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Time series data are often well modeled by using the device of an autoregres-
sive root that is local to unityUnfortunately the localizing parametdrc) is not
consistently estimable using existing time series econometric techniques and the
lack of a consistent estimator complicates infererides paper develops proce-
dures for the estimation of a common localizing parameter using panelRitzi&

ing information across individuals in a panel aids the identification and estimation
of the localizing parameter and leads to consistent estimation in simple panel
models However in the important case of models with concomitant determinis-
tic trends it is shown that pooled panel estimators of the localizing parameter
are asymptotically biaseome techniques are developed to overcome this dif-
ficulty, and consistent estimators ofin the regionc < 0 are developed for
panel models with deterministic and stochastic treAdamit distribution theory

is also establishedand test statistics are constructed for exploring interesting
hypothesessuch as the equivalence of local to unity parameters across sub-
groups of the populationThe methods are applied to the empirically important
problem of the efficient extraction of deterministic trend&ey are also shown

to deliver consistent estimates of distancing parameters in nonstationary panel
models where the initial conditions are in the distant plsthe development of

the asymptotic theory this paper makes use of both sequential and joint limit
approachesAn important limitation in the operation of the joint asymptotics that

is sometimes needed in our development is the rate condition— 0. So the
results in the paper are likely to be most relevant in panels whésdarge and

n is moderately large
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1. INTRODUCTION

Time series models with roots near unity are extremely common in economet-
ric applications and this feature of the data is often modeled by using the de-
vice of an autoregressive root that is local to undy that the time series has
the property of being near integratesluch time series are more general than
integrated processeand they allow more flexibility in the econometric mod-
eling of nonstationary serie¥Vhereas the local to unity parameter cannot be
consistently estimated using existing time series methatis useful in many
different econometric contextd few examples are as followshe analysis of
power properties of unit root tes¢(®hillips, 19873; the construction of confi-
dence intervals for the long run autoregressive coeffici&bck 1991); the
development of efficient detrending method®hillips and Lee 1996 Canjels
and Watson1997); and the construction of point optimal invariant tests for a
unit root (Elliott, Rothenbergand Stock 1996 and cointegrating rankXiao

and Phillips 1999.

This paper develops procedures for the estimation of the local to unity pa-
rameter in panel data modeM/hen there is a common time series local to
unity parameter across independent individuals in a pan& apparent that
the cross section data carry additional information that can be used to assist in
estimating a common localizing parametel. By simple pooling of time se-
ries estimatgswe might expect that a common local to unity parameter could
be consistently estimated with panel data that combined independent observa-
tions across individualdn the case where the data generating process involves
only a near-integrated stochastic trend proceas show that a simple pooled
least-squares estimator does produce a consistent estimator for the local to unity
parameterHowever the simple data-pooling heuristic does not hold in situa-
tions where there are both deterministic and near-integrated stochastic trends in
the model In such casest is shown that the pooled least-squares estimator of
the localizing coefficient generates an inconsistency that depends upon the
true unknown localizing parametédio resolve this problenwe develop a con-
sistent estimator foc in the important case wheie< 0. Asymptotic normal-
ity of these consistent local to unity parameter estimators is estahblisineld
the limit theory is used to develop an inferential framework for local to unity
modeling in panel datdn particulay test statistics are constructed for explor-
ing interesting hypothesgsuch as the equivalence of the local to unity param-
eter across subgroups of the population

Local to unity parameter estimation is useful in many empirical applications
We illustrate the usefulness of panel estimation of the localizing coefficient with
an application to efficient deterministic trend extraction and the construction of
confidence intervals for models with roots near unitgcording to Phillips and
Lee (1996, when the regression errors are near integradffitiency gains in
the estimation of deterministic trends can be obtained by quasi-differencing the
data However to implement this procedure in practjade localizing param-
eter in the near-integrated error process must be known or be consistently esti-
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mable neither of which normally appliedf inconsistent estimates of the
localizing parameter are used inste#ten the resulting trend coefficient esti-
mator has a highly nonstandard limit distributjavhich gives rise to new dif-
ficulties, for examplein setting up confidence intervals for the trend coefficient
Because of this problen€avanaghElliott, and Stock(1995 and Canjels and
Watson(1997) suggest the use of Bonferroni-type confidence intervwatich
are often very conservativih panel data model®ur consistent estimate of the
local to unity parameter can be used to overcome these difficultidact, our
feasible efficient estimator based on consistent panel data estimates of the local
to unity parameter has a standard limit distributiand this limit theory leads
to a conventional form of confidence interval for the trend

Another useful application of panel data for nonstationary time series lies in
the consistent estimation of the distancing parameter that arises in the formu-
lation of distant initial conditionsThe distancing parametewhich is ex-
pressed as a fractignot necessarily less than unityf the length of the present
time series sampleneasures how far into the past the initialization extends in
terms of the shocks that have determinedtiis shown that consistent estima-
tion of this parameter is possible with panel data when there is common dis-
tancing in the initialization across the panel and a common local to unity
parameter in the dynamick effect panel variation across individuals enables
us to learn something very specific about the nature of presample data—how
far its origins extend in relation to the historically observed data

In other recent researdPhillips and Moon 1999, the authors develop some
rigorous asymptotic theory for multi-index situations in which two indices may
pass to infinity This general theory is applied to obtain a nonstationary panel
data limit theory where there are large numbers of cross se@tipand time
series(T) observationsThe new limit theory allows for both sequential limits
whereT — oo andn — oo sequentiallyand joint limits wherel, n — oo simul-
taneously The present paper makes use of those methods in the development
of the asymptotic theory herdn important limitation in the operation of the
joint asymptotics that is sometimes needed in our development is the rate con-
dition n/T — 0. This condition means that the results are likely to be most
relevant in panels wher€ is large andh is moderately largéas is the case in
some cross country macroeconomic panels

The paper is organized as followSection 2 lays out the model and assump-
tions gives some heuristic discussiaand shows how consistent estimation of
the localizing parameter is possible in panel models with no deterministic com-
ponentsSection 3 studies the same problem in models with deterministic trend
componentsshows the inconsistency of the pooled least-squares estiraatbr
develops several alternative approaches to dealing with the bias proflem
consistent estimator is given for the case where the common localizing param-
eter satisfiexc < 0. A limit distribution theory is developedand matters of
inference are discusse8ection 4 applies these methods to testing for the lo-
calizing coefficientto the empirically important problem of the efficient esti-
mation of the deterministic trend coefficiengsd to estimation of the distancing
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parameter that arises in the formulation of distant initial conditi@esction 5
concludes the papeProofs technical derivationsand a brief review of some
double index asymptotic theory are given in the Appendixes

2. MODELS, ASSUMPTIONS, AND HEURISTICS

We start by assuming that the time series process for indiviugl, has a
decomposition into both deterministic and stochastic elements as follows

Z =Biot LGkt Yt t=1...,T; i=1,...,n,

c
Vit = &% —11 &, azexp(;), (1)
whereg, = (t,...,tP)" is a deterministic polynomial treng; = (B 1,...,Bi p)"
andy; ; is a near-integrated stochastic proc@dw initialization is at = 0 with
random variableg, o that are independent and identically distributeidd.) across
i with mean zero and finite varianeg? for all i. In this paper we assume that
the deterministic trendg; , + B/g; in (1) are heterogeneous acrdss These
heterogeneous trends reflect individual effects in the panelzjata

