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We propose additive functional-based nonstationarity tests that exploit the differ-
ent divergence rates of the occupation times of a (possibly nonlinear) process under
the null of nonstationarity (stationarity) versus the alternative of stationarity (nonsta-
tionarity). We consider both discrete-time series and continuous-time processes. The
discrete-time case covers Harris recurrent Markov chains and integrated processes.
The continuous-time case focuses on Harris recurrent diffusion processes. Notwith-
standing finite-sample adjustments discussed in the paper, the proposed tests are
simple to implement and rely on tabulated critical values. Simulations show that
their size and power properties are satisfactory. Our robustness to nonlinear dy-
namics provides a solution to the typical inconsistency problem between assumed
linearity of a time series for the purpose of nonstationarity testing and subsequent
nonlinear inference.

1. INTRODUCTION

This paper suggests novel nonstationarity tests for possibly nonlinear discrete-
time and continuous-time processes. The vast literature on unit-root testing has
focused virtually exclusively on linear models; see, e.g., Phillips and Xiao (1998)
for a review. A considerable amount of recent work has, however, been devoted
to the use of possibly highly nonlinear specifications to model an array of time
series of interest. In continuous-time finance, for example, much attention has
been on the use of diffusion structures to model interest rates and stock returns
(e.g., Aı̈t-Sahalia, 1996; Conley, Hansen, Luttmer, and Scheinkman, 1997; and
Pritsker, 1998, among others). A diffusion sampled at discrete time intervals,
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i.e., the skeleton of a diffusion, is, in general, a nonlinear Markov chain.
Nonetheless, the common practice is to test for nonstationarity upfront by virtue
of methods whose theoretical justification hinges on linearity, as in the Dickey-
Fuller tradition and its many refinements. This issue creates a fundamental in-
consistency between nonstationarity testing, which is typically conducted before
inference begins, and modeling, in the context of which nonlinear dynamics are
now the norm, rather than the exception. To provide a solution to this pervasive
inconsistency problem, there is a need for nonstationarity tests that are robust to
nonlinear dynamics.

Our aim is to introduce and formalize ideas intended to fill this important gap
in the literature. We do so for a rather general class of Markov chains. Because
the skeleton of a diffusion is a Markov chain, diffusion processes are a subcase of
our broader treatment.

The intuition behind our methods goes as follows. If a process is stationary,
the amount of time that the process spends in the local neighborhood of a point
diverges to infinity linearly with the number of observations (in discrete time)
or with the time span (in continuous time). Under nonstationarity, the returns to
open sets are rarer, thereby leading to slower rates of recurrence that depend on the
degree of nonstationarity. We employ this fundamental observation to construct
nonstationarity tests for processes in the Harris recurrent class.

Consider the discrete-time case. Formally, let {Xt }t≥1 be a univariate Harris
recurrent Markov chain with state space (E,E) and unique invariant measure π .
Denote the number of visits at a point x ∈D ⊆R by

Ln(x) = #

{
t ; 1 ≤ t ≤ n, Xt ∈ lim

ε→0
Bε (x)

}
,

where Bε (x) is an open ball of radius ε centered at x . By recurrence, Ln(x)
a.s.→ ∞

as n → ∞. Null recurrent (nonstationary) and positive recurrent (strictly station-
ary or stationary in the limit) Markov chains have, however, occupation times
L̂n(x) that diverge to infinity at different rates. The tests that we propose exploit
the different divergence rates of the occupation times of a recurrent Markov chain
under the null of nonstationarity (stationarity) versus the alternative of stationarity
(nonstationarity).

