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Supersonic turbulent flows at Mach 2.7 over concave surfaces for two different radii
of curvature were investigated and compared with a flat plate turbulent boundary
layer using direct numerical simulations. The streamwise velocity reduces in the
outer part of the boundary layer due to compression, while it increases near the wall
due to curvature, with a higher shape factor for the concave cases. The near-wall
spanwise streak spacing reduces compared to the flat plate, with large-scale streaks
and turbulence amplification also observed. Streamwise velocity iso-surfaces and
streamlines show the generation of Görtler-like vortices, consistent with significant
centrifugal effects. Abundant small vortices are shown to be associated with large
baroclinic production of vorticity that is caused by the density and pressure gradients
that are associated with concave compression. Profiles of turbulent kinetic energy
and turbulent Mach number exhibit a characteristic two-layer structure in the concave
boundary layer cases. In the outer layer, turbulence is greatly amplified, whereas a
local balance exists in the inner layer. Turbulent energy budget analysis shows that
both production and dissipation increase near the concave wall, whereas in the outer
part of the boundary layer, the production is increased and ultimately balanced by
convection and turbulent transport.

Key words: boundary layer structure, compressible boundary layers, high-speed flow

1. Introduction
Supersonic boundary layers have been of great practical interest to researchers

for several decades. While the majority of the research has been focused on
flat geometries, realistic high-speed (e.g. supersonic and hypersonic) vehicles are
composed of curved surfaces and more complex geometries. Concave surface
curvature can introduce significant distortion to a compressible boundary-layer
flow due to multiple, potentially coupled, effects including adverse pressure gradient
(APG), bulk flow compression and possible centrifugal instabilities (see Saric 1994;
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Turbulence structures and statistics of a supersonic boundary layer 61

Smits & Dussauge 2006; White 2007, for examples). Improved understanding of
the physical processes driving these high-speed turbulent boundary-layer flows is
necessary for the design of more efficient supersonic and hypersonic vehicles, which
may be able to utilize the physical mechanisms to their advantage.

Several experimental and theoretical studies have been performed to gain insight
into these processes, as reviewed in Spina, Smits & Robinson (1994), showing that
APGs and concave wall curvature destabilize the boundary layer and enhance turbulent
mixing, explained by Green (1970) in terms of the conservation of angular momentum.
The destabilization physically manifests itself as an increase in turbulent fluctuations
due to the streamline curvature, APGs and bulk compression. This is in contrast to
the stabilizing effects of favourable pressure gradients on a boundary layer and the
weakening of the coherent structures (Spalart & Watmuff 1993; Tichenor, Humble &
Bowersox 2013; Sun, Hu & Sandham 2017), which lead to a turbulence reduction in
the outer region of the boundary layer.

Experiments by Donovan, Spina & Smits (1994) in a Mach 2.9 turbulent flow
showed how the wall shear stress increases over a concave wall. ? investigated a flat
plate with an imposed pressure gradient equal to that over a curved ramp, and an
augmentation in the wall friction was reported, highlighting the importance of the
curvature. Smith & Smits (1994, 1995) did experiments to compare the Reynolds
stresses of the curved flow with a flat plate flow which has an equal APG. Flaherty
& Austin (2013a) demonstrated that heat transfer was also significantly enhanced on
concave surfaces.

Spina et al. (1994) used two parameters to characterize the dilatation/compression
and the streamline curvature. The bulk dilatation or compression impulse parameter
is defined as Ip = γ

−1 ln(p2/p1), where γ is the specific heat ratio with p1 and p2
the static pressure before and after the pressure gradient, respectively. The parameter
Iϕ =1ϕ represents the change in the wall angle in radians. For a Mach 2.7 case with
Ip= 0.35 and Iϕ = 0.1, Luker, Hale & Bowersox (1998) observed a 70–100 % increase
in the turbulent stress levels. Smith & Smits (1994, 1995) found higher levels of
turbulent stresses when the pressure gradient was applied over smaller distances. They
noted the peak Reynolds shear stress was doubled for Ip = 0.46 and Iϕ = 0.14 over a
distance of seven times boundary-layer thickness. Recently Neel et al. (2016) studied
the effects of a streamline curvature-induced APG on a Mach 4.9 turbulent boundary
layer with parameters Ip= 0.47 and Iϕ = 0.13, which revealed a large amplification of
the shear stresses in the boundary layer over the APG region, where schlieren images
and averaged velocities from planar particle image velocimetry revealed a thinning of
the boundary layer.

Over concave surfaces, it is possible to excite an instability mode due to centrifugal
effects. This instability manifests itself as streamwise-oriented counter-rotating vortices
known as Görtler vortices (Görtler 1954). A relevant non-dimensional parameter
is the local Görtler number defined as Gθ = Reθ

√
θ/R, where θ is the boundary

layer momentum thickness, Reθ is the Reynolds number based on the displacement
thickness and free-stream velocity and R is the surface radius of curvature. In general,
as the Görtler number increases, Görtler vortices become more pronounced. Görtler
vortices can form even in fully developed turbulent flows. For supersonic curved
boundary layers, as proposed by Bradshaw (1974), the destabilizing process is caused
by the combined effects of the streamline curvature (∂V/∂x), the normal (∂p/∂y)
and streamwise (∂p/∂x) pressure gradients and the bulk dilatation (∇ · V), making
it extremely complicated. Theoretical work has also been conducted to analyse the
instability mode and the stability limit leading to the Görtler vortices, as summarized
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62 M. Sun, N. D. Sandham and Z. Hu

in the review by Spina et al. (1994). Recently, Ren & Fu (2015b) and Li et al.
(2010) ran simulations for laminar flow to characterize the formation of Görtler
vortices and deduced that secondary-mode instabilities result in sinusoidal oscillations
in the Görtler vortices, and eventually lead to vortex breakdown and transition to
turbulence.

It has been suggested that an increase in large-scale activity leads to an overall
increase of the turbulent intensity (Harun et al. 2013). Several experiments have tried
to visualize the flow structures of Görtler vortices, including Luca et al. (1993) for
a Mach 7 flow, Ciolkosz & Spina (2006) at low supersonic Mach numbers varying
from 1.06 to 2.87 and Flaherty (2013) at Mach 5.12. Recently, Wang & Wang (2016)
studied experimentally the response of turbulent structures in a Ma= 2.95 supersonic
boundary layer to concave curvature and found that the large-scale vortices formed in
the flat-plate region break down into smaller ones immediately after being convected
into the concave region. Since only a two-dimensional longitudinal slice was obtained,
it was difficult to speculate about the three-dimensional vortex structures on the
concave walls.

Experiments are limited in terms of what can be actually measured. Additionally,
there are limited publications (Tong et al. 2017) on numerical simulations of
supersonic flow over curved surfaces that could give more insight. In this paper,
we present direct numerical simulation (DNS) studies of supersonic Mach 2.7 flows
over concave surfaces with different radii of curvature, R = 308 and 908 mm, and
over a flat plate. The parameters defined by Spina et al. (1994) are Ip = 0.293 and
Iϕ = 0.055 for R = 908 mm, while Ip = 0.822 and Iϕ = 0.165 for R = 308 mm, for
which significant curvature effects are expected. The detailed turbulence structures and
flow statistics are analysed. The paper is organized as follows. In § 2 the numerical
method and the simulation parameters are introduced. Section 3 discusses turbulence
statistics such as mean profiles, boundary-layer thickness, shape factors and pressure
fluctuations, while § 4 discusses three-dimensional turbulent structures in concave
flows. Statistical quantities such as turbulence fluctuations, turbulent kinetic energy
(TKE) and budget are compared with the flat plate case in § 5. Finally, conclusions
are presented in § 6.

2. Computational set-up
2.1. Numerical simulation and turbulent inflow generation

All simulations in this paper solve the three-dimensional unsteady compressible
Navier–Stokes equations directly without any modelling, using an in-house DNS
code. The code has been previously used for studies of instability, transition and
turbulent high-speed flows (Sandham et al. 2014; Sandham 2016). Here we provide
only a brief recap of the main features of the code. Details of the governing equations
and algorithm can be found in Touber & Sandham (2009) and references cited therein.