The parametec in the AR(1) coefficienta is the local to unity parameter
which is assumed here to be common to all individu&se of the aims of
this paper is to find a consistent estimation procedure for the paramefae
common localizing parametercan be considered a common limit of individ-
ually different sequences of local parametdiisat is we may regard th&R(1)
error process coefficierd as the limit of the sequence of coefficierdsr =
exp((c + ¢ 1)/T), wherec; +/T — 0 uniformly ini. In this case the common
coefficienta = exp(c/T) is an approximation o&; + = exp((c + ¢ 1)/T). In
some empirical applicationst may be too restrictive to assume a common
localizing coefficient in the panel regression mo@Blfor all individuals There-
fore, procedures that allow for some cross sectional heterogeneity in the local-
izing parameter and procedures for testing cross sectional heterogeneity in
localizing coefficients will certainly be of interest in empirical woks a par-
tial solution of the latter problenthis paper develops a testing procedure de-
signed to assess whether the localizing parameter is the same across subgroups
of individuals in the sample

With regard to the specification of the trend componertliit is important
to note that individual intercept terng; o are not consistently estimable with
time series data when the stochastic compomgnis near integratecas a re-
sult of the low signal to noise ratio relative to the latent stochastic tyepah
(1), namely 1/var(y; ;) = O(1/t) — 0 ast — oo. The Oy(1) assumption for the
initial conditions ofy; ; is made for convenience and could be extended in the
usual way to allow for distant initializatiofiUhlig, 1994 Phillips and Lee1996
Canjels and Watsqri997), at the cost of some additional complexity

To develop some quick resultee first consider the simple case where the
trend coefficient vectorg; are known(but intercept termg; , are unknown
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and the error processes, are ii.d. (0,02) across and overt. This covers the
case where there is no deterministic trendInandB; = 0. In this casethe
variablesz ; = z ; — B g, are observabldn time series regressiotaking into

account the relatiom = 1 + ¢/T, the natural estimator foris ¢ =T(a— 1)
where

T 1/ T
_ 582 N N
a=|(> Zit—1 > Zit—14i¢ |-
t=1 t=1

Then asT — o

T E ZI t— 1((1 a)ﬂ| 0 + 8| t):|

.
= [Tz tZEl(yi,t—l + :Bi,o)2:|

-1

T
g(ylt 1+Blo)((1 a)18|0+8|t):|

-1
=><f0 Jc,i(r)zdr> fOJc,i(r)dW(r),

where J.;(r) = [5e""9°dW(s) and Wi(r) is a standard Brownian motion
(e.g., see Phillips 1987hH. From

- (E)-1+£+o(i) 2
we have

C—c=T(a—1)—c=T(a—a)+O<$>

= U:Jm(r)zdr>_lfolac,i<r>dw<r).

Thus as is well known ¢ is not a consistent estimator farand has a nonde-
generate limit distribution

Now suppose that panel data fgr; are availableAgain, one of the natural
ways to estimate the commdaxR(1) coefficienta is to pool the data and run a
least-squares regressidrhen we would have

n T -1/ n T
é:<2225t4> <222m—12i,t>, ©)

¢=T(a-1). (4)
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To take a quick look at the asymptotic behavioréofor, equivalently ¢), we
consider the sequential weak limit 8f& — a) by letting T — oo first, followed
by n — oo, which we denote byT,n — c0)sq (see Phillips and Moanl 999
and the remark that folloysNow we have

-1
Z(yl 1+Bi,0)2:|

n

T(A—a) = [12

ST E

117
lel? g 1+Bi,o)((1_a),3i,0+8i,t) . 5)

As T goes to infinity whilen is fixed, we have as earlier

1. -1 1.
T(é—a)z(ﬁi_ﬁl Jc,i(r)2> <Ei_§:lf‘]c,i(r)dW(r)>~ (6)

Note thatE(J.;(r)dW(r)) = 0 andE(fJ.;(r)?) = [, [} €**"~9dsdr> 0. By
the weak law of large numberasn — o, 1/n > ; JJei(r)dW(r) —, 0. There-
fore, in sequential limits agT,n — co)seq We find thatT (a4 — a) —, 0 and

¢—c=T(a—a)+o(1) —,0. (7)

That is € is a consistent estimator for the local to unity parameter sequen-
tial limits as(T,n — 00)seq

Remarks

(a) The preceding asymptotic theory employs a sequential approach in which the
indexT passes to infinity first and then the indexpasses to infinity latemwhich
is denoted agT,n — o)seq IN general depending on how the two indices
and T, are treatedit is possible to have a variety of limit results for double
indexed random sequenceRecently Phillips and Moon(1999 have studied
this matter and suggested various limit concepts for multi-indexed sequences
classifying the main concepts into the following three casesequential ap-
proach a diagonal path approachnd a joint approaciThe sequential approach
passes the indices to infinity sequentially the present caseepending on which
index tends to infinity firstwe may have two different sequential limits accord-
ing as(T,n — )seq OF (N, T — ©)seq Where the order of appearance of the
index in the notation gives the order of the passage to infifitye diagonal
path approach allows the two indicesand T, to pass to infinity along a spe-
cific diagonal pathsay (n,T(n)), in the two dimensional arrayrhis approach
simplifies the asymptotic theory by replacing the double indexed process with a
single indexed proces¥he joint approach allows both indicesandT, to pass
to infinity simultaneously without placing specific diagonal path restrictions on
the divergenceOn the other handio obtain some joint limit resulisve often
need to exercise control over the relative rate of expansion of the two indices
One such requirement that is used in the present pap®iTis> 0, and in such
cases there will be a presumption thiais large relative ton in the limit. Al-
though this requirement is not unreasonable for some recent macroeconomic pan-
els it is much less relevant in traditional dynamic pane&heren is often very
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large andT is quite small In such casesfixed T with large n asymptotics or
joint asymptotics withT/n — 0 will be more relevantThe present paper fo-
cuses mainly on sequential asymptotics Wilhn — oo)seq and joint asymptot-
ics undem/T — 0.

(b) We emphasize that the different approaches may yield different lidiestol
(1974 p. 200 gives examples of real number sequences with this propanty
Phillips and Moon(2000 give examples for double sequences of random vari-
ables In light of such examplest is natural to ask whether there are cases where
the different approaches yield the same linfihe paper by Phillips and Moon
(1999 provides a partial answer to this questidocusing on the relation be-
tween sequential limits and joint limité\ppendix B of the paper summarizes
some important details about these relations

(c) As the preceding analysis indicatsgquential limits are often easy to derivie-
deed they are usually much easier to derive than joint limits a device for ob-
taining quick asymptotic resultsve will proceed in this paper withil, n — 00)seq
sequential limits and theim the Appendixdemonstrate the results under the more
general environment of joint limitSThere are two main reasons for dealing with
(T,n = 00)seq limits instead of(n, T — 0)seq limits. The first is simply con-
venience In many of the cases investigated in this pajpleriving (T, n — 00)seq
limits is relatively straightforward and is especially advantageous when the non-
stationary time serieg ; in model(1) are generated from weakly dependent pro-
cesses such as those in Assumptipwhich follows Second (T, n — co)seqlimits
seem appropriate for some recent cross country macroeconomic panels such as
those of the Penn World Tablesater in the paper and as relevant matters arise
some further discussion of these issues will be provided

The consistency aof in (4) depends upon two unrealistic assumptidisthe
&i¢ are ii.d. (0,02); and(ii) the trend coefficient vectors; are known When
the g; ; are serially dependenas in Assumption lwhich follows the limit of
T(a — a) in (6) involves a bias term that depends on the one-sided long-run
covariance og; ;. In this casewe can correct the bias easifpr example by
estimating the one-sided long-run variance nonparametrically as in Phillips
(19873 or by using parametric autoregressions in which the order of the auto-
regression expands with the sample s&=in Said and Dickey1984).