Estimating occupation times would require selecting a bandwidth parameter to
capture locality. Even though, for the class of discrete-time processes discussed
in this paper, the choice of the locality parameter may be conducted as suggested
by Bandi, Corradi, and Wilhelm (2011) in recent work, 1 such a choice would
add an unnecessary layer of complication to our analysis. Importantly, additive
functionals of the type ∑n

t=1 f (Xt ), where f is a nonnegative function integrable
with respect to the process’s invariant measure π , are known to inherit the di-
vergence properties of the corresponding occupation times. The divergence rates
of ∑n

t=1 f (Xt ), under different degrees of recurrence, have been established by
Chen (1999). We may therefore rely on the divergence rates of additive function-
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als of the process for the purpose of constructing the tests. The tests combine
sample conditioning with a randomization procedure. They result in readily tab-
ulated critical values and apply to all Harris recurrent Markov processes. In dis-
crete time, we explicitly cover Harris recurrent Markov chains (as in, e.g., Karlsen
and Tjostheim, 2001; Guerre, 2004; and Schienle, 2008) and integrated processes
(as in, e.g., Wang and Phillips, 2009a, 2009b). In continuous time, we study the
case of Harris recurrent diffusion processes (see Bandi and Phillips, 2003, and,
for a review, Bandi and Phillips, 2010).

Randomized tests have first been suggested in a series of papers by Pearson
(1950), Stevens (1950), and Tocher (1950), who combine results from indepen-
dent experiments in the case of discontinuous random variables. The basic idea is
to add a uniform [0,1] random variable to the sample observations. Suppose we
have a sample X1, . . . , Xn from a random variable X endowed with a discrete dis-
tribution. One can then construct the continuous random variable Yi = Xi +Ui ,
where, for i = 1, . . . ,n, the Ui ’s are independent draws from a uniform distri-
bution on [0,1]. Another classical application of randomization is in the context
of rank tests in the presence of ties due, for example, to the discreteness of the
underlying distribution, e.g., Hajek and Sidak (1967, Chap. 3). In this case, one
uses a supplementary random experiment so that any possible rank assignment is
drawn with equal probability. The rank test statistic is then constructed by draw-
ing one of the possible rank assignments. More recently, Lutkepohl and Burda
(1997) have used randomization in the context of Wald tests with asymptotically
singular covariance matrices. Specifically, they add a draw from an N (0,�) ran-
dom vector to the (function of the) estimated parameters. In all the papers cited
above, the limiting distribution is driven by the joint probability law of the sample
and that of the added randomness, which is indeed the product of the two, given
independence. In this sense, there is no issue of sample conditioning.

A different use of randomization is that involved in the construction of con-
ditional p-values (e.g., Hansen, 1996) or in Monte Carlo tests (e.g., Dufour and
Kiviet, 1996). In this case, contrary to the examples above, the actual statistic
only depends on the sample of observations. However, the p-value used to decide
whether to reject the null hypothesis or not depends on added, simulated ran-
domness, conditional on the sample. Typically, conditional p-values and Monte
Carlo tests are used in situations in which the statistic has a well-defined limiting
distribution, though nonstandard or dependent on nuisance parameters.

Because of the joint presence of nonstationarity and nonlinearity, it is hardly
feasible for our problem to construct a statistic that has, if the null is true, a well-
defined limiting distribution under the probability law governing the sample, and
that diverges under the alternative. For this reason, we suggest a statistic that, con-
ditional on the sample and for all samples except a set of zero probability measure,
has a well-defined limiting distribution in terms of the law governing the added
randomness, and that diverges under the alternative. As explained in detail in the
proof of Theorem 1 below, we can decompose the suggested statistic into two
terms. The first term, conditional on the sample, converges in distribution under
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both hypotheses, in terms of the law governing the simulated randomness. The
second term, for all samples under the null, converges to zero, and for all samples
under the alternative, diverges. In particular, the speed at which the second term
converges to zero, or diverges, depends on the distance between the null and the
alternative hypothesis. Related approaches have been employed in other contexts.
Corradi and Swanson (2006) use randomized procedures to distinguish between
unit-roots in levels and in logs. Bandi et al. (2009) utilize them in the nonpara-
metric estimation of continuous-time Markov models to define a feasible set in
which the bandwidth needed for the estimation of a specific conditional moment
satisfies all conditions for consistency and asymptotic zero-mean normality.

