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Abstract

The Asian fish tapeworm (Schyzocotyle acheilognathi) is an important fish parasite with a
wide host range that infects over 300 species of fish worldwide. Schyzocotyle acheilognathi
has been reported from eastern coastal areas of Australia, but has not been previously reported
in Western Australia (WA). During a control program for invasive freshwater fishes in south-
western WA, a region with a unique and highly endangered freshwater fish fauna, tapeworms
identified as S. acheilognathi from their distinctive scolex morphology were found at a preva-
lence of 3.3% in goldfish (Carassius auratus), 37.0% in koi carp (Cyprinus carpio haematop-
terus) and 65.0% in eastern gambusia (Gambusia holbrooki) in a small suburban lake to the
north of Perth. For molecular confirmation, the 18S ribosomal RNA gene was targeted at
hypervariable V4 region. Koi carp isolates were 100% identical to S. acheilognathi isolated
from varying hosts, including the red shiner (Cyprinella lutrensis) and a human sample.
Sequences obtained from two eastern gambusia were identified as S. acheilognathi, but formed
a discrete cluster and may represent a novel genotype. Isolates from two other eastern
gambusia and two goldfish formed a distinct clade with only 91.9% similarity to previously
sequenced isolates of S. acheilognathi. This emphasizes the importance of molecular identifi-
cation methods in addition to morphological identification. The presence and potential for
transmission of these parasites in south-western WA may threaten the health of native fishes,
which are immunologically naïve to this introduced parasite. Immediate control or contain-
ment measures should be implemented to halt the spread of these parasites.

Introduction

The Asian fish tapeworm (Schyzocotyle (formerly Bothriocephalus) acheilognathi) is an intes-
tinal cestode parasite of fishes native to East Asia, and was originally described in 1934 as
Bothriocephalus acheilognathi from a single small cyprinid fish (Acheilognathus rhombeus)
in Japan (Yamaguti, 1934; Kuchta et al., 2018). Unusually for a tapeworm, S. acheilognathi
has a very broad host range and has been found in at least 312 freshwater fish species, belong-
ing to 38 families and 14 orders, as a result of worldwide introductions (Kuchta et al., 2018).
The species has also been identified in non-piscine vertebrate hosts including a human,
amphibians, reptiles and birds (Prigli, 1975; García-Prieto & Osorio-Sarabia, 1991; Scholz,
1999; Yera et al., 2013; de León et al., 2018; Kuchta et al., 2018), although these are considered
accidental hosts (Kuchta et al., 2018). Infection with S. acheilognathi can cause bothriocepha-
losis in its host, with clinical signs including blockage of the gastrointestinal tract, destruction
of intestinal mucosa, intestinal rupturing, distended abdomen, weight loss, protein depletion,
intestinal inflammation, anaemia, diminished swimming ability and eventual mortality
(Davydov, 1978; Scott & Grizzle, 1979; Brouder, 1999; Hansen et al., 2006; Matey et al., 2015;
Cole & Choudhury, 2016). The clinical signs can also be subtle, leading to reduced growth in
the host, which can result in higher predation rates (Hansen et al., 2006; Choudhury et al.,
2013). The global spread of invasive fish species and their parasites, such as S. acheilognathi, is
likely attributable to the exotic fish trade (Košuthová et al., 2015; Kuchta et al., 2018).