The governing equations are solved in non-dimensionalized conservative forms of
the continuity, momentum and energy equations in curvilinear coordinates (ξ , η, ζ )
which are transformed from Cartesian coordinates (x, y, z). The equations are non-
dimensionalized by the inflow parameters:

∂U
∂t
+
∂F
∂ξ
+
∂G
∂η
+
∂H
∂ζ
= 0. (2.1)
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The conservative variables and the flux terms are given by

U= J


ρ

ρu
ρv

ρw
ρe

 and F=Fc+Fv = Jrξ


ρu∗

ρuu∗ + psx
ρvu∗ + psy
ρwu∗ + psz
(ρe+ p)u∗

− Jrξ


0

σxxsx + σxysy + σxzsz
σyxsx + σyysy + σyzsz
σzxsx + σzysy + σzzsz
τxsx + τysy + τzsz

 ,
(2.2a,b)

where
sx = ξx/rξ ,
u∗ = usx + vsy +wsz, rξ =

√
ξ 2

x + ξ
2
y + ξ

2
z ,

τx = σxxu+ σxyv + σxzw− qx,
τy = σyxu+ σyyv + σyzw− qy,
τz = σzxu+ σzyv + σzzw− qz.

 . (2.3)

Here, Fc and Fv denote the convective and viscous terms, respectively. The flux terms
G and H have forms similar to that of F. The viscous stress and heat flux terms are
obtained from Newtonian and Fourier models, given by

σij =
2µ
Re

[
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
−

1
3
∂uk

∂xk
δij

]
(2.4)

and
qj =−

µ

(γ − 1)RePrM2
∞

∂T
∂xj
. (2.5)

Here, Re represents the Reynolds number, Re= δiU∞/ν∞, where δi denotes the 99%
boundary-layer thickness at the inflow, U∞ denotes the inflow free-stream velocity
and ν∞ denotes the kinematic viscosity of the inflow free stream; and Pr represents
the Prandtl number, Pr= Cpµ∞/k∞, where Cp denotes specific heat, µ∞ denotes the
inflow free-stream viscosity and k∞ denotes the thermal conductivity of the inflow
free stream. The viscosity µ is calculated from Sutherland’s law, and the relationship
between the thermodynamic variables is given by the ideal gas state equation, i.e.

µ(T)= T3/2 1+ Ts/T∞
T + Ts/T∞

(2.6)

and
p=

ρT
γM2

∞

, (2.7)

where Ts= 110.4 is the Sutherland constant for air. For all the numerical simulations
carried out in this work Pr= 0.72 and γ = 1.4 have been used.

The code solves the compressible Navier–Stokes equations using an entropy-splitting
approach for the Euler terms and fourth-order accurate finite differences. A third-order
Runge–Kutta scheme is used for matching in time. The digital filter approach of Xie
& Castro (2008) is employed at the inflow, which promotes the development of the
flow to fully turbulent conditions. A detailed description of the optimized digital
filter used in this paper can be found in Touber (2010). This method is robust to the
choice of length scales, as long as the prescribed length scales are at least as large
as the integral length scale of the flow and adequate distance is provided downstream
to allow the turbulence to develop (Wang et al. 2015). In the present study, the
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Mach Stagnation Stagnation BL 99 % Momentum Reynolds
number temperature pressure thickness thickness number

Ma T0 P0 δi θ Reθ
2.7 300 K 100 kPa 5.7 mm 0.41 mm 3600

TABLE 1. Flow conditions for the simulations, including the dimensional boundary-layer
(BL) thickness and Reynolds number at the inflow.

streamwise characteristic length scales for the three velocity components u, v and w
are set to 0.65δi, 0.35δi and 0.35δi (δi denotes the 99 % boundary-layer thickness at
the inflow), respectively. Mean and root-mean-square (r.m.s) profiles are prescribed
beforehand for the wall boundary layers. The mean inflow profile is generated using
the same approach as that of Touber & Sandham (2009). The inflow RMS values
are taken from the DNS results of Schlatter & Örlü (2010) for a similar Reynolds
number.

The inflow parameters (given in table 1) are set in accordance with the Mach 2.7
experiments of Sun et al. (2013) and the recent simulations of Sun & Hu (2018a,b,c).
The bottom wall 99 % boundary-layer thickness, which is the same for all simulations,
is estimated to be δi = 5.7 mm, which gives the compressible (including density
variations) boundary-layer displacement thickness δi

∗
= 1.96 mm and momentum

thickness θ = 0.41 mm, and corresponding Reynolds numbers Reδ∗ = 17 213,
Reθ = 3600. A full list of the cases conducted in the present study is given in
table 2.

2.2. Domain and grid distribution
Although the use of a digital filter to generate the inflow boundary condition
significantly reduces the length required for boundary-layer development, there
should nevertheless be enough distance to allow the boundary layers to adjust to
an equilibrium state before the turning point (Xie & Castro 2008). It was found by
Touber (2010) that a distance of 12 times the inflow boundary-layer thickness is
enough to obtain realistic turbulent mean and RMS profiles from the digital filter
inflow generator used, whereas Bradshaw (1974) suggested that the recovery length is
usually 10 times the incoming boundary-layer thickness. Here we choose Li= 15 and
δi≈ 85 mm for a fully developed turbulence generation. The boundary-layer thickness
at the point of the corner is denoted as δ0. An evaluation of the boundary-layer
thickness shows δ0 ≈ 6.19 mm. The concave length Le is set to Le > 10δ0. In this
study, we consider two concave radii of curvature, 908 and 308 mm, and we take
Le= 16δ0≈ 100 mm and the total length of the computational domain is Lx= 185 mm.
For brevity, the two concave cases are denoted as CurvR908mm and CurvR308mm
for radii of curvature of 908 and 308 mm, respectively. A sketch of the computational
domain is shown in figure 1. A fixed coordinate system (x, y, z) is used, denoting the
streamwise, bottom wall-normal and spanwise directions, respectively, for the straight
wall segment. The origin is set at the turning point, which is 85 mm downstream of
the inlet. Thus the inlet plane is located at x=−85 mm. The curvilinear coordinates
(ξ , η, ζ ) in the concave region are transformed from the Cartesian coordinate system
(x, y, z) with ξ = R arctan(x/R− y), η= R− r= R−

√
(R− y)2 + x2 and ζ = z. Thus

the coordinate transformation coefficients (rξ , rη and rζ ) are known for all cases.
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FIGURE 1. (Colour online) Sketch of the domain used for the simulations. (a) Sketch of
the flat and concave domain. (b) Sketch of the concave radii of curvature.

Case Domain size Grid number Grid control Grid spacing
Lx × Ly × Lz mm Nx ×Ny ×Nz νb (mm), Nb, β ∆+x , ∆+y , ∆+z

All cases 185× 25× 15 2305× 241× 289 1.85, 81, 1.80 6.5, 0.8–9.8, 4.1

TABLE 2. Grid numbers and stretching control parameters for different cases.

A stretched grid is used near the wall in the y direction, changing gradually to a
uniform grid outside the boundary layer with a prescribed spacing. Grid smoothness
is very important, especially when high-order schemes are used. Two grid stretching
functions with at least second-order continuity at the interface are combined to give
coordinates yi in the direction normal to the bottom wall as

yi =

yb
sinh(βηj)

sinh(β)
, ηj =

j− 1
Nb − 1

, j 6 Nb,

aj5
+ bj3

+ cj+ ymid, j>Nb,

(2.8)

where ymid is the middle of the domain, while the parameters a, b and c are fixed by
continuity considerations up to second order. A predefined distance from the wall, yb,
is used to specify the region for grid stretching, with Nb the number of grid points
inside this region. A fifth-order polynomial enables the grid to change quickly from
a stretched grid near the wall to an almost uniform grid away from the wall.