When dealing with linear unit-root processes, our approach, which relies on
less information than classical approaches for linear time series, is bound not
to have the theoretical optimality or near-optimality properties of autoregressive,
coefficient-based (or t-ratio-based) methods in the literature (see, e.g., Elliott,
Rothemberg, and Stock, 1996). However, robustness to nonlinear dynamics makes
our procedures particularly appealing when one is unwilling to impose a linear
parametric structure on the underlying process of interest. In the case of linear
data generating processes, we compare the size and power properties of our tests
to those of standard unit-root tests. We do so for samples of moderate magnitude.
We find that the size of our test(s) is comparable to that of standard unit-root tests.
As expected, our tests are less powerful. However the loss of power, which varies
across different configurations, is overall rather mild. In other words, the price
paid for robustness to nonlinearities is small.

We start off with preliminary technical notions (Section 2). Section 3 discusses
additive functional-based nonstationarity testing for Harris recurrent Markov
chains. Section 4 covers the classical linear unit-root case. Section 5 focuses
on recurrent diffusion processes. Size and power properties are examined in
Section 6. Some final remarks are in Section 7. Section 8 concludes. All proofs
are in the Appendix.

2. PRELIMINARY TECHNICAL NOTIONS

We begin with formal assumptions on the underlying Markov process.

Assumption A. Let {Xt }t≥1 be a p-regular, φ-irreducible Markov chain on a
general state space (E,E) with transition probability P(x, A) and invariant mea-
sure π . Let p ∈ (0,1].2

We now introduce two results from Chen (1999) that will be employed in what
follows to derive our tests.

PROPOSITION 1 (Chen, 1999, Thm. 2.3.). Let {Xt } , t ≥ 1, be a p-regular
Harris recurrent chain. For every nonnegative function f ∈ L1(E,E,π), the ad-
ditive functional ∑n

t=1 f (Xt ), when standardized by α(n) = L(n)n p with L(n)
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slowly varying at infinity and 0 ≤ p ≤ 1, satisfies

∑n
t=1 f (Xt )

α(n)
⇒ (mlp)

∫
f (x)π(dx),

where mlp is the Mittag-Leffler density with the same parameter p.

PROPOSITION 2 (Chen, 1999, Thm. 2.4.). Let {Xt }, t ≥ 1, be a p-regular
Harris recurrent chain. Define L2ϑ = log logmax{ϑ,ee} with ϑ ≥ 0. For every
nonnegative function f ∈ L1(E,E,π), the additive functional ∑n

t=1 f (Xt ), when
standardized by α

( n
L2a(n)

)
L2a(n) with α(n) = L(n)n p, L(n) slowly varying at

infinity and 0 ≤ p ≤ 1, satisfies

lim sup
n→∞

∑n
t=1 f (Xt )

α
(

n
L2α(n)

)
L2α(n)

= �(p +1)

p p(1− p)1−p

∫
f (x)π(dx) a.s.,

where one should interpret p p = (1− p)1−p = 1 if p = 0 or 1.

Proposition 1 provides a weak convergence result for additive functionals
of recurrent Markov chains. As n → ∞, the standardized additive functional
∑n

t=1 f (Xt ) converges to a rescaled Mittag-Leffler random variable with param-
eter p consistent with the regularity of the underlying process. If p = 0, the
Mittag-Leffler density reduces to the exponential density, and the limit distri-
bution of the additive functional is that of an exponential random variable with
parameter

∫
f (x)π(dx). If p = 1, the Mittag-Leffler density is degenerate and

∑n
t=1 f (Xt )

α(n) = ∑n
t=1 f (Xt )

n
p→ ∫

f (x)p(dx). As is well known, this convergence is
also with probability one. Proposition 2 provides strong increasing rates for ad-
ditive functionals. Naturally, the number of times that the process {Xt }t≥1 visits
a given set A ∈ E with 0 < π(A) < ∞ can be obtained by replacing f with 1A,
the indicator function of the set A. Thus, Propositions 1 and 2 also provide the
weak and strong rates of divergence of the occupation times of positive-recurrent
( p = 1) and null-recurrent ( p < 1) chains. The class of p-regular Markov chains
is rather broad. For example, the β-recurrent Markov chains studied by Karlsen
and Tjostheim (2001) are indeed p-regular with p = β. Similarly, the skeleton of
a nonlinear diffusion process is, in general, a p-regular chain.