During the 1960s and 1970s, S. acheilognathi was imported from East Asia to Europe and
North America in grass carp, which was introduced to reduce the growth of vegetation in fresh-
water ecosystems (Choudhury et al., 2006, 2013; Matey et al., 2015; de León et al., 2018). The
parasite has since spread globally (Cole & Choudhury, 2016; Kuchta et al., 2018) and has
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been the cause of numerous devastating infections and high
mortalities of naïve hosts in fish hatcheries, with serious economic
consequences for the aquaculture industry (Han et al., 2010; Kilian
et al., 2012; Oros et al., 2015; Xi et al., 2016; Boonthai et al., 2017).
Fish are a major source of global income (Shelton & Rothbard,
2006; Olsen & Hasan, 2012; Tacon & Metian, 2013), particularly
for developing countries (Mulokozi et al., 2020), where koi carp
(Cyprinus carpio haematopterus) are often bred for consumption
or aesthetic purposes (Rahaman et al., 2012). In addition, the inva-
sion of waterways outside of its natural range by S. acheilognathi
may threaten native fishes (Choudhury et al., 2006; de León
et al., 2018). Brouder & Hoffnagle (1997) studied fishes from the
Colorado River, USA, and found that three of the rivers’ four
endangered fish species host S. acheilognathi (Brouder &
Hoffnagle, 1997). A subsequent study found S. acheilognathi para-
sitizing all fish species in the Little Colorado River (Choudhury
et al., 2004). Schyzocotyle acheilognathi has contributed to the
decline of 40–60% of the humpback chub (Gila cypha) in the
Grand Canyon National Park, Arizona, USA, since the 1990s and
is being monitored in the desert of the south-west USA
(Choudhury & Cole, 2012).

In Australia, S. acheilognathi has been previously reported
from the eastern coastal states including New South Wales
(NSW), Queensland and Victoria (Dove & Fletcher, 2000).
Only three studies have molecularly confirmed the species iden-
tity of the parasite in Australia, and all are from NSW (Luo
et al., 2002; Xi et al., 2016; Kuchta et al., 2018; Rochat et al.,
2020). With the advent of molecular technology, there has been
an increasing need for genus-specific primers that amplify hyper-
variable regions to enable species identification. Hadziavdic et al.
(2014) compared all of the regions within the 18S ribosomal RNA
(rRNA) gene of S. acheilognathi and found that the hypervariable
region V4 had the longest variable region with the greatest length
of polymorphisms, and also included a 70 bp conserved region for
primer annealing. Primers targeting the 18S rRNAV4 region in S.
acheilognathi have been successful in identifying the species
(Nickrent & Sargent, 1991; Bean et al., 2007; Hadziavdic et al.,
2014). In the present study, we report the first evidence of S. achei-
lognathi from Western Australia (WA), within the South-Western
Ichthyological Province, a region of extreme endemism, using mor-
phological and molecular identification at the 18S rRNA V4 locus.

Materials and methods

Study site and sample collection

Between February and May 2018, 134 introduced fish from three spe-
cies were collected from Blue Lake, a modified wetland in the City
of Joondalup, WA (S 31o 44.700′, E 115o 45.9668′) as part of an
approved feral fish control program. The fish consisted of 91 goldfish
(Carassius auratus), 26 koi carp (C. carpio haematopterus) and intro-
duced eastern gambusia or mosquitofish (Gambusia holbrooki).

Freshly euthanized fishes were dissected at Murdoch
University’s Fish Health Unit, Perth, WA, and dead tapeworms
were removed from the intestine. Half of the tapeworms from
each sample were placed in 10% formalin for microscopy and
the remainder placed in 100% ethanol for molecular analysis.

Statistical analysis

Prevalence [percentage (%) of hosts infected with S. acheilognathi,
with 95% confidence intervals (CIs)] and intensity of infection

(number of S. acheilognathi found in each host) (Bush et al.,
1997) were calculated using the Program QPweb 3.0 (Reiczigel
et al., 2019).

Morphological analysis

For morphological analysis on samples from goldfish and koi
carp, tapeworms were first relaxed in sterile water overnight and
then stained using a dilute Semichon’s acetocarmine stain, dehy-
drated using a graded alcohol series, cleared in methyl salicylate,
mounted whole in Canada balsam and viewed in brightfield on an
Olympus BX50 compound microscope [10×–40× (Olympus
Corporation, Shinjuku, Tokyo, Japan)] with an Olympus DP71 uni-
versal camera (Olympus Corporation, Shinjuku, Tokyo, Japan),
using cellSens software (Olympus Corporation, Shinjuku, Tokyo,
Japan). The eggs were viewed on the same microscope with a
DP1 universal camera but using a Nomarski filter. Infection inten-
sities were viewed on an Olympus stereo microscope SZX7 with an
Olympus DP27 camera, using cellSens software.