In the y direction, the grid spacing is y+1 = 0.8 for the first point off the wall
and 1y+max = 9.8 in the centre of the domain (all wall units are calculated based on
the inflow friction velocity). The streamwise direction has a uniform grid distribution,
with 1x+= 6.5. In the spanwise direction, the grid spacing is also uniform and fixed
at 1z+ = 4.1. The grid suitability for the present simulations was also verified by
changing the grid resolution in all directions. A sensitive feature was found to be the
peak skin friction in the vicinity of the outlet on concave surface which varied by
less than 5.0 %, for a grid that was coarsened by 50 % in all directions. A variant of
the standard total variation diminishing scheme is employed for strong discontinuity
capturing (Yee, Sandham & Djomehri 1999), which is turned off within boundary
layers by incorporating the Ducros sensor (Ducros et al. 1999). Comparisons of mean
profiles of flat plate with DNS results of Schlatter & Örlü (2010) were made and
found to be consistent (Sun et al. 2017). The boundary-layer thickness at x= 0 mm
is estimated as δ0 ≈ 6.19 mm and the compressible boundary-layer displacement and
momentum thicknesses are δ0

∗
= 2.37 mm and θ0 = 0.48 mm, respectively.
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FIGURE 2. (Colour online) Two-point correlations and energy spectra of the velocity
components at different wall-normal locations x/δ0 = 11.5. (a) Two-point correlations at
y/δ0 = 0.0587. (b) Two-point correlations at y/δ0 = 0.2908. (c) Energy spectra at y/δ0 =

0.0587. (d) Energy spectra at y/δ0 = 0.2908.

No-slip boundary conditions were enforced on the bottom wall (shown in figure 1).
The wall temperature is fixed at a value equal to the stagnation temperature of the
inflow. Integrated characteristic boundary conditions (Thompson 1990) are used at
the outflow and the top boundary. Periodic boundary conditions are applied in the
spanwise direction.

2.3. Grid and numerical validity
Statistical data are based on averaging flow fields over 360 non-dimensional time
units (δ0/U∞) after running the simulations for 240 non-dimensional units to let the
flow develop. To check the spanwise domain size, two-point spanwise correlations of
velocity perturbations at different wall-normal locations are given in figure 2(a,b). The
correlation definition is the same as in Pirozzoli, Grasso & Gatski (2004). As shown,
the correlation coefficients decay rapidly to zero with an increase in the spanwise
separation. It is clear that the correlation coefficients reduce to zero well within the
domain, suggesting that the simulation domain is sufficiently wide to resolve the
turbulence dynamics. The adequacy of the spatial resolution is also confirmed by
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FIGURE 3. (Colour online) (a) Mean and (b) RMS velocity distributions obtained at
x = 0 mm on the flat plate, compared with the incompressible flow data of Schlatter
& Örlü (2010) and supersonic flow data of Duan & Beekman (2011). The van Driest
transformation was applied to the mean velocity and a Morkovin scaling ξ =

√
ρ/ρw to

the RMS curves.

examining the one-dimensional energy spectra (Pirozzoli et al. 2004), as shown in
figure 2(c,d), where Euaua is the energy spectrum for the velocity component. It
can be seen that all spectra exhibit a drop off of at least four orders of magnitude.
Compared to the DNS result of similar flows (Guarini et al. 2000), these spectra
suggest the resolution is adequate.

Turbulent boundary-layer mean velocity profiles and distributions of RMS values
at x = 0 mm on the flat plate (at the concave turning point) are evaluated. The
mean inflow profile is generated using the same approach as that of Touber &
Sandham (2009). The inflow RMS values are taken from the DNS results of
Schlatter & Örlü (2010) for a similar Reynolds number. A compressible scaling,
as suggested by Morkovin (1962) and validated by Duan & Beekman (2011) for
high Mach numbers, is used to transform the incompressible RMS values. The
calculated compressible boundary-layer displacement and momentum thicknesses at
x= 0 mm are δ0

∗
= 2.37 mm and θ0= 0.48 mm, respectively. It should be noted that

the Reynolds number based on the free-stream flow properties and the momentum
thickness, i.e. Reθ = ρeUeθ/µw, is 4215. The corresponding Reynolds number under
the van Driest scaling, i.e. Reθ,vd = ρwUvd

e θ
vd/µw, is 1078. The subscripts e and w

denote the main flow and wall parameters, respectively, while the superscript vd
represents the value under the van Driest transform. Figure 3 shows that the mean
and RMS values agree very well with the DNS results of Schlatter & Örlü (2010), as
found in a recent study on turbulent flow over an expansion corner (Sun et al. 2017).
DNS data of a supersonic boundary layer from Duan & Beekman (2011) are also
compared in figure 3 and it is found that the current calculation agrees well with the
compressible velocity profile and the Reynolds-stress data.

3. Mean flow and turbulent statistics on concave surfaces
3.1. Mean flow field

The time-averaged density fields together with sonic lines are given in figure 4 for the
whole domain on the left-hand side and in an enlarged view on the right-hand side.
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FIGURE 4. (Colour online) Contours of time-averaged density of the flat plate and the
concave cases, normalized by the inflow free-stream density. The local sonic line is
superposed on the contour. (a) Flat plate. (b) CurvR908mm. (c) CurvR308mm.

It can be seen that the density on the concave surface increases in the main stream
and in the boundary layer downstream of the turning point and the compression waves
become more evident as the curvature radius decreases. The results correspond to the
analysis of Spina et al. (1994), which indicates that the boundary layer on concave
walls becomes thinner. The local sonic line is superposed on the contours. Near the
outlet, the sonic lines are smooth, with no sign of any artificial disturbances generated
near the outflow boundary. An interesting part is that the subsonic region increases as
the curvature radius decreases.

Profiles of the time-averaged skin friction, Cf = 2τw/(ρ∞U2
∞
), along the wall for

the flat plate and the two concave cases are shown in figure 5. The skin friction
starts to follow the expected results (Sun et al. 2017) of a turbulent boundary layer
by x/δ0=−5, which indicates that the artificial inflow condition recovers to turbulent
boundary-layer flow roughly five inflow boundary-layer thicknesses before the turning
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FIGURE 5. (Colour online) Mean flow parameters along the flat and concave surfaces.
(a) Skin friction coefficient. (b) Wall pressure normalized by the free-stream pressure.
(c) Non-dimensional wall pressure gradient.

point x/δ0 = 0. The skin friction coefficient decreases slightly in the vicinity of
the turning point, and increases further downstream, while the pressure increases
consistently downstream of the turning point. Experimental data for the wall pressure
distribution in a Mach 2.95 supersonic boundary layer (Wang, Wang & Zhao 2016b)
are superposed, showing a reasonable agreement. The deviation cannot be discussed
further since the uncertainty is not known from the experiments. Figure 5(c) shows
the pressure gradient distribution along the wall surface, where it is seen that the
pressure gradient has an abrupt increase at x/δ0 = 0.0 for the concave cases and an
approximately linear increase for x/δ0 > 3. The flow on concave walls experiences a
continuously increasing pressure all the way to the outflow.

Figure 6 shows velocity profiles both upstream and downstream of the turning point.
It can be seen that for concave cases, the velocity on the concave surface is lower
than that on the flat plate over most of the boundary layer. Thus, the downstream
velocity profiles become less full as the curvature radius increases. In figure 7,
the velocity profiles are re-plotted again in wall coordinates using the van Driest
transformation, which takes into account the variation of density in compressible
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FIGURE 6. Mean velocity profile predictions at different locations (a) x/δ0 = −2.42,
(b) x/δ0 = 0.81, (c) x/δ0 = 5.65 and (d) x/δ0 = 10.50, normalized by inflow free-stream
velocity.

boundary layers. Compared to the velocity profiles of the flat plate case, the velocity
profiles on concave surfaces deviate slightly from the log-law around the turning
point, and the difference becomes more significant further downstream. In the region
near the boundary layer outer edge, the wake layer of the CurvR308mm case deviates
significantly from the flat plate case.

The velocity changes differently in the inner part of the boundary layer of concave
cases compared to the flat plate case, as shown in figure 8, where the same velocity
profiles as given in figure 7(d) are re-plotted using the outer length scale δ0. Under
this scaling, the velocity near the wall increases, which is opposite to the behaviour
in the outer region.