3. ADDITIVE FUNCTIONALS-BASED NONSTATIONARITY TESTS

Propositions 1 and 2 will be used below to justify novel nonstationar-
ity tests. They readily imply that, in the positive recurrent case p = 1,
1
n ∑n

t=1 f (Xt )
a.s.→ E( f (X)) > 0 as n → ∞, whereas in the null recurrent case

p < 1, 1
n ∑n

t=1 f (Xt )
a.s.→ 0 as n → ∞.

Of course, one cannot distinguish between p = 1 and p < 1 for any fixed sam-
ple size n. Any testing argument should therefore hinge on asymptotic statements.
This is indeed the same situation occurring in the linear case when the goal is to
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discriminate between I (0) processes and I (1) processes using the fact that par-
tial sums of I (0) processes satisfy a functional central limit theorem (FCLT).
Kwiatkowski, Phillips, Schmidt, and Shin (1992), KPSS henceforth, for exam-
ple, test the null of I (0) versus the alternative of I (1). Breitung (2002) tests the
null of I (1) versus the alternative of I (0). Müller (2008) discusses the difference
between setting a null of I (0) versus a null of I (1), or vice versa.

It will be clear in what follows that we can choose the null as being station-
arity (as in KPSS, 1992) or nonstationarity (as in Breitung, 2002). Similarly to
the KPSS test statistic, but differently from the Breitung statistic that converges
to zero under the alternative, the proposed statistic will converge in distribution
under the null and will diverge under the alternative.

Because of nonlinearity, we have considerably less information than in the ap-
proaches mentioned above. In particular, we only know that 1

n ∑n
t=1 f (Xt ) has a

strictly positive almost-sure limit under positive recurrence and has a zero almost-
sure limit under null recurrence. Thus, we cannot rely on a FCLT and derive well-
defined limiting distributions under the probability law governing the sample. To
overcome this issue, which is really a byproduct of the mild assumptions that we
impose on the dynamics, we rely on a testing procedure based on the joint use of
sample conditioning and randomization.

3.1. Null of Nonstationarity

We wish to test the null hypothesis

H0 : p ≤ p < 1

against the alternative

HA : p = 1.

It is immediate to see that our null is “larger” than the usual null of a unit root,
which may be stated as p = 1/2. Under some additional regularity assumption, p
can be estimated. However, its estimator would only converge at a logarithmic rate
(see Karlsen and Tjostheim, 2001, Rem. 3.7). Furthermore, no limiting distribu-
tion result for the estimated p has been established thus far. Hence, a t-ratio-based
test on p is currently not viable.

We suggest the randomized statistic

VR,n = 2√
R

R

∑
j=1

(
1

{
ηj ≤ λ

(
∑n

t=1 f (Xt )

n

)}
− 1

2

)
, (1)

where f is a nonnegative, π -integrable function on E, λ(x) is a positive
monotonic function such that λ(x) → 0 as x → 0, and the ηj s are a set
of standard normal draws (1 ≤ j ≤ R). The sample size of the simulated
series, R, is chosen in such a way as to guarantee that

√
Rλ

( bp(n)
n

) → 0
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with bp(n) =
(

n
log log(L(n)n p)

)p
L
(

n
log log(L(n)n p)

)
log log(L(n)n p) and L(n) is a

slowly varying function at infinity. It is important to note that the upper bound
of the value of p under the null, i.e., p, plays no role in the construction of the
statistic.3 Nevertheless, it plays a role in determining the rate at which the sam-
ple size of the simulated randomness R can grow relative to n. The further p is
from 1, and so the further the null and the alternative are, the faster R can grow.
Intuitively, given a sample size n, the more distant the null and the alternative, the
more we are able to discriminate between the two hypotheses.

