequences,
classifying the main concepts into the following three cases: a sequential ap-
proach, a diagonal path approach, and a joint approach+ The sequential approach
passes the indices to infinity sequentially+ In the present case, depending on which
index tends to infinity first, we may have two different sequential limits accord-
ing as ~T, n r `!seq or ~n,T r `!seq, where the order of appearance of the
index in the notation gives the order of the passage to infinity+ The diagonal
path approach allows the two indices, n and T, to pass to infinity along a spe-
cific diagonal path, say, ~n,T~n!!, in the two dimensional array+ This approach
simplifies the asymptotic theory by replacing the double indexed process with a
single indexed process+ The joint approach allows both indices, n andT, to pass
to infinity simultaneously without placing specific diagonal path restrictions on
the divergence+ On the other hand, to obtain some joint limit results, we often
need to exercise control over the relative rate of expansion of the two indices+
One such requirement that is used in the present paper isn0T r 0, and in such
cases there will be a presumption thatT is large relative ton in the limit+ Al-
though this requirement is not unreasonable for some recent macroeconomic pan-
els, it is much less relevant in traditional dynamic panels, wheren is often very
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large andT is quite small+ In such cases, fixed T with large n asymptotics or
joint asymptotics withT0n r 0 will be more relevant+ The present paper fo-
cuses mainly on sequential asymptotics with~T, n r `!seq and joint asymptot-
ics undern0T r 0+

~b! We emphasize that the different approaches may yield different limits+ Apostol
~1974, p+ 200! gives examples of real number sequences with this property, and
Phillips and Moon~2000! give examples for double sequences of random vari-
ables+ In light of such examples, it is natural to ask whether there are cases where
the different approaches yield the same limit+ The paper by Phillips and Moon
~1999! provides a partial answer to this question, focusing on the relation be-
tween sequential limits and joint limits+ Appendix B of the paper summarizes
some important details about these relations+

~c! As the preceding analysis indicates, sequential limits are often easy to derive+ In-
deed, they are usually much easier to derive than joint limits+ As a device for ob-
taining quick asymptotic results, we will proceed in this paper with~T, n r `!seq

sequential limits and then, in the Appendix, demonstrate the results under the more
general environment of joint limits+ There are two main reasons for dealing with
~T, n r `!seq limits instead of~n,T r `!seq limits+ The first is simply con-
venience+ In many of the cases investigated in this paper, deriving ~T, n r `!seq

limits is relatively straightforward and is especially advantageous when the non-
stationary time seriesyi, t in model~1! are generated from weakly dependent pro-
cesses such as those in Assumption 1, which follows+ Second, ~T, n r `!seqlimits
seem appropriate for some recent cross country macroeconomic panels such as
those of the Penn World Tables+ Later in the paper and as relevant matters arise,
some further discussion of these issues will be provided+

The consistency of[c in ~4! depends upon two unrealistic assumptions: ~i! the
«i, t are i+i+d+ ~0,s«

2!; and~ii ! the trend coefficient vectorsbi are known+ When
the «i, t are serially dependent, as in Assumption 1, which follows, the limit of
T~ [a 2 a! in ~6! involves a bias term that depends on the one-sided long-run
covariance of«i, t + In this case, we can correct the bias easily, for example, by
estimating the one-sided long-run variance nonparametrically as in Phillips
~1987a! or by using parametric autoregressions in which the order of the auto-
regression expands with the sample size, as in Said and Dickey~1984!+

When thebi are unknown, the problem becomes much more complicated+
The obvious point of departure is to remove the deterministic trends by prelim-
inary regression and then to define[c 5 T~ [a 2 1!, where the estimator[a is
obtained by autoregression with the detrended data+ Thus, suppose

I
zi, t and

I
zi, t21

are the detrended data, obtained as regression residuals ofzi, t andzi, t21 on gt +
Then, we have [c 5 T~ [a 2 1!, where

[a 5 S(
i51

n

(
t51

T

I
zi, t21

2 D21S(
i51

n

(
t51

T

I
zi, t21 I

zi, tD+
This estimator ofc is a simple extension of that used in the case where the
trends were known+ Interestingly, however, [c is not consistent in this case+ In-
tuitively, the reason for the inconsistency is that preliminary detrending filters
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the stochastic trend
I
yi, t21 and the filtered process is correlated with the station-

ary error process«i, t in ~1!+ These matters will be explored in the next section+
We close this section with two assumptions on the error process«i, t +

Assumption 1+ «i, t are linear processes satisfying the following conditions:

~a! «i, t 5 Ci ~L!ui, t 5 (j50
` Ci, j ui, t2j +

~b! ui, t are i+i+d+ acrossi and overt with Eui, t 5 0, Eui, t
2 5 1, andEui, t

4 5 s4+
~c! Ci, j are a sequence of real numbers withOCj [ supi 6Ci, j 6 , ` and(j50

` j b OCj , `
for someb $ 1+

~d! supi si,0
2 , `, wheresi,0

2 5 E~ yi,0
2 !+

Let Ci 5 Ci ~1!, Vi 5 Ci
2, andL i 5 (j51

` Ci,0Ci, j + The termsVi andL i are
the long-run variance and the one-sided long-run covariance of the error pro-
cess«i, t , respectively+ The next assumption is about the limits of the averages
of the individual long-run variances and covariances+

Assumption 2+

~a! V 5 limn~10n!(i51
n Vi is finite+

~b! L 5 limn~10n!(i51
n L i is finite+

~c! F 5 limn~10n!(i51
n Vi

2 is finite+

Remark+ Let V«i
5 E«i, t

2 + Under Assumption 2, there existV« 5 limn~10n! 3

(i51
n V«i

andV« 5 V 2 2L+

3. ESTIMATION OF THE LOCALIZING COEFFICIENT IN PANEL
MODELS WITH DETERMINISTIC TRENDS

First, rewrite the panel model~1! in augmented regression format as

zi, t 5 azi, t21 1 gi,0 1 gi
'gt 1 «i, t , (8)

wheregi,0 5 bi,0~1 2 a! 1 abi
' ip, the deterministic trend componentgi

'gt is
constructed as

gi
'gt 5 bi

'~gt 2 agt21! 2 abi
' ip 5 bi

'AT~c!gt ,

AT~c! is a p 3 p matrix that depends uponc and T, and ip 5 ~21, ~21!2, + + + ,
~21! p!'+

As is well known, the formulation~8! has the drawback that the regression
leads to inefficient trend elimination, but it has the advantage that the de-
trended data are invariant to the trend parameters in~1!+ It will be convenient
for us to work with both formulations~1! and~8!, depending on the context+
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3.1. Iterative Ordinary Least Squares: Biased Estimation

We start by introducing some definitions+ Let

Igt 5 ~1, gt
'!', g~r ! 5 ~r, + + + , r p!', Ig~r ! 5 ~1, g~r !' !',

DT 5 diag~T21, + + + ,T2p!, EDT 5 diag~1,DT !

and define

hT~t,s! 5 ~DT gt !
'S 1

T (
t51

T

DT gt gt
'DTD21

DT gs,

DhT~t,s! 5 ~ EDT Igt !
'S 1

T (
t51

T

EDT Igt Igt
' EDTD21

EDT Igs,

h~r,s! 5 g~r !'SE
0

1

g~r !g~r !'drD21

g~s!,

Dh~r,s! 5 Ig~r !'SE
0

1

Ig~r ! Ig~r !'drD21

Ig~s!+

When t 5 @Tr# ands 5 @Tp# , it is easy to see that asT r `,

DT Igt r Ig~r ! uniformly in r [ @0,1#

and

DhT~t,s! r Dh~r, p! uniformly in ~r, p! [ @0,1# 3 @0,1# +

Let
I
zi, t21 andD

I
zi, t denote the ordinary least squares~OLS! detrended pro-

cesses ofzi, t21 andDzi, t , respectively, that is, for t $ 23

I
zi, t21 5 zi, t21 2

1

T (
s51

T

DhT~t,s!zi,s21,

D
I
zi, t 5 Dzi, t 2

1

T (
s51

T

DhT~t,s!Dzi,s+

Then, from model~1!, we have

I
zi, t21 5

I
yi, t21 2 Dbi

'SD Igt 2S(
s51

T

D Igs Igs
'DS(

t51

T

Igt Igt
'D21

IgtD5
I
yi, t21 for t $ 2+

(9)

Also, let
I
zi,0 5 zi,0 5

I
yi,0 5 yi,0+

It is well known that under Assumption 1, asT r `,

1

!T
yi, @Tr# n Ci Jc, i ~r ! (10)
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~Phillips, 1987b!+ Using standard manipulations, it is not difficult to show that
when@Tr# 5 t, asT r `,

I
zi, t21

!T
5 I

yi, t21

!T
n Ci I

Jc, i ~r !, (11)

where
I
Jc, i ~r ! 5 Jc, i ~r ! 2 *0

1 Dh~r,s!Jc, i ~s!ds+
We now discuss an estimation procedure for the local to unity parameter with

panel data when the trend coefficientsbi are unknown+ Suppose that ZL i are
consistent estimators forL i as T r `+ Consider a simple estimator, [c1, de-
fined as a serial correlation bias corrected~if required! pooled least-squares
estimator [a1 of a,

[a1 5 S(
i51

n

(
t51

T

I
zi, t21

2 D21

(
i51

n

(
t51

T

~
I
zi, t21 I

zi, t 2 T ZL i !, (12)

and

[c1 5 T~ [a1 2 1!+

The estimator [a1 is a bias corrected4 pooled least-squares estimator with OLS
detrended data+ We define [c1 from [a1 in view of the relationa . 1 1 ~c0T !+
Hereafter, we call [c1 an iterative OLS estimator+

In view of ~11! we have

T~ [a1 2 a! 5 S1

n (
i51

n 1

T 2 (
t51

T

I
zi, t21

2 D21 1

n (
i51

n 1

T (
t51

T

~
I
zi, t21 I

«i, t 2 DL i ! (13)

and, from the limit theory in Phillips~1987b!, asT r ` for fixed n,

T~ [a1 2 a! n S1

n (
i51

n E IJc, i
2 ~r !drD21S1

n (
i51

n E IJc, i ~r !dWi ~r !D+
Note that

ESE
0

1

I
Jc, i

2 ~r !drD
5 ESE

0

1

Jc, i
2 ~r !drD2 ESE

0

1E
0

1

Jc, i ~r !Jc, i ~s! Dh~r,s!drdsD
5

21

2c
H11

1

2c
~12 e2c!J 2E

0

1E
0

1

ec~r1s!
1

2c
~12 e22c~r∧s! ! Dh~r,s!drds

5 v1~c!, say, (14)
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and

ESE
0

1

I
Jc, i ~r !dWi ~r !D

5 ESE
0

1

Jc, i ~r !dWi ~r !D2 ESE
0

1

Jc, i ~r !dWi ~s! Dh~r,s!drdsD
5 2E

0

1E
0

r

e~r2s!c Dh~r,s!dsdr

5 v2~c!, say+ (15)

Because both of the i+i+d+ sequences$*0
1

I
Jc, i

2 ~r !dr% i and$*0
1

I
Jc, i ~r !dWi ~r !% i have

finite second moments, it follows by the weak law of large numbers that as
n r `

S1

n (
i51

n E IJc, i
2 ~r !drD21S1

n (
i51

n E IJc, i ~r !dW~r !Drp

v2~c!

v1~c!
+

Thus, in sequential limits as~T, n r `!seq,

T~ [a1 2 a! rp

v2~c!

v1~c!
,

and, in consequence,

[c1 2 c 5 T~ [a1 2 a! 1 OS 1

T
Drp

v2~c!

v1~c!
+ (16)

Hence, the iterative OLS estimator[c1 is inconsistent and has an asymptotic
bias given by the ratio@v2~c!0v1~c!# that depends on the unknown parameter
c+ The main reason for the inconsistency of[c1 is that the detrending procedure
produces a correlation between the lagged filtered regressor

I
zi, t21 and the equa-

tion error
I
«i, t + This correlation yields the nonvanishing limit

v2~c! 5 2E
0

1E
0

r

e~r2s!c Dh~r,s!dsdr (17)

in the numerator ofT~ [a1 2 a!+
Define

F~c! 5 c 1
v2~c!

v1~c!
+ (18)

Becausev2~c! is nonzero in general, [c1 is not consistent+ However, because
the probability limit of [c1, F~c!, depends only onc, we can expect the limit
function F~c! to give some information about the true parameterc, especially
in regions whereF~c! is a monotone function+ The graph ofF~c! is plotted for
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the two casesIgt 5 1 ~Figure 1!5 and Igt 5 ~1, t !' ~Figure 2!, which are the most
common in empirical applications+

When Igt 5 ~1, t !', that is, when we detrend the data to estimatec, it is appar-
ent from Figure 2 that in the region$c :20+8 # c # 1+2% the limit function of
the estimate[c1 does not identify the true parameter, becauseF~c! is not a one-
to-one function in the region+ Outside of this region the probability limit of the
estimate [c1 does identify the true value of the local to unity parameterc and
can be used to construct a consistent estimate ofc+ Furthermore, if we assume
that the true localizing parameter is nonpositive, that is, the true localizing pa-
rameter set is$c : c # 0%, then we can identify the local to unity parameterc for
all c # 0 using [c1 ~and its probability limit! because the probability limit func-
tion F~c! is monotonic with respect toc on $c : c # 0%, the true localizing pa-
rameter set+ In this case~i+e+, under the assumption thatc # 0!, there is no
unidentifiable region, andF21~ [c1! is a consistent estimator ofc+

An analytic form of the inverse functionF21~c! of the probability limit func-
tion F~c! is not readily available+ But the function is easy to calculate numeri-

Figure 1. Graph ofF~c! when Igt 5 1+

Figure 2. Graph ofF~c! when Igt 5 ~1, t !'+
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cally and is given in Table 1 for the caseIgt 5 ~1, t !'+6 We summarize the results
in the following two theorems+

THEOREM 1+ Let F~c! 5 c 1 @v2~c!0v1~c!# + Under Assumptions1–4 ~As-
sumptions3 and 4 follow!, [c1 rp F~c! in sequential limits as~T, n r `!seq+

THEOREM 2+ Under Assumptions1–4 ~Assumptions3 and 4 follow!, in
sequential limits as~T, n r `!seq

!n~ [c1 2 F~c!! n N~0,FV [c1~c!!,

where

V [c1~c! 5 S2v2~c!

v1~c!2

1

v1~c!DV~c! 1
2v2~c!

v1~c!2

1

v1~c!
2 ,

V~c! is defined in AppendixA, and F is defined in Assumption2~c!+

The varianceV [c1~c! is a complicated function of the unknown parameterc
but, again, can be calculated numerically as shown in Table 2 forIgt 5 ~1, t !'+

Remarks+

~a! The two results are stated here in terms of~T, n r `!seqsequential limits for the
indicesT and n+ Appendixes C and D show that these results continue to hold
when joint limits ~T, n r `! are taken+ In fact, according to the results given
there, joint asymptotic normality of!n~ [c1 2 F~c!! continues to hold under the
additional rate restriction~n0T ! r 0 as~n,T r `!, whereas joint convergence in
probability, [c1 rp F~c! as~n,Tr`!, holds without the additional rate restriction+

~b! The intuition behind the requirement~n0T ! r 0 for joint asymptotic normality of
[c is simple+ Under the assumptions in the theorem, we usually haveE~ [c! Þ F~c!

for fixed T, but E~ [c! r F~c! asT r `+ In this case, the restriction~n0T ! r 0
works to prevent an explosive bias in!n~ [c1 2 F~c!!+

~c! WhenE~ [c! Þ F~c! for fixed T, which is the case under the assumptions of this
paper, a limit theory based onn r ` with T fixed encounters some additional
difficulties+ In the case of the probability limit of[c1, whenn r ` with T fixed,
we obtain a different limit fromF~c! and one that depends onT+ Additionally, as
far as the limit distribution of [c1 is concerned, central limit theory asn r `
with T fixed cannot be applied to!n~ [c1 2 F~c!! but rather to the recentered
estimator!n~ [c1 2 E~ [c1!!, which is not as useful becauseE~ [c1! depends on
additional unknown parameters+

~d! In the region whereF~c! is one to one, we can define a consistent estimator forc
by taking the inverse value of the bias functionF~c!, and we defineIc 5 F21~ [c1!+
Then, the limit distribution of Ic is found easily by the delta method+ Let b 5
F~c!+ Because the bias functionF~c! is differentiable, on the region whereF~c!
is one to one, we have

ROOTS NEAR UNITY USING PANEL DATA 939

https://doi.org/10.1017/S026646660016606X Published online by Cambridge University Press

https://doi.org/10.1017/S026646660016606X


Table 1. Numerical values of bias functionF~c! in ~18! when Igt 5 ~1, t !'

c F~c! c F~c! c F~c! c F~c!