When theg; are unknownthe problem becomes much more complicated
The obvious point of departure is to remove the deterministic trends by prelim-
inary regression and then to defide= T(4 — 1), where the estimatoa is
obtained by autoregression with the detrended.ddtas suppose; ; andz (—;
are the detrended datebtained as regression residualszpf andz; ;—; on g;.
Then we have¢ = T(4 — 1), where

This estimator ofc is a simple extension of that used in the case where the
trends were knowninterestingly howevey € is not consistent in this casm-
tuitively, the reason for the inconsistency is that preliminary detrending filters
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the stochastic treng ;—; and the filtered process is correlated with the station-
ary error process; ; in (1). These matters will be explored in the next section
We close this section with two assumptions on the error progess

Assumption 1 g;  are linear processes satisfying the following conditions

@ &, =C(Lui1=2726C Ui -

(b) u; ¢ are ii.d. acrossi and overt with Eu; = 0, Eu?, = 1, andEU}, = 0.

(c) C;j are a sequence of real numbers with= sup|C; j| < o0 andX%,j C; < oo
for someb = 1.

(d) sup 0% < o, whereoZ, = E(yZ).

LetC = Gi(1), & = C? andA; = 32, C (,C; ;. The termsQ; and A; are
the long-run variance and the one-sided long-run covariance of the error pro-
cessg; ¢, respectively The next assumption is about the limits of the averages
of the individual long-run variances and covariances

Assumption 2

(@ Q=Ilim,(1/n)>",Q is finite.
(b) A =Ilim,(1/n) >, A, is finite.
(©) @ =lim,(1/n) >, Q2 is finite.

Remark LetQ, = Ee?,. Under Assumption 2here exist, = lim,(1/n) X
i—1Q, andQ, = Q — 2A.

3. ESTIMATION OF THE LOCALIZING COEFFICIENT IN PANEL
MODELS WITH DETERMINISTIC TRENDS

First, rewrite the panel moddll) in augmented regression format as
Zi = az 1T YioTVigt & (8)

wherey; o = Bio(l — a) + aB/tp, the deterministic trend componentg, is
constructed as

Y0 = Bi(g —ag-1) — aBit, = B{Ar(C)g,

A:(c) is ap X p matrix that depends uponandT, and:, = (—1, (-12...,
(=DP).

As is well known the formulation(8) has the drawback that the regression
leads to inefficient trend eliminatigrbut it has the advantage that the de-
trended data are invariant to the trend parametefg)init will be convenient
for us to work with both formulation§l) and(8), depending on the context
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3.1. Iterative Ordinary Least Squares: Biased Estimation
We start by introducing some definitioniset

g =@g), 9gr)=(r,...,rP),  gr)=(1,9(r)),
Dy = diag(T%...,TP), D; = diag(1, D7)

and define

T 1
hr(t,s) = (Drg,)’ < EDTgtgt,DT> D+ s,

—||H —||H

T -1
hr(t,s) = (Dr @)’ ( 2 gt,[~)T> Dr G,

-1
h(r,S)=g(r)’<Jo g(r)g(r)’dr> g(s),

h(r,s) = g(r)’ (folgmg(r)'dr) lg(s).
Whent = [Tr] ands = [Tp], it is easy to see that a6— oo,
D@, — g(r) uniformlyinr € [0,1]
and
h+(t,s) — h(r,p) uniformlyin (r, p) € [0,1] X [0,1].
Let z ,—, and Az, denote the ordinary least squar@LS) detrended pro-

cesses of; ;_; andAz ., respectivelythat is for t = 23

Zit-1= Zijt-1— 2 hr(t, S)Z 51,

!
> Ar(t,9)Az ..
s=1

=~

A~Zi,t = AZi,t -
Then from model(1), we have

T T -1
Zit-17 Yit-1 Bi’<Agt_ <2 A%Qé)(g tht) > =Vt fort=2

9)
Also, let zi o = z o = Yi,0 = Yio-
It is well known that under Assumption &sT — oo,
1
—VYirm =G Ji(r) (10)

N
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(Phillips, 1987h. Using standard manipulationis is not difficult to show that
when[Tr] =1, asT — oo,

Zii1 Yt

VT AT

whereJ (1) = Jo(r) = fo A(r,9)J; (s)ds

We now discuss an estimation procedure for the local to unity parameter with
panel data when the trend coefficiefBsare unknown Suppose thaf\; are
consistent estimators fok; as T — oo. Consider a simple estimato™, de-
fined as a serial correlation bias correct@drequired pooled least-squares
estimatora™ of a,

=G i (n), (11)

n T -1 n

a" = (2 2 Zi2,t1> 2 2 (Zi,1-12i,c — TA)), (12)
i=1t=1 i=1t=1

and

¢t =T(&a" —-1).

The estimatod™ is a bias correctédpooled least-squares estimator with OLS
detrended dataNe define¢™ from &* in view of the relationa = 1 + (¢/T).
Hereafterwe call¢* an iterative OLS estimator

In view of (11) we have

l n

>

1 T
n<= ?2 Zit—18it — A) (13)

1 n
T(éJr — a) = (H 2
and from the limit theory in Phillips(1987h, asT — oo for fixed n,
1 n -1 1 n
T@ —a= (H > ch,i(r)dr> (ﬁ > Jc,i(r)dW(r)>-
i=1 i=1

Note that

E(folggi(r)dr>
1 1 1
2 - 4 (s
E(fo JC’I(r)dr) E(fofo\]c,,(r)Jc’,(s) (r,s)drds)

2C

{+—(1 ezc)} ffe°<’+5>2—(1 e 2D A(r, s)drds

= w4(C), say (14)
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and

1

E(fo gc,i(r>dw<r)>

E(flJc,i(r)dW(r)> - E<flJc,i(r)dW(S)ﬁ(r,S)drdS>
0 0

1 r
—f f er=SCR(r, s)dsdr
0 0

w,(C), say (15)

Because both of theiid. sequencesf, J2;(r)dr}; and{[3 J.;(r)dW(r)}; have
finite second momentst follows by the weak law of large numbers that as

n— oo
12 i1l w,(C)
= 2 = _ 22
<n ;l ~Jc,.(r)dr> <n g)l Jc,.(r)dW(r)> =0 00"
Thus in sequential limits a$T,n — 00)seq
+ _ wZ(C)
T@" —a) -, 01(0)’

and in consequence

w,(C)
. wl(C)'

é+—c=T(é+—a)+O<%>—> (16)

Hence the iterative OLS estimata™ is inconsistent and has an asymptotic
bias given by the ratidw,(c)/w+(c)] that depends on the unknown parameter
c¢. The main reason for the inconsistencyédfis that the detrending procedure
produces a correlation between the lagged filtered regressorand the equa-
tion errorg; ;. This correlation yields the nonvanishing limit

1 r
w,(C) = —f f e""9°h(r,s)dsdr 7
0o J0
in the numerator off (4 — a).
Define
w,(C)
F(c)=c+ ——. 18
w(C) (18)