Molecular analysis

Total genomic DNA (gDNA) was extracted from ∼25 mg of tape-
worm tissue (one tapeworm per extraction) and fish intestinal tis-
sue. The tapeworms and intestinal tissue were dissected in sterile
petri dishes and extractions were conducted using a Qiagen
DNeasy Blood and Tissue kit (Qiagen, St Louis, Missouri,
USA). The 18S rRNA V4 region was amplified using the forward
primer Ces1 (5′-CCAGCAGCCGCGGTAACTCCA-3′) and
reverse primer Ces2 (5′-CCCCCGCCTGTCTCTTTTGAT-3′)
producing a ∼420 bp product as previously described (Scholz
et al., 2003; Bean et al., 2007), except that the annealing tempera-
ture was adjusted to 64°C after optimization. Polymerase chain
reaction (PCR) was conducted using 25 μl reaction volumes,
which consisted of 0.02 U/μl Taq DNA polymerase, 1× reaction
buffer, 1 mM MgCl2, 200 μM of each dNTP, 1 μM of each primer,
2 μl template gDNA and PCR-grade water to the final volume.
PCR cycling conditions for the Ces1/Ces2 primer set consisted
of an initial denaturation at 95°C for 15 min, followed by 45 cycles
of 94°C for 1 min, 64°C for 1 min and 72°C for 2 min, with a final
elongation step at 68°C for 10 min. PCR products were separated
by gel electrophoresis using a 1.0% (w/v) agarose gel (Fisher
Biotec, Wembley, WA, Australia) in Tris-acetate buffer (consisting
of 40 mM Tris-hydrochloride, 20 mM ethylenediamine tetra-
acetic acid at pH 7.0). PCR products of the expected size were
excised from the agarose gel, purified using an in-house
filter-tip-based method (Yang et al., 2013) and sequenced using
a Big Dye version 3.1 Terminator Cycle Sequencing Kit
(Applied Biosystems, Massachusetts, USA) on a 96-capillary
3730xl DNA Analyzer (Thermo Fisher Scientific, Waltham,
Massachusetts, USA) at Murdoch University and at the
Australian Genome Research Facility (AGRF), Perth, WA.
Sequences were assembled in the forward and reverse directions
to produce a consensus sequence, assessed for quality and
trimmed of primers using Geneious v10.2.2 (Kearse et al.,
2012). Consensus sequences were checked against nucleotide
sequences in the GenBank database using the Basic Local
Alignment Search Tool (BLAST) and aligned with related
sequences using the MUSCLE alignment tool (Edgar,
2004) with Geneious software. The 364 bp alignment (including
gaps) was imported into the PhyML program (Guindon et al.,
2010) to assess nucleotide substitution models based on
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Bayesian Information Criterion. The model general time revers-
ible + gamma distribution (GTR + G) was used to construct a
Bayesian phylogenetic tree using Geneious and the MrBayes
plugin v3.2.6 (Huelsenbeck & Ronquist, 2001). The tree was
built using the following parameters: Hasegawa-Kishino-Yano
(HKY85) + GTR + G model; 1,100,000 Markov chain Monte
Carlo (MCMC) length; ‘burn-in’ length of 10,000; subsampling
frequency of 200. The tree was rooted with the outgroup sequence
Parabothriocephalus gracilis (KR780945) (not shown).

Results

Morphological identification

The tapeworms from the koi carp and goldfish were identified as
S. acheilognathi based on the following morphological characters:
fleshy heart-shaped scolex with unarmed bothria that were short
and deep; proglottids had rounded edges with an absent neck; the
first proglottids were immediately posterior to the scolex and
much narrower than the scolex; and in mature proglottids, genital
pores and vitelline follicles were clearly visible (figs 1 and 2a, b).
All tapeworms examined using microscopy had gravid proglottids
(fig. 2c), with eggs being both operculated and unembryonated
(fig. 2d).

Fig. 1. Semichon’s acetocarmine-stained heart-shaped scolex of Schyzocotyle achei-
lognathi, from the intestines of koi carp (Cyprinus carpio haematopterus), showing
unarmed bothria and proglottids much narrower than the scolex with rounded
edges (photo: Aileen Elliot).