28 213+09 24 29+71 0 27+5 4 3+97
27+9 213 23+9 29+63 0+1 27+5 4+1 4+09
27+8 212+91 23+8 29+55 0+2 27+51 4+2 4+2
27+7 212+82 23+7 29+48 0+3 27+52 4+3 4+31
27+6 212+73 23+6 29+4 0+4 27+54 4+4 4+42
27+5 212+64 23+5 29+33 0+5 27+56 4+5 4+52
27+4 212+56 23+4 29+25 0+6 27+58 4+6 4+63
27+3 212+47 23+3 29+18 0+7 27+6 4+7 4+73
27+2 212+38 23+2 29+1 0+8 27+62 4+8 4+83
27+1 212+29 23+1 29+03 0+9 27+63 4+9 4+93
27 212+2 23 28+96 1 27+61 5 5+03
26+9 212+12 22+9 28+88 1+1 27+58 5+1 5+13
26+8 212+03 22+8 28+81 1+2 27+51 5+2 5+23
26+7 211+94 22+7 28+74 1+3 27+38 5+3 5+33
26+6 211+86 22+6 28+67 1+4 27+2 5+4 5+43
26+5 211+77 22+5 28+6 1+5 26+93 5+5 5+52
26+4 211+68 22+4 28+54 1+6 26+57 5+6 5+62
26+3 211+6 22+3 28+47 1+7 26+1 5+7 5+72
26+2 211+51 22+2 28+4 1+8 25+54 5+8 5+82
26+1 211+43 22+1 28+34 1+9 24+88 5+9 5+92
26 211+34 22 28+28 2 24+14 6 6+02
25+9 211+26 21+9 28+21 2+1 23+36 6+1 6+12
25+8 211+17 21+8 28+15 2+2 22+56 6+2 6+21
25+7 211+09 21+7 28+09 2+3 21+77 6+3 6+31
25+6 211 21+6 28+04 2+4 21+03 6+4 6+41
25+5 210+92 21+5 27+98 2+5 20+34 6+5 6+51
25+4 210+84 21+4 27+93 2+6 0+27 6+6 6+61
25+3 210+75 21+3 27+88 2+7 0+82 6+7 6+71
25+2 210+67 21+2 27+83 2+8 1+29 6+8 6+81
25+1 210+59 21+1 27+78 2+9 1+7 6+9 6+91
25 210+51 21 27+74 3 2+06 7 7+01
24+9 210+43 20+9 27+69 3+1 2+36 7+1 7+11
24+8 210+34 20+8 27+66 3+2 2+63 7+2 7+21
24+7 210+26 20+7 27+62 3+3 2+86 7+3 7+31
24+6 210+18 20+6 27+59 3+4 3+07 7+4 7+41
24+5 210+1 20+5 27+56 3+5 3+25 7+5 7+5
24+4 210+02 20+4 27+54 3+6 3+42 7+6 7+6
24+3 29+94 20+3 27+52 3+7 3+57 7+7 7+7
24+2 29+86 20+2 27+51 3+8 3+71 7+8 7+8
24+1 29+79 20+1 27+5 3+9 3+84 7+9 7+9
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Table 2. Numerical values of asymptotic standard error!V [c1~c! of iterative
OLS estimator whenIgt

' 5 ~1t !'

c !V [c1~c! c !V [c1~c! c !V [c1~c! c !V [c1~c! c !V [c1~c!

28 6+0079 24+6 5+5106 21+2 5+1166 2+2 4+9802 5+6 0+0864

27+9 5+9932 24+5 5+4965 21+1 5+1097 2+3 4+6617 5+7 0+0782

27+8 5+9785 24+4 5+4824 21 5+1032 2+4 4+2764 5+8 0+0709

27+7 5+9638 24+3 5+4683 20+9 5+0971 2+5 3+8520 5+9 0+0642

27+6 5+9491 24+2 5+4544 20+8 5+0913 2+6 3+4167 6 0+0582

27+5 5+9344 24+1 5+4405 20+7 5+0858 2+7 2+9939 6+1 0+0528

27+4 5+9197 24 5+4267 20+6 5+0806 2+8 2+6001 6+2 0+0479

27+3 5+9050 23+9 5+4131 20+5 5+0758 2+9 2+2447 6+3 0+0435

27+2 5+8902 23+8 5+3995 20+4 5+0711 3 1+9316 6+4 0+0395

27+1 5+8755 23+7 5+3860 20+3 5+0667 3+1 1+6603 6+5 0+0358

27 5+8608 23+6 5+3727 20+2 5+0624 3+2 1+4281 6+6 0+0325

26+9 5+8460 23+5 5+3595 20+1 5+0583 3+3 1+2307 6+7 0+0295

26+8 5+8313 23+4 5+3465 0 5+0540 3+4 1+0637 6+8 0+0268

26+7 5+8166 23+3 5+3336 0+1 5+0503 3+5 0+9226 6+9 0+0244

26+6 5+8019 23+2 5+3208 0+2 5+0463 3+6 0+8032 7 0+0221

26+5 5+7871 23+1 5+3082 0+3 5+0424 3+7 0+7021 7+1 0+0201

26+4 5+7724 23 5+2958 0+4 5+0386 3+8 0+6160 7+2 0+0183

26+3 5+7577 22+9 5+2836 0+5 5+0351 3+9 0+5425 7+3 0+0166

26+2 5+7430 22+8 5+2716 0+6 5+0321 4 0+4794 7+4 0+0151

26+1 5+7283 22+7 5+2598 0+7 5+0301 4+1 0+4250 7+5 0+0137

26 5+7136 22+6 5+2483 0+8 5+0299 4+2 0+3779 7+6 0+0125

25+9 5+6989 22+5 5+2369 0+9 5+0323 4+3 0+3368 7+7 0+0114

25+8 5+6843 22+4 5+2258 1 5+0387 4+4 0+3009 7+8 0+0103

25+7 5+6696 22+3 5+2150 1+1 5+0510 4+5 0+2694 7+9 0+0094

25+6 5+6550 22+2 5+2045 1+2 5+0711 4+6 0+2416 8 0+0085

25+5 5+6404 22+1 5+1942 1+3 5+1016 4+7 0+2170

25+4 5+6258 22 5+1843 1+4 5+1444 4+8 0+1951

25+3 5+6113 21+9 5+1746 1+5 5+2000 4+9 0+1757

25+2 5+5968 21+8 5+1653 1+6 5+2658 5 0+1584

25+1 5+5823 21+7 5+1563 1+7 5+3330 5+1 0+1429

25 5+5679 21+6 5+1477 1+8 5+3853 5+2 0+1290

24+9 5+5535 21+5 5+1394 1+9 5+3991 5+3 0+1166

24+8 5+5392 21+4 5+1314 2 5+3481 5+4 0+1054

24+7 5+5249 21+3 5+1238 2+1 5+2114 5+5 0+0954

Note: The numerical values are obtained by 10,000 iterations of the simulation with size 1,000 data+
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dc

db
5

dF21~b!

db
5 S11

d

dcSv2~c!

v1~c!DD21

,

wherec 5 F21~b!, and @dF21~b!0db# is well defined on the region$b 5 F~c! :
@dF~c!0dc# Þ 0%+ If b 5 F21~c! and ~dc0db! 5 @dF21~b!0db# are well defined,
then by the delta method, we have

!n~ Ic 2 c! 5 !n~F21~ [c1! 2 F21~F~c!!!

n NS0,SdF21~b!

db
D2

V [c1~c!D, (19)

whereb 5 F~c!+
~e! In Figures 3 and 4 we plot the graphs of@dF~c!0dc# when Igt 5 1 and Igt 5 ~1, t !'+

When Igt 5 1, @dF~c!0dc# Þ 0+ However, when Igt 5 ~1, t !', @dF~c!0dc# 5 0 at two
points, c 5 0 andc . 0+895, and at these points the derivative@dF21~c!0dc# is
not defined+

Figure 3. Graph ofdF~c!0dc when Igt 5 1+

Figure 4. Graph ofdF~c!0dc when Igt 5 ~1, t !'+
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Consistent estimatorsZL i and ZVi for the individual long-run variancesL i and
Vi can be obtained by employing standard kernel estimates+ These estimates
can then be averaged by produce consistent estimates of the quantitiesL, F,
andV+ More specifically, let Ia be the pooled least-squares estimator of the re-
gression model~8!, that is,

Ia 5 S(
i51

n

(
t51

T

I
zi, t21

2 D21

(
i51

n

(
t51

T

I
zi, t21 I

zi, t ,

and [«i, t be the residual [«i, t 5
I
zi, t 2 Ia

I
zi, t21 from this regression+ Define the

sample covariancesZGi ~ j ! 5 ~10T !( [«i, t [«i, t1j , where the summation is defined
over 1# t, t 1 j # T+ Then, the kernel estimators forZL i and ZVi are

ZL i 5 (
j51

T

wS j

K
D ZGi ~ j !, (20)

ZVi 5 (
j52T

T

wS j

K
D ZGi ~ j !, (21)

wherew~{! is a kernel function andK is a lag truncation parameter+ Truncation
occurs whenw~ j0K ! 5 0 for 6 j 6 $ K+ Averaging over cross section observa-
tions now leads to consistent estimators ofL, F, andV+ The following assump-
tions concern the class of admissible kernels and the choice of the bandwidth
to be employed in the kernel estimates~20! and ~21!+ These assumptions are
used in our joint convergence arguments in the Appendixes, where it is shown
that ~10n!(i51

n ZL i rp L as ~T, n! r `+ For sequential limits, it is possible to
use weaker conditions+

Assumption 3~Kernel Condition!+ The kernel functionw~{! :R r @21,1#
satisfies the following:

~a! w~0! 5 1, w~x! 5 w~2x!, *21
1 w~x!2dx , `, andw~{! is continuous at zero and

all but a finite number of other points+
~b! w~x! 5 0, 6x6 $ 1+
~c! wq 5 limxr0@1 2 w~x!06x6q# is finite for someq [ ~ 1

2
_ ,`!+

Assumption 4~Bandwidth Condition!+ We assume that, asT r `, the band-
width parameter satisfiesK r `, ~K 20T ! r 0, and ~K 2q110T ! r g . 0 for
some 1

2
_ , q # b for which wq is finite, whereb is given in condition~c! in

Assumption 1+

The Parzen exponentq in Assumption 3 is related to the smoothness of the
kernel at zero+ The most frequently used kernels in applications satisfy this
assumption—see, for example, Andrews~1991! for details+
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Remarks+

~a! The iterated OLS estimator discussed previously is a pooled least-squares estima-
tor based on OLS detrended data+ Naturally, there are many pooled least-squares
estimators based on data that have been detrended in different ways+ One proce-
dure that is used widely in applications is to use first differenced data+ This de-
trending procedure has difficulties similar to those of iterated OLS+ To be specific,
assume a simple linear trend in the panel model~1!, so that

zi, t 5 bi t 1 yi, t ,

yi, t 5 ayi, t21 1 «i, t , a 5 expS c

T
D+ (22)

The difference detrended data are then simply

szi, t 5 zi, t 2 Nbi t,

where Nbi,1 5 ~10~T 2 1!!(t52
T Dzi, t + Define

Sc1 5 TS ZV« (
i51

n

(
t52

T

szi, t21
2 D21S ZV (

i51

n

(
t52

T

D szi, t szi, t21D,
where ZV« 5 ~10n!(i51

n ~10T !(t52
T ~D szi, t !

2+ In this case, applying similar argu-
ments to those used earlier in this section, we find

Sc1 rp

1

22v3~c!
, (23)

where v3~c! 5 *0
1$~102c!~e2rc 2 1! 2 2r ~~102c!~1 2 e22cr!ec~11r ! ! 1

r 2~102c!~e2c 2 1!%dr+ From this outcome, it is apparent that the probability limit
of Sc1, @1022v3~c!# , is different fromc in general and therefore the estimatorSc1,
like [c1, is not consistent+ ~More details on this estimation procedure are given in
the previous version of this paper, Moon and Phillips, 1999a+!

~b! The asymptotic bias in iterative OLS estimation arises because of the correlation
between the detrended regressors and the regression errors+ The usual economet-
ric approach to the consistent estimation of regression coefficients when there is
correlation between the regressors and the errors is instrumental variables+ In the
present case, an instrumental variable procedure is possible in which backward-
recursive detrended data are used to produce an instrumental variable for the re-
gressor in a forward-recursive detrended regression model+ To explain this idea,
take the regression model~8! and consider the following two recursive detrend-
ing procedures+ First, detrend the data recursively throught 5 t0, + + + ,T, starting at
some observationt0 . p, wherep5 dim~gt !, and calculate the backward-detrended
data

szi, t 5 zi, t 2 Igt
'S(

s51

t

Igs Igs
'D21S(

s51

t

Igszi,sD +
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Similarly, for t 5 1, + + + ,T 2 t1, we have the forward-detrended data as follows:

Szi, t 5 zi, t 2 Igt
'S (

s5t11

T

Igs Igs
'D21S (

s5t11

T

Igszi,sD+
Then, we employ the forward-detrending procedure in the regression equation
~8! and have

Szi, t 5 a Szi, t21 1 S«i, t +

Now, using the backward-detrended data as an instrument, we construct the fol-
lowing instrumental variable~IV ! estimator:

[cIV
1 5 T~ [aIV

1 2 1!,

where

[aIV
1 5 S(

i51

n

(
t5t0

T2t1

Szi, t21 szi, t21D21S(
i51

n S (
t5t0

T2t1

Szi, t szi, t21 2 ZL iDD+
The forward-recursive detrended data use future information in detrending, whereas
the backward-recursive detrended data use past information in detrending+ Thus,
we might expect that the forward-recursive detrended errorS«i, t in the numerator
of [aIV

1 2 1 might be asymptotically uncorrelated with the backward-detrended
regressorszi, t21+ In the earlier version of the paper~Moon and Phillips, 1999a!,
we showed that the IV estimator[cIV

1 is consistent for almost all the values forc+
However, it turns out that [cIV

1 also has a problem that the numerator of[cIV
1 is not

always nonzero+ In particular, when c 5 0, the limit of the denominator of[cIV
1

degenerates to zero in probability, and so the IV estimator[cIV
1 is not consistent in

this case+ Resolving the bias problem that arises in the numerator yields a degen-
eracy problem in the denominator for some values ofc, and in particular atc 5
0+ In effect, there is insufficient information~in terms of persistent excitation in
the regressor0instrument! about the true valuec 5 0 to deliver a consistent esti-
mate for this value ofc+

3.2. Double Bias Corrected Estimation

The iterative OLS estimator has an asymptotic bias that depends only on the
unknown localizing parameterc+ The idea behind the method we investigate
here is to adjust for the bias that arises from the correlation of the filtered data
and the regression error+ In particular, we use a linear representation of the ex-
ponential term that appears in the bias producing element~17!, so that the es-
timator of c can be adjusted directly to take the bias in OLS regression into
account+
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First, notice that whenc is close toc0, we can approximate the asymptotic
bias, v2~c!, of the numerator of [c1 2 c by

v2~c! . 2
1

T 2 (
t51

T

(
s51

t FeS t
T 2

s
T Dc0

1 S t

T
2

s

T
De

S t
T 2

s
T Dc0

~c 2 c0!G DhT~t,s!+

If there exists a consistent estimate, say, Ic, for c, then, we may further approx-
imatev2~c! by

[v2~c! . 2
1

T 2 (
t51

T

(
s51

t FeS t
T 2

s
T D Ic

1 S t

T
2

s

T
De

S t
T 2

s
T D Ic

~c 2 Ic!G DhT~t,s!+

Because this approximation to the biasv2~c! is linear in c, it is possible to
adjust the estimator[c1 to take the bias information into account+ The adjust-
ment is designed so that the new estimator, [c11, satisfies the system

S1

n (
i51

n 1

T 2 (
t51

T

I
zi, t21

2 D~ [c11 2 c!

5
1

n (
i51

n F 1

T (
t51

T

~
I
zi, t21 I

«i, t 2 ZL i !

1 ViS 1

T 2 (
t51

T

(
s51

t

~e
S t

T 2
s
T D Ic

1S t

T
2

s

T De
S t

T 2
s
T D Ic

~ [c11 2 Ic!D
3 DhT~t,s!DG1 op~1!+

Then,

S1

n (
i51

n 1

T 2 (
t51

T

I
zi, t21

2 D~ [c11 2 c!

2S1

n (
i51

n

Vi

1

T 2 (
t51

T

(
s51

t FS t
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(24)
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Because Ic is consistent forc, the third term on the right hand side of~24! van-
ishes+ The other two terms on the right hand side of~24! also converge in prob-
ability to zero because asT r ` for fixed n, they converge in distribution to

1

n (
i51

n

ViSE
0

1

I
Jc, i dWi 2 v2~c!D,

which converges in probability to zero asn r ` becauseE~*0
1

I
Jc, i dWi ! 5

v2~c! and ~10n!(i51
n Vi r V+

To implement the idea in~24!, we use the consistent estimatorIc 5 F21~ [c1!
defined in Section 2, assuming that there are no problems of identification+7

Then, the preceding heuristic analysis leads to the following panel estimator
for the local to unity parameterc

[c11 5 F(
i51

n H 1
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T

I
zi, t21
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(
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t S t
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s

T De
S t

T 2
s
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3 (
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T (
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zi, t21 D
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T

(
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t F12S t

T
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s

T D IcG
3 e

S t
T 2

s
T D Ic DhT~t,s!J + (25)

The inclusion of ZL i in the formulation of [c11 provides the usual serial correla-
tion bias correction+ The adjustment of the numerator and the denominator by

ZVi

1

T 2 (
t51

T

(
s51

t F12 S t

T
2

s
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D IcGe
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T 3 S(
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(
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t
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s
T D Ic DhT~t,s!D

corrects for the bias from the use of detrended data+
From the definition of [c11, we deduce that
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2 J ,
where rT 5 T 2~exp~c0T ! 2 ~1 1 c0T !! and equality holds because

I
zi , t 5

a
I
zi, t21 1

I
«i, t +
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To derive the probability limit of [c11 under sequential limits, we first let
T r ` for fixed n and then letn r `+ Because Ic is consistent forc, it follows
that

[c11 2 c 5 F 1
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WhenT r ` with fixed n, by the continuous mapping theorem and cross sec-
tion independence, we have
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In view of ~14!, we have

ESE
0

1

I
Jc, i

2 ~r !dr 2E
0

1E
0

r

~r 2 s! Dh~r,s!dsdrD
5 v1~c! 2E

0

1E
0

r

~r 2 s! Dh~r,s!dsdr5 v~c!, say,

where

v1~c! 5
21

2c
H11

1

2c
~12 e2c!J 2E

0

1E
0

1

ec~r1s!
1

2c
~12 e22c~r∧s! ! Dh~r,s!drds+

We know that*0
1

I
J2~r !dr has finite second moments+ Also, it is assumed that

supi 6Ci 6 5 OC , ` so supi 6Vi 6 5 OC2 , `+ Then, by the weak law of large
numbers, asn r `

S1

n (
i51

n

ViSE
0

1

I
Jc, i

2 ~r !dr 2E
0

1E
0

r

~r 2 s! Dh~r,s!dsdrDDrp Vv~c!+ (27)

For the time being, assume thatv~c! Þ 0 at the true value ofc+
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Similarly, in view of ~15! we have