From the turbulent boundary-layer velocity profiles, it is possible to analyse the
boundary-layer displacement thickness δ∗ and the momentum thickness θ , which are
defined as δ∗ =

∫ h
0 (1− (ρ/ρe)(u/Ue)) dy and θ =

∫ h
0 (ρ/ρe)(u/Ue)(1− (u/Ue)) dy,

respectively. Here we integrate up to h = 1.5δ0 to reduce the effects of variation in
the free-stream properties ρe and Ue. Figure 9(a,b) shows the calculated results for
different cases. Over the flat plate, both the displacement thickness and momentum
thickness grow. Over the concave surfaces, δ∗ experiences a drop after the turning
point, followed by a rise downstream of x/δ0 ≈ 4.0 and eventually a reduction. The
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FIGURE 7. Mean velocity profile predictions at different locations, with van Driest
transformation applied to the mean velocity: (a) x/δ0=−2.42, (b) x/δ0= 0.81, (c) x/δ0=

5.65 and (d) x/δ0 = 10.50.

changes in the higher curvature case are more significant. The momentum thickness
θ first rises above the flat plate values after the turning point, then starts to decrease
at x/δ0 ≈ 4.0, with both curved wall cases eventually having lower values than the
flat plate case.

Figure 9(c) shows the shape factor (H = δ∗/θ) as a function of the streamwise
location of both concave cases. As discussed in previous work (Sun et al. 2017), a
higher shape factor represents a velocity profile with less fullness. It is clearly seen
that the shape factor increases significantly further downstream of the turning point on
the concave surfaces and then reduces. It is found that H= 8.07 for the CurvR308mm
case at x/δ0 = 15.5 and H = 5.47 for the CurvR908mm case, compared to H = 4.83
for the flat plate case.

Pressure fluctuations were recorded on the wall surface at different positions for
360 non-dimensional time units with 240 samples. The response of the flow to the
curvature is examined by comparing the frequency weighted power spectral density
(WPSD), which was calculated using a 50 % segmental averaging method as in Hu,
Morfey & Sandham (2006). As the flow is homogeneous in the spanwise direction, the
WPSDs are averaged over the span. The WPSDs given in figure 10 show the pressure
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FIGURE 8. Distribution of velocity as a function of wall-normal distance at x/δ0 = 10.50
normalized by inflow free-stream velocity U∞ (a) and local free-stream velocity Ue over
the boundary layer (b).

fluctuations at various locations for different cases. At x/δ0 = −2.42 and 0.81, the
pressure fluctuations are almost unchanged compared to the flat plate case. At x/δ0=

5.65, low-frequency peaks in the spectra appear for concave cases, while at x/δ0 =

10.50 the amplitudes are significantly higher throughout the energy-containing range.
Thus the magnitude of the turbulent fluctuations increases with the curvature ratio and,
in particular, low-frequency (presumed to be of large scale) structures appear to be
generated on concave walls.

Figure 11 plots RMS values of pressure, temperature and density fluctuation
normalized by local averaged 〈p〉, 〈T〉 and 〈ρ〉. It is seen that the local magnitude of
density fluctuations on the concave wall is always larger than that on the flat plate.
For pressure and temperature fluctuations, the magnitude of the fluctuations increases
most obviously in the outer region in the CurvR308mm boundary layer compared to
the flat plate. In the inner layer, RMS values of pressure and temperature fluctuations
of the CurvR308mm case are lower than those of the flat plate. Figure 12 shows
plots of RMS values of velocity fluctuation. It is seen that for velocity fluctuations,
the three components of the velocity fluctuations are all increased. These quantitative
results exhibit the turbulence amplification from different aspects. The velocity and
density fluctuations increase over the entire boundary layer but in the inner layer the
pressure and temperature fluctuations are not enhanced, which might be related to
the obvious augmentation of the averaged pressure and temperature due to concave
compression. Recalling figure 2, the comparison of one-dimensional power spectra
between the flat plate case and the concave case at x/δ0 = 11.5 shows that Euαuα of
CurvR308mm at y/δ0 = 0.0587 is larger in the high-wavenumber region compared to
the flat plate. At low wavenumbers, Euαuα of the CurvR308mm case is comparable
to that of the flat plate, which means that the large-scale turbulence is not obviously
enhanced in the inner region of the CurvR308mm boundary layer. At y/δ0 = 0.2908,
Euαuα of CurvR308mm is larger than that of the flat plate over the whole wavenumber
range. This means that both the small and large scales of turbulence are enhanced.
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FIGURE 9. The displacement thickness δ∗ (a), the momentum thickness θ (b) and the
shape factor H (c) as a function of the streamwise location for the flat and concave cases.

3.2. Thermal effects
The recovery temperature at the wall Tr = 281.2 K is calculated according to Tr =

T∞ + r(u2
∞
/2Cp), with r= (Pr)1/3. The recovery temperature has little variation along

the curved section. To illustrate the concave wall heat transfer compared to the flat
plate, figure 13 gives the Stanton number

St =
qw

ρ∞ρ∞Cp(Tw − Tr)
(3.1)

along the wall, where qw =−k(dT̄/dy)|w.
As seen from figure 13, the Stanton number increases on the concave walls

compared to the flat plate, and becomes higher as the curvature increases. The
temperature profiles depicted in figure 14 show that temperature is higher in the outer
region of the concave boundary layer compared to the flat plate. The wall-normal
temperature gradient for the concave cases decreases in the outer region but increases
in the inner region, leading to the observed increase of the Stanton number on the
concave wall. For the CurvR308mm case, the temperature decreases more quickly
than for the CurvR908mm case and the flat plate. This tendency is similar to
the velocity profile along the wall (analysed in § 3.1), which reflects the different
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FIGURE 10. (Colour online) The WPSD of pressure on the flat plate and concave walls,
normalized by square of free-stream dynamic pressure: (a) x/δ0 =−2.42, (b) x/δ0 = 0.81,
(c) x/δ0 = 5.65 and (d) x/δ0 = 10.5.
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character between the inner layer and the outer layer. The phenomenon is related to
the amplification of the turbulence on the concave wall, and will be analysed in the
following sections. A test of the strong Reynolds analogy (SRA) is given in figure 15.
Morkovin’s SRA is well known for compressible turbulent boundary-layer flows. The
SRA is tested using the Morkovin approximate relation (Morkovin 1962)

(T ′′2)
1/2
/T̃

(γ − 1)M2
a(u′′2)

1/2
/ũ
≈ 1 (3.2)
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FIGURE 14. (a) Mean temperature and (b) wall-normal gradient profiles at x/δ0 = 10.50.
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FIGURE 15. SRA profiles at (a) x/δ0 = 0.81 and (b) x/δ0 = 10.50.

as well as considering the correlation of streamwise velocity and temperature,
according to

Ru′′T ′′ =
−u′′T ′′

(u′′2)
1/2
(T ′′2)

1/2 , (3.3)

where a tilde denotes Favre average. Figure 15 shows the results at different
streamwise locations. Note that the reference boundary-layer thickness δ0 = 6.19
is measured at the turning point x/δ0 = 0.0, and the boundary layer on the concave
wall is thinner than on the flat plate. That is why figure 15(b) seems slightly different
at the edge of the boundary layer. The results show that the SRA relations are satisfied
and Ru′′T ′′ is almost independent of wall temperature except close to the wall. Through
most of the boundary layer, Ru′′T ′′ is approximately 0.6, similar to the results reported
by Guarini et al. (2000), Maeder, Adams & Kleiser (1998), Pirozzoli et al. (2004)
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FIGURE 16. Contours of density flow fields of the flat plate and the concave cases at
z/δ0 = 1.2 for (a) flat plate, (b) CurvR908mm and (c) CurvR308mm, normalized by the
inflow free-stream density.

and Duan & Beekman (2011). On the concave wall, the SRA relations tend to be
satisfied slightly better than along the flat plate.

4. Instantaneous turbulent structures in the concave flow field
4.1. Turbulence flow structures

Contours in a two-dimensional slice through instantaneous density fields are given
in figure 16. It can be seen that the density on the concave surface increases in the
main stream and in the boundary layer downstream of the turning point, and also
that compression waves become evident as curvature radius decreases. As measured
in previous studies (Donovan et al. 1994; Spina et al. 1994; Flaherty & Austin
2013a; Wang et al. 2016b), the boundary-layer thickness decreases on a concave
wall and on a flat plate with APG in a supersonic flow. In contrast to this, in recent
nanoparticle planar laser scattering visualizations of instantaneous two-dimensional
flow, Wang & Wang (2016) observed that the concave boundary layer becomes
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FIGURE 17. Contours of density flow fields of the CurvR308mm case at z/δ0 = 1.8,
normalized by the inflow free-stream density.

thicker. From the velocity profiles in the previous section we see that in the present
study the boundary layer is on average thinner on concave walls, as seen also in
the instantaneous slice shown in figure 16(c). However, another slice at a different
spanwise location (figure 17) shows large structures that might be identified as an
instantaneous increase of the boundary-layer thickness, which might explain the
results of Wang & Wang (2016). This will be discussed further in § 4.3, and we
attribute the variability in thickness to the formation of destabilizing structures with
strong instantaneous spanwise variability.