Fig. 2. Semichon’s acetocarmine-stained mature and gravid proglottids of Schyzocotyle acheilognathi. (a) Arrows indicate genital pores and (b) vitelline follicles. (c)
Gravid proglottids ready for dispersal and (d) operculated and unembryonated eggs, with arrow indicating operculum (photos: Aileen Elliot).
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Prevalence and intensity of infection

The length and weight range of the koi carp, goldfish and eastern
gambusia as well as molecular confirmation of S. acheilognathi in
each of the hosts was recorded with an overall tapeworm preva-
lence of 8.5% (95% CI 7.5–9.5) (table 1).

The intensity of infection measured in goldfish and koi carp
was high, ranging from 203 to 607 parasites per infected fish
(mean = 386, 95% CI 296–486) (table 2 and fig. 3), with evidence
of intestinal perforation, blockage and ischemia. Several tape-
worms exceeded 400 mm in length, which was almost equal to
the length of the intestines in some fish. Eastern gambusia also
had a high occurrence of parasite burdens, although intensity of
infection was not measured.

Molecular characterization

The 18S rRNA V4 region was amplified from two koi carp (CP1,
CP4), two goldfish (CPAFT3, CPAFT4) and four eastern
gambusia (CPAFT1, CPAFT2, CPAFT5 and CPAFT7) (table 3).
Sequencing confirmed that two of the koi carp isolates (CP1
and CP4, GenBank accession numbers MT898660 and
MT898661) were identical to each other (supplementary appen-
dix) and to S. acheilognathi (KX060604) isolated from red shiner
(Cyprinella lutrensis) in the Czech Republic, and from a human
sample (HM367066) (Yera et al., 2013; Brabec et al., 2016).
Furthermore, isolates CP1 and CP4 were 99.0% similar to 18S
rRNA V4 sequences from 12 Schyzocotyle isolates from other
fishes, including threadfin shad (Dorosoma pretensense) and
C. lutrensis (DQ86690 and AY340106, respectively) (Škerıková
et al., 2004; Bean et al., 2007). Two of the eastern
gambusia isolates (CPAFT1 and CPAFT2) (GenBank accession
numbers MT898662 and MT898663) were identical and were
99.0% similar to nine BLAST hits, including S. acheilognathi
from red shiner (C. lutrensis) (KX060604) and largemouth yel-
lowfish (Labeobarbus kimberleyensis) (KX060602) (Brabec et al.,
2016). Four of the isolates obtained in this study from two goldfish
(C. auratus) (CPAFT3 and CPAFT4) and two eastern gambusia
(CPAFT5 and CPAFT7) were identical to each other (GenBank
accession numbers (MT898664–MT898667), but only 98.7% simi-
lar to a single sequence named S. acheilognathi (AY340104)
(Škerıková et al., 2004). These Schyzocotyle sp. Blue Lake genotype
isolates were then most similar to 12 S. acheilognathi isolated from
Nazas chub (Gila conspersa) and a common carp (KX060601 and
KX060600, respectively) (Brabec et al., 2016). However, sequence
similarity with these 12 isolates was only 91.0%, with 99.0%
query cover (table 3) (see supplementary appendix table S1).

Phylogenetic analysis

All isolates were distinct from Bothriocephalus and Senga species
and grouped within Schyzocotyle clades (fig. 4). The koi carp
sequences (CP4, MT898661; and CP1, MT898660) grouped
with S. acheilognathi sequences (Schyzocotyle Group 2A), and

two of the novel eastern gambusia genotypes (CPAFT1,
MT898662; and CPAFT2, MT898663) formed a discrete S. achei-
lognathi subgroup (Schyzocotyle Group 2B) with strong support
(posterior probability (PP) = 0.9). Four sequences (MT898664–
MT898667) formed a discrete subgroup to S. acheilognathi
(Group 3) with strong support (PP = 1.0), which included two
goldfish (CPAFT3 and CPAFT4) and two eastern gambusia
(CPAFT5 and CPAFT7) (fig. 4).

Discussion

AFT identification has historically been based on the unique
morphology of the scolex, which is inadequate for detecting

Table 1. Length, weight and prevalence of fishes infected with Schyzocotyle acheilognathi from Blue Lake, Joondalup.