ESE IJc, i dWiD1E
0

1E
0

r

e~r2s!c Dh~r,s!dsdr5 0+

Because limn~10n!(i51
n Vi 5 V and limn~10n!(i51

n L i 5 L, and using the weak
law again, asn r `, we have

S1

n (
i51

n SViE IJc, i ~r !dWi 1E
0

1E
0

r

e~r2s!c Dh~r,s!dsdrDDrp 0+ (28)

Combining~27! and~28!, and providedv~c! Þ 0, we then have under sequen-
tial limits as~T, n r `!seq

[c11 rp c+ (29)

In summary, we have the following result for the consistency of[c11 under
sequential limits+ Appendix C extends this result to give consistency of[c11

under joint limits+

THEOREM 3+ Under Assumptions1 and 2, if v~c! Þ 0 and if Ic is consis-
tent for c, then as~T, n r `!seq, [c11 rp c+

Remarks+

~a! The consistency of[c11 in the preceding theorem holds only for values ofc such
thatv~c! Þ 0+ In general, v~c! is quite a complicated function ofc and is depen-
dent on the explicit form of the deterministic trends in the model+ Consequently,
it is hard to find analytically the set ofc such thatv~c! 5 0+ Figures 5 and 6 plot
the graphs ofv~c! for the most commonly used trendsIgt 5 1 and Igt 5 ~1, t !'+

~b! These graphs show three important features ofv~c!+ First, we see thatv~c! Þ 0
whenc , 0; second, v~c! 5 0 whenc 5 0; and, third, there is another point ofc
for which v~c! 5 0 in the regionc . 0 when Igt 5 ~1, t !'+

Figure 5. Graph ofv~c! when Igt 5 1+
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~c! Unfortunately, at c 5 0, v~c! is always zero regardless of the form of the deter-
ministic trends assumed in the model+ This can be verified by the following sim-
ple calculation for the general case+ We have

v~0! 5 ESE
0

1

J
Wi

2~r !dr 2E
0

1E
0

r

~r 2 s! Dh~r,s!dsdrD
5E

0

1

rdr 2E
0

1E
0

1

~r ∧ s! Dh~r,s!dsdr2E
0

1E
0

r

~r 2 s! Dh~r,s!dsdr

5E
0

1

rdr 2E
0

1E
r

1

r Dh~r,s!dsdr2E
0

1E
0

r

r Dh~r,s!dsdr

5E
0

1

rdr 2E
0

1E
0

1

r Dh~r,s!drds5E
0

1

rdr 2E
0

1

sds5 0,

where the last line holds for the following reason+ Let L2@0,1# be a space of
square integrable functions on@0,1# with inner product^ f, g& 5 *0

1 f ~r !g~r !dr+
Let Q denote a space of polynomial functions of degreep on @0,1# generated by
$1, r, + + + , r p%+ Let Ig~r ! 5 ~1, r, + + + , r p!'+ Then, the operatorP from L2@0,1# to Q
defined asP ~ f ! 5 Ig~r !'~*0

1 Ig~r ! Ig~r !'dr!~*0
1 Ig~s! f ~s!ds! is a projection+ Hence,

when f ~r ! 5 r, P ~ f ~r !! 5 f ~r ! 5 r, and so we have*0
1 r Dh~r,s!dr 5 s+

~d! As Figures 5 and 6 show, even thoughv~c! Þ 0 for c , 0, v~c! is very close to
zero aroundc 5 0+ Because of this, we can expect that the estimator[c11 may
perform poorly forc ; 0+

Next we derive the limit distribution of [c11 using sequential limit argu-
ments+ Here we assume thatc satisfiesv~c! Þ 0, F21~c! is well defined, and
@dF~c!0dc# Þ 0+ In this case, Ic 5 F21~ [c1! is !n consistent and!n~ Ic 2 c! is
stochastically bounded~see~19!!+

Figure 6. Graph ofv~c! when Igt 5 ~1, t !'+
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First, standardizing [c11 2 c by !n, we write

!n~ [c11 2 c!

5 F 1

n (
i51

n H 1

T 2 (
t51

T

I
zi, t21

2 2 ZVi

1

T 2 S(
t51

T

(
s51

t

~t 2 s!e
S t

T 2
s
T D Ic DhT~t,s!DJG21

3
1

!n (
i51

n H 1

T (
t51

T

I
zi, t21 I

«i, t 2 ZLt 1 ZVi

1

T (
t51

T

(
i51

t S12S t

T
2

s

T D~ Ic2 c!D
3 e

S t
T 2

s
T D Ic DhT~t,s! 1 rT

1

T 3 (
t51

T

I
zi, t21

2 J +
Because Ic is consistent forc, we have
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Next, by the mean value theorem we write
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wherec* is located betweenc and Ic+ Becausec* converges in probability toc
and!n~ Ic 2 c! is stochastically bounded~see~19!!, it is easy to see that

~31! 5 op~1!+ (32)
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So, in view of ~30!–~32!, we now have

!n~ [c11 2 c!
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For fixed n, asT r `, the main term of!n~ [c11 2 c! converges in distri-
bution to
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As shown in the previous section+
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Appendix A derives the variance of the numerator in~33!+8 It is
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Because supi V i
2 , ` and limnr`~10n!(i51

n V i
2 5 F, it follows by the

Lindeberg–Levy central limit theorem that, asn r `

1

!n (
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n

ViSE
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I
Jc, i ~r !dWi ~r ! 1E

0
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r

e~r2s!c Dh~r,s!dsdrDn N~0,FV [c11~c!!+

Combining this with the probability limit for the denominator of~33!, Vv~c!,
we have established the following theorem under sequential limit arguments+
The same limit theory is obtained in Appendix D under joint limit arguments+

THEOREM 4+ Suppose that Assumptions1 and 2 hold+ Also assume that
Ic 5 F21~ [c1! is consistent for c, dF21~c!0dc is well defined, and v~c! Þ 0+

Then, as ~T, n r `!seq,

!n~ [c11 2 c! n NS0,
FV [c11~c!

V2v~c!2 D, (35)

where V[c11~c! and v~c! are defined in~34! and ~27!, respectively+

Remarks+

~a! In Table 3 we calculate numerical values of!V [c11~c!0v~c!2, 28 # c # 8, where
Igt 5 ~1, t !'+ When c is close to 0 or 1+3, v~c! ; 0 ~see Figure 6!, and so

!V [c11~c!0v~c!2 takes high values aroundc 5 0 andc 5 1+3+
~b! Appendixes C and D establish joint consistency as in~29! for ~n,T r `! ~see

Theorem 13! and joint asymptotic normality as in~35! for ~n,T r `! with
~n0T ! r 0 ~see Theorem 14!+

~c! When a consistent preliminary estimator forc is available, one may think of an
estimator that corrects for the double biases in a simpler way by subtracting the
estimates ofL i andv2~c!+ Let Sc be a consistent estimator forc, for example, Sc 5
F21~ [c1! or Sc 5 [c11+ A simple double bias corrected estimator could then be
defined as

[c111 5 T~ [a111 2 1!,
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Because Sc is consistent forc and v2~c! is continuous, it is straightforward that
[c111 rp c+ However, this simple bias corrected estimator has an undesirable

property—its limit distribution depends on the asymptotic distribution of the pre-
liminary estimator that is used to estimate the biasv2~c!+ Write, by definition,

!n~ [c111 2 c!
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Table 3. Numerical values of!V [c11~c!

v~c!2 in Theorem 4 whenIgt
' 5 ~1, t !'

c !V [c11~c!

v~c!2

a

c !V [c11~c!

v~c!2 c !V [c11~c!

v~c!2 c !V [c11~c!

v~c!2 c !V [c11~c!

v~c!2

28 4+9136 24+6 7+5581 21+2 44+6729 2+2 4+8422 5+6 0+0944

27+9 4+9572 24+5 7+7080 21+1 51+9287 2+3 4+0131 5+7 0+0856

27+8 5+0019 24+4 7+8665 21 61+4285 2+4 3+3761 5+8 0+0777

27+7 5+0477 24+3 8+0343 20+9 74+2174 2+5 2+8747 5+9 0+0705

27+6 5+0948 24+2 8+2123 20+8 92+0310 2+6 2+4718 6 0+0640

27+5 5+1430 24+1 8+4015 20+7 117+9273 2+7 2+1423 6+1 0+0581

27+4 5+1926 24 8+6030 20+6 157+7059 2+8 1+8690 6+2 0+0527

27+3 5+2436 23+9 8+8181 20+5 223+5227 2+9 1+6394 6+3 0+0478

27+2 5+2960 23+8 9+0481 20+4 344+4371 3 1+4446 6+4 0+0434

27+1 5+3499 23+7 9+2947 20+3 605+2925 3+1 1+2778 6+5 0+0395

27 5+4054 23+6 9+5597 20+2 1,349+9285 3+2 1+1339 6+6 0+0358

26+9 5+4625 23+5 9+8451 20+1 5,369+5697 3+3 1+0090 6+7 0+0325

26+8 5+5214 23+4 10+1535 0 — 3+4 0+9000 6+8 0+0296

26+7 5+5822 23+3 10+4875 0+1 5,376+2421 3+5 0+8044 6+9 0+0269

26+6 5+6448 23+2 10+8503 0+2 1,355+8429 3+6 0+7202 7 0+0244

26+5 5+7095 23+1 11+2457 0+3 612+2524 3+7 0+6459 7+1 0+0222

26+4 5+7764 23 11+6780 0+4 353+0930 3+8 0+5800 7+2 0+0201

26+3 5+8455 22+9 12+1523 0+5 234+4024 3+9 0+5215 7+3 0+0183

26+2 5+9171 22+8 12+6746 0+6 171+4487 4 0+4694 7+4 0+0166

26+1 5+9912 22+7 13+2520 0+7 135+4350 4+1 0+4228 7+5 0+0151

26 6+0680 22+6 13+9830 0+8 114+7475 4+2 0+3813 7+6 0+0137

25+9 6+1477 22+5 14+6078 0+9 104+6621 4+3 0+3440 7+7 0+0125

25+8 6+2305 22+4 15+4088 1 104+6484 4+4 0+3106 7+8 0+0113

25+7 6+3165 22+3 16+3110 1+1 120+5580 4+5 0+2806 7+9 0+0103

25+6 6+4061 22+2 17+3329 1+2 189+3297 4+6 0+2537 8 0+0094

25+5 6+4993 22+1 18+4976 1+3 — 4+7 0+2294

25+4 6+5965 22 19+8338 1+4 123+3519 4+8 0+2076

25+3 6+6980 21+9 21+3779 1+5 51+3654 4+9 0+1879

25+2 6+8040 21+8 23+1768 1+6 29+0267 5 0+1701

25+1 6+9150 21+7 25+2913 1+7 18+7699 5+1 0+1541

25 7+0312 21+6 27+8017 1+8 13+1506 5+2 0+1396

24+9 7+1532 21+5 30+8156 1+9 9+7317 5+3 0+1266

24+8 7+2813 21+4 34+4803 2 7+4963 5+4 0+1147

24+7 7+4161 21+3 39+0012 2+1 5+9536 5+5 0+1040

Note: The numerical values are obtained by 10,000 iterations of the simulation with size 1,000 data+
aBecausev~0! 5 0 andv~1+3! . 0, we do not report the values of!~V [c11~c!0v~c!2!+
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In view of ~36!, the asymptotic distribution of the numerator of!n~ [c111 2 c!
depends on the joint weak limit of~10!n!(i51

n ~10T !(t51
T ~
I
yi, t21 I

«i, t 2 ZL i 2
ZVi v2~c!! and!n~v2~ Sc! 2 v2~c!!+ The asymptotic distribution of!n~v2~ Sc! 2

v2~c!! then depends on the weak limit of!n~ Sc 2 c! by standard delta method
arguments+ Therefore, the asymptotic distribution of!n~ [c111 2 c! relies on the
limit distribution of the consistent preliminary estimator ofc+

~d! On the other hand, the double bias corrected estimator[c11 has a limit distribu-
tion that is independent of the weak limit of the preliminary consistent estimator+
Therefore, even though the double bias corrected estimator[c11 is more compli-
cated than the simple estimator[c111 and suffers from the problem of a degener-
ate denominator for certain specific values ofc ~notably, c 5 0!, we prefer to
recommend [c11+

4. APPLICATIONS

4.1. Tests on the Localizing Coefficient

The asymptotic normality of!n~ [c1 2 F~c!! and!n~ [c11 2 c! given in Theo-
rems 2 and 4 enables us to construct tests for many interesting hypotheses+ Sup-
pose, for instance, that we are interested in testing the null hypothesis

H0 : c 5 c0, (37)

wherec0 belongs to a consistently estimable parameter set+9 Then, for example,
Theorem 4 suggests the following simplet-test based on[c11:

tstat 5
!n~ [c11 2 c0!

! ZFV [c~ [c11!

ZV2v~ [c11!2

,

where ZV 5 ~10n!(i51
n ZVi , ZF 5 ~10n!(i51

n ZV i
2+ By Theorem 4, we have

tstat n N~0,1!

as~T, n r `!seq+ The joint limit convergence oftstat to N~0,1! is established in
Appendix D+

As mentioned earlier, the panel model specification in model~1! that allows
for a common local to unity parameter across individuals can sometimes be
too restrictive+ In such cases it may be of interest to test the difference of local
to unity parameters between specific subgroups of individuals+ Suppose that
Ia and Ib denote two subgroups of individuals and we are interested in test-
ing hypotheses about the local to unity parameters of model~8! in the follow-
ing form:

zi, t 5 expS cm

T
D zi, t21 1 gi

'gt 1 «i, t ,
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wherecm 5 ca if i [ Ia andcm 5 cb if i [ ib+ A natural hypothesis is

H0 : ca 5 cb+

Let na 5 #~Ia! andnb 5 #~Ib!, respectively+ Also, assume thatna0nb r k , `
asna,nb r `+ The null hypothesis can be tested by computing the Wald statistic

Wa,b 5 nb

~ [ca
11 2 [cb

11!2

~na0nb! ZVa 1 ZVb

,

where [cm
11 is a consistent estimator forc in group m [ $a,b% and ZVm 5

ZFmV [c11~ [cm
11!~ ZVm

2 v~ [cm
11!2!21, m [ $a,b%+ By Theorem 4, as ~T, n r `!seq,

we know

Wa,b n x1
2,

a chi-square distribution with degree of freedom one+

4.2. An Application to Efficient Trend Elimination

In this section we show how consistent estimation of the localizing coefficient
c can be used for efficient estimation of the trend coefficients+ Suppose a trend-
ing time serieszt is generated by the system

zt 5 b0 1 b1
' t 1 yt , t 5 1, + + + ,T,

yt 5 ayt21 1 «t , a 5 ec0TS.11
c

T
D, (38)

wherec denotes a local departure from unity, «t has mean zero and finite vari-
ance, and y0 5 Op~1! with a finite variance asT r `+ Suppose that our pri-
mary interest is in estimating the trend coefficientb1 and in constructing
confidence intervals forb1+ We assume a linear trend in model~38! because it
is the most widely used specification in empirical applications+ It is straightfor-
ward to allow for general polynomial trends, but to keep the algebra simple we
do not discuss the general case here+

According to recent research~Phillips and Lee, 1996; Canjels and Watson,
1997!, when the residual termyt in ~38! is nearly integrated, a partial general-
ized least squares~GLS! procedure based on quasi-differencing the data~called
quasi-differencing detrending or QD detrending! is asymptotically more effi-
cient than OLS in estimating the trend coefficientb1+ However, to execute fea-
sible QD detrending it is necessary to estimate the unknown local to unity
parameterc+ But consistent estimation ofc from a single time series trajectory
is not generally possible, and this complicates estimation and inference about
b1 and the construction of valid confidence intervals forb1+ However, if panel
data are available,10 then the parameterc can be consistently estimated almost
everywhere, as discussed in previous sections, and this makes efficient estima-
tion of the trend coefficients~b1i , say! possible and facilitates statistical inference+
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Let [c be a consistent estimate ofc, for instance, [c 5 F21~ [c1!, wherec is in
the identifiable region of OLS estimation, or [c 5 [c11 and v~c! Þ 0+ Define
Igt 5 ~1, t !' and set

ğc, t 5 Igt 2S11
[c

T D Igt21 5 1 2
[c

T

12
[c

T
~t 2 1!2 , ğc,1 5 g1 5S1

1D,
and

z̆c, t 5 zt 2 S11
[c

T
Dzt21, z̆c,1 5 z1,

for t 5 2, + + + ,T+ The QD estimator of the trend coefficient in a particular equa-
tion, say, b 5 ~b0,b1!' where we omit the subscripti for convenience, is de-
fined as

b̆c 5 S(
t51

T

ğc, t ğc, t
' D21S(

t51

T

ğc, t z̆c, tD, (39)

Let FT 5 diag~1,T !+ Then, it is easy to verify that, asT ~andn! r `,

FT
2102S(

t51

T

ğc, t ğc, t
' DFT

2102 rp 1
1 0

0 E
0

1

~12 cr!2dr2 + (40)

Because the limit in~40! is block diagonal,

!T ~ b̆1,c 2 b1! 5 F 1

T (
t52

T S12
[c

T
~t 2 1!D2G21

3 F 1

!T
(
t52

T S12
[c

T
~t 2 1!DSzt 2S11

[c
T Dzt21DG

1 op~1!+

Write V 5 limTr` E~~t0!T !(t51
T «t !

2+ As T ~andn! r `,

!T~ b̆1,c 2 b1! n VSE
0

1

~12 cr!2drD21SE
0

1

~1 2 cr!dW~r !D
[ NS0,V2SE

0

1

~12 cr!2drD21D
[ NS0,

V2

12 c 1 3
1
2c2D +
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This estimator has the same limit distribution as the GLS estimator ofb and,
hence, attains the efficiency bound for the estimation ofb in this class+

Next, suppose thatZV is a consistent estimate ofV+ Then, using the consis-
tent estimate ofc, [c, we can conduct statistical inference aboutb1+ For exam-
ple, a ~1 2 a!% asymptotic confidence interval forb1 can be constructed as

Fb̆1,c 2 z12~a02!

1

!T ! ZV2

12 [c 1 3
1
2 [c2 , b̆1,c 1 z12~a02!