Becausew,(c) is nonzero in generakt™ is not consistentHowever because
the probability limit of ¢*, F(c), depends only ore, we can expect the limit
function F(c) to give some information about the true parametegspecially
in regions wherd-(c) is a monotone functianThe graph ofF(c) is plotted for
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Ficure 1. Graph ofF(c) wheng; = 1.

the two caseg; = 1 (Figure 1° andg; = (1,t)’ (Figure 2, which are the most
common in empirical applications

Wheng; = (1,t)’, that is when we detrend the data to estimafdt is appar-
ent from Figure 2 that in the regidft: —0.8 = ¢ = 1.2} the limit function of
the estimaté™ does not identify the true parametbecausé-(c) is not a one-
to-one function in the regiarDutside of this region the probability limit of the
estimate¢™ does identify the true value of the local to unity parametend
can be used to construct a consistent estimate Bfirthermoreif we assume
that the true localizing parameter is nonpositithet is the true localizing pa-
rameter set i$c: ¢ = 0}, then we can identify the local to unity parameteior
all c = 0 using¢™ (and its probability limit because the probability limit func-
tion F(c) is monotonic with respect to on {c: c = 0}, the true localizing pa-
rameter setln this case(i.e., under the assumption that= 0), there is no
unidentifiable regionandF ~*(¢*) is a consistent estimator of

An analytic form of the inverse functioR ~*(c) of the probability limit func-
tion F(c) is not readily availableBut the function is easy to calculate numeri-

Ficure 2. Graph ofF(c) wheng; = (1, t)".
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cally and is given in Table 1 for the cage= (1,t)’.° We summarize the results
in the following two theorems

THEOREM 1 Let F(c) = ¢ + [w,(c)/wy(c)]. Under Assumption$—4 (As
sumptions3 and 4 follow), ¢ —, F(c) in sequential limits agT,n — o0)seq

THEOREM 2 Under Assumptiond—4 (Assumptions3 and 4 follow), in
sequential limits agT,n — 00)geq

Vn(€" = F(c)) = N(0, V- (c)),

where
—wy(C)
_ —w,(C) 1 w,(c)?
wo- (S me)ol "y |

w4(C)
V(c) is defined in AppendiA, and ® is defined in Assumptio®(c).

The variancéV,+(c) is a complicated function of the unknown parameter
but, again can be calculated numerically as shown in Table 2o+ (1,t)".

Remarks

(a) The two results are stated here in termgDi — co)seqSequential limits for the
indicesT and n. Appendixes C and D show that these results continue to hold
when joint limits (T,n — oo) are takenIn fact according to the results given
therg joint asymptotic normality of/n(¢™ — F(c)) continues to hold under the
additional rate restrictioftn/T) — 0 as(n, T — o0), whereas joint convergence in
probability ¢* —, F(c) as(n, T — o), holds without the additional rate restriction

(b) The intuition behind the requiremefit/T) — 0 for joint asymptotic normality of
¢ is simple Under the assumptions in the theoreme usually haveE(¢) # F(c)
for fixed T, but E(¢) — F(c) asT — co. In this casethe restriction(n/T) — 0
works to prevent an explosive bias #n(¢* — F(c)).

(c) WhenE(¢) # F(c) for fixed T, which is the case under the assumptions of this
paper a limit theory based om — oo with T fixed encounters some additional
difficulties. In the case of the probability limit of*, whenn — co with T fixed,
we obtain a different limit fronf (c) and one that depends dnAdditionally, as
far as the limit distribution of™ is concernedcentral limit theory asn — o
with T fixed cannot be applied to/n(¢* — F(c)) but rather to the recentered
estimatorv/n(¢* — E(¢%)), which is not as useful becaugg¢*) depends on
additional unknown parameters

(d) In the region wheré(c) is one to ongwe can define a consistent estimator ¢or
by taking the inverse value of the bias functiBfc), and we defing = F ~2(¢™).
Then the limit distribution of¢ is found easily by the delta methotet b =
F(c). Because the bias functidna(c) is differentiable on the region wher&(c)
is one to onewe have
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TaBLE 1. Numerical values of bias functiof(c) in (18) wheng, = (1,t)’

c F(c) c F(c) c F(c) c F(c)
-8 —13.09 —4 -9.71 0 -75 4 397
-7.9 -13 -39 -9.63 01 -75 4.1 4.09
—-7.8 —-1291 —-3.8 —9.55 02 —-7.51 42 4.2

-7.7 -12.82 -3.7 -9.48 03 -7.52 43 431
—7.6 —-1273 —-3.6 —-9.4 04 —7.54 44 442
—-7.5 —-12.64 —-35 —-9.33 05 —7.56 45 452
74 —1256 —-34 —-9.25 06 —7.58 46 4.63
-7.3 —-1247 -3.3 —-9.18 Q7 —-7.6 4.7 4.73
—-7.2 —12.38 —-3.2 =91 0.8 —7.62 48 4.83
-7.1 —-12.29 -3.1 -9.03 09 -7.63 49 4.93
-7 —-122 -3 —8.96 1 —-7.61 5 503
-6.9 —-1212 -29 —8.88 11 —7.58 51 513
-6.8 -12.03 -2.8 -8.81 12 -7.51 52 5.23
—-6.7 —-11.94 —-2.7 —-8.74 13 —7.38 53 533
-6.6 -11.86 —-2.6 -8.67 14 -7.2 5.4 543
—-6.5 —-11.77 —-25 —8.6 15 —6.93 55 552
-6.4 -1168 —-2.4 -8.54 16 -6.57 56 5.62
—-6.3 —-116 —-2.3 —8.47 17 —-6.1 57 572
—-6.2 —1151 —-2.2 -84 18 —5.54 58 582
—-6.1 —1143 2.1 —-8.34 19 —4.88 59 592
-6 -1134 -2 -8.28 2 -4.14 6 602
—-5.9 —-11.26 -19 -8.21 21 —-3.36 61 6.12
-5.8 -1117 -18 -8.15 22 —2.56 62 6.21
=57 —-11.09 =17 —8.09 23 =177 63 6.31
-5.6 =11 -16 —-8.04 24 —-1.03 64 6.41
-5.5 -10.92 -15 —7.98 25 -0.34 65 6.51
—5.4 —-10.84 -14 -7.93 26 0.27 66 6.61
-5.3 -10.75 -13 —7.88 27 0.82 6.7 6.71
—5.2 —-10.67 —-1.2 —-7.83 28 1.29 6.8 6.81
-5.1 —10.59 -1.1 -7.78 29 17 6.9 6.91
-5 —1051 -1 —7.74 3 206 7 701
-4.9 -1043 -0.9 —7.69 31 2.36 71 711
—4.8 —-10.34 -0.8 —7.66 32 2.63 7.2 721
—4.7 -10.26 -0.7 -7.62 33 2.86 73 7.31
—4.6 —-10.18 —-0.6 —7.59 34 307 74 741
—4.5 —-10.1 -05 —7.56 35 325 75 75

—-4.4 —10.02 -04 —7.54 36 342 7.6 7.6

—-4.3 —-9.94 -0.3 —7.52 37 357 77 7.7

-4.2 —9.86 -0.2 -7.51 38 371 7.8 7.8

4.1 —-9.79 -0.1 —-75 39 384 7.9 79
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TaBLE 2. Numerical values of asymptotic standard ernf)—t/é+(c) of iterative
OLS estimator wheg{ = (1t)’

c A[Va+(c) c A/ Ve+(c) c AVsr(€) € AVer(c) ¢ A/Ver(o)