Host species Weight range Total length range % Hosts infected # Hosts infected

Carassius auratus 30.27–23.50 g 106–498 mm 3.3% (CI 3.0–4.3) 3

Cyprinus carpio haematopterus 1466–4780 g 448–768 mm 37% (CI 36.0–38.0) 7

Gambusia holbroki 0.67 g and 4.03 g 38–84 mm 65% (CI 64.0–66.0) 11

Table 2. Number of tapeworm scolices found in the goldfish and koi carp from
Blue Lake, Joondalup in Western Australia.

Host species Sample IDa

Tapeworm scolices
countb

TotalEthanol Formalin

Goldfish
(Carassius
auratus)

CPAFT3 261 256 517

CPAFT4 158 161 319

CPAFT9 111 96 207

Koi carp (Cyprinus
carpio
haematopterus)

CP1 240 367 607

CP2 441 160 601

CP3 206 182 388

CP4 173 30 203

CP5 79 130 209

CP6 342 154 496

CP7 186 129 315

aSample identification code.
bEach scolex was counted as one cestode.

Fig. 3. Intensity of Schyzocotyle acheilognathi infection in one koi carp (photo: Aileen
Elliot).
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closely related subtypes (Brabec et al., 2016; Xi et al., 2016).
Indeed, in this study, the gross morphology of the AFT and
Schyzocotyle sp. Blue Lake genotype (GenBank accession numbers
MT898664–MT898667) was indistinguishable. Schyzocotyle sp.
Blue Lake genotype was evident by the low sequence homology
(91.9% sequence similarity) to AFT sequences in GenBank
(table 3), and the phylogenetic grouping of this tapeworm was
distinct from other Schyzocotyle species, with strong support
(PP = 1.0) (fig. 4). This emphasizes the need for molecular meth-
ods for the subtype identification of Schyzocotyle sp. Blue Lake
genotype and the AFT in future studies. As this study targeted
a partial fragment of the 18S rRNA gene, characterization of
the complete or near full-length of 18S rRNA is required to con-
firm that Schyzocotyle sp. Blue Lake genotype represents a novel
species from an unknown origin. Future studies should also aim
to morphologically and genetically characterize Schyzocotyle spe-
cies identified by this study, which will also aid our understanding
of the potential origins of the AFT in south-western WA (Luo
et al., 2002; Xi et al., 2016).

In the present study, S. acheilognathi was identified by micros-
copy and molecular characterization for the first time in WA from
introduced goldfish, koi carp and eastern gambusia in a modified
urban wetland. If translocated from this locality (e.g. by humans,

birds, floods, etc.) to adjacent lentic or lotic systems, this parasite
would pose a serious threat to the unique freshwater (and possibly
estuarine) fish fauna of south-western WA. Several studies have
already shown that AFT can infect fish in environments with
low to moderate salinity (Ozturk et al., 2002; Bean, 2008;
Bean & Bonner, 2010; İnnal et al., 2016; Sara et al., 2016; McAllister
et al., 2017; Güven & Öztürk, 2018; Zhokhov et al., 2019), and has
already threatened the populations of several endemic species in
other countries (Salgado-Maldonado & Pineda-López, 2003;
Choudhury et al., 2006, 2013; de León et al., 2018).

The inland waters in the south-west of WA have the highest
proportion of endemic freshwater fish on the continent and are
considered one of the world’s biodiversity hotspots (Myers
et al., 2000; Beatty & Morgan, 2013; Morgan et al., 2014).
Invasive fish species may predate or compete with native fishes,
or alter the habitat to the detriment of native species (Olden
et al., 2008; Beatty & Morgan, 2013; Morgan et al., 2014). An add-
itional threat posed by alien fishes, and one that is often under-
appreciated, is the introduction of new parasites and pathogens
(co-invaders) (Lymbery et al., 2014). Co-invading parasites can
be more pathogenic to native fishes than to their natural hosts,
possibly due to the lack of coevolutionary existence (Lymbery
et al., 2014) and, as such, can cause morbidity and mortality on