1

!T ! ZV2

12 [c 1 3
1
2 [c2 G, (41)

wherez12~a02! is the two-sideda% percentage point of theN~0,1! distribution+
In addition, to test hypotheses such as

H0 : b1 5 b10,

we can use the Wald statistic

W 5 T~ b̆1,c 2 b10!2S ZV2

12 [c 1 3
1
2 [c2D21

+

Because [c r c, the Wald statistic converges in distribution tox1
2 as T ~and

n! r `+

4.3. Estimation of Distant Initialization

As a referee has mentioned, if the initial conditions are random and in the dis-
tant past, then the limit theory and confidence intervals such as~41! need to be
modified to account for their effects+ Thus, suppose we have, in place of the
Op~1! condition onyi,0, the alternate initialization

yi,0
u 5 (

j50

@uT #

a j«i,2j (42)

~as in Phillips and Lee, 1996; Canjels and Watson, 1997!, whereyi,0
u is param-

eterized by the distant past parameteru, which measures the distance into the
past that the initialization extends in terms of some fractionu of the present
sample of time series dataT+When«i,2j satisfies Assumption 1, the distant past
initialization ~42! gives data at the beginning of the time series sample statisti-
cal properties similar to those of the sample itself+ Then, asT r ` we have

1

!T
yi,0

u n Ci Kc, i ~u! 5d NS0,ViE
0

u

e2crdrD, (43)

whereKc, i is a diffusion process with the same properties asJc, i + Furthermore,
in place of~10!, we now have

1

!T
yi, @Tr# n Ci Jc, i ~r ! 1 ecrCi Kc, i ~u!, (44)

958 HYUNGSIK R. MOON AND PETER C.B. PHILLIPS

https://doi.org/10.1017/S026646660016606X Published online by Cambridge University Press

https://doi.org/10.1017/S026646660016606X


whereKc, i andJc, i are independent, in view of the short memory of the errors
«t + It follows that u, in addition toc, now plays a role in the limit theory and
any confidence intervals constructed from it+

Just asc can be consistently estimated in panels byIc 5 F21~ [c1! under cer-
tain conditions, we might expect there to be some prospect for estimatingu in
a related way+ Indeed, if the initialization parameteru is the same acrossi, it
follows from independence acrossi and~43! that as~T, n r `!seq,

[s0
2 5

1

n (
i51

n S yi,1
u

!T
D2

rp VE
0

u

e2crdr 5 V
e2cu 2 1

2c
+

From this formula, it is apparent that, when c is known, a simple consistent
estimator ofu is given by

Zu~c! 5
1

2c
logF11

2c [s0
2

ZV G, (45)

where ZV 5 ~10n!(i51
n ZVi + Notice that in cases of panel models with unit roots

~i+e+, c 5 0! the corresponding consistent estimator ofu would simply be the
variance ratio Zu~0! 5 [s0

20 ZV+ Whenc is unknown, joint estimation ofc andu is
possible, and the following outlines a consistent estimation procedure+With ini-
tial observations as in~42!, the probability limit of [c1 is dependent on the two
unknown parametersc and u+ Suppose we write this dependence asF~c,u!+
Then, a consistent estimator ofc, say, Yc, can be found by inverting the concen-
trated limit functionF~c, Zu~c!! in the range ofc whereF~c, Zu~c!! is monotonic,
just as we did in the case of the iterated OLS estimator in Section 3+ A consis-
tent estimate ofu is then found as Zu~ Yc!+ Note that in all these casesZu is also
consistent whenu 5 0 and the initialization isOp~1!+

What the preceding discussion indicates is that, under the assumption that all
members of the panel originate at the same time in the distant past, there is the
prospect of consistently estimating the distance parameteru+ Intuitively, esti-
mates like Zu work because if there is distant initialization in the elements of the
panel, it can be expected to show up in the extent of the observed variation in
the first sample data point across the panel+ The estimator Zu simply assesses
this observed variation~namely, [s0

2! relative to a consistent estimate of the
average long-run variation displayed by the panel~namely, ZV!, with some ad-
justment to account for the presence of a root that is local to unity rather than
at unity+

5. CONCLUDING REMARKS

This paper has studied the estimation of a common localizing parameter for
models with near unit roots using panel data+ First, it was shown that the local
to unity parameter in a simple panel near-integrated regression model can be
consistently estimated by straightforward pooling and ordinary least-squares re-
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gression+ When deterministic trends are present in the panel regression model,
the situation is much more complex+ We have shown that the nice results for
the model with no trends do not extend easily+

In particular, the simplest pooled estimator that is based on the use of ordi-
nary least squares with detrended data has an asymptotic bias that depends upon
the unknown localizing parameter+ One solution suggested here is to use the
numerical inverse of the bias function to obtain a consistent estimate of the
localizing parameter+ However, this suggestion works only when the true value
of c is in the identifiable region+

As a second method, we developed an estimation procedure that corrects for
the bias from the serial correlation and from the use of the detrended data, using
a preliminary consistent estimator ofc+ This double bias corrected estimator is
consistent except for a finite number of values in the parameter space ofc+
However, the set of values where this estimator is not consistent containsc 5 0,
which is an especially interesting case+ Also, when the true parameter takes a
value close to zero, in practice, we can expect the double bias corrected proce-
dure to provide a poor estimate of the true localizing parameter because the
denominator of the double bias corrected estimator will be close to zero in this
case+ Similar problems arise in the case of an IV estimator that avoids bias by
prudent instrumenting+ Thus, even with panel data and a common localizing
coefficient, consistent estimation of the localizing parameter is a challenging
task when we want to allow for deterministic trends in the model+

For those cases where consistent estimation of the localizing coefficient is
possible~notably whenc , 0!, the methods are used to show how to perform
efficient trend extraction for panel data+ This gives us an empirically useful
algorithm for efficiently estimating a deterministic trend in the presence of sto-
chastic trends generated by near-integrated processes with a common localiz-
ing parameter+ Another useful application of panel data lies in the consistent
estimation of the distancing parameter that arises in the formulation of distant
initial conditions+ This parameter~which is expressed as a fraction of the length
of the present time series sample! measures how far into the past the initializa-
tion extends in terms of the shocks that have determined it+ It is shown that the
observed variation in panel observations at the initial point in the time series
sample provides enough information about presample observations to construct
a consistent estimate of this parameter+

In the development of the asymptotic theory we make use of both sequential
limits and joint limits for the indices~n,T !+ A limiting feature of the joint as-
ymptotics that is sometimes needed in our development is the rate condition
~n0T ! r 0, which means that the results are likely to be most relevant in pan-
els whereT is large andn is moderately large+

Finally, although we do not report the analysis here, the authors have been
able to show that the Gaussian maximum likelihood estimator ofc is also in-
consistent in panel models with deterministic trends and near-integrated
stochastic trends+ This panel data example provides an interesting new case
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where maximum likelihood estimation is inconsistent in the presence of an
infinite number of nuisance parameters+ It is explored in Moon and Phillips
~1999b!+

NOTES

1+ Some recent work by Phillips, Moon, and Xiao~2001! develops new block local to unity
models in which the autoregressive roots are local to unity but not as close to unity as they are in
conventional near-integrated models+ In these block local to unity models, the authors show that it
is possible to consistently estimate the block localizing coefficient from a single trajectory+

2+ Recently, Moon and Phillips~1999b! study a panel model such as~1! with homogeneous
trends+ The present paper considers only the heterogeneous trends model, where there are special
complications in estimation and inference, as we will show+

3+ Suppose thatZi 5 ~zi,1, + + + , zi,T!', Z21, i 5 ~zi,0, + + + , zi,T21!
', andG 5 ~g1, + + + , gT!'+ Then,

I
zi, t21

and D
I
zi, t are thetth elements ofQG Z21, i and QG~Zi 2 Z21, i !, respectively, where QG 5 IT 2

G~G'G!21G' and t $ 2+
4+ The correction is for serial correlation in«i, t , following Phillips ~1987a!+
5+ In this case, the trend coefficientsbi are zeros, and so we can estimatec consistently as we

have shown in the previous section+ However, it is common in empirical practice to use demeaned
data, and use of this estimator results in bias, as is apparent from the probability limitF~c!+

6+ We consider only the linear trend case because it is the most widely used specification in
empirical application+

7+ For example, we may assume that the parameter set includes only negative region and zero,
c , 0+

8+ Seev22~c! in Appendix A+
9+ For example, in the case of iterative OLS estimation, c0 [ $c : F~c! is monotonic%+

10+ The panel data are assumed to have common localizing parameterc but may have individ-
ually different unknown trends+
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APPENDIX A
Proof of Theorem 2. This proof derives the limit distribution of[c1 under sequential

limits+ First, note that

!n~ [c1 2 F~c!! 5 !nST~ [a1 2 1! 2 c 2
v2~c!

v1~c!D
5 !nST~ [a1 2 a! 2

v2~c!

v1~c!D1 OS!n

T D+
Let

An,T 5
1

n (
i51

n 1

T 2 (
t51

T

I
zi, t21

2 ,

Bn,T 5
1

n (
i51

n S 1

T (
t51

T

I
zi, t21 I

«i, t 2 ZL iD+
Then,

!nST~ [a1 2 a! 2
v2~c!

v1~c!D 5 !n1 Bn,T

An,T
2

S1

n (
i51

n

ViDv2~c!

S1

n (
i51

n

ViDv1~c! 2 +
To establish asymptotic normality of[c1, we first show that

!n1An,T 2S1

n (
i51

n

ViDv1~c!

Bn,T 2S1

n (
i51

n

ViDv2~c!2 n N~0,FV~c!!, (A.1)
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where

V~c! 5 Sv11~c! v12~c!

v12~c! v22~c!D
is given at the end of this proof+ Define f ~a,b! 5 ~b0a!+ Then, application of the delta
method leads directly to

!nST~ [a1 2 a! 2
v2~c!

v1~c!D 5 !n~ f ~An,T ,Bn,T ! 2 f ~Vv1~c!,Vv2~c!!!

n N10,FS2v2~c!

v1~c!2

1

v1~c!DV~c! 1
2v2~c!

v1~c!2

1

v1~c!
22

[ N~0,FV [c1~c!!, say+

We now establish~A+1! with sequential limits+
As T r ` for fixed n,

!n1An,T 2S1

n (
i51

n

ViDv1~c!

Bn,T 2S1

n (
i51

n

ViDv2~c!2 n 1
1

!n (
i51

n

ViSE IJi,c
2 ~r !dr 2 v1~c!D

1

!n (
i51

n

ViSE IJi,c
2 ~r !dWi ~r ! 2 v2~c!D2 ,

where
I
Ji,c~r ! 5 Ji,c~r ! 2 *Ji,c~s! Dh~s, r !ds+ Note that supi Vi , `+ Then, by the multi-

variate Lindeberg–Feller central limit theorem with limn~10n!(i51
n Vi

2 5 F, we have

1
1

!n (
i51

n

ViSE IJi,c
2 ~r !dr 2 v1~c!D

1

!n (
i51

n

ViSE IJi,c~r !dWi ~r ! 2 v2~c!D2 n N~0,FV~c!!,

where

v11~c! 5 ESE IJi,c
2 ~r !dr 2 v1~c!D2

v22~c! 5 ESE IJi,c~r !dWi ~r ! 2 v2~c!D2

v12~c! 5 ESE IJi,c
2 ~r !dr 2 v1~c!DSE IJi,c~r !dWi ~r ! 2 v2~c!D,

andF 5 limn~10n!(i51
n Vi

2+ The limit covariance matrixV~c! has components that are
as follows+ For notational brevity, we omit the individual indexi in the following
expressions+
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~a! v11~c!

ESE
0

1

I
Jc

2~r !dr 2 v1~c!D2

5 ESE
0

1

I
Jc

2~r !drD2

2 v1~c!2

5 ESE
0

1

Jc
2~r !dr 2E

0

1E
0

1

Jc~ p!Jc~q! Dh~ p,q!dpdqD
3 SE

0

1

Jc
2~s!ds2E

0

1E
0

1

Jc~x!Jc~ y! Dh~x, y!dxdyD2 v1~c!2

5E
0

1E
0

1

E~Jc
2~r !Jc

2~s!!drds

2 2E
0

1E
0

1E
0

1

E~Jc
2~r !Jc~s!Jc~ p!! Dh~s, p!drdsdp

1 E
0

1E
0

1E
0

1E
0

1

E~Jc~r !Jc~s!Jc~ p!Jc~q!! Dh~r,s! Dh~ p,q!dqdpdsdr

2 v1~c!2

5E
0

1E
0

1

C~r, r,s,s!drds2 2E
0

1E
0

1E
0

1

C~r, r,s, p! Dh~s, p!drdsdp

1 E
0

1E
0

1E
0

1E
0

1

C~r,s, p,q! Dh~r,s! Dh~ p,q!dqdpdsdr2 v1~c!2,

where

C~r,s, p,q! 5 E~Jc~r !Jc~s!Jc~ p!Jc~q!!

5 ESE
0

rE
0

sE
0

pE
0

q

ec~r1s1p1q2v2x2y2z!dW~v!dW~x!dW~ y!dW~z!D
5E

0

r∧s

ec~r1s22x!dxE
0

p∧q

ec~ p1q22x!dx

1E
0

r∧p

ec~r1p22x!dxE
0

s∧q

ec~s1q22x!dx

1 E
0

r∧q

ec~r1q22x!dxE
0

p∧s

ec~ p1s22x!dx+
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~b! v22~c!: Note that

ESE
0

1

I
Jc~r !dW~r !D2

5 EFSE
0

1

Jc~r !dW~r ! 2E
0

1E
0

1

Jc~ p! Dh~ p,q!dW~q!dpD
3SE

0

1

Jc~s!dW~s! 2E
0

1E
0

1

Jc~x! Dh~x, y!dW~ y!dxDG
5E

0

1E
0

1

E~Jc~r !Jc~s!dW~r !dW~s!!

2 2E
0

1E
0

1E
0

1

E~Jc~r !dW~r !Jc~ p! Dh~ p,q!dW~q!!dp

1 E
0

1E
0

1E
0

1E
0

1

Jc~ p! Dh~ p, r !dW~r !Jc~q! Dh~q,s!dW~s!dpdq+

Using Lemma 5, which follows, we have

ESE
0

1

I
Jc~r !dW~r ! 2 v2~c!D2

5E
0

1E
0

r

e2c~r2s!dsdr2 2E
0

1E
0

1E
0

p∧q

ec~ p1q22x!dx Dh~ p,q!dqdp

2 2E
0

1E
0

pSE
0

r

ec~r2s! Dh~ p,s!dsDec~ p2r !drdp

1 E
0

1E
0

1E
0

1SE
0

p∧q

ec~ p1q22x!dxD Dh~q, r ! Dh~ p, r !drdpdq

1 E
0

1E
0

1SE
0

p

ec~ p2s! Dh~q,s!dsDSE
0

q

ec~q2r ! Dh~ p, r !drDdpdq

1 SE
0

1E
0

p

ec~ p2s! Dh~ p,s!dsdpD2

2 v2~c!2+ (A.2)

~c! v12~c!: Note that

ESE
0

1

I
Jc

2~r !dr 2 v1~c!DSE
0

1

I
Jc~r !dW~r ! 2 v2~c!D

5 ESE
0

1

I
Jc

2~r !drE
0

1

I
Jc~r !dW~r !D 2 v1~c!v2~c!
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5E
0

1E
0

1

E~Jc
2~r !Jc~s!dW~s!dr!

2 E
0

1E
0

1E
0

1

E~Jc~r !Jc~s! Dh~r,s!Jc~ p!dW~ p!!dsdr

2 E
0

1E
0

1E
0

1

E~Jc
2~r !Jc~s! Dh~s, p!dW~ p!!dsdr

1 E
0

1E
0

1E
0

1E
0

1

E~Jc~r !Jc~s! Dh~r,s!Jc~ p! Dh~ p,q!dW~q!!dpdsdr

2 v1~c!v2~c!+

By simple modifications of~d! and~e! in Lemma 5, which follows, we have

ESE
0

1

I
Jc

2~r !dr 2 v1~c!DSE
0

1

I
Jc~r !dW~r ! 2 v2~c!D

5 2E
0

1E
0

rSE
0

s

ec~r1s22x!dxDec~r2s!dsdr

2 2 E
0

1E
0

1E
0

sSE
0

r∧p

ec~r1p22x!dxDec~s2p!dp Dh~r,s!dsdr

2 2E
0

1E
0

1SE
0

r∧s

ec~r1s22x!dxDSE
0

r

ec~r2p! Dh~s, p!dpDdsdr

2 E
0

1E
0

1SE
0

r

e2c~r2x!dxDSE
0

s

ec~s2p! Dh~s, p!dpDdsdr

1 E
0

1E
0

1E
0

1SE
0

r∧s

ec~r1s22x!dxDSE
0

p

ec~ p2q! Dh~ p,q!dqDdp Dh~r,s!dsdr

1 E
0

1E
0

1E
0

1SE
0

p∧s

ec~ p1s22y!dyDSE
0

r

ec~r2q! Dh~ p,q!dqDdp Dh~r,s!dsdr

1 E
0

1E
0

1E
0

1SE
0

p∧r

ec~ p1r22x!dxDSE
0

s

ec~s2q! Dh~ p,q!dqDdp Dh~r,s!dsdr

2 v1~c!v2~c!+ n

LEMMA 5 + The following hold+

~a!

EE
0

1E
0

1E
0

1

Jc~s!Jc~ p!dW~r !dW~s!dp

5E
0

1E
0

1E
0

p∧s

ec~ p1s22x!dxdsdp1E
0

1E
0

pSE
0

s

ec~s2r !drD ec~ p2s!dsdp+
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~b!

EE
0

1E
0

1

Jc~r !Jc~s!dW~r !dW~s!

5E
0

1E
0

r

e2c~r2s!dsdr+

~c!

EE
0

1E
0

1E
0

1E
0

1

Jc~ p!Jc~q!dW~r !dW~s!

5E
0

1E
0

1E
0

1SE
0

p∧q

ec~ p1q22x!dxDdrdpdq

1E
0

1E
0

1SE
0

p

ec~ p2s!dsDSE
0

q

ec~q2r !drDdpdq

1 E
0

1E
0

1SE
0

p

ec~ p2r !drDSE
0

q

ec~q2s!dsDdpdq+

~d!