In order to investigate vortex structures before and after the turning point, figure 18
shows an iso-surface of λ2, which is the second eigenvalue of the 3 × 3 matrix
comprising the velocity gradient components (Jeong & Hussain 1995). A small
negative value (λ2=−0.3) is selected to visualize the turbulence structures. Compared
with the flat plate, supersonic flow past concave surfaces shows an augmentation of
λ2 vortices. The turbulence is rapidly amplified in the CurvR308mm case, as shown
in figure 18(c). Recalling figures 16(c) and 17, a careful observation of the turbulent
structures on the concave wall demonstrates that many smaller fluctuations are
superimposed on the large-scale structures. Moreover it is found that new large-scale
structures form in the downstream boundary layer on the curved surface.

4.2. Comparison of near-wall streaks and spanwise two-point correlations
The near-wall streaks in the turbulent flow field of the CurvR308mm case are
analysed in this section. For the benefit of comparisons between concave cases and
the flat plate, the concave wall is plotted in a body-fitted coordinate system (ξ , η),
transforming the computational domain to a rectangular box. The transformed velocity
components are given by ut = u cos β − v sin β and vt = u sin β + v cos β, respectively,
where β is the local wall turning angle (see figure 1).

The streamwise velocity fields in the transformed coordinates at the same
wall-normal distance (y/δ0 = 0.0068) are shown in figure 19(a) from a top view.
Alternating low- and high-speed streaks can be clearly identified. The classic near-wall
streaks occur in the upstream undisturbed boundary layer in both cases. In the inner
layer further downstream, however, the quasi-streamwise structures break down into
smaller vortices and an abundance of small structures are generated along the concave
wall. The distance between neighbouring low-speed streaks decreases on the concave
wall compared to the flat plate case, which will be quantified in the next paragraph
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FIGURE 18. (Colour online) Iso-surface of λ2 coloured by the instantaneous temperature
of different cases: (a) flat plate, (b) CurvR908mm and (c) CurvR308mm.

with the two-point correlation results. At y/δ0 = 0.255, shown in figure 19(b), the
minimum streamwise velocity of the concave case is lower than that of the flat plate
case at the same location, as discussed earlier. Large-scale streaks with enlarged
streak spacing are seen on the concave wall, and are found to remain coherent over
a long streamwise distance.

To quantify the distance between two neighbouring low-speed streaks, two-point
spanwise correlations of velocity perturbations are compared between the flat plate and
the CurvR308mm cases at x/δ0 = 15.5 for different wall-normal distance, as given in
figure 20. At y/δ0 = 0.0068 (figure 20a) in the flat plate case, the minimum of the
wall-normal velocity correlation is found at z/δ0 = 0.045, which is the typical streak
spacing in a zero-pressure-gradient boundary layer. For the CurvR308mm case, the
streak width is significantly reduced, consistent with the increasing skin friction. This
is in contrast to the behaviour away from the wall, where at y/δ0= 0.255 (figure 19),
an increase in the streak spacing compared to the flat plate case can be identified.
This indicates that streaks might be organized into new patterns, corresponding to the
large-velocity streaks seen in figure 19.

4.3. Iso-surfaces and slices of instantaneous velocity in three-dimensional flow field
To understand the changes in coherent structures, iso-surfaces of the streamwise
velocity, together with streamlines coloured by the wall-normal distance are illustrated
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FIGURE 19. (Colour online) Streamwise velocity contours at (a) y/δ0 = 0.0068 and
(b) y/δ0 = 0.255 slices of the flat plate (top) and the CurvR308mm (bottom) cases.
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FIGURE 20. (Colour online) Two-point spanwise correlations for velocity perturbations
at x/δ0 = 15.5: (a) y/δ0 = 0.0068 and (b) y/δ0 = 0.255. The spanwise coordinates are
normalized by the boundary-layer thickness δ0.
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FIGURE 21. (Colour online) Turbulence coherent structures visualized with the iso-surface
of ut/U∞ = 0.4 coloured by the wall-normal distance. (a) Flat plate. (b) CurvR908mm.
(c) CurvR308mm.

and compared in figures 21 and 22. All the results are based on the domain
transformation introduced in § 4.2.

From figure 21, it is clear that smaller concave curvature radius (CurvR308mm),
which means higher curvature ratio, tends to destabilize structures in the boundary
layer. For the flat plate case shown in figure 21(a), we can clearly see the classic
elongated streamwise structures in the iso-surface of ut = 0.4. For the CurvR908mm
case, the streaks are preserved, but the streaks appear more corrugated and lifted away
from the concave wall. Upstream and for a short distance downstream (x/δ0 < 5) of
the turning point, the structures are very similar to those of the flat plate case.
However, further downstream the structures start to produce smaller streaks. Most of
the structures remain close to the wall as in the flat plate case. For the CurvR308mm
case, the streaks on the concave wall develop into a new pattern and large-scale
organized structures are lifted away from the wall into the outer layer. The orientation
of these structures suggests that they are likely to be the Görtler-like structures
previously shown in numerical simulations of hypersonic flow (Ren & Fu 2015a).
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FIGURE 22. (Colour online) Oblique view of three-dimensional streamlines originating
from inflow wall parallel plane y/δ0 = 0.0266 and x/δ0 = −6.0, coloured by the
wall-normal distance in y/δ0 unit. (a) Flat plate. (b) CurvR908mm. (c) CurvR308mm.

From a comparison of figure 21(a–c), we can see that the concave effects strengthen
the lift-up process of velocity streaks in the boundary layer, with the Görtler-like
vortices pumping fluid packets from the inner layer outwards. Recalling the pressure
fluctuation discussed in § 3.2, since Görtler instabilities lead to coherent large-scale
structures in the concave boundary layer, the reason for the low-frequency pressure
fluctuations becomes apparent. Observation on the iso-surface of ut = 0.4 at different
time points reveals that the Görtler-like structures drift in the spanwise direction as
time changes. Since they are not fixed in space, these structures cannot be investigated
from an averaged view.

Figure 22 shows representative instantaneous streamlines, originating in the
y/δ0= 0.0266 plane and x/δ0=−6.0 upstream of the turning point. These streamlines,
coloured by the wall-normal distance, illustrate the motion of the fluid. It is seen
that the initially planar streamlines are lifted and tilted downstream of the turning
point. For the flat plate case, the streamlines concentrate into streaky structures and
are convected downstream. For the concave cases, the streamlines form into lifted
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streaks, consistent with the generation of Görtler-like vortices, and illustrate how the
streamlines transport fluid from the upstream inner boundary layer to the outer layer
downstream.