-8 6.0079 —46 55106 —12 51166 22 49802 56 0.0864
—79 59932 —-45 54965 —-11 51097 23 46617 57 0.0782
—7.8 59785 —44 54824 -1 51032 24 42764 58 00709
—7.7 59638 —-43 54683 -09 50971 25 38520 59 0.0642
—7.6 59491 -—-42 54544 -08 50913 26 34167 6 00582
—75 59344 -—-41 54405 -07 50858 27 29939 61 0.0528
—-74 59197 -4 54267 —0.6 50806 28 26001 62 0.0479
—73 59050 -39 54131 -05 50758 29 22447 63 0.0435
—7.2 58902 -38 53995 -04 50711 3 19316 64 0.0395
—71 58755 —-37 5380 -03 50667 31 16603 65 0.0358
-7 58608 —36 53727 —02 50624 32 14281 66 0.0325
—6.9 58460 -35 53595 -01 50583 33 12307 67 00295
—6.8 58313 -—-34 53465 0 50540 34 10637 68 00268
—6.7 58166 —33 53336 01 50503 35 09226 69 00244
—-6.6 58019 -32 53208 02 50463 36 08032 7 00221
-65 57871 —-31 53082 03 50424 37 07021 71 00201
—-6.4 57724 -3 5.2958 04 50386 38 06160 72 00183
—-6.3 57577 —29 52836 05 50351 39 05425 73 00166
—6.2 57430 -—-28 52716 06 50321 4 04794 74 00151
—6.1 57283 —27 52598 07 50301 41 04250 75 00137
-6 57136 —2.6 52483 08 50299 42 03779 76 00125
—-59 56989 -25 52369 09 50323 43 03368 77 00114
—58 56843 —-24 52258 1 50387 44 03009 78 00103
—57 56696 —-23 52150 11 50510 45 02694 79 00094
—56 56550 —22 52045 12 50711 46 02416 8 00085
—55 56404 —-21 51942 13 51016 47 02170

—54 56258 -2 51843 14 51444 48 01951

—53 56113 -19 51746 15 52000 49 01757

—52 55968 -18 51653 16 52658 5 01584

—51 55823 -—-17 51563 17 53330 51 01429

-5 55679 —1.6 51477 18 53853 52 01290

—49 55535 -15 51394 19 53991 53 01166

—48 55392 -14 51314 2 53481 54 01054

—4.7 55249 -13 51238 21 52114 55 0.0954

Note: The numerical values are obtained by,a@ iterations of the simulation with size0DO data
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22
2

1.8

0 2 4 6 8 c

Ficure 3. Graph ofdF(c)/dc wheng; = 1.

dc  dF (b 1+ d [wy(c)\\ 7t
db db de\ wy(c) /)
wherec = F~1(b), and[dF ~(b)/db] is well defined on the regiofib = F(c):

[dF(c)/dc] # O}. If b = F~1(c) and(dc/db) = [dF ~*(b)/db] are well defined
then by the delta methoave have

\Vn(c—c) = Vn(F1(¢*) - F1(F(c))

dF1(b)\2
= N0 = | Ve (@), (19)

whereb = F(c).

(e) In Figures 3 and 4 we plot the graphs[adf-(c)/dc] wheng, = 1 andg; = (1,t)".
Wheng, = 1, [dF(c)/dc] # 0. However wheng, = (1,t)’, [dF(c)/dc] = 0 at two
points ¢ = 0 andc = 0.895 and at these points the derivatiy@F —*(c)/dc] is

not defined
84
6_.
4»
24
8 6 -4 2 0 2 a4 6 8 c

Ficure 4. Graph ofdF(c)/dc wheng; = (1,t)".
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Consistent estimators; and(); for the individual long-run variances; and
Q; can be obtained by employing standard kernel estimdtesse estimates
can then be averaged by produce consistent estimates of the quattities
and (. More specifically let & be the pooled least-squares estimator of the re-
gression mode(8), that is

and & ; be the residuak; ; = z; — &z, from this regressianDefine the

sample covariancel(j) = (1/T) X & 1+j, Where the summation is defined
over 1=t,t +j = T. Then the kernel estimators fok; and () are

r
A g ( )ru) (20)

o w( )ﬁ(i), (21)
j==T

wherew(-) is a kernel function an& is a lag truncation parametdiruncation
occurs whenw(j/K) = 0 for |j| = K. Averaging over cross section observa-
tions now leads to consistent estimators\ofb, and(). The following assump-
tions concern the class of admissible kernels and the choice of the bandwidth
to be employed in the kernel estimat@®) and (21). These assumptions are
used in our joint convergence arguments in the Appendixbsre it is shown

that (1/n) 3", A, —p A as(T,n) — co. For sequential limitsit is possible to

use weaker conditions

Assumption 3(Kernel Condition. The kernel functionw(-): R — [—1,1]
satisfies the following

(@ w(0) =1, w(x) = w(—x), f_llw(x)zdx < o0, andw(-) is continuous at zero and
all but a finite number of other points

(b) w(x) =0, [x] =1

(©) Wq = lim,_,o[1 — w(x)/|x|%] is finite for someq € (3,0).

Assumption 4 Bandwidth Condition We assume thadsT — oo, the band-
width parameter satisfiel§ — oo, (K%T) — 0, and (K?9*YT) — y > 0 for
somes < q = b for which W, is finite, whereb is given in condition(c) in
Assumption 1

The Parzen exponeigtin Assumption 3 is related to the smoothness of the
kernel at zeroThe most frequently used kernels in applications satisfy this
assumption—sedor example Andrews(1991) for details
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Remarks

(@) The iterated OLS estimator discussed previously is a pooled least-squares estima-
tor based on OLS detrended dataturally there are many pooled least-squares
estimators based on data that have been detrended in different @sagproce-
dure that is used widely in applications is to use first differenced. ddtes de-
trending procedure has difficulties similar to those of iterated Old%e specific
assume a simple linear trend in the panel mddglso that

Zi = Bit+ Vi

c
Vit = @ -1t & a:eXp<?>~ (22)
The difference detrended data are then simply
Z. =7, Bit,

wheregi; = (1/(T — 1) 2, Az ,. Define
R n T -1 . n T
¢t = T<QS 2 2 Zi2,t1> (Q 2 2 AZi,tZi,tl)v
i—1t=2 i—1t=2

where ), = (1/n) 21 (1/T)S,(Az )2 In this case applying similar argu-
ments to those used earlier in this sectime find

1
ct _—, 23
7 " 20g(0) 23)

where ws(c) = [i(1/2c)(e®® — 1) — 2r((1/2c)(1 — e 2)esd™n) +
r2(1/2c)(e®® — 1)}dr. From this outcomgit is apparent that the probability limit
of ¢*, [1/—2ws(c)], is different fromc in general and therefore the estimatdr
like ¢*, is not consistent(More details on this estimation procedure are given in
the previous version of this pap@ioon and Phillips 1999a)

(b) The asymptotic bias in iterative OLS estimation arises because of the correlation
between the detrended regressors and the regression dinerasual economet-
ric approach to the consistent estimation of regression coefficients when there is
correlation between the regressors and the errors is instrumental varlattles
present casen instrumental variable procedure is possible in which backward-
recursive detrended data are used to produce an instrumental variable for the re-
gressor in a forward-recursive detrended regression mddetxplain this idea
take the regression mode&3) and consider the following two recursive detrend-
ing proceduresrirst, detrend the data recursively through to,..., T, starting at
some observatioy > p, wherep = dim(g,), and calculate the backward-detrended
data

t -1 t
zZ,=2z,-0 < ;l gsg;> ( gl gszi,s>.
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Similarly, for t = 1,...,T — t;, we have the forward-detrended data as follows