EE
0

1E
0

1E
0

1

Jc~r !Jc~s!Jc~ p!dW~ p!dsdr

5 2E
0

1E
0

1E
0

sSE
0

r∧p

ec~r1p22x!dxDec~s2p!dpdsdr+

~e!

EE
0

1E
0

1E
0

1E
0

1

Jc~r !Jc~s!Jc~ p!dW~q!dpdsdr

5E
0

1E
0

1E
0

1SE
0

r∧s

ec~r1s22x!dxDSE
0

p

ec~ p2q!dqDdpdsdr

1 E
0

1E
0

1E
0

1SE
0

p∧s

ec~ p1s22y!dyDSE
0

r

ec~r2q!dqDdpdsdr

1 E
0

1E
0

1E
0

1SE
0

p∧r

ec~ p1r22x!dxDSE
0

s

ec~s2q!dqD dpdsdr+
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Proof.

~a! Note that

EE
0

1E
0

1E
0

1

Jc~s!Jc~ p!dW~r !dW~s!dp

5E
0

1E
0

1E
0

1E
0

sE
0

p

ec~s2x!ec~ p2y!E~dW~x!dW~ y!dW~r !dW~s!!dp+ (A.3)

Then, part ~a! holds because

~A+3! 5 E
0

1E
0

1E
0

p∧s

ec~ p1s22x!dxdsdp if x 5 y~,p! , s5 r

5E
0

1E
0

pSE
0

s

ec~s2r !drDec~ p2s!dsdp if x 5 r , y 5 s , p

5 0 otherwise+

~b!

EE
0

1E
0

1

Jc~r !Jc~s!dW~r !dW~s!

5E
0

1E
0

1E
0

rE
0

s

ec~r2x!ec~s2y!E~dW~x!dW~ y!dW~r !dW~s!!

5E
0

1E
0

r

e2c~r2s!dsdr

because only whenx 5 y , r 5 s, E~dW~x!dW~ y!dW~r !dW~s!! Þ 0+
~c! Note that

EE
0

1E
0

1E
0

1E
0

1

Jc~ p!Jc~q!dW~r !dW~s!dqdp

5E
0

1E
0

1E
0

1E
0

1E
0

pE
0

q

ec~ p2x!ec~q2y!E~dW~x!dW~ y!dW~r !dW~s!!dpdq+

(A.4)

Then, part ~c! holds because

~A+4! 5E
0

1E
0

1E
0

1SE
0

p∧q

ec~ p1q22x!dxDdrdpdq if x 5 y, r 5 s, x Þ r

5E
0

1E
0

1SE
0

p

ec~ p2s!dsDSE
0

q

ec~q2r !drDdpdq if x 5 s, y 5 r, x Þ y

5E
0

1E
0

1SE
0

p

ec~ p2r !drDSE
0

q

ec~q2s!dsDdpdq if x 5 r, y 5 s, x Þ y

5 0 otherwise+
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~d!

EE
0

1E
0

1E
0

1

Jc~r !Jc~s!Jc~ p!dW~ p!dsdr

5E
0

1E
0

1E
0

1E
0

rE
0

sE
0

p

ec~r2x!ec~s2y!ec~ p2z!

3 E~dW~x!dW~ y!dW~z!dW~ p!!dsdr (A.5)

5 2E
0

1E
0

1E
0

sSE
0

r∧p

ec~r1p22x!dxDec~s2p!dpdsdr,

where the last equality holds because

~A+5! 5E
0

1E
0

1E
0

sSE
0

r∧p

ec~r1p22x!dxDec~s2p!dpdsdr if z5 x , p 5 y , s

5E
0

1E
0

1E
0

rSE
0

s∧p

ec~s1p22y!dyDec~r2p!dpdsdr if z5 y , p 5 x , r

5 0 otherwise+

~e! Note that

EE
0

1E
0

1E
0

1E
0

1

Jc~r !Jc~s!Jc~ p!dW~q!dpdsdr

5E
0

1E
0

1E
0

1E
0

1E
0

rE
0

sE
0

p

ec~r2x!ec~s2y!ec~ p2z!

3 E~dW~x!dW~ y!dW~z!dW~q!!dpdsdr+ (A.6)

Then, part ~e! holds because

~A+6! 5E
0

1E
0

1E
0

1SE
0

r∧s

ec~r1s22x!dxDSE
0

p

ec~ p2q!dqDdpdsdr

if x 5 y Þ z5 q

5E
0

1E
0

1E
0

1SE
0

p∧s

ec~ p1s22y!dyDSE
0

r

ec~r2q!dqDdpdsdr

if x 5 q Þ z5 y

5E
0

1E
0

1E
0

1SE
0

p∧r

ec~ p1r22x!dxDSE
0

s

ec~s2q!dqDdpdsdr

if x 5 zÞ q 5 y

5 0 otherwise+ n
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APPENDIX B

Background of joint convergence theory.The primary object of this paper is to de-
velop asymptotic theories of inference for localizing coefficients in panel data models+
In many applications of largen andT panel regression models, we are interested in the
limit behavior of double indexed quantities such asXn,T that are constructed as averages
of i+i+d+ random variablesYi,T , that is,

Xn,T 5
1

n (
i51

n

Yi,T , (B.1)

where theYi,T are independent acrossi for all T+ Typically, we need to find the proba-
bility limit of Xn,T or the limit distribution of scaled quantities such as!nXn,T when
~n,T r `!+ In earlier work, the authors~Phillips and Moon, 1999! provide a conceptual
framework and rigorous definitions for joint convergence in probability and joint con-
vergence in distribution for double indexed processes+ This section briefly reviews some
concepts and helpful results from that earlier work that will be used frequently for es-
tablishing joint limits in this paper+ All of the results given in this section are proved in
Phillips and Moon~1999!+

As mentioned in the text of the paper, the sequential probability limit ofXn,T 5
~10n!(i51

n Yi,T is established by letting the indexT go to infinity first and then the
second indexn is passed to infinity later+ Using existing time series limit theory we
can often easily obtain the limit behavior ofYi,T + For example, suppose that asT r `

Yi,T n Yi (B.2)

or

Yi,T rp Yi for all i+ (B.3)

Then, by the independence ofYi,T acrossi for all T, it follows that Xn,T n Xn or
Xn,T rp Xn asT r ` for all n, whereXn 5 ~10n!(i51

n Yi +
Also, in the case of~B+2!, it is assumed that theYi are defined on the same probabil-

ity space for alli so that the sum of the limit random variables~10n!(i51
n Yi is mean-

ingful+ ~The assumption that theYi are defined on the same probability space can be
justified+ For this, see Phillips and Moon, 1999+! By allowing n r ` and applying an
appropriate law of large numbers to

Xn 5
1

n (
i51

n

Yi (B.4)

with some regularity conditions we may then find the sequential limit ofXn,T + Let

ImX 5 lim
n

1

n (
i51

n

EYi + (B.5)

Then

Xn 5
1

n (
i51

n

Yi ra+s+ ImX 5 lim
n

1

n (
i51

n

EYi
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so as~T, n r `!seq

Xn,T rp ImX +

In general, the sequential probability limit ImX of Xn,T is not the same as the proba-
bility limit of Xn,T under joint divergence of the indices~n,T !, and, in fact, the latter
may not even exist without further conditions+ The following theorem gives a set of
sufficient conditions under which the joint probability limit and sequential probability
limit of Xn,T are equivalent+

THEOREM 6+ Suppose that we have ~k 3 1! randomvectors Yi,T that are indepen-
dent across i for all T and integrable+ Assume that Yi,T n Yi as Tr ` for all i + Define
Xn,T 5 ~10n!(i51

n Yi,T and Xn 5 ~10n!(i51
n Yi +

Suppose the following conditions~ i!–~iv! hold:

~i! lim supn,T ~10n!(i51
n E7Yi,T7 , `,

~ii ! lim supn~10n!(i51
n E7Yi 7 , `,

~iii ! lim supn,T ~10n!(i51
n 7EYi,T 2 EYi 7 5 0,

~iv! lim supn,T ~10n!(i51
n E7Yi,T71$7Yi,T7 . n«% 5 0∀« . 0+

If ImX 5 limn~10n!(i51
n EYi exists and Xn rp ImX as nr `, then Xn,T rp ImX as

~n,T r `!+

An interesting special case arises when theYi,T are scaled versions of some i+i+d+
random vectorsQi,T + Suppose thatYi,T 5 Ci Qi,T , whereQi,T are i+i+d+ acrossi for all T
andCi are~k 3 k! nonrandom matrices for alli+ Suppose thatQi,T n Qi asT r ` for
all i, so thatYi 5 Ci Qi + In general, Yi,T are heterogeneous acrossi unlessCi are same for
all i+ The source of the heterogeneity inYi,T is the scale effectsCi +

COROLLARY 7+ Suppose that Yi,T 5 Ci Qi,T , where Qi,T are i+i+d+ across i for all T
and Ci are ~k 3 k! nonrandom matrices for all i+ Assume that Qi,T are integrable for
all T and Qi,T n Qi as Tr `+ Assume that C5 limn~10n!(i51

n Ci exists+ If ~ i! 7Qi,T7
are uniformly integrable in T for all i and~ ii ! supi 7Ci 7 , `, then ~10n!(i51

n Yi,T rp

CE~Qi ! as ~n,T r `!+

Remarks. Here we present four useful ways to verify condition~i! of Corollary 7,
the uniform integrability of7Qi,T7 in T+ For notational simplicity, we omit the individ-
ual index, i+

~a! Suppose thatQT n Q asT r `+ Then, uniform integrability of7QT7 is equiva-
lent to E7QT7 r E7Q7 asT r ` ~see Billingsley, 1968, Theorem 5+4!+

~b! Suppose thatE7QT7r , ` for some 0, r , ` andQT rp Q asT r `+ Then
the following are equivalent+ ~i! 7QT7r are uniformly integrable inT; ~ ii ! E7QT7r r
E7Q7r ; and~iii ! E7QT 2 Q7r r 0+ This is the Vitali theorem+

~c! Suppose that there exists a sequence of random variablesUT such thatUT $ 7QT7
for all T+ Then, uniform integrability ofUT implies the uniform integrability of
7QT7+

~d! Suppose thatQT 5 WT ZT + If 7WT72 and7ZT72 are uniformly integrable inT, then
7QT7 are uniformly integrable+
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Next we consider the joint convergence in distribution of the!n-standardized dou-
ble indexed sequence!nXn,T given by

!nXn,T 5
1

!n (
i51

n

Yi,T +

In many nonstationary panel applications, we find that a standardized sum of the time
series for individuali,Yi,T , can be approximated by a scaled version of i+i+d+ random
variables~or vectors!, that is,

Yi,T ' Ci Qi,T ,

whereCi is a constant andQi,T is i+i+d+ over the cross section with mean zero and finite
variance+

The following lemma is helpful in deriving the joint limit distribution of a double
indexed process such as!nXn,T 5 ~10!n!(i51

n Yi,T , whenYi,T 5 Ci Qi,T +

THEOREM 8+ Suppose that Yi,T 5 Ci Qi,T , where the~k 3 1! randomvectors Qi,T

are i+i+d+ ~0,ST! across i for all T and Ci are nonrandom matrices+ Assume the follow-
ing hold:

~i! Let sT
2 5 lmin~ST! and lim infT sT

2 . 0,
~ii ! @maxi#n7Ci 720lmin~(i51

n Ci Ci
'!# 5 O~10n! as nr `,

~iii ! 7Qi,T72 are uniformly integrable,
~iv! limn,T ~10n!(i51

n Ci ST Ci
' 5 V . 0+

Then,

1

!n (
i51

n

Yi,T n N~0,V! as~n,T r `!+

Some preliminary results.This section gives some useful results that will be used
repeatedly in the following subsections+

~a! A particularly useful tool in treating the linear process«i, t is the BN decomposi-
tion, which decomposes the linear filter into long-run and transitory elements+
Phillips and Solo~1992! give details of how this method can be used to derive a
large number of limit results+ Under Assumption 1, the linear process«i, t is de-
composed as

«i, t 5 Ci ui, t 1 I«i, t21 2 I«i, t , (B.6)

whereCi 5 Ci ~1!, I«i, t 5 (j50
` DCi, j ui, t2j , and DCi, j 5 (k5j11

` Ci, k+ Under the sum-
mability condition~c! in Assumption 1,

6Ci 6 # (
j50

`

OCj , ` (B.7)
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and

E I«i, t
2 # S(

j50

`

j OCjD2

# S(
j50

`

j b OCjD2

, `, (B.8)

whereb $ 1 and OCj 5 supi Ci, j ~see Phillips and Solo, 1992!+
~b! Let OC 5 (j50

` OCj + Define

Ei, t 5 (
j50

`

OCj 6ui, t2j 6 (B.9)

and

EEi, t 5 (
j50

`

C̆j 6ui, t2j 6, (B.10)

whereC̆j 5 (k5j11
` OCk+ The two random variables defined in~B+9! and~B+10! are

dominating random variables for«i, t and I«i, t , respectively, in the sense thatEi, t $
6«i, t 6 and EEi, t $ 6 I«i, t 6 for all i and t+ By definition, Ei, t and EEi, t are i+i+d+ acrossi
for all t and satisfy

E~Ei, t ! 5 E6ui,16(
j50

`

OCj , M

and

E~ EEi, t
2 ! # Eui,1

2 S(
j50

`

C̆jD2

, M (B.11)

for someM , `+ Throughout this Appendix and elsewhere in the paper we use
M to denote a generic constant+

~c! Next, recall that

DhT~t,s! 5 EDT Igt
'S 1

T (
t51

T

EDT Igt Igt
' EDTD21

Igs EDT +

It is easy to see that whent 5 @Tr# ands 5 @Tp# , asT r `

DhT~t,s! r Ig'~r !SE Ig Ig'D21

Ig~ p! 5 Dh~r, p!

uniformly in ~r, p! [ @0,1# 3 @0,1# + The following limit also holds:

sup
1#t,s#T

DhT~t,s! r sup
0#r, p#1

Dh~r, p!+ (B.12)

~d! Using the BN decomposition of«i, t , we can decomposeyi, t into two terms—a
long-run component ofyi, t and a transitory component+ By virtue of the defini-
tion of yi, t ,

yi, t 5 (
s51

t

e
~t2s!

T
c
«i,s 1 e

t
T

2c
yi,0+
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Using the BN decomposition~B+6! of «i, t , we can decomposeyi, t as

yi, t 5 Ci xi, t 1 Ri, t , (B.13)

where

xi, t 5 (
s51

t

e
~t2s!

T
c
ui,s

and

Ri, t 5 e
~t21!

T
c
I«i,0 2 I«i, t 1 (

s51

t

e
~t2s21!

T
c
I«i,s~12e

c

T ! 1 e
t

T
c
yi,0+

Next we introduce bounds for the moments of some random variables that will be
frequently used in the following proofs+ In particular:

ES xi, t
2

T
D 5

1

T (
s51

t

e
t2s
T

2c
r E

0

r

e~r2s!2cds, M if t 5 @Tr# , (B.14)

1

T (
t51

T

!ES xi, t
2

T
D 5

1

T (
t51

T

! 1

T (
s51

t

e
t2s
T

2c

r E
0

1SE
0

r

e~r2s!2cdsD102

dr , M, (B.15)

and

sup
i

sup
1#t#T

ERi, t
2

# sup
1#t#T

4He
t21
T

2c
sup

i
E I«i,0

2 1 sup
i

E I«i, t
2 1 ~12 ec0T!2

3 (
p51

t

(
s51

t

e
t212p

T
c
e

t212s

T
c

sup
i

E~ I«i,s I«i, p! 1 e
t
T

2c
sup

i
Eyi,0

2 J
# 4 sup

1#t#T
H~e

t21
T

2c
1 1!S(

j50

`

j OCjD2

1 ~12 ec0T!2S sup
1#p,s#t

e
2t222p2sc

T D
3 (

p51

t

(
s51

t

sup
i
6E~ I«i,s I«i, p!6J 1 4 sup

1#t#T
e~t0T !2c sup

i
Eyi,0

2

# 4S(
j50

`

j OCjD2H sup
1#t#T

~e
t21
T

2c
1 1! 1

1

T 2 ~12 ec0T!2

3 S sup
1#p,s, t#T

e
2t222p2s

T
cD sup

1#t#T

t 2

T 2J
1 4 sup

1#t#T
e

t
T

2c
sup

i
si,0

2

r 4S(
j50

`

j OCjD2H sup
0#r#1

~e2rc 1 1! 1 c2S sup
0#p,s, r#1

e~2r2p2s!cDJ
1 4 sup

0#r#1
e2rc sup

i
si,0

2

, M asT r ` if t 5 @Tr# , (B.16)
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where the first inequality uses~a 1 b 1 c 1 d!2 # 4~a2 1 b2 1 c2 1 d2!, the second
inequality uses~B+8!, and the third inequality holds by applying the Cauchy–Schwarz
inequality and~B+8! to 6E~ I«i,s I«i, p!6+

The next two lemmas will be useful in proving joint limits+

LEMMA 9 + Under Assumptions1 and 2, as ~T, n r `! the following hold:

~a! ~10n!(i51
n ~10T 2!(t51

T

I
zi, t21

2 rp Vv1~c!
~b! ~10n!(i51

n ~10T !(t51
T

I
zi, t21«i, t rp L 1 Vv2~c!, where v1~c! 5 ~2102c! 3

$1 1 ~102c!~1 2 e2c!% 2 *0
1 *0

1 ec~r1s! ~102c!~1 2 e22c~r∧s! ! Dh~r,s!dsdr, v2~c! 5
2*0

1 *0
r e~r2s!c Dh~r,s!dsdr, and Dh~r,s! 5 Ig~r !'~*0

1 Ig Ig' !21 Ig~s!+

Proof. Part ~a!+ Because ~10n!(i51
n ~10T 2!(t51

T

I
zi, t21

2 5 ~10n!(i51
n ~10T 2! 3

(t51
T

I
yi, t21

2 by ~9!, we will establish~10n!(i51
n ~10T 2!(t51

T

I
yi, t21

2 rp Vv1~c!+
Define

I
xi, t21 5 xi, t21 2 ~10T !(s51

T xi,s21 DhT~s, t ! and
J
Ri, t21 5 Ri, t21 2 ~10T ! 3

(s51
T Ri,s21 DhT~s, t !+ From the decomposition~B+13!, we have

1

n (
i51

n 1

T 2 (
t51

T

I
yi, t21

2

5
1

n (
i51

n

Ci
2

1

T 2 (
t51

T

I
xi, t21

2 1 2
1

n (
i51

n

Ci

1

T 2 (
t51

T

I
xi, t21 J

Ri, t21 1
1

n (
i51

n 1

T 2 (
t51

T

J
Ri, t21

2

5 Ia 1 2II a 1 III a, say+

In what follows we show thatIa rp Vv1~c! and II a, III a rp 0 as~n,T r `!+
For Ia, recall that