Figure 23(a) shows contours of the local velocity contour superimposed with the
local in-plane streamlines for the instantaneous flow at x/δ0 = 11.5. The predominant
wall-normal flow on concave surface outside the boundary layer is due to surface
curvature centrifugal effect. The region shown in the dashed-line window is an
example of a mushroom structure, which is likely to be the typical consequence
of a Görtler vortex, as in concave laminar flow (Ren & Fu 2015a). It is seen that
the low-momentum fluid in the inner boundary layer is pumped into the outer layer
by the Görtler-like structures. Figure 23(b) shows that small-scale vortices are more
abundant on the concave wall. Combined with the λ2 vortex structures in figure 18(c)
and the streaks in the inner boundary layer in figure 19, we can tell that small-scale
turbulence is enhanced in the concave boundary layer. The vorticity transport equation
can be written as

Dω

Dt
= (ω · ∇)u−ω(∇ · u)−

∇p×∇ρ
ρ2

+∇×

(
∇ · τ

ρ

)
. (4.1)

The third term, ∇p×∇ρ/ρ2, describes vorticity production via the baroclinic
mechanism, which occurs when the density and pressure gradients are misaligned.
Pressure enters the vorticity equation only through this baroclinic term. It is important
to note that vorticity can be generated by baroclinic torque in the concave flow,
whereas the other terms in the vorticity equation describe the amplification, stretching,
bending or diffusion of existing vorticity. The baroclinic production term is given by

Bp =
(∇p×∇ρ)

ρ2
=

1
ρ2

(
∂ρ

∂y
∂p
∂z
−
∂ρ

∂z
∂p
∂y

)
i+

1
ρ2

(
∂ρ

∂z
∂p
∂x
−
∂ρ

∂x
∂p
∂z

)
j

+
1
ρ2

(
∂ρ

∂x
∂p
∂y
−
∂ρ

∂y
∂p
∂x

)
k (4.2)

or

(∇p×∇ρ)
ρ2

=
1
ρ2

rηrζ

(
∂ρ

∂η

∂p
∂ζ
−
∂ρ

∂ζ

∂p
∂η

)
i

+
1
ρ2

rξ rζ

(
∂ρ

∂ζ

∂p
∂ξ
−
∂ρ

∂ξ

∂p
∂ζ

)
j+

1
ρ2

rξ rη

(
∂ρ

∂ξ

∂p
∂η
−
∂ρ

∂η

∂p
∂ξ

)
k, (4.3)

which indicates the rate at which the vorticity is generated.
Figure 23(c) shows the distribution of the baroclinic production term on a slice

at x/δ0 = 11.5. The baroclinic production term in the outer region of the concave
boundary layer has a higher magnitude than on the flat plate and arises near the
interface of the high-speed flow with the low-speed flow, corresponding to the
Görtler-like structures shown in figure 23(a). In (4.2), the normal pressure gradient
∂P/∂y (from centrifugal effects) can interact with spanwise density gradient ∂ρ/∂z,
leading to streamwise vorticity induced by these interactions. Therefore it is concluded
that the Görtler-like vortices occurring in the outer region of the concave boundary
layer can easily twist the original density and pressure gradients. Prominent pressure
gradients interact with the density gradients and induce significant vorticity in the
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concave boundary layer. This corresponds to the generation of the abundant small
vortices shown in figure 23(b). In the inner region, pressure gradients interact with
the local density gradients and cause more vortices than the flat plate with zero
pressure gradient while the influence of the Görtler instability on density gradients
appears smaller.

The evolution of turbulent flow structures can be quantified using the anisotropy
invariant map (Lumley 1978). This map comprises the second and third invariants of
the Reynolds stress anisotropy tensor (bij), which are defined as

bij =

〈
ρu′′i u′′j

〉〈
ρu′′k u′′k

〉 − 1
3
δij,

IIb = bijbji,

IIIb = bijbjkbki.

 (4.4)

Figure 24(a) shows the anisotropy invariant map at x/δ0 = 11.5, with an expanded
view of the part near the outer edge of the boundary layer in figure 24(b). It can be
seen that there are significant changes over the concave surface. The near-wall
region still approaches the two-component limit, but does so further from the
one-component point, consistent with less well organized near-wall velocity streaks.
The maximum anisotropy occurred in the CurvR308mm case at y/δ0= 0.0084, which
falls approximately in the buffer layer. At the outer edge of the boundary layer the
convex wall cases become closer to isotropic and the turbulence state spends more
time close to axisymmetric compression. These characteristics are also observed in
the DNS conducted by Grilli, Hickel & Adams (2013) and Tong et al. (2017). Based
on a comparison with figures 11 and 12, the anisotropy results are in accordance
with the two-layer structure of the concave boundary layer.

It is difficult to extract Görtler-like vortices from the chaotic background shown in
figure 23(a,b), and this is probably the reason why no experiments have found Görtler-
like vortices under turbulent conditions. Ren & Fu (2015b) used instability analysis
to show the nonlinear development of Görtler vortices and the formation of low- and
high-speed streaks in a laminar supersonic boundary layer at Mach 3.0. Their results
showed that a mushroom structure is developed in the flow field. As mentioned above,
there is no regular Görtler structure in the current turbulent flow where small vortices
stir and break down the large scales. However, the structures showed up clearly in
the streamline plots of figure 22. It is believed that the Görtler vortices feed the
generation of large numbers of small vortices and significantly promote the exchange
of the inner layer with the outer layer. On the concave wall, the inner region is
mainly affected by the APG and the local turbulence amplification can be explained by
previous research (Lee & J.Sung 2009; Franko & Lele 2014) on flat plate supersonic
boundary layers. As previously noted, the APG interacts with the density gradients
formed around streaks in the inner layer, and the resulting baroclinic effects lead to
the formation of many small vortices, as seen in figure 19.

Figure 25 summarizes the role of Görtler instabilities in the turbulent supersonic
concave boundary layer. A schematic view of the Görtler vortices is shown in
figure 25(a), which shows a typical mushroom shape and the associated modulation
of the inner boundary layer. The important result is that Görtler vortices twist
and distort the local density gradient. Figure 25(b) shows the inner region flow
interaction with APG, which also represents the boundary-layer interaction with
the APG without centrifugal effects. As given in previous studies (?Donovan et al.
1994; Flaherty & Austin 2013b; Wang, Wang & Zhao 2016a), the boundary-layer
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FIGURE 23. (Colour online) Streamwise velocity, vorticity and baroclinic production
contours for the flat plate (left) and the CurvR308mm (right) case at x/δ0 = 11.5.
(a) Streamwise velocity (ut/U∞) contours, superimposed with in-plane streamlines.
(b) Streamwise vorticity (ωx/(U∞/δ0)) distribution. (c) Baroclinic production
(|Bp|/(U2

∞
)/δ2

0).

thickness on the flat plate decreases when subject to APG. Comparing figures 25(a)
and 25(b), the prominent difference is that the Görtler vortices induce stretching,
twisting and distortion of the density gradient surfaces to intersect with compression
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FIGURE 24. (Colour online) Anisotropy invariant maps based on (IIIb, IIb) and (Ψ, ϕ)
respectively at x/δ0 = 11.5 for different cases. (a) Overall and (b) enlarged view.

wave sheet, which generate a larger baroclinic effect to induce more vortices than
on the flat plate. Figure 25(c) shows that the compression waves interact with
the Görtler vortices and induce abundant small vortices. It might be argued that
incompressible flow on concave walls would also contain Görtler vortices and a
turbulence augmentation through vortex breakdown. However, a favourable pressure
gradient and a uniform density for incompressible flow on concave walls would
slow down the turbulence production and even lead to relaminarization (Fernholz
& Warnack 1998). For the supersonic boundary layer, favourable pressure gradients
similarly weaken the coherent structures (Spalart & Watmuff 1993; Tichenor et al.
2013; Sun et al. 2017) and lead to a turbulence suppression in the outer region of
the boundary layer. For the supersonic concave boundary layer, as found by Kim,
Samimy & Lee (2001), the turbulence amplification was closely related to the linear
increase in the mean density during the supersonic compression. It could be inferred
that baroclinic effects are important and seem to be fundamental for the formation of
small vortices and the corresponding turbulence augmentation. In the next section we
will give more quantitative results based on TKE budgets.

5. Turbulence intensity and TKE analysis
5.1. Turbulent kinetic energy distribution

Figure 26 compares the RMS values of all three velocity components and the
Reynolds stress (〈−u′v′〉) on the flat plate and in the CurvR308mm case at different
streamwise locations. On the concave wall, velocity fluctuations for all components
are amplified. Just downstream of the turning point, the turbulence level increases
slightly. Whereas the inner layer peaks are almost unchanged, in the outer layer
turbulence is significantly augmented along the concave wall, and the magnitudes of
all velocity fluctuations are larger than those of the flat plate case.