T -1 T
zi,t=zi,lg{< > gsgg> ( > gszi,s)

s=t+1 s=t+1

Then we employ the forward-detrending procedure in the regression equation
(8) and have

Zi = az 1t &

Now, using the backward-detrended data as an instrumentonstruct the fol-
lowing instrumental variablélV ) estimator

Gy =Ty —1),

where

n Tt 1/ /T4
ay = <2 > zi,tl_zi,tl> ( < > % Zia— Ai>>-
i=1t=t, i=1\ t=t,

The forward-recursive detrended data use future information in detrendiegeas

the backward-recursive detrended data use past information in detreftiung

we might expect that the forward-recursive detrended efrpin the numerator

of &}, — 1 might be asymptotically uncorrelated with the backward-detrended
regressoiz ;—1. In the earlier version of the papéMoon and Phillips 19993,

we showed that the IV estimat@y, is consistent for almost all the values far
However it turns out that!, also has a problem that the numerato€gfis not
always nonzeroln particular whenc = 0, the limit of the denominator oty,
degenerates to zero in probabiliand so the IV estimatag;!, is not consistent in
this caseResolving the bias problem that arises in the numerator yields a degen-
eracy problem in the denominator for some values,aind in particular at =

0. In effect there is insufficient informatioriin terms of persistent excitation in
the regressgiinstrument about the true value = 0 to deliver a consistent esti-
mate for this value o€.

3.2. Double Bias Corrected Estimation

The iterative OLS estimator has an asymptotic bias that depends only on the
unknown localizing parameter. The idea behind the method we investigate
here is to adjust for the bias that arises from the correlation of the filtered data
and the regression ertdn particular we use a linear representation of the ex-
ponential term that appears in the bias producing elertient so that the es-
timator of c can be adjusted directly to take the bias in OLS regression into
account
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First, notice that whert is close tocy, we can approximate the asymptotic
bias w,(c), of the numerator o€™ — ¢ by

T [ R WE N

C =~
wz( ) T T
If there exists a consistent estimasay ¢, for ¢, then we may further approx-
imate w,(c) by

Tt 1_S\¢ t s t_s .
éy(C) = 2 2[ (+-%)e <? - ?>e(T T>C(c— c)] Fir(t,S).
Because this approximation to the bias(c) is linear inc, it is possible to
adjust the estimatot™ to take the bias information into accoufithe adjust-

ment is designed so that the new estimator, satisfies the system

10 1 7T
<;2§E? )C++—C)

=1 =1

-

n T
%2[%2(2 18— Ay)
T t s t s
+ 0 <T_12 tzzlsgl(e<T_T>c + <% _ ?s>e<T_T)c(é++ _ C))
X hy(t, s))] +0,().
Then
101 7
<; 21z tElqu)(é” ~c)
_ 13 iT t s\ (33| ++ _
<n.Elﬂ'T2t21521[<T T>eT ! }hT(t’5)>(é ©)
1010 N 1 T (ros)..
= H;l{;;l(zi,tlg,t—/\ <§t215216(-r T) hT(t,S)>

) eGTS)C] h(t, s)] +0,(1).

(24)
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Becauset is consistent foc, the third term on the right hand side (%4) van-
ishes The other two terms on the right hand sideg®#) also converge in prob-
ability to zero because as— oo for fixed n, they converge in distribution to

1 n 1
HEQ(L Qc,idW_wz(C)>,

which converges in probability to zero as— oo becauseE(folgC,i dw) =
w,(c) and (/M >, 0 — Q.

To implement the idea if24), we use the consistent estimatoe= F (™)
defined in Section 2assuming that there are no problems of identification
Then the preceding heuristic analysis leads to the following panel estimator
for the local to unity parametear

e

—Hm
~
3
_‘
—~~
I—F
wn
N
v
—
[E—
|
N

X e<Tt$)cﬁT(t,s)}. (25)

The inclusion ofA; in the formulation of¢** provides the usual serial correla-
tion bias correctionThe adjustment of the numerator and the denominator by

T t S\ .4
bhESS [1— <% _ ?SHe(T‘T)é Ar(ts)

T t t s
o % <2 > (t- S)eG*f)cﬁT(t, S)>

corrects for the bias from the use of detrended .data
From the definition of¢™*, we deduce that

t:1

wherery = T2(exp(c/T) — (1 + ¢/T)) and equality holds becausg, =
az -1+ &t
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To derive the probability limit of¢e™ under sequential limitswe first let
T — oo for fixed n and then leh — co. Because& is consistent foc, it follows

that
R 101 & 1 t s 1 _5)c. -1
¢ —c= [Hiﬁl{ﬁzzﬁ-l—ﬂi;(2821(;—;>9(T ) hT(t,S)>H
121X R O L S-S Ve
X_Z{_Egi H§.t*/\.+ﬂ.—229<T T>ChT(t,3)
N T T =

T

1
+rr ) > Ziz,tl} +0,(1).

t=1

WhenT — oo with fixed n, by the continuous mapping theorem and cross sec-
tion independenceve have

1 10 L. 1T (tos\ 1 T
X El:zl ?Zflli,t—l&,t*/\. + ﬁgle(T 7) hT(trS)+rT-|-_3t_21Zi2,ll}
1 .n 1 ) 1 [t ~ -1
ﬂ[al_ZlniUO Jc,i(f)df—jofo(r—s)h(r,s)dsdrﬂ
1N 1 1 rr
— . . (r—s)cfr
X nEIQUO Jc,.(r)dW(rHJOfoe h(r,s)dsdr>. (26)

In view of (14), we have

E(folgcz,i(r)dr—folfor(r - s)ﬁ(r,s)dsdr)

1 rr
= w,(C) —fo fo (r —s)h(r,s)dsdr= w(c), say

where

— 1 1
w,(C) = -1 {1 + L (1- ezc)} —f f ecrts) L (1— e 2¢)A(r, s)drds
2c 2c o Jo 2c

We know thatfolgz(r)dr has finite second momentalso, it is assumed that
sup|Ci] = C < o so sup|Q;| = C? < w. Then by the weak law of large
numbersasn — oo

1" 1 1 rr B
<ﬁ iE:LQi<J; géi(r)dr—fo fo (r—s)h(r,s)dsdr)) -, Qo(C). (27)

For the time beingassume thab(c) # 0 at the true value of.
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Similarly, in view of (15) we have

1 r
E(f:]c,idW) +J f e"9°h(r,s)dsdr= 0.
0 YJ0

Because lim(1/m >, O, = Q and lim,(1/n) > ; A; = A, and using the weak
law again asn — co, we have

1" 1 rr
— ' . (r=s)ch
<n .21<Q' ch,l(f)dW +fo fo e h(r,s)dsdr)) —, 0. (28)

Combining(27) and(28), and providedw»(c) # 0, we then have under sequen-
tial limits as(T,n — 00)seq

¢t >, (29)

In summary we have the following result for the consistency ®f" under
sequential limits Appendix C extends this result to give consistency¢of
under joint limits

THEOREM 3 Under Assumption& and 2, if w(c) # 0 and if ¢ is consis
tent for ¢ then as(T,n — ©)seq €™ —p C.