Ia 5
1

n (
i51

n

Ci
2

1

T 2 (
t51

T

I
xi, t21

2 +

Define Qi,T 5 ~10T 2!(t51
T

I
xi, t21

2 + Note that$Qi,T%i are i+i+d+ acrossi andQi,T n Qi 5
*0

1

I
Jc, i

2 ~r !dr+ BecauseEQi 5 v1~c! and limn~10n!(i51
n Ci

2 5 V, Ia rp Vv1~c! as
~T, n r `!seq+ Thus, to conclude thatIa rp Vv1~c! as ~T, n r `! it suffices to verify
conditions~i!–~ii ! in Corollary 7+ Condition~ii ! of Corollary 7 clearly holds by Assump-
tion 1~c!+ For condition~i! of Corollary 7 observe that

EQi,T 5
1

T (
t52

T 1

T (
s51

t

e
t2s
T

2c

2
1

T (
t51

T 1

T (
s51

T He
t12
T

cS 1

T (
k52

t∧s

e
2k
T

2cD DhT~t,s!J
r E

0

1E
0

r

e~r2s!2cds2E
0

1E
0

1

ec~r1s!SE
0

r∧s

e22kcdkD Dh~r,s!drds

5 v1~c! 5 EQi asT r `+
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BecauseQi,T $ 0, Qi,T n Qi , and EQi,T r EQi as T r ` are enough to assert that
$Qi,T%T are uniformly integrable by Theorem 5+4 in Billingsley ~1968!, it follows that
~i! in Corollary 7 is satisfied+

Next, we prove that

II a 5
1

n (
i51

n

Ci

1

T 2 (
t51

T

I
xi, t21 J

Ri, t21 rp 0

and

III a 5
1

n (
i51

n 1

T 2 (
t51

T

J
Ri, t21

2 rp 0 asn,T r `

by showing thatE6 II a6,E6 III a6 r 0 asn,T r `+
First, we have

E6 II a6 5 E* 1

n (
i51

n

Ci

1

T 2 (
t51

T

I
xi, t21 J

Ri, t21*
#

1

n (
i51

n H6Ci 6E* 1

T 2 (
t51

T

I
xi, t21 J

Ri, t21*J
# OC

1

n (
i51

n

E* 1

T 2 (
t51

T

xi, t21 Ri, t21 1
1

T 3 (
t51

T

(
s51

T

xi, t21 Ri,s21 DhT~t,s!*
# OC

1

n (
i51

n

E* 1

T 2 (
t51

T

xi, t21 Ri, t21*
1 OC sup

1#t,s#T
6 DhT~t,s!6

1

n (
i51

n

ES 1

T 3 (
t51

T

(
s51

T

6xi, t216 6Ri,s216D+
Observe that

1

n (
i51

n

E* 1

T 2 (
t51

T

xi, t21 Ri, t21*
#

1

!T

1

n (
i51

n 1

T (
t51

T

E* xi, t21

!T
Ri, t21*

#
1

!T

1

n (
i51

n 1

T (
t51

T

!E* xi, t21

!T *
2

E6Ri, t2162 5 OS 1

!T
D,

where the equality holds because supi sup1#t#T E6Ri, t2162 5 O~1! by ~B+16! and the

xi, t21 are i+i+d+ acrossi with ~10T !(t51
T !E6~xi, t210!T !62 5 O~1! by ~B+15!+
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Next

1

n (
i51

n

ES 1

T 3 (
t51

T

(
s51

T

6xi, t216 6Ri,s216D
#

1

!T

1

n (
i51

n

ES 1

T!T (
t51

T

6xi, t216DS 1

T (
s51

T

6Ri,s216D
#

1

!T !ES 1

T (
t51

T 6xi, t216

!T
D2

sup
i
!ES 1

T (
s51

T

6Ri,s216D2

#
1

!T
S 1

T (
t51

T

! Exi, t21
2

T DS 1

T (
t51

T

!sup
i

ERi, t21
2 D5 OS 1

!TD+
Because sup1#s, t#T 6 DhT~s, t !6 5 O~1!, we conclude thatE6 II a6 5 O~10!T ! r 0 as
T r `+

Similarly, III a rp 0 as~n,T r `! becauseE6 III a6 r 0 as~n,T r `! in II a, and we
have all the required results to complete the proof of part~a!+

Part (b). From ~9! we know that ~10n!(i51
n ~10T !(t51

T

I
zi, t21«i, t 5 ~10n!(i51

n 3
~10T !(t51

T

I
yi, t21«i, t + By definition,

1

n (
i51

n 1

T (
t51

T

I
yi, t21«i, t

5
1

n (
i51

n 1

T (
t51

T

yi, t21«i, t 2
1

n (
i51

n 1

T 2 (
t51

T

(
s51

T

yi, t21«i,s DhT~t,s!+

To complete the proof we show~10n!(i51
n ~10T !(t51

T yi, t21«i, t rp L and ~10n! 3

(i51
n ~10T 2!(t51

T (s51
T yi, t21«i,s Dh1T~t,s! rp 2Vv2~c! as~n,T r `!+

Recall thatyi, t 5 ayi, t21 1 «i, t , wherea 5 ec0T+ Note that by squaringyi, t 5 ayi, t21 1
«i, t and averaging overt and i we have

a
1

n (
i51

n 1

T (
t51

T

yi, t21«i, t

5 a2
1

2n (
i51

n 1

T
~ yi,T21

2 2 yi,0
2 ! 2 ~a2 2 1!

1

2n (
i51

n 1

T (
t51

T

yi, t21
2 2

1

2n (
i51

n 1

T (
t51

T

«i, t
2

5 a2Ib 2 II b 2 2
1
2III b, say+

Modifying the arguments in the proof of part~a! by substituting DhT~t,s! 5 0, we have

~102n!(i51
n ~10T 2!(t51

T yi, t21
2 rp

1
2
_V *0

1 *0
r e~r2s!2cds as ~n,T r `!+ Also, it follows

that T~a2 2 1! r 2c asT r `+ Combining these two results, we have

II b 5 T~a2 2 1!
1

2n (
i51

n 1

T 2 (
t51

T

yi, t21
2 rp cVE

0

1E
0

r

e~r2s!2cds (B.17)

as~n,T r `!+
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Next, we show, using Theorem 6, that as~n,T r `!

III b 5
1

2n (
i51

n 1

T (
t51

T

«i, t
2 rp

1

2
lim

n

1

n (
i51

n

V«i
5

1

2
V 2 L+ (B.18)

Define Yi,T 5 ~10T !(t51
T «i, t

2 and Yi 5 E«i, t
2 5 V«i

+ Then, by the ergodic theorem, as
T r `

Yi,T 5
1

T (
t51

T

«i, t
2 rp V«i

5 Yi ,

so, for fixed n, ~10n!(i51
n Yi,T rp ~10n!(i51

n Yi as T r `+ Also ~10n!(i51
n Yi r

limn~10n!(i51
n V«i

5 V 2 2L as n r `+ Thus, according to Theorem 6, veri-
fying conditions ~i!–~iv! is enough to ensure that~B+18! holds under joint limits as
~n,T r `!+ Conditions~ii ! and ~iii ! clearly hold by the preceding arguments+ Condi-
tion ~i! holds because

lim sup
n,T

1

n (
i51

n

E6Yi,T 6 5 lim sup
n,T

1

n (
i51

n 1

T (
t51

T

E«i, t
2 5 lim

n

1

n (
i51

n

V«i
5 V 2 2L+

For condition~iv!, note by the definition ofEi, t in ~B+9! that

0 # Yi,T 5 6Yi,T 6#
1

T (
t51

T

Ei, t
2 +

Because the sequenceEi, t
2 is strictly stationary and ergodic int for all i, ~10T !(t51

T 3
Ei, t

2 rp E~Ei, t
2 ! by the ergodic theorem+ Then, by Vitali’s theorem ~see Remark~b!

following Corollary 7!, ~10T !(t52
T Ei, t

2 are uniformly integrable inT+ Hence, for given
« . 0,

lim sup
n,T

1

n (
i51

n

E6Yi,T 6$6Yi,T 6 . n«%

# lim sup
n,T

ES 1

T (
t51

T

Ei, t
2 DH* 1

T (
t51

T

Ei, t
2 * . n«J 5 0,

and we have verified condition~iv!+
Finally, consider Ib+ Because it holds that~102n!(i51

n ~10T !E~ yi,0
2 ! # ~102T ! 3

supi si,0
2 r 0 as ~n,T r `! by Assumption 1~d!, we consider only~102n! 3

(i51
n ~10T !yi,T21

2 +

1

2n (
i51

n 1

T
yi,T21

2

5
1

2n (
i51

n

Ci
2

1

T
xi,T21

2 1
1

n (
i51

n

Ci

1

T
xi,T21 Ri,T21 1

1

2n (
i51

n 1

T
Ri,T21

2

5 Ib1 1 Ib2 1 Ib3, say, (B.19)

where the second equality holds by the decomposition~B+13! of yi,T21+
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We now employ the principle used in the proof of part~a!+ Write Qi,T 5 ~10T !xi,T21
2

andQi 5 Jc, i
2 ~1!+ Then,

Ib1 5
1

2n (
i51

n

Ci
2Qi,T n

1

2n (
i51

n

Ci
2Qi

as T r ` for fixed n+ Because supi Ci 5 OC , ` and Qi have finite second moments
~note thatJc, i ~r ! is a Gaussian process!, by the strong law of large numbers for indepen-
dent, nonidentically distributed random variables, we have

1

2n (
i51

n

Ci
2Qi rp

1

2
VE~Qi ! 5

1

2
VS 1

2c
~e2c 2 1!D+

Thus, as~T, n r `!seq

Ib1 rp

1

2
VS 1

2c
~e2c 2 1!D+

We now verify conditions~i! and ~ii ! of Corollary 7 to obtain the joint probability
limit of Ib1+ First, condition~ii ! clearly holds by Assumption 1~c!+ For condition~i!, note
by ~B+14! that asT r `

EQi,T 5 E
1

T
xi,T21

2 r E
0

1

e2~12s!cds5 EJc, i ~1!2 5 EQi +

Clearly, the Qi,T are positive+ It follows therefore from the preceding discussion and
Theorem 5+4 of Billingsley ~1968! that theQi,T are uniformly integrable+ Combining
this with the fact thata2 r 1, asn,T r `, finally we have

a2Ib1 rp

1

2
VE

0

1

e2~12s!cds5
1

2
VS 1

2c
~e2c 2 1!D+ (B.20)

By similar arguments to those used in the discussion of termII a in part ~a!, we can
show that asn,T r `

Ib2, Ib3 rp 0+

Now, in view of ~B+17!, ~B+18!, and~B+20!, we have asn,T r `

a
1

n (
i51

n 1

T (
t51

T

yi, t21«i, t

rp V
1

4c
~e2c 2 1! 2 VS 1

4c
e2c 2

1

4c
2

1

2D2
1

2
V 1 L 5 L+

Because as~n,T r `! we have

a
1

n (
i51

n 1

T (
t51

T

yi, t21«i, t 2
1

n (
i51

n 1

T (
t51

T

yi, t21«i, t rp 0,
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it follows that as~n,T r `!

1

n (
i51

n 1

T (
t51

T

yi, t21«i, t rp L+

Next, we prove that~10n!(i51
n ~10T 2!(t51

T (s51
T yi, t21«i,s DhT~t,s! rp Vv2~c! as

~T, nr`!+ Using the decomposition ofyi, t21 in ~B+13! and the BN decomposition of«i, t

and noticing thatE6~10n!(i51
n yi,0~10T 2!(s51

T «i,s DhT~0,s!6 # ~10T !~supi!si,0
2 V«! 3

~sup1#s#T DhT~0,s!! 5 O~10T !,

1

n (
i51

n 1

T 2 (
t51

T

(
s51

T

yi, t21«i,s DhT~t,s!

5
1

n (
i51

n

Ci
2

1

T 2 (
t52

T

(
s51

T

xi, t21ui,s DhT~t,s!

1
1

n (
i51

n

Ci

1

T 2 (
t52

T

(
s51

T

xi, t21~ I«i,s21 2 I«i,s! DhT~t,s!

1
1

n (
i51

n

Ci

1

T 2 (
t52

T

(
s51

T

Ri, t21ui,s DhT~t,s!

1
1

n (
i51

n 1

T 2 (
t52

T

(
s51

T

Ri, t21~ I«i,s21 2 I«i,s! DhT~t,s! 1 op~1!

5 Ibb 1 II bb 1 III bb 1 IVbb, say+

We show that as~T, n r `!, Ibb rp Vv2~c! and II bb, III bb, IVbb rp 0+
Note that

EIbb 5
1

n (
i51

n

Ci
2

1

T 2 (
t52

T

(
s51

T

E~xi, t21ui,s! DhT~t,s!

5 S1

n (
i51

n

Ci
2D 1

T 2 (
t52

T

(
s51

t21

e
S t2s

T Dc
DhT~t,s!

r VE
0

1E
0

r

e~r2s!c Dh~r,s!dsdr5 Vv2~c! as~T, n r `!+

Thus, for Ibb rp Vv2~c! as~T, n r `! it remains to show that

Ibb 2 EIbb 5
1

n (
i51

n

Ci
2S 1

T 2 (
t52

T

(
s51

T

xi, t21ui,s DhT~t,s! 2
1

T 2 (
t52

T

(
s51

t21

e
S t2s

T Dc
DhT~t,s!D

rp 0 as~T, n r `!+

Define

Qi,T 5
1

T 2 (
t52

T

(
s51

T

xi, t21ui,s DhT~t,s! 2
1

T 2 (
t52

T

(
s51

t21

e
S t2s

T Dc
DhT~t,s!+
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Then, asT r `

Qi,T 5 S 1

T 2 (
t52

T

(
s51

T

xi, t21ui,s DhT~t,s! 2
1

T 2 (
t52

T

(
s51

t21

e
S t2s

T Dc
DhT~t,s!D

n E
0

1HE
0

1

Jc, i ~t ! Dh~t,s!dWi ~s! 2E
0

t

e
S t2s

T Dc
Dh~t,s!dsJ dt 5 Qi , say+

For fixed n, asT r `

1

n (
i51

n

Ci
2Qi,T n

1

n (
i51

n

Ci
2Qi +

Note that

EQi 5 EE
0

1HE
0

t

Jc, i ~t ! Dh~t,s!dWi ~s! 2E
0

t

e
S t2s

T Dc
Dh~t,s!dsJ dt

1 E
0

1HE
t

1

E~Jc, i ~t ! Dh~t,s!dWi ~s!!J dt 5 0+

Because supi Ci
2 5 OC2 , `, and the second moments ofQi are finite~Qi is a stochastic

integral of a Gaussian process with respect to a standard Brownian motion!, by the weak
law of large numbers, asn r ` we have

1

n (
i51

n

Ci
2Qi rp lim

n

1

n (
i51

n

Ci
2EQi 5 0,

and so, as~T, n r `!seq,

1

n (
i51

n

Ci
2Qi,T rp 0+

Now, verifying conditions~i! and ~ii ! in Corollary 7 is enough to conclude thatI 2
EI 5 ~10n!(i51

n Ci
2Qi,T rp 0 as~n,T r `!+ Condition~ii ! holds by the assumption that

supi Ci
2 5 OC2 , `+ To verify condition~i!, note that

6Qi,T 6 # * 1

T 2 (
t52

T

(
s51

T

xi, t21ui,s DhT~t,s!* 1 * 1

T 2 (
t52

T

(
s51

t21

e
S t2s

T Dc
DhT~t,s!*+

Because the nonstochastic term6~10T 2!(t52
T (s51

t21 e
S t2s

T Dc
DhT~t,s!6 5 O~1!, for the

uniform integrability of the 6Qi,T 6 it is enough to prove that6~10T 2!(t52
T 3

(s51
T xi, t21ui,s DhT~t,s!6 are uniformly integrable, which holds by Remark~d! following

Corollary 7 if 7~10T!T !(t52
T xi, t21 EDT Igt72 and 7~10!T !(s51

T ui,s EDT Igs72 are uni-
formly integrable+ Because

** 1

T!T (
t52

T

xi, t21 EDT Igt **
2

n **EJc, i ~r ! Ig~r !dr**
2

asT r `
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and

E** 1

T!T (
t52

T

xi, t21 EDT Igt **
2

5 trS 1

T 3 (
t52

T

(
s52

T

Exi, t21 xi,s21 EDT Igt Igs
' EDTD

5 trS 1

T 3 (
t52

T

(
s52

T

(
q51

~t∧s!21

e
S t1s222q

T Dc
EDT Igt Igs

' EDTD
r trSE

0

1E
0

1E
0

~r∧s!

e~r1s2q!c Ig~r ! Ig~s!'dqdsdrD
5 trSEEEJc, i ~r !Jc, i ~s! Ig~r ! Ig~s!'dsdrD,

it follows that 710~T!T !(t52
T xi, t21 EDT Igt72 are uniformly integrable inT+ Similarly we

can verify that7~10!T !(s51
T ui,s EDT Igs72 are uniformly integrable+ So condition~i! is

satisfied+
Next, we show

II bb 5
1

n (
i51

n

Ci

1

T 2 (
t52

T

(
s51

T

xi, t21~ I«i,s21 2 I«i,s! DhT~t,s! rp 0+

Write

II bb 5
1

n (
i51

n

Ci

1

T 2 (
t52

T

xi, t21 I«i,1 DhT~t,1! 2
1

n (
i51

n

Ci

1

T 2 (
t52

T

xi, t21 I«i,T DhT~t,T !