In what follows, the symbols P∗ and d∗ denote convergence in probability and
in distribution under P∗, which is the probability law governing the simulated
random draws ηj , conditional on the sample. Also, E∗ and Var∗ denote the mean
and variance operators under P∗. Furthermore, the notation a.s. − P is used to
mean “for all samples but a set of measure 0.”

The logic underlying the statistic in equation (1) is as follows: We can decom-
pose VR,n into two terms;

VR,n = 2√
R

R

∑
j=1

(
1

{
ηj ≤ λ

(
∑n

t=1 f (Xt )

n

)}
−E∗

(
1

{
ηj ≤ λ

(
∑n

t=1 f (Xt )

n

)}))
+2

√
R

(
E

∗
(

1

{
ηj ≤ λ

(
∑n

t=1 f (Xt )

n

)})
− 1

2

)
. (2)

The first term on the right-hand side of (2) converges in distribution to a normal
random variable under P∗ regardless of which hypothesis is satisfied. Specif-
ically, it converges to a standard normal random variable under the null. Un-

der H0, λ
(

∑n
t=1 f (Xt )

n

)
a.s.→ 0 at speed λ

(
bp(n)

n

)
where, up to a slowly varying

term, bp(n)
n ≈ n p−1. Thus, for all samples, under the null, the second term is

Oa.s.

(√
Rλ

(
bp(n)

n

))
= oa.s. (1) for all p ≤ p < 1, provided

√
Rλ

(
bp(n)

n

)
→ 0.

Under HA, λ
(

∑n
t=1 f (Xt )

n

)
a.s.→ λ(E( f (X))) > 0, hence, for all samples, under the

alternative,
(
E

∗
(

1
{
ηj ≤ λ

(
∑n

t=1 f (Xt )
n

)})
− 1

2

)
> 0 and the second term on the

right-hand side of (2) diverges at rate
√

R. In light of these observations, it is
clear that the optimal choice of number of random draws R is to let it grow at
rate λ−2(1−ε)

( bp(n)
n

)
with ε > 0 arbitrarily small. When doing so, however, if

p < p < 1, then the second term diverges, leading to the wrong conclusion that
the chain is positive recurrent.
The following theorem establishes the limiting behavior of VR,n .

THEOREM 1. Let Assumption A hold and f be nonnegative and such that
f ∈L1(E,E,π). Let λ(x) be monotonically decreasing to zero as x → 0. Also, let

bp(n) =
(

n
log log(L(n)n p)

)p
L
(

n
log log(L(n)n p)

)
log log(L(n)n p), with L(n) slowly

varying at infinity. Assume R,n → ∞ and
√

Rλ
(

bp(n)
n

)
→ 0.
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(i) Under H0,

VR,n
d∗→ N (0,1) a.s.− P.

(ii) Under HA, there are constants c1,c2 > 0 so that

P∗(R−1/2+c1 VR,n > c2

)
→ 1 a.s.− P.

Noting that the second term on the right-hand side of (2) cannot be negative,
we should perform a one-sided test, rejecting at level α%, whenever VR,n is larger
than the (1−α)-percentile of the standard normal random variable. Contrary to
classical nonstationarity tests of the Dickey-Fuller type, the critical values of the
test are readily tabulated, being those of a standard normal random variable.

The implementation of the test requires a choice of λ(.) and f (.). The choice
of the function λ(.) determines a finite sample tradeoff between size and power.
The faster λ(x) decreases to zero as x → 0, the better the finite sample size,
the worse the finite sample power. In practice, as illustrated in the Monte Carlo
section, the natural choice is a power function. Needless to say, the larger the
sample size, the less important the choice of λ(.). The choice of the nonnegative
function f (.) depends on the subclass of processes being considered. It has to
be such that integrability with respect to the invariant density of the process is
satisfied. The indicator function of a compact set surely satisfies the positivity
and the integrability requirement. However, in practice this is not the best choice,
as it leaves with the selection of a compact set to use. In the case of random
walks (more on this in Section 4), any nonnegative function that is integrable
with respect to the Lebesgue measure may, in principle, be employed. In finite
samples, however, different integrable (with respect to π ) functions may perform
differently, thereby requiring care for implementation. In Section 6, we discuss
these issues further.