Remarks

(a) The consistency of** in the preceding theorem holds only for valuescafuch
thatw(c) # 0. In general w(c) is quite a complicated function afand is depen-
dent on the explicit form of the deterministic trends in the mo@ainsequently
it is hard to find analytically the set afsuch thatw(c) = 0. Figures 5 and 6 plot
the graphs ofv(c) for the most commonly used trengs= 1 andg; = (1, t)".

(b) These graphs show three important features @f). First, we see thatw(c) # 0
whenc < 0; secondw(c) = 0 whenc = 0; and third, there is another point af
for which w(c) = 0 in the regionc > 0 wheng; = (1,t)".

10.8
10.6
0.4

10.2

5 -4 -3 . Y] 1 2 c

Ficure 5. Graph ofw(c) wheng, = 1.
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+0.03 /
t0.02

10.01

0o 1T 2 c

0.01

+0.02

FiGure 6. Graph ofw(c) wheng, = (1,1)".

(c) Unfortunatelyatc = 0, w(c) is always zero regardless of the form of the deter-
ministic trends assumed in the mod€his can be verified by the following sim-
ple calculation for the general caskle have

w(0) = E(folwiz(r)dr —folfor(r - s)ﬁ(r,s)dsdr)
= folrdr —folfol(r Ds)ﬁ(r,s)dsdr—J;lLr(r — s)h(r,s)dsdr
= jol rdr —foljrlrﬁ(r,s)dsdr—folforrﬁ(r,s)dsdr
= f:rdr ffolf:rﬁ(r,s)drds=f:rdr ffolsds= 0,

where the last line holds for the following reasdret L,[0,1] be a space of
square integrable functions d40,1] with inner product f,g) = folf(r)g(r)dr.
Let Q denote a space of polynomial functions of degpesn [0,1] generated by
{Lr,...,rP}L Letg(r) = (1,r, ., IP). Then the operatorP from L,[0,1] to Q
deflned asP(f)=g(r)y (fo g(r)g(r) dr)(fO g(s)f(s)ds) is a projectionHence
whenf(r) =r, P(f(r)) = f(r) = r, and so we havé0 rh(r,s)dr = s.

As Figures 5 and 6 shqwven thoughw(c) # 0 for c < 0, w(c) is very close to
zero aroundc = 0. Because of thiswe can expect that the estimatdt* may
perform poorly forc ~ 0.

d

=

Next we derive the limit distribution o€** using sequential limit argu-
ments Here we assume thatsatisfiesw(c) # 0, F (c) is well defined and
[dF(c)/dc] # 0. In this case¢ = F ~*(¢") is V/n consistent and/n(¢ — c) is
stochastically bounde@ee(19)).
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First, standardizingg™ — ¢ by vn, we write

\/ﬁ(é++_C)
1N 1 T 1 T t t s e -1
= {; i_El[;tleft ?<§§l(t—8)e<T 7) hT(t,S))H
1 20(17 i L1l S
X —ni_Zl{;t_ElZi,t-lg,t + Q) ?g 2( <T ?)(C_C)>

><e<TL 7)e h(t, s)+rTi32 }

Becauset is consistent foc, we have

n T t t s
: >0 %(Z > (- s)e<TT)CﬁT(t,S)>
n= T\
10, 1 /(T2 (£-2)e.
== 0|22 t-9eT T/ hi(ts) | +0,). (30)
n= T\

Next, by the mean value theorem we write

10 .17 t t_s
F207EE (0 (7-7)e0)s P
10,1045 (o5
_ _nglﬂ'?t;l;le(T T) hT(t,S)
n T t t s t s
= in ;Q' %Zlgl(e(Tr)c _ e(f ?)C)hT(t,s)
10, (1LY t_s
- ﬁzln{?tzlzle— $>e<T 7) hT(t,s)}(C—c)
1. 1Tt t 1 sy, t s
_<ﬁ|219'><?t21321<‘|_'_$)(e<-r T) _e('r T) )hT(t,s)>
X A/n(¢c - c), (31)

wherec* is located between and¢. Becausec™ converges in probability to
andv/n(¢ — c) is stochastically bounde@ee(19)), it is easy to see that

(31) = 0,(1). (32)
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Sq, in view of (30)—(32), we now have

\/ﬁ(é++ C)
12001 2 L1 [T tos\.. -1
:|:_2{_22Zi2,t1_0i_2<2 (t_s)e<T T) hT(t,5)>H
N4\ T < T \{Z1o
1 n 1 T R N 1 T t t_ s B
X = 2{— Sz bt 023 Sl T>°hT<t,s>}
NS T ’ TS
+ 0p(1).
For fixedn, asT — oo, the main term ofVn(¢** — ¢) converges in distri-
bution to
l n 1 1 r 5 -1
[‘ > (f JZi(r)dr —f f (r— s)h(r,s)dsdr>]
ni=y o o Jo
1 n 1 1 r B
X — > (f Jei (Ndw(r) +f f e("s)ch(r,s)dsdr>. (33)
\/ﬁ i=1 0 0 0

As shown in the previous section

E[Qi <folgc,i(r)dW(r) +folf0r e<’5>°ﬁ(r,s)dsdr>] =0.

Appendix A derives the variance of the numerato(38).2 It is

1 1 r 2

E[Q(fo Jc,i(r)dW(r)waoLe<"3>°ﬁ(r,s)dsdr>]
1 2 1 r 2

= 02 ) _ (r=sicp
0 {E(fogc,.(r)dwm) (fofoe (r,s)dsdr)}

= ()'izvtf++ (C)7

where

1 rr 1 rl1 rpis B
Vé++(c)=ffezc“‘s’dsdr—szf ec(Prs=29dxh(p, s)dsdp
0 Y0 0o <YJ0 Y0
1 rp (s B
- Zf f f ec(sNec(s™Ih(p,s)drdsdp
0o J0 Y0
1rl 1 ptq
+ f f f (f e°<p+q‘2’0dx> h(g,r)h(p,r)drdpdg
0 0 Y0 0
101/ P . q .
+ f f <f e°<p5>h(q,s)ds><f e“'(q”h(p,r)dr)dpdq (34)
0 0 0 0
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Because sym? < oo and lim,_ (1/n)>" ;02 = @, it follows by the
Lindeberg—Levy central limit theorem thasn — o«

1 n 1 1 r
_ . . (r—s)ch Y
NG ZLQI <J; Je.i (NdW(r) +JO fo e h(r,s)dsdr) = N(O, DVe++(C)).

Combining this with the probability limit for the denominator (#3), Qw(c),
we have established the following theorem under sequential limit arguments
The same limit theory is obtained in Appendix D under joint limit arguments

THEOREM 4 Suppose that Assumptiodsand 2 hold. Also assume that
¢ = FY(¢") is consistent for cdF~(c)/dc is well definedand w(c) # O.
Then as(T,n — 0)seq
PVe++(C)
" Q%w(c)? >
where \{++(c) andw(c) are defined in(34) and (27), respectiely.

Vn(ett —c) = N(O (35)

Remarks

(@ In Table 3 we calculate numerical values\¥,++(c)/w(c)% —8 = ¢ = 8, where
g = (1,t). Whenc is close to 0 or BB, w(c) ~ 0 (see Figure § and so
Al Ve++(c)/w(c)? takes high values arourzl= 0 andc = 1.3.