1
1

n (
i51

n 1

T 2 (
t52

T

Ci xi, t21 Igt
' EDTS 1

T (
t#T

EDT Igt Igt
' EDTD21

(
s51

T21

EDT~ Igs11 2 Igs! I«i,s

5 II bb1 1 II bb2 1 II bb3, say+

For II bb rp 0 as~T, n r `!, we show thatE6 II bbi6 r 0 as~T, n r `! for all i 5 1,2,3+
First, E6 II bb26 r 0 as~T, n r `! because

E6 II bb26 # sup
1#t#T

DhT~t,T !ES1

n (
i51

n

Ci

1

T 2 (
t52

T

6xi, t21 I«i,T 6D
# sup

1#t#T
DhT~t,T !

1

n (
i51

n HCi

1

!T
EFS 1

T (
t52

T

* xi, t21

!T *D6 I«i,T 6GJ
# sup

1#t#T
DhT~t,T !

1

n (
i51

n SCi

1

!T !ES 1

T (
t52

T

* xi, t21

!T *D2

E6 I«i,T 62D
# sup

1#t#T
DhT~t,T ! OC

1

!T !ES 1

T (
t52

T

* xi, t21

!T *D2

E6 EEi,T 62 5 OS 1

!T
D ,
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where the third inequality uses Cauchy–Schwarz, the fourth inequality holds by the def-
initions of OC and EEi,T , and the equality holds by~B+12! with s 5 T andq 5 1, ~B+15!
and~B+11!+

By similar arguments to those given earlier, we can also show that

E6 II bb16r 0 asn,T r `+

For II bb3, observe that

6 II bb36 5 * 1

n (
i51

n 1

T (
t52

T

Ci xi, t21 Igt
'S(

t51

T

Igt Igt
'D21

(
s51

T21

~ Igs11 2 Igs! I«i,s*
# sup

1#t,s#T
DfT~t,s!

1

n (
i51

n

Ci

1

T 3 (
t52

T

(
s51

T21

6xi, t21 I«i, t 6,

where DfT~t,s! 5 Igt
' EDT
' ~~10T !(t51

T EDT Igt Igt
' EDT
' !21T EDT~ Igs11 2 Igs!+ Then II bb3 rp 0 as

~T, n r `! because

E6 II bb36 # sup
1#t,s#T

DfT~t,s! OC
1

!T !ES 1

T (
t52

T

* xi, t21

!T *D2

ES 1

T (
t51

T21

6 EEi, t 6D2

# sup
1#t,s#T

DfT~t,s! OC
1

!T !ES 1

T (
t52

T

* xi, t21

!T *D2

ES 1

T (
t51

T21

6 EEi, t 62D5 OS 1

!T
D+

To show thatIII rp 0 as~T, n r `!, it is enough to show thatE6 III 6r 0 as~T, n r

`!+ Write EGT 5 ~~10T !(t51
T EDT Igt Igt

' EDT !21+ By the definitions of DhT~t,s!, OC 5 supi 6Ci 6,
and by the triangle inequality, we have

E6 III bb6 5 E* 1

n (
i51

n

Ci

1

T 2 (
t52

T

(
s51

T

Ri, t21ui,s DhT~t,s!*
5 E* 1

n (
i51

n

Ci

1

T 2 S(
t52

T

Ri, t21 EDT Igt
'D EGTS(

s51

T

EDT Igsui,sD*
# OC

1

n (
i51

n

E* 1

T 2 S(
t52

T

Ri, t21 EDT Igt
'D EGTS(

s51

T

EDT Igsui,sD*
# OC7 EGT7

1

n (
i51

n 1

!T
E ** 1

T (
t52

T

Ri, t21 EDT Igt **** 1

!T
(
s51

T

EDT Igsui,s**,
where the last inequality uses Cauchy–Schwarz and the inequality7AB7# 7A77B7+ Again,
by Cauchy–Schwarz, the last term in the preceding expression is less than

1

!T
OC7 EGT7

1

n (
i51

n

!E** 1

T (
t52

T

Ri, t21 EDT Igt **
2

E** 1

!T
(
s51

T

EDT Igsui,s**
2

#
1

!T
OC7 EGT7!sup

i
E** 1

T (
t52

T

Ri, t21 EDT Igt **
2

E** 1

!T
(
s51

T

EDT Igsui,s**
2

+ (B.21)
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Note that

sup
i

E** 1

T (
t52

T

Ri, t21 EDT Igt **
2

# sup
1#t#T

7 EDT Igt72 sup
i

ES 1

T (
t52

T

6Ri, t216D2

# sup
1#t#T

7 EDT Igt72 sup
i

sup
t#T

ERi, t
2

5 O~1! asT r `, (B.22)

where the last equality holds by~B+16! and sup1#t#T7 EDT Igt72 5 O~1!+ Also it is easily
seen that

E** 1

!T
(
s51

T

EDT Igsui,s**
2

5 trS 1

T (
s51

T

EDT Igs Igs
' EDTD5 O~1! asT r `+ (B.23)

In view of ~B+21!–~B+23! it follows that E6 III bb6 5 O~10!T !, and so we have the re-
quired result+ The proof ofIVbb rp 0 as~T, n r `! is analogous to that ofII bb3+ n

LEMMA 10+ Let ZL 5 ~10n!(i51
n ZL i and ZV 5 ~10n!(i51

n ZVi , where ZL i and ZVi are
defined in~20! and ~21!, respectively+ Suppose that Assumptions1–4 hold+ Then, as
n,T r ` ZL rp L and ZV rp V+

Proof of Lemma 10. In this proof we show only thatZL rp L as~T, n r `!+ Then,
by the same principle as that used in the proof ofZL rp L, we find that ZV rp V as
~T, n r `! holds by a simple change of the summation of the lag window from(j51

T to
(j52T

T +
Define

ZL i,«,« 5 (
j51

T

wS j

K
D 1

T (
t51

T2j

«i, t «i, t1j , ZL«,« 5
1

n (
i51

n

ZL i,«,« + (B.24)

Before we start the proof of Lemma 10 we introduce the following useful lemma+

LEMMA 11+ Suppose the assumptions in Lemma10 hold+ Then, as ~n,T r `!,
ZL«,« rp L+

Proof of Lemma 11. We show that as~n,T r `!

ES ZL«,« 2
1

n (
i51

n

L iD2

5 0+ (B.25)

Then, because~10n!(i51
n L i r L it follows ZL«,« rp L+ Observe that

ES ZL«,« 2
1

n (
i51

n

L iD2

#
1

n (
i51

n

E~ ZL i,«,« 2 L i !
2

# sup
i

var~ ZL i,«,« ! 1 sup
i

$bias~ ZL i,«,« !%2+
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Let Gi ~ j ! 5 E~«i , t «i , t1j ! and cumi ~0, k, l ,m! denote the fourth order cumulant of
~«i, t ,«i, t1k,«i, t1l ,«i, t1m!+ We know by Assumption 1 that

sup
i

Gi ~ j ! # G~ j ! 5 (
k50

`

OCk OCk1j

and

sup
i
6cumi ~0, k, l,m!6 # 6s4 2 36(

j50

`

OCj OCj1k OCj1l OCj1m+

Also, from the summability condition~c! in Assumption 1, it follows that if q # b where
b is given in condition~c! in Assumption 1, then

(
j50

`

j qG~ j ! 5 (
j50

`

j q (
k50

`

OCk OCk1j # (
k50

`

OCk (
j50

`

~ j 1 k!q OCk1j , ` (B.26)

and

sup
i

(
k50

`

(
l50

`

(
m50

`

cumi ~0, k, l,m! # 6s4 2 36(
k50

`

(
l50

`

(
m50

`

(
j50

`

OCj OCj1k OCj1l OCj1m

# 6s4 2 36S(
j50

`

OCjD4

, `+

Choosingq as in the condition of the lemma and following the same lines of proof as
that in Theorems 9 and 10 of Hannan~1970!, we have asT r `

T

K
sup

i
var~ ZL i,«,« ! 5 O~1!,

K q sup
i

bias~ ZL i,«,« ! 5 O~1!, (B.27)

which leads to

ES ZL«,« 2
1

n (
i51

n

L iD2

5 OS K

T Dr 0 asn,T r `+ (B.28)

Now, we start the proof of Lemma 10+ Let

Ia 5 S(
i51

n

(
t51

T

I
zi, t21

2 D21

(
i51

n

(
t51

T

I
zi, t21 I

zi, t

and

[«i, t 5
I
zi, t 2 Ia

I
zi, t21 5 «i, t 2 ~ Ia 2 a!

I
zi, t21 2

1

T (
s51

T

«i,s DhT~t,s!+
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Also, let

ZGi ~ j ! 5
1

T (
t51

T2j

[«i, t [«i, t1j +

If we prove that as~T, n r `!

ZL 5
1

n (
i51

n

(
j51

T21

wS j

K
D ZGi ~ j ! rp ZL«,« ,

then, in view of Lemma 11, we have the required result, namely,

ZL rp L 5 lim
n

1

n (
i51

n

L i as~T, n r `!+

Notice by the triangle inequality that

6 ZL 2 ZL«,« 6 5 * (
j51

T21

wS j

K
D 1

n (
i51

n 1

T (
t51

T2j

~ [«i, t [«i, t1j 2 «i, t «i, t1j !*
# * (

j51

T21

wS j

K
D 1

n (
i51

n 1

T (
t51

T2j

~ [«i, t 2 «i, t ! [«i, t1j *
1 * (

j51

T21

wS j

K
D 1

n (
i51

n 1

T (
t51

T2j

«i, t ~ [«i, t1j 2 «i, t1j !*+ (B.29)

By the Cauchy–Schwarz inequality the first term in~B+29! is less than

1

!T
(
j51

T21

wS j

K
D!1

n (
i51

n

(
t51

T

~ [«i, t 2 «i, t !
2 !1

n(
i51

n 1

T (
t51

T

[«i, t
2

5 ! K 2

T S 1

K (
j51

K21

wS j

K DD!1

n (
i51

n

(
t51

T

~ [«i, t 2 «i, t !
2!1

n (
i51

n 1

T (
t51

T

[«i, t
2 ,

where the equality holds becausew~ j0K ! vanishes, by assumption, if j . K+ First, we
have

1

n (
i51

n

(
t51

T

~ [«i, t 2 «i, t !
2

5
1

n (
i51

n

(
t51

T F~ Ia 2 a!
I
zi, t21 1

1

T (
s51

T

«i,s DhT~t,s!G2

# 2T 2~ Ia 2 a!2
1

n (
i51

n 1

T 2 (
t51

T

I
zi, t21

2 1
2

n (
i51

n

(
t51

T S 1

T (
s51

T

«i,s DhT~t,s!D2

5 2I 1 2II , say+ (B.30)

It follows by Lemma 9~a! that ~10n!(i51
n ~10T 2!(t51

T

I
zi, t21

2 5 Op~1! asn,T r `+ Also,
from Lemma 9, it is not difficult to see thatT 2~ Ia 2 a!2 5 Op~1! asn,T r `+ In con-
sequence, I 5 Op~1! asn,T r `+ Note that
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E6 II 6 5 EF 1

n (
i51

n

(
t51

T S 1

T (
s51

T

«i,s DhT~t,s!D2G
5 EF 1

n (
i51

n 1

T 2 (
t51

T

(
s51

T

(
p51

T

«i,s«i, p NhT~t,s! DhT~t, p!G
# sup

1#t,s#T
DhT~t,s! sup

1#t, p#T
DhT~t, p!

1

n (
i51

n

(
h52T11

T21 S12
6h6

T
DGi ~h! , `,

where the last inequality holds by~B+26!, which implies thatII 5 Op~1! as~T, n r `!+
Hence, ~10n!(i51

n (t51
T ~ [«i, t 2 «i, t !

2 5 Op~1! as~T, n r `!+
Also, in a similar way, ~10n!(i51

n ~10T !(t51
T [«i, t

2 5 Op~1! as~T, n r `! because

1

n (
i51

n 1

T (
t51

T

[«i, t
2

#
3

n (
i51

n 1

T (
t51

T

«i, t
2 1 eT2~ Ia 2 a!2

1

n (
i51

n 1

T 3 (
t51

T

I
zi, t21

2

1
3

n (
i51

n 1

T (
t51

T F 1

T (
s51

T

«i,s DhT~t,s!G2

5 Op~1!+

Finally,

! K 2

T

1

K (
j51

K

wS j

K
Dr 0 asT r `, (B.31)

where the convergence holds because~K 20T ! r 0 and~10K !(j51
K w~ j0K ! r *0

1 w~x!+
Hence, the first term in~B+29! is op~1!, and the second term in~B+29! is alsoop~1!+ We
now have all the desired results+ n

APPENDIX C: JOINT CONSISTENCY

THEOREM 12+ Under Assumptions1–4,

[c1 rp F~c!

as ~T, n r `!+

Proof. The theorem holds by Lemmas 9 and 10+ n

THEOREM 13+ Suppose that the assumptions in Theorem14 hold+ Also assume that
v~c! Þ 0+ Then, as ~T, n r `!,

[c11 rp c+
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Proof. Recall that

[c11 5 F(
i51

n H 1

T 2 (
t51

T

I
zi, t21

2 2 ZVi

1

T 2 S(
t51

T

(
s51

t S t

T
2

s

T De
S t

T
2

s
T D Ic
DhT~t,s!DJG21

3 (
i51

n H 1

T (
t51

T

I
zi, t21 D

I
zi, t 2 ZL i

1 ZVi

1

T 2 (
t51

T

(
s51

t F12 S t

T
2

s

T D IcGe
S t

T
2

s
T D Ic
DhT~t,s!J +

Then, the consistency[c11 rp c as ~n,T ! r ` is straightforward in view of the fact
that Ic rp c as ~n,T r `!, rT 5 T 2~exp~c0T ! 2 ~1 1 ~c0T !!! 5 O~1!, and Lemmas 9
and 10+ n

APPENDIX D: JOINT WEAK CONVERGENCE

To establish asymptotic normality of[c1 and [c11 under joint convergence, we need a
stronger assumption on the bandwidth parameter used for the estimation of the long-run
variance+

Assumption 5 (Bandwidth Condition'). As ~n,T r `!, the bandwidth parameter
satisfiesK r `, ~nK20T ! r 0, and ~nK2q110T ! r g . 0 for some1

2
_ , q # b for

which wq is finite, whereb is given in condition~c! in Assumption 1+

THEOREM 14+ Suppose that Assumptions1–3 and 5 hold+ Also assume thatIc 5
F 21~ [c1! is consistent for c, dF21~c!0dc is well defined, and v~c! Þ 0+ Then, as
~n,T r `! with ~n0T ! r 0,

!n~ [c11 2 c! n NS0,
FV [c11~c!

V2v~c!2 D,
where V[c11~c! and v~c! are defined in~34! and ~27!, respectively+

Proof. To establish the joint limit distribution of[c11 it is enough to show that

1

!n (
i51

n H 1

T (
t51

T

I
zi, t21 I

«i, t 2 ZL i 1 ZVi

1

T 2 (
t51

T

(
s51

t F12S t

T
2

s

T D~ Ic 2 c!G
3 e

S t
T

2
s
T D Ic
DhT~t,s! 1 rT

1

T 3 (
t51

T

I
zi, t21

2 J
n N~0,FV [c11~c!! as~T, n r `!+

988 HYUNGSIK R. MOON AND PETER C.B. PHILLIPS

https://doi.org/10.1017/S026646660016606X Published online by Cambridge University Press

https://doi.org/10.1017/S026646660016606X


Notice that

1

!n (
i51

n H 1

T (
t51

T

I
zi, t21 I

«i, t 2 ZL i 1 ZVi

1

T 2 (
t51

T

(
s51

t F12S t

T
2

s

T D~ Ic 2 c!G
3 e

S t
T

2
s
T D Ic
DhT~t,s! 1 rT

1

T 3 (
t51

T

I
zi, t21

2 J
5

1

!n (
i51

n H 1

T (
t51

T

I
zi, t21 I

«i, t 2 ZL i 1 ZVi

1

T 2 (
t51

T

(
s51

t

e
S t

T
2

s
T Dc
DhT~t,s!J

1
1

!n (
i51

n

rT

1

T 3 (
t51

T

I
zi, t21

2

1
1

!n (
i51

n H ZVi

1

T 2 (
t51

T

(
s51

t He
S t

T
2

s
T D Ic

2 e
S t

T
2

s
T Dc

2S t

T
2

s

T De
S t

T
2

s
T D Ic

~ Ic 2 c!J
3 DhT~t,s!J + (D.1)

As discussed in Section 3+2, by the mean value theorem, the third term of~D+1!
equals to

S1

n (
i51

n

ZViDS 1

T (
t51

T

(
s51

t S t

T
2

s

T D~e
S t

T
2

s
T Dc*

2 e
S t

T
2

s
T D Ic

! DhT~t,s!D!n~ [c 2 c!,

wherec* is located betweenc and Ic+ Notice thatc* rp c as~n,T r `! becauseIc rp c
as~n,T r `!+ Also, it is possible to show that!n~ Ic 2 c! is stochastically bounded by
applying Theorem 15, which follows, and the delta method in joint limit as~n,T r `!+
Therefore, the third term in~D+1! is op~1! in joint limit as ~n,T r `!+

The remaining proof consists of the following two steps+
Step 1+

1

!n (
i51

n H 1

T (
t51

T

I
yi, t21 I

«i, t 2 L i 1 ViE
0

1E
0

r

e~r2s!c Dh~r,s!dsdrJ n N~0,FV [c11~c!!

as~T, n r `!+

Step 2+

1

!n (
i51

n H 1

T (
t51

T

I
zi, t21 I

«i, t 2 ZL i 1 ZVi

1

T (
t51

T

(
s51

t

e
S t

T
2

s
T Dc
DhT~t,s! 1 rT

1

T 3 (
t51

T

I
zi, t21

2 J
2

1

!n (
i51

n H 1

T (
t51

T

I
yi, t21 I

«i, t 2 L i 1 ViE
0

1E
0

r

e~r2s!c Dh~r,s!dsdrJ
5 op~1! as~T, n r `!+
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To establish step 2, it is enough to show that as~T, n r `!