Finally, it is worthwhile to point out the analogies and the differences between
the wild bootstrap and our joint use of randomization and sample conditioning.
Wild bootstrap statistics are constructed using sample observations as well as sim-
ulated randomness. By drawing B simulated samples of the same size as the actual
sample size, one may construct B wild bootstrap statistics and their empirical dis-
tribution. The (possible) rejection of the null hypothesis at level α% is then based
on the comparison of the actual statistic and the (1 − α)-percentile of the wild
bootstrap empirical distribution. In our case, instead, we draw only one random
sample of size R. We then construct one statistic based on the R random draws
and on the n sample observations. The statistic is then compared to the critical
value of a standard normal. The wild bootstrap is used in situations in which the
statistic has a well-defined limiting distribution in terms of the probability law
governing the sample. This is not our case. Wild bootstrap critical values are used
either to deal with the presence of nuisance parameters (as in Hansen, 1996) or
to obtain higher-order refinements over asymptotic critical values (as in Davidson
and Flachaire, 2008; Gonçalves and Meddahi, 2009).
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3.2. Null of Stationarity

By switching the hypotheses in Section 3.1, we may also test the null of positive
recurrence

H ′
0 : p = 1

against the alternative of null recurrence

H ′
A : p ≤ p < 1.

Again, let f be a nonnegative, π -integrable function on E. We suggest the
statistic

ṼR,n(p) = 2√
R

R

∑
j=1

(
1

{
ηj ≤ λ

(
bp(n)

∑n
t=1 f (Xt )

)}
− 1

2

)
, (3)

where bp(n) and λ(x) are defined as in the previous subsection, and the ηj s are,
as earlier, a set of standard normal draws (1 ≤ j ≤ R). The sample size of the sim-

ulated series, R, is chosen in such a way as to guarantee that
√

Rλ
(

bp(n)
n

)
→ 0,

as before.
It is important to note that, contrary to our earlier results, the parameter p con-

trolling the distance between the null and the alternative hypothesis is now used
in the construction of the statistic as well as to determine the rate of growth
of R. As in the case of VR,n, ṼR,n can also be decomposed into two terms.
The first term, which depends on both simulated randomness and sample obser-
vations, converges to a normal random variable under P∗, regardless of whether
H ′

0 or H ′
A is true, for any sample. The second term, which depends only on sam-

ple observations, converges to zero at rate
√

Rλ
(

bp(n)
n

)
, for any sample gen-

erated under the null, and diverges at rate
√

R for any sample generated un-
der the alternative. Not surprisingly, the speed at which the second term ap-
proaches zero under H ′

0 increases the further the two hypotheses are. Finally,
the test has power against close alternatives, i.e., p < p < 1, provided R is

such that
√

Rλ
(

bp(n)
bp(n)

)
→ ∞.

THEOREM 2. Let Assumption A hold and f be nonnegative and such that
f ∈L1(E,E,π). Let λ(x) be monotonically decreasing to zero as x → 0. Also, let

bp(n) =
(

n
log log(L(n)n p)

)p
L
(

n
log log(L(n)n p)

)
log log(L(n)n p), with L(n) slowly

varying at infinity. Assume R,n → ∞ and
√

Rλ
(

bp(n)
n

)
→ 0.

(i) Under H0,

ṼR,n(p)
d∗→ N (0,1) a.s.− P.
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(ii) Under HA, there are constants c1,c2 > 0 so that

P∗(R−1/2+c1 ṼR,n(p) > c2

)
→ 1 a.s.− P.

Again, we reject the null at α% if ṼR,n is larger than the (1 −α)−percentile of
the standard normal distribution.

4. UNIT ROOTS

We now turn to the most classical modeling approach in the literature, namely lin-
ear integrated processes. In the case of martingale difference series errors, linear
integrated process are, in fact, 1

2− regular recurrent Markov chains. Hence, the
statements of Theorems 1 and 2 immediately apply with p = p = 1

2 . On the other
hand, in the linear case, we can dispense with the Markov assumption and still
apply the test outlined in the previous section under Assumption B, below.