Fig. 4. Bayesian phylogenetic tree of a 354 bp alignment (including gaps) of 18S rRNA V4 sequences of known Schyzocotyle acheilognathi species and Schyzocotyle
sequences derived from this study. Scale bar shows the number of nucleotide substitutions per site. Sequences from this study are indicated by colours and sym-
bols in the figure’s legend.
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already declining native populations. In south-western WA, many
river systems have seasonally intermittent flow, and fish commu-
nities must survive the dry season in small, disconnected refuge
pools, which could amplify the transmission and effects of
co-invading parasites (Lymbery et al., 2020). At least two other
species of co-invading parasites, including Ligula intestinalis
(Morgan, 2003; Chapman et al., 2006) and Lernaea cyprinacea,
have recently been identified in native fishes in south-western
WA and they also infect diadromous and estuarine fishes that
venture into freshwaters (Hassan et al., 2008). Lernaea cyprinacea
was introduced to WA’s native waterways as a co-invader with
goldfish and now infects at least six native freshwater species
(Hassan et al., 2008). The original source of the S. acheilognathi
in WA is unknown, but it appears that either goldish or koi
carp are likely to be the source as these are the natural hosts for
this particular parasite (Dove & Fletcher, 2000; Košuthová
et al., 2015; Oros et al., 2015; Salgado-Maldonado et al., 2015;
Kuchta et al., 2018).

The histopathological signs of S. acheilognathi in fish hosts are
frequently extreme, with the parasite often killing its host (Liao &
Shih, 1956; Bauer et al., 1969; Edwards & Hine, 1974; Scott &
Grizzle, 1979; Pool et al., 1984; Schäperclaus et al., 1991;
Brouder, 1999). In the present study, there was evidence of intes-
tinal perforation and a large number (>600) of S. acheilognathi
detected in each fish – far greater than previous studies, which
have reported infection intensities of between two and 45 tape-
worms (Scholz, 1997; Brouder, 1999; Košuthová et al., 2015). In
this study, the high intensity of tapeworms caused blockage and
ischemia in parts of the intestines, resulting in intestinal perfora-
tions. The size of the tapeworms varied according to the size of
the host and in one koi carp sample a single tapeworm measured
over 400 mm in length. Over one quarter of the native fishes in
south-western WA are listed as threatened with many very

small in size (<100 mm total length) (Morgan et al., 2014). As
with many parasitic interactions, the pathogenicity of S. acheilog-
nathi increases in smaller hosts, with the potential to impact
native fishes further. Gambusia holbrooki has been previously
identified as a host for S. acheilognathi (Dove et al., 1997; İnnal
et al., 2016; McAllister et al., 2017). Gambusia holbrooki is already
widespread throughout Australia and, because of its very large
population sizes, represents a potential vector for further spread
of the parasite (Morgan & Buttemer, 1996; Reynolds, 2009).
The discovery of S. acheilognathi in WA waters reinforces the
importance of invasive fish control programs. Communication
and education programs to the wider community are needed to
help reduce the release of alien fishes into Australian waterways.
It should also be noted that S. acheilognathi poses a potential
health risk to humans. Although not generally considered zoo-
notic, there is one case study that identified a 32-year-old male
who was initially diagnosed with Diphyllobothrium; however,
molecular analysis of the DNA extracted from eggs in the patient’s
faeces identified them as S. acheilognathi, highlighting the import-
ance of molecular identification techniques (Yera et al., 2013).
Future research investigations should also study other potential
vectors, such as frogs, reptiles and birds (Kuchta et al., 2018),
for the transmission of Schyzocotyle spp. in south-western WA.
It is imperative that the potential spread and impacts of the inva-
sion of S. acheilognathi be identified in future research to effect-
ively control and manage the transmission of the parasite.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0022149X21000365.
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Schyzocotyle
acheilognathi
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Schyzocotyle
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Schyzocotyle
acheilognathi 100.0%
Schyzocotyle
acheilognathi 99.6%
Schyzocotyle
acheilognathi 99.5%
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CPAFT1
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acheilognathi 99.0%
Schyzocotyle
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Blue Lake
genotype

CPAFT3
CPAFT4
CPAFT5
CPAFT7

MT898664
MT898665
MT898666
MT898667

Bothriocephalus
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acheilognathi 90.7%
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acheilognathi 90.7%
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