II1 :
1

!n (
i51

n

~ ZL i 2 L i ! 5 op~1!

II2 :
1

!n (
i51

n H ZVi

1

T (
t51

T

(
s51

t

e~r2s!c DhT~t,s! 2 ViE
0

1E
0

r

e~r2s!c Dh~r,s!dsdrJ 5 op~1!

II3 :
1

!n (
i51

n

rT

1

T 3 (
t51

T

I
zi, t21

2 5 op~1!,

whererT 5 T 2~exp~c0T ! 2 ~1 1 ~c0T !!!+ First, II1 holds because

1

!n (
i51

n

~ ZL i 2 L i ! 5 !nK2

T
Op~1! rp 0 (D.2)

by ~B+28!, ~B+31! and the condition in Assumption 5 that~nK20T ! r 0+ In the same
fashion, it holds also that

1

!n (
i51

n

~ ZVi 2 Vi ! 5 !nK2

T
Op~1! rp 0+ (D.3)

Write

II2 5 S 1

!n (
i51

n

~ ZVi 2 Vi !DS 1

T (
t51

T

(
s51

t

e~r2s!c DhT~t,s!D
1 S1

n (
i51

n

ViD!nS 1

T (
t51

T

(
s51

t

e~r2s!c DhT~t,s! 2E
0

1E
0

r

e~r2s!c Dh~r,s!dsdrD+ (D.4)

From

sup
1#t#T

sup
~t21!0T#r#t0T

*S t

T
Dk

2 r k* 5
1

T
O~1! for k 5 1, + + + , p,

we can show that

1

T (
t51

T

(
s51

t

e~r2s!chT~t,s! 5E
0

1E
0

r

e~r2s!ch~r,s!dsdr1 OS 1

T
D+

Thus, we haveII2 5 op~1!O~1! 1 O~1!O~!n0T ! 5 op~1!+ Finally, II3 holds because

1

!n (
i51

n

rT

1

T 3 (
t51

T

I
zi, t21

2 5
!n

T
rTS1

n (
i51

n 1

T (
t51

T

I
zi, t21

2 D5 OpS!n

T D 5 op~1!+
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We now show step 1+ Recallv2~c! 5 2*0
1 *0

r e~r2s!ch~r,s!dsdr+ Using the decompo-
sitions~B+6! and~B+13!, we write

1

!n (
i51

n S 1

T (
t51

T

I
yi, t21 I

«i, t 2 L i 2 Vi v2~c!D
5

1

!n (
i51

n S 1

T (
t52

T

I
yi, t21 I

«i, t 2 L i 2 Vi v2~c!D1
!n

T
Op~1!

5
1

!n (
i51

n

ViS 1

T (
t52

T

I
xi, t21 I

ui, t 2 v2~c!D
1

1

2!n (
i51

n S 1

T (
t52

T

~«i, t
2 2 V«i

!D1
1

2!n (
i51

n

ViS 1

T (
t52

T

~ui, t
2 2 1!D

1
1

!n (
i51

n

~r1, i,T 2 r2, i,T ! 1
!n

T
Op~1!,

where r1, i,T 5 a2~10T !~2Ci Ri,T xi,T 1 Ri,T
2 ! 2 T~a2 2 1!~10T 2!(t52

T ~2Ci xi, t21 3
Ri, t21 1 Ri, t21

2 !,

r2, i,T 5
1

T 2 (
t52

T

(
s52

T

$Ri, t21hT~t,s!ui,s 1 Ri, t21hT~t,s!~ I«i,s21 2 I«i,s!

1 Ci xi, t21hT~t,s!~ I«i,s21 2 I«i,s!%+

The first line holds becauseE6~10!n!(i51
n ~10T !

I
yi,0 I

«i,16 5 ~!n0T !Op~1!, and the
second line holds because~a 2 1!~10!n!(i51

n ~10T !(t51
T yi, t21«i, t , ~10n! 3

(i51
n ~ yi,0

2 0T ! 5 ~!n0T !Op~1!+
In view of Ib2, Ib3, II bb, III bb, and IVbb in the proof of Lemma 9~b!, it follows that

1

!n (
i51

n

~r1, i,T 1 r2, i,T ! 5 ! n

T
Op~1! 5 op~1!+

Next, ~10!n!(i51
n Vi ~~10T !(t52

T ~ui, t
2 2 1!! because

ES 1

!n (
i51

n

ViS 1

T (
t52

T

~ui, t
2 2 1!DD2

5 S1

n (
i51

n

Vi
2DES 1

T (
t52

T

~ui, t
2 2 1!D2

5
T 2 1

T 2 S1

n (
i51

n

Vi
2DE~ui, t

2 2 1!2 r 0+
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Also, ~10!n!(i51
n ~~10T !(t52

T ~«i, t
2 2 V«i

!! rp 0 because

ES 1

!n (
i51

n S 1

T (
t52

T

~«i, t
2 2 V«iDD2

5
1

n (
i51

n

ES 1

T (
t52

T

~«i, t
2 2 V«i

!D2

5
1

T F 1

n (
i51

n

(
h52T12

T22 ST 2 6h6

T DE~«i, t
2 «i, t1h

2 2 V«i

2 !G
#

1

T F 1

n (
i51

n

(
h52T12

T22 ST 2 6h6

T D
3 H~2 1 s4!S(

j50

`

Ci, j Ci, j16h6D2

1 s4S(
j50

`

Ci, j
2 Ci, j16h6

2 DJG
#

1

T F2~2 1 s4! (
h50

` S(
j50

`

OCj OCj1hD2

1 2s4 (
h50

`

(
j50

`

OCj
2 OCj1h

2 G
#

1

T F2~2 1 s4!S(
j50

`

j 102 OCj
2D2

1 2s4S(
j50

`

OCj
2DGr 0+

Next, we write

1

!n (
i51

n

ViS 1

T (
t52

T

I
xi, t21 I

ui, t 2 v2~c!D
5

1

!n (
i51

n

ViS 1

T (
t52

T

I
xi, t21 I

ui, t 2 v2T~c!D2S1

n (
i51

n

ViD!n~v2T~c! 2 v2~c!!,

where

v2T~c! 5 ES 1

T (
t52

T

I
xi, t21 I

ui, tD
5

1

T (
t52

T

E~xi, t21ui, t ! 2
1

T 2 (
t52

T

(
s51

T

E~xi, t21ui,s! DhT~t,s!

5 2
1

T 2 (
t52

T

(
s51

T

(
p51

t21

e
S t212p

T Dc
E~ui, pui,s! DhT~t,s!

5 2
1

T 2 (
t52

T

(
p51

t21

e
S t212p

T Dc
DhT~t, p!+

From sup1#t#T sup~t21!0T#r#t0T 6~t0T !k 2 r k6 5 ~10T !O~1! for k 5 1, + + + , p and

sup
1#t#T

sup
~t21!0T#r#t0T

6et0T 2 er 6 5
1

T
O~1!,
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we can showv2T~c! 5 v2~c! 1 O~10T !+ Thus, because it is assumed that
~10n!(i51

n Vi r V and ~n0T ! r 0, we have~~10n!(i51
n Vi !!n~v2T~c! 2 v2~c!! 5

O~1!O~!n0T ! 5 o~1!+
To finish the proof of step 1, it remains to show that

1

!n (
i51

n

ViS 1

T (
t52

T

I
xi, t21 I

ui, t 2 v2T~c!Dn N~0,FV [c11~c!!+

Let

VT, [c11~c! 5 ES 1

T (
t52

T

I
xi, t21 I

ui, tD2

2 v2T~c!2

5 ES 1

T (
t52

T

xi, t21ui, tD2

2 2ES 1

T (
t52

T

xi, t21ui, t

1

T 2 (
t52

T

(
s51

T

xi, t21ui,s DhT~t,s!D
1 ES 1

T 2 (
t52

T

(
s51

T

E~xi, t21ui,s! DhT~t,s!D2

2 v2T~c!2+

Because

ES 1

T (
t52

T

xi, t21ui, tD2

5
1

T 2 (
t52

T

(
p51

t21

(
s52

T

(
q51

s21

e
S t212p

T Dc
e
S s212q

T Dc
E~ui, pui, t ui,qui,s!

5
1

T 2 (
t52

T

(
p51

t21

e
S t212p

T D2c
1 OS 1

T
D,

ES 1

T (
t52

T

xi, t21ui, t

1

T 2 (
t52

T

(
s51

T

xi, t21ui,s DhT~t,s!D
5

1

T 3 (
t52

T

(
p51

t21

(
s52

T

(
q51

s21

(
w51

T

e
S t212p

T Dc
e
S s212q

T Dc
E~ui, pui, t ui,qui,w! DhT~s,w!

5
1

T 3 (
t52

T

(
s52

T

(
p51

~t∧s!21

e
S t1s2222p

T Dc
DhT~t,s!

1
1

T 3 (
s53

T

(
t52

s21

(
p51

t21

e
S t212p

T Dc
e
S s212t

T Dc
DhT~s, p! 1 OS 1

T
D,

and

ES 1

T 2 (
t52

T

(
s51

T

E~xi, t21ui,s! DhT~t,s!D2

5
1

T 4 (
t52

T

(
p51

t21

(
r51

T

(
s52

T

(
q51

s21

(
w51

T

e
S t212p

T Dc
e
S s212q

T Dc

3 E~ui, pui, r ui,qui,w! DhT~t, r ! DhT~s,w!
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5
1

T 4 (
t52

T

(
s52

T

(
p51

~t∧s!21

(
r51

T

e
S t1s2222p

T Dc
DhT~t, r ! DhT~s, r !

1
1

T 4 (
t52

T

(
p51

t21

(
s52

T

(
q51

s21

e
S t212p

T Dc
e
S s212q

T Dc
DhT~t, p! DhT~s,q!

1
1

T 4 (
t52

T

(
p51

t21

(
s52

T

(
q51

s21

e
S t212p

T Dc
e
S s212q

T Dc
DhT~t,q! DhT~s, p! 1 OS 1

T
D,

we have

VT, [c11~c!

5
1

T 2 (
t52

T

(
p51

t21

e
S t212p

T D2c
2 2

1

T 3 (
t52

T

(
s52

T

(
p51

~t∧s!21

e
S t1s2222p

T Dc
DhT~t,s!

2 2
1

T 3 (
s53

T

(
t52

s21

(
p51

t21

e
S t212p

T Dc
e
S s212t

T Dc
DhT~ p,s!

1
1

T 4 (
t52

T

(
s52

T

(
p51

~t∧s!21

(
r51

T

e
S t1s2222p

T Dc
DhT~t, r ! DhT~s, r !

1
1

T 4 (
t52

T

(
p51

t21

(
s52

T

(
q51

s21

e
S t212p

T Dc
e
S s212q

T Dc
hT~t,q! DhT~s, p! 1 OS 1

T
D+ (D.5)

Now employ Theorem 8+ Write Qi,T 5 ~10T !(t51
T

I
xi, t21 I

ui, t 2 v2T~c!+ The Qi,T are
i+i+d+ with mean zero and variancevT + Also, we know that

Qi,T n Qi 5E IJc, i ~r !dW~r ! 2 v2~c!,

and it is not difficult to verify that

E~Qi,T !2 5 VT, [c11~c! r V [c11~c! 5 E~Qi !
2+

From supi Vi
2 , `, the convergence ofVT, [c11~c! r V [c11~c!, and ~10n!(i51

n Vi
2 r F,

we verify conditions~i!, ~ii !, and~iv! of Theorem 8+ Also, condition~iii ! is satisfied by
applying Remark~a! following Corollary 7 ~see also Billingsley, 1968, Theorem 5+4!
with Qi,T

2 n Qi
2 ~by the continuous mapping theorem! andE~Qi,T!2 r E~Qi !

2+ Thus,
by Theorem 8, ~10!n!(i51

n Vi ~~10T !(t51
T

I
xi, t21 I

ui, t 2 v2T~c!! n N~0,FV [c11~c!!, and
we have all the required results+ n

THEOREM 15+ Suppose Assumptions1–3 and 5 hold+ Then, as ~n,T r `! with
~n0T ! r 0,

!n~ [c1 2 F~c!! n N~0,FV [c1~c!!,
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where

V [c1~c! 5 S2v2~c!

v1~c!2

1

v1~c!DV~c! 1
2v2~c!

v1~c!2

1

v1~c!
2

and V~c! is defined in the previous section+

Proof. The proof is entirely analogous to that of Theorem 14+ We simply sketch the
proof here+ To establish the joint limit distribution of[c1 it is enough to show that~A+1!
holds under joint limits as~n,T r `!+ The idea of the proof is similar to that of Theo-
rem 14+

First, by definition,

!n1An,T 2S1

n (
i51

n

ViDv1~c!

Bn,T 2S1

n (
i51

n

ViDv2~c!2
5 1

1

!n (
i51

n S 1

T 2 (
t51

T

I
zi, t21

2 2 Vi v1~c!D
1

!n (
i51

n S 1

T (
t51

T

I
zi, t21 I

«i, t 2 ZL i 2 Vi v2~c!D2 + (D.6)

By applying similar arguments to those in the proof of Theorem 14 we can show that
the main component for the joint asymptotic normality of~D+6! is the following:

1
1

!n (
i51

n

ViS 1

T 2 (
t51

T

I
xi, t21

2 2 v1~c!D
1

!n (
i51

n

ViS 1

T (
t51

T

I
xi, t21 I

ui, t 2 v2~c!D2
5 1

1

!n (
i51

n

ViS 1

T 2 (
t51

T

I
xi, t21

2 2 ES 1

T 2 (
t51

T

I
xi, t21

2 DD
1

!n (
i51

n

ViS 1

T (
t51

T

I
xi, t21 I

ui, t 2 ES 1

T (
t51

T

I
xi, t21 I

ui, tDD2
1 1

1

!n (
i51

n

ViSES 1

T 2 (
t51

T

I
xi, t21

2 D2 v1~c!D
1

!n (
i51

n

ViSES 1

T (
t51

T

I
xi, t21 I

ui, tD2 v2~c!D2
5 Id 1 II d +
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In much the same fashion as for step 2 in the proof of Theorem 13, we can show that
II d r 0 as ~T, n r `!+ Thus, to complete the proof it remains to show thatId n

N~0,FV [c1~c!!, for which we use Theorem 8+ Conditions~a! and ~b! are obvious+ Also,
after some tedious algebra similar to the derivation of~D+5! in the proof of Theorem 14,
we can show that

E~Id Id
'! r FV [c1~c!,

which is enough by Remark~a! following Corollary 7 to assert that conditions~iii ! and
~iv! are satisfied+ n

Proof of the Joint Weak Convergence oftstat+ For the joint limit of tstat to N~0,1!,
in view of the joint asymptotic normality in Theorem 14, it is enough to show that as
~T, n r `!

ZF rp F,

that is,

1

n (
i51

n

~ ZVi
2 2 Vi

2! 5 op~1!+

Note that

* 1

n (
i51

n

~ ZVi
2 2 Vi

2!*
5 * 1

n (
i51

n

~ ZVi 1 Vi !~ ZVi 2 Vi !* #
1

n (
i51

n

~ ZVi 2 Vi !
2 1 2 sup

i
6Vi 6S1

n (
i51

n

6 ZVi 2 Vi 6D
# S 1

!n (
i51

n

6 ZVi 2 Vi 6D2

1

2 sup
i
6Vi 6

!n S 1

!n (
i51

n

6 ZVi 2 Vi 6D+
We know supi 6Vi 6 is finite, and so, to show~10n!(i51

n ~ ZVi
2 2 Vi

2! 5 op~1!, it is enough
to show that~10!n!(i51

n 6 ZVi 2 Vi 6 5 op~1!+
Let ZVi,«,« be a kernel estimator forVi using the unknown errors«i, t , defined in an

analogous way to~B+24!+ By the triangle inequality,

1

!n (
i51

n

6 ZVi 2 Vi 6 #
1

!n (
i51

n

6 ZVi 2 ZVi,«« 61
1

!n (
i51

n

6 ZVi,«« 2 Vi 6+

By Cauchy–Schwarz, we have

1

!n (
i51

n

E6 ZVi,«« 2 Vi 6 # !(
i51

n

~E6 ZVi,«« 2 Vi 6!2 # !(
i51

n

E~ ZVi,«« 2 Vi !
2+

The square of the last term is less than

n sup
i

E~ ZVi,«« 2 Vi !
2 # n sup

i
var~ ZVi,«« ! 1 n sup

i
@bias~ ZVi,«« !# 2 5

nK

T
O~1!, (D.7)

996 HYUNGSIK R. MOON AND PETER C.B. PHILLIPS

https://doi.org/10.1017/S026646660016606X Published online by Cambridge University Press

https://doi.org/10.1017/S026646660016606X


where the last equality holds by~B+27!, and so~10!n!(i51
n 6 ZVi,«« 2 Vi 6 5 op~1!+

Next, by the triangle inequality again,

1

!n (
i51

n

6 ZVi 2 ZVi,«« 6

#
1

!n (
i51

n

(
j52T11

T21

wS j

K
D* 1

T (
t

~ [«i, t [«i, t1j 2 «i, t «i, t1j !*
#

1

!n (
i51

n

(
j52T11

T21

wS j

K
D* 1

T (
t

~ [«i, t 2 «i, t ! [«i, t1j *
1

1

!n (
i51

n

(
j52T11

T21

wS j

K
D* 1

T (
t

«i, t ~ [«i, t1j 2 «i, t1j !*, (D.8)

where the summations overt satisfy 1# t, t 1 j # T+ Then, following the same lines as
in the argument following~B+29! with a change of summation in the lag kernel to
(j52K

K , we are led to

~D+8! 5 !nK2

T

1

K (
j52K

K

wS j

K
DOp~1! 5 op~1!+

This, together with~10!n!(i51
n 6 ZVi 2 ZVi,«« 6, ~10!n!(i51

n 6 ZVi,«« 2 Vi 6 5 op~1!, gives
us ~10!n!(i51

n 6 ZVi 2 Vi 6 5 op~1!+ n
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