The TKE is defined as k̃ = ρu′′i u′′i /2ρ̄, where the superscript refers to fluctuations
from the Favre averages. The TKE profiles at different streamwise locations of various
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FIGURE 25. (Colour online) Schematic of Görtler instabilities in a supersonic concave
boundary layer and the small vortices formed by the large baroclinic production induced
by the density gradient from Görtler-like vortices and the pressure gradient from concave
compression. (a) Görtler instabilities in the outer portion of the boundary layer twist
the local gradient. (b) Baroclinic effects on the boundary layer experiencing an APG.
(c) Görtler vortices promote exchange process in the outer boundary layer.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

19
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.19


88 M. Sun, N. D. Sandham and Z. Hu

-0.05

0

0.05

0.10

0.15

0 200 400 600 800 1000
-0.05

0

0.05

0.10

0.15

0 200 400 600 800 1000

-0.05

0

0.05

0.10

0.15

0 200 400 600 800 1000

-0.05

0

0.05

0.10

0.15

0 200 400 600 800 1000

RM
S 

ve
lo

ci
ty

RM
S 

ve
lo

ci
ty

y+ y+

Streamwise RMS velocity of Flat plate
Streamwise RMS velocity of CurvR308 mm
Wall-normal RMS velocity of Flat plate
Wall-normal RMS velocity of CurvR308 mm
Spanwise RMS velocity of Flat plate
Spanwise RMS velocity of CurvR308 mm
Reynolds RMS velocity of Flat plate
Reynolds RMS velocity of CurvR308 mm

(a) (b)

(c) (d)

FIGURE 26. (Colour online) The RMS velocity distributions at different streamwise
locations, normalized by free-stream velocity. Solid black lines represent the CurvR308mm
case. Dash-dotted red lines represent the flat plate case. The RMS velocity of the
streamwise (u), wall-normal (s), spanwise (q) and velocity fluctuations, together with
Reynolds shear stress (f): (a) x/δ0=−2.42, (b) x/δ0=0.81, (c) x/δ0=5.65 and (d) x/δ0=

10.50.

cases are shown in figure 27. As expected, significant amplification of the TKE occurs
on the concave surface. Turbulence in the inner layer of the boundary layer (i.e. the
inner peak at y+ = 12) increases downstream of the turning point compared to the
same location on the flat plate, but then decreases along the concave wall. By contrast,
the outer layer of the boundary layer experiences strong turbulence amplification and
an outer peak emerges. A smaller curvature radius (CurvR308mm) results in a larger
amplification across the boundary layer, shown in figure 27(c). Therefore, a strong
two-layer structure of turbulence can be identified in the concave region. The structure
is attributed to the turbulence shear stress amplification in the boundary layer on
the concave wall, presumed to be due to the large-scale Görtler structures, while the
inner boundary layer remains in local equilibrium. The phenomenon of the outer peak
formation is similar to the second outer peak occurring in high Reynolds number wall
flow. Vallikivi, Ganapathisubramani & Smits (2015a) and Vallikivi, Hultmark & Smits
(2015b) showed that for low Reynolds numbers there is no TKE peak in the outer
layer of zero-pressure-gradient boundary layer, while for very high Reynolds number,
a peak emerges in the outer layers. Smits, McKeon & Marusic (2011) summarized
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FIGURE 27. (Colour online) Turbulence kinetic energy profile comparison of various cases
at different streamwise locations. (a) Comparison between flat plate and CurvR908mm
case at x/δ0 = 0.81 (s), x/δ0 = 5.65 (q) and x/δ0 = 10.50 (f). (b) Comparison between
flat plate and CurvR308mm case at x/δ0= 0.81 (s), x/δ0= 5.65 (q) and x/δ0= 10.50 (f).
(c) Comparison between flat plate, CurvR908mm case and CurvR308mm case at x/δ0 =

15.35 (f). Dash-dotted line represents flat plate case. Dashed line represents CurvR908mm
case. Solid line represents CurvR308mm case.

researches on high Reynolds number (46 700 6 Reθ 6 235 000) wall turbulence and
indicated that very-large-scale motions make a significant contribution to the TKE
and Reynolds stress production in the logarithmic and outer layer. This is relevant
here since Görtler vortices play an important role in turbulence amplification for
concave flows, whereas for high Reynolds number wall turbulence, the origin of the
very-large-scale motions is still a challenging problem (Smits et al. 2011).

5.2. Turbulent kinetic energy budgets
The evaluation of budgets of the TKE mainly focuses on the following terms. The
explicit forms of the different terms are given in Guarini et al. (2000) and Sun et al.
(2017) and briefly listed below:

∂

∂t
(ρ̄k̄)+ ũj

∂

∂xj
(ρ̄k̄)= P+ T + II +D− φ + Vc, (5.1)
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where

P=−ρu′′i u′′j
∂ ũi

∂xj
, (5.2)

T =−
1
2
∂

∂xj
ρu′′i u′′i u′′j , (5.3)

II = IIt + IId =−
∂

∂xj
p′u′′i δij + p′

∂u′′i
∂xi

, (5.4)

D=−
∂

∂xj

u′′i
Re
τij
′, (5.5)

φ =
1

Re
∂u′′i
∂xj

τij
′, (5.6)

Vc =−u′′j
∂ p̄
∂xj
+

u′′i
Re
∂τil

∂xl
− ρ̄k̄

∂ ũj

∂xj
, (5.7)

C=−ũj
∂

∂xj
(ρ̄k̄). (5.8)

Here, P is the production term, showing the rate of generation of TKE by mean
velocity gradients, T is the turbulent transport, II is the pressure diffusion and
dilatation, D is the viscous diffusion, φ is the viscous dissipation and C is the
convective term. Parameter Vc includes the terms that arise when the density is not
constant. Compared to other terms Vc is small, therefore has not been included on
the plot for clarity. Its maximum value is a factor of 28 and 26 smaller than that of
the production term in the present calculation in the flat plate case and CurvR308mm
case, respectively.

We firstly compare the TKE budgets at x/δ0 = 0 of the flat plate case, where the
corresponding Reynolds number, based on the boundary-layer momentum thicknesses
θ0 = 0.48 mm, under the van Driest scaling is approximately Reθ0 = 1078. All terms
are normalized by the wall quantity ρwu4

τ/νw. All terms balance each other, and their
sum is no more than 10−3. Figure 28 compares the distributions of these terms with
the incompressible results of Schlatter & Örlü (2010) at Reynolds number Reθ of
1000, with the results consistent with the incompressible simulations. The simulation
data are also similar to results of Guarini et al. (2000). As Guarini et al. (2000)
and Pirozzoli et al. (2004) pointed out, the agreement between the supersonic flow
on a flat plate and the incompressible flow demonstrates the validity of Morkovin’s
hypothesis (Morkovin 1962), which means the compressibility terms are negligible
throughout a spatially evolving supersonic turbulent boundary layer on the flat plate.
Duan & Beekman (2011) and Lagha et al. (2011) studied Mach number effects on
a hypersonic boundary layer at zero pressure gradient and showed that the weak
compressibility hypothesis remains valid for a large range of free-stream Mach
numbers.

To further assess the boundary layer on the concave walls, TKE budgets are
compared to the flat plate results at different streamwise locations, as shown in
figure 29. At the location x/δ0=−2.42 upstream of the corner, there is no difference
between the flat plate and the concave cases. TKE budgets all show behaviour typical
of a boundary layer at zero pressure gradient in which production is balanced by
dissipation over most of the boundary layer, as also described by Guarini et al. (2000)
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FIGURE 28. (Colour online) The TKE budget at x/δ0 = 0 for the current flat plate
case. Dash-dotted line represents the incompressible results of Schlatter & Örlü (2010)
at Reynolds number of Reθ = 1000. Solid line represents the current flat plate case.

and Pirozzoli et al. (2004). Viscous diffusion is only important in the near-wall region.
In the viscous sublayer, production becomes negligible and diffusion is balanced by
dissipation.

At x/δ0= 0.81 in the turning region, compared to the flat plate case, all terms in the
concave cases increase in magnitude in the inner layer. The TKE production increases
slightly in the outer layer (y+ ∈ [60, 500]). The pressure diffusion and dilatation II
terms in the TKE equation become apparent due to the APG caused by concave
compression. The convection term C at the boundary-layer edge falls to larger negative
values, which means the convection from the boundary layer to the main stream is
augmented. The TKE becomes higher from the interaction of the boundary layer with
the main stream at x/δ0 = 0.81.