(b) Appendixes C and D establish joint consistency ag2i® for (n,T — o0) (see
Theorem 13 and joint asymptotic normality as it85) for (n,T — oo) with
(n/T) — 0 (see Theorem 14

(c) When a consistent preliminary estimator fois available one may think of an
estimator that corrects for the double biases in a simpler way by subtracting the
estimates of\; andw,(c). Let € be a consistent estimator foyfor example ¢ =
F~%(¢%) or c = ¢**. A simple double bias corrected estimator could then be
defined as

Becauset is consistent forc and w»(c) is continuousit is straightforward that
€*** —, c. However this simple bias corrected estimator has an undesirable
property—its limit distribution depends on the asymptotic distribution of the pre-
liminary estimator that is used to estimate the higéc). Write, by definition,

R,
e
x (in 2 2 i( cat— A~ 0y (0)
- (% S 8, ) (Vo (0) - w2<c>>>). (36)
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TABLE 3. Numerical values o \f);;(;) in Theorem 4 wherg{ = (1,t)’

Ve (0) © Ver+ () va(c) \/ve++<c) \/ve++<c>
c w(c)> ¢ w(c)®> ¢ w(c)? ¢ w(c)? ¢ w(c)?
-8 49136 —46 75581 —-1.2 446729 22 48422 56 00944
-7.9 49572 —-45 77080 —-1.1 519287 23 4.0131 57 0.0856
—-7.8 50019 —-44 78665 -1 614285 24 33761 58 0.0777
—7.7 50477 —43 80343 -0.9 742174 25 28747 K9 0.0705
—-7.6 50948 —4.2 82123 -0.8 920310 26 24718 6 00640
—-75 51430 —4.1 84015 -—-0.7 1179273 27 21423 61 0.0581
-74 51926 -4 86030 —0.6 1577059 28 18690 62 0.0527
—-7.3 52436 —39 88181 —-0.5 2235227 29 16394 63 0.0478
—7.2 52960 —38 90481 —-0.4 3444371 3 14446 64 0.0434
—71 53499 —37 92947 —-0.3 6052925 31 12778 65 00395
-7 54054 —36 95597 —-0.2 13499285 32 11339 66 0.0358
—-6.9 54625 —-35 98451 -0.1 53695697 33 10090 67 00325
—-6.8 55214 -34 101535 0 — 34 09000 68 00296
—-6.7 55822 —3.3 104875 01 53762421 35 08044 69 0.0269
—-6.6 56448 —3.2 108503 02 1,3558429 36 07202 7 00244
—-6.5 57095 —3.1 112457 03 6122524 37 06459 71 0.0222
—-6.4 57764 -3 116780 04 3530930 38 05800 72 00201
—-6.3 58455 —29 121523 05 2344024 39 05215 73 00183
—-6.2 59171 —-28 126746 Q6 1714487 4 04694 74 0.0166
—-6.1 59912 -—-27 132520 Q7 1354350 41 04228 75 0.0151
-6 6.0680 —2.6 139830 08 1147475 42 03813 76 0.0137
-5.9 6.1477 —25 146078 Q9 1046621 43 03440 77 0.0125
—-58 62305 —24 154088 1 1046484 44 03106 78 0.0113
—-57 63165 —-23 163110 11 1205580 45 02806 79 0.0103
—5.6 6.4061 —22 173329 12 1893297 46 02537 8 00094

—55 64993 -21 184976 13 — 47 02294
—-54 65965 -2 198338 14 1233519 48 02076
—-53 66980 —19 213779 15 513654 49 01879
—-52 68040 -—-1.8 231768 16 290267 5 01701
—-51 69150 -17 252913 17 187699 51 01541
-5 7.0312 —1.6 278017 18 131506 52 0.1396
-49 71532 -15 308156 19 9.7317 53 01266
—48 72813 -—14 344803 2 74963 54 01147
—-4.7 74161 -13 390012 21 59536 55 0.1040

Note: The numerical values are obtained by,a@ iterations of the simulation with size0DO data

aBecausaw(0) = 0 andw(1.3) = 0, we do not report the values otj (Va++(c)/w(C)?).
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In view of (36), the asymptotic distribution of the numerator gh(¢*** — c)
depends on the joint weak limit ofl/\n) 2L WD (Yiragie — A —
Qi w(c)) and Vn(w,(C) — w,(c)). The asymptotic distribution of/n(w,(¢) —
w»(c)) then depends on the weak limit afn(c — c¢) by standard delta method
argumentsTherefore the asymptotic distribution of/n(¢*** — c) relies on the
limit distribution of the consistent preliminary estimator of

(d) On the other handhe double bias corrected estimator™ has a limit distribu-
tion that is independent of the weak limit of the preliminary consistent estimator
Therefore even though the double bias corrected estimétoris more compli-
cated than the simple estimatdf** and suffers from the problem of a degener-
ate denominator for certain specific valuesmfnotably ¢ = 0), we prefer to
recommenct™ ™.

4. APPLICATIONS
4.1. Tests on the Localizing Coefficient

The asymptotic normality of/n(¢™ — F(c)) andvn(¢*" — ¢) given in Theo-
rems 2 and 4 enables us to construct tests for many interesting hypotBepes
pose for instancethat we are interested in testing the null hypothesis

HO: Cc= Co, (37)

wherec, belongs to a consistently estimable paramete? $&en for example
Theorem 4 suggests the following simpteest based od*:

\/ﬁ(é++ - Co)
tstae = = ’
| PVe(€™)
Q2w(é++)2

whereQ) = (1/n) 3", O, = (1/n) S, O2. By Theorem 4we have
tsmr = N(0,1)

as(T,n — ©)seq The joint limit convergence af, to N(0,1) is established in
Appendix D

As mentioned earliethe panel model specification in modd) that allows
for a common local to unity parameter across individuals can sometimes be
too restrictive In such cases it may be of interest to test the difference of local
to unity parameters between specific subgroups of individu&lgppose that
2 andl, denote two subgroups of individuals and we are interested in test-
ing hypotheses about the local to unity parameters of m(jeh the follow-
ing form:

= Su +ylg +
Zi ¢ = €Xp T Ziv 1 TYiG T &t
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wherec, = c,if i € I, andc, = ¢, if | € iy,. A natural hypothesis is
HO: Ca = Cb'

Let n, = #(1,) andn, = #(ly,), respectivelyAlso, assume that,/n, = k < oo
asn,, n, — co. The null hypothesis can be tested by computing the Wald statistic

W (6 - 62
=N, ——————=—=

b b )

* (Na/Mp)Va + Wy

where ¢, is a consistent estimator far in group . € {a,b} and Vv, =
D, Verr (Er ) (Q5w(€;7)%) Y u € {ab). By Theorem 4 as(T,n — o)seq
we know

2
Wa,b:>/\/l’

a chi-square distribution with degree of freedom .one

4.2. An Application to Efficient Trend Elimination

In this section we show how consistent estimation of the localizing coefficient
¢ can be used for efficient estimation of the trend coefficieBtgppose a trend-
ing time serieg; is generated by the system

z. = Bot Bitt Y, t=1...,T,

c
Y, = ayi_; T &, a=e°/T<~—~1+ ?> (38)
wherec denotes a local departure from unity has mean zero and finite vari-
ance andy, = Opy(1) with a finite variance a§ — co. Suppose that our pri-
mary interest is in estimating the trend coefficigsit and in constructing
confidence intervals foB,. We assume a linear trend in mod8B) because it
is the most widely used specification in empirical applicatidnis straightfor-
ward to allow for general polynomial trendsut to keep the algebra simple we
do not discuss the general case here