At x/δ0= 5.65, all terms in the TKE budget equation are amplified for the concave
cases, while the TKE budget terms in the inner layer increase in magnitude with
curvature rate. In the outer layer where y+ ∈ [100, 600], the dissipation increases
with curvature rate while TKE production and TKE convection terms are amplified
significantly. The production augmentation is basically balanced by a negative
increment in convection, which means the turbulence produced in the outer layer
is mainly convected away.

At x/δ0 = 10.50, the production term of the CurvR308mm case becomes larger
than that of the CurvR908mm case, especially in the outer layer y+ ∈ [100, 1000].
This also corresponds to the generation of the outer peak in the TKE profile for the
CurvR308mm case. The TKE pressure diffusion (IIt) and dilatation (IId) terms become
more significant due to the APG caused by the concave wall. Here we consider the
contribution of the pressure terms, IIt and IId. Figure 30 shows a comparison of
pressure terms at x/δ0 = 10.50 between the CurvR308mm case and the flat plate
case. The pressure diffusion term is larger than the pressure dilatation term, which
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FIGURE 29. (Colour online) The TKE budget profiles of the flat plate case and concave
cases at different streamwise locations: (a) x/δ0 =−2.42, (b) x/δ0 = 0.81, (c) x/δ0 = 5.65
and (d) x/δ0=10.50. Dash-dotted line represents the flat plate case. Dashed line represents
the CurvR908mm case. Solid line represents the CurvR308mm case.

indicates that pressure diffusion effect plays a dominant role, instead of the explicit
compressibility effect. The magnitude of the convection term increases significantly in
the outer layer of the boundary layer while the dissipation is amplified slightly, which
means local convection of turbulent energy is amplified for the CurvR308mm case.
The transport term is also amplified at x/δ0 = 10.50 and participates in balancing the
production.

6. Compressibility effects
6.1. Dilatation

To further assess the compressibility and curvature effects, the probability distribution
function (PDF) of the dilatation term, Θ = ∂xu + ∂yv + ∂zw, is computed. Figure 31
shows the PDF, which is computed by averaging over the range y/δ0 ∈ (0.1, 0.5)
and x/δ0 ∈ (0.81, 10.50). For the flat plate case the PDF is sharp and peaks at zero
dilatation. However, on the concave walls, the PDF is wider and the peak shifts to
negative values of dilatation. The latter effect can be explained from the continuity
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FIGURE 30. Comparison of pressure terms of flat plate case and CurvR308mm case at
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FIGURE 31. (Colour online) The PDF of the dilatation is computed statistically in (x, y)
planes corresponding to different wall-normal locations y/δ0 ∈ (0.1, 0.5) and x/δ0 ∈ (0.81,
10.50) without scaling and with density scaling.

equation
∂ρ

∂t
+
∂ρui

∂xi
=
∂ρ

∂t
+∇ρ · u+Θρ = 0. (6.1)

Since ∇ρ · u is always positive on the concave wall, for small fluctuations we expect
the average Θ to be negative. With increasing curvature the PDF of dilatation becomes
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FIGURE 32. (Colour online) Profiles of the turbulent Mach number Mt (a,b) and the
fluctuating RMS Mach number M′ (c,d) of the flat plate and concave cases at different
streamwise locations: (a) x/δ0 = 0.81 (s), x/δ0 = 5.65 (q) and x/δ0 = 10.50 (f).
Dash-dotted line represents the flat plate case. Dashed line represents the CurvR908mm
case. Solid line represents the CurvR308mm case.

more skewed, with more extreme events of large negative dilation, which for higher
Mach numbers or stronger curvatures may lead to the formation of eddy shocklets. A
scaling of PDF ρ̄Θ using the mean density ρ̄ has previously been used to collapse
different PDF curves, as discussed by Lagha et al. (2011). Figure 31 includes the
density scaling PDF; however, the distribution is similar to the non-scaled data for
all the concave cases.

6.2. Turbulent Mach number

Turbulent Mach number Mt=

√
u′ju′j/c̄ profiles are shown in figure 32(a,b) at different

streamwise locations for x/δ0=0.81, 5.65 and 10.50. In addition to the turbulent Mach
number, we also examine the RMS values of the local Mach number, the fluctuating
Mach number M′ (= (M2 − M2

)1/2), which is different in compressible flows. The
fluctuating Mach number profiles are shown in figure 32(c,d). For the flat plate case,
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FIGURE 33. Effective Mach number Mc,bl over the flat plate and concave walls.

the turbulent Mach number is no more than 0.3 and its maximum peak is located
near to the wall. For the concave cases, turbulent Mach number starts to build a
second peak which moves away from the wall, as seen in figure 32(a,b). The profiles
of Mt and M′ exhibit a similar character with the outer peak shown in figure 27.
In figure 32(c,d), the maximum of the second peak of the fluctuating Mach number
exceeds 0.3 which suggests that the compressibility is approaching the borderline of
Morkovin (1962).

6.3. Effective Mach number
An effective Mach number has also been proposed (Sandham 2016) to evaluate the
compressibility effects of a turbulent boundary layer with APG variation from zero to
separation, given by

Mc,bl =
1U+VD

U+e

M∞
(1+ aw/a∞)

=
1U+VD

U+e

M∞(
1+
√

Tw/T∞
) , (6.2)

where a is the local speed of sound. Here, 1U+VD refers to the van Driest-transformed
velocity increment in the wake region compared to log law using the van Driest profile
at y= δ, i.e.

1U+VD =U+e,δ −
(

1
κ

ln δ+ + b
)
, (6.3)

where U+e,δ is the van Driest-transformed velocity at y = δ. The calculated results
are shown in figure 33. The level of 0.3 is usually taken as the threshold above
which compressibility effects are expected to be significant. We see that this is
not reached for the CurvR308mm case and the compressibility effect increases as
curvature ratio increases. Recalling the analysis of the dilatations, turbulent Mach
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number and fluctuating Mach number, it is inferred that the compressibility for the
current concave cases does not exceed the threshold; however, for larger curvature
ratios than those in this paper, the compressibility effects probably need be considered
in turbulence modelling, which needs further investigations.

7. Conclusions

Direct numerical simulations have been carried out to investigate a Mach 2.7
supersonic turbulent boundary layer over concave surfaces with radii of curvature of
308 and 908 mm. A flat plate case is also simulated for comparison.

The response of the skin friction, wall pressure and velocity profiles due to
concave surface curvature is examined. Analysis of boundary-layer velocity profiles
shows a streamwise velocity reduction in the outer part of the boundary layer, due to
compression, while an increase occurs near the wall. The simulated data suggest that
compressibility effects are not negligible on concave surfaces with large curvature
rate. A higher shape factor is found in the concave cases, which indicates that the
fullness of the velocity profile on concave walls is reduced. Prominent low-frequency
fluctuations on concave walls reflect the generation of large-scale structures. The
streaks shown in the wall-parallel slices and the two-point correlation function
demonstrate that concave effects reduce the near-wall spanwise streak spacing while
producing large-scale streaks in the outer layer. Turbulence amplification on the
concave wall is indicated by λ2 vortex structures.

The streamwise velocity iso-surface, streamlines and contour slices show that
higher speed or smaller concave curvature radius tends to destabilize local turbulent
structures in the boundary layer. Görtler-like vortices generated by the centrifugal
effects occur in the outer region of the concave boundary layer. The Görtler-like
structures twist local density gradient, and baroclinic production from the interaction
of the density gradients with the concave compression leads to the generation of
abundant small-scale vortices on the concave walls, which represent the amplification
of local turbulence on the concave walls. The inner region of the concave boundary
layer appears to be little affected by the Görtler instability and acquires a relatively
slow turbulence amplification by the baroclinic effects from the APG.

Profiles of TKE and turbulent Mach number along the streamwise direction exhibit
a characteristic two-layer structure in the boundary layer of concave cases. In the
outer layer, the turbulence is greatly amplified and the Görtler vortices lead to a rapid
exchange between the inner and outer layers. Turbulent energy budget analysis shows
that both production and dissipation increase near the wall in the concave region, but
in the outer part of the boundary layer, the production is significantly amplified and
balanced by convection and transport.

In the future, it would be interesting to explore further the sensitivity of these results
to the key parameters, including higher Reynolds number, higher Mach number and
larger curvature ratios as well as a range of wall thermal conditions.
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