Assumption B. Let {Xt }t≥1 satisfy Xt = ρXt−1 + ξt where ξt is α−mixing
with size −(4(4+γ ))/γ, γ > 0, and E

(|ξt |2(4+γ )
) ≤ C1 < ∞. Also, there exists

0 < ω2
0 < ∞ so that

∣∣∣∣T −1
E

((
∑m+T

k=m+1 ξk

)2
)

−ω2
0

∣∣∣∣ ≤ C2T −ψ with ψ > 0 and

C2 independent of m.

Assumption B is rather standard. It controls the degree of memory and hetero-
geneity of the innovation sequence. The null and the alternative hypothesis may
also be cast in a familiar framework. We test for nonstationarity,

H ′′
0 : ρ = 1,

versus stationarity,

H ′′
A : |ρ| < 1.

THEOREM 3. Let Assumption B hold and f be nonnegative and such that
f ∈L1(E,E,π). Let λ(x) be monotonically decreasing to zero as x → 0. Assume

R,n → ∞ and
√

Rλ
(√

n log logn
n

)
→ 0.

(i) Under H ′′
0 ,

VR,n
d∗→ N (0,1) a.s.− P.

(ii) Under H ′′
A, there are constants c1,c2 > 0 so that

P∗(R−1/2+c1 VR,n > c2

)
→ 1 a.s.− P,

where VR,n is defined as in (1).
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One may again switch the hypotheses above and perform a test of stationar-
ity versus nonstationarity (as in KPSS, 1992) under Assumption B, using the

statistic ṼR,n

(
1
2

)
defined in (3), with

√
n log logn replacing bp̄(n), provided

√
Rλ

(√
n log logn

n

)
→ 0.

As discussed above, because of their reliance on more limited information, in
the case of linear data generating processes, our tests do not share the optimality
properties against local alternatives that standard tests (such as the Dickey-Fuller
test or Phillips’ Z test) enjoy. In Section 6, we show that the actual power loss can
be small in practice.

5. DIFFUSION PROCESSES

The skeleton of a diffusion, i.e., a diffusion sampled at discrete time intervals, in-
herits the recurrence properties of the underlying continuous-time process (Meyn
and Tweedie, 1993). Hence, the tests outlined in Sections 3 and 4 should, in
principle, be applicable to widely used continuous-time processes sampled dis-
cretely. However, if high-frequency observations on the process are available, one
may wish to use them, rather than just resort to a low-frequency skeleton. In this
section, we formalize this intuition.

Consider a diffusion process {Xt : t ≥ 0} defined as the unique, strong solution
to d Xt = μ(Xt )dt + σ(Xt )dWt on A = (l,u), where {Wt : t ≥ 0} is a standard
Brownian motion.

Define t∗x = inf{t ≥ 0|Xt ∈ limε→0 Bε (x)}, the first crossing time of the level
x . It is known that, if P(t∗x < ∞|X0 = a) = 1, for all a and x in A, the pro-
cess is recurrent. Specifically, it is null recurrent if E(t∗x | X0 = a) = ∞ for
all a and x in A. Alternatively, if E(t∗x | X0 = a) < ∞, the process is positive
recurrent.

We assume recurrence. In terms of the shape of the drift and diffusion func-
tion μ(.) and σ(.), the process is recurrent if and only if limb→l S(b) = −∞
and limb→u S(b) = ∞, where S(b) = ∫ b

c exp
{∫ x

c

[
− 2μ(s)

σ 2(s)

]
ds

}
dx (with c ∈ A)

is the so-called scale function. Positive recurrence requires the speed (or invari-
ant) measure m(dx) = 2dx

S′(x)σ 2(x)
= π(dx) to be integrable over A, i.e., m(A) =∫

Am(x)dx < ∞. In this case, the stationary density of the process is p(x) =
m(x)
m(D) for x in A. We refer the reader to Bandi and Phillips (2010) for further
discussions.

Assume the process Xt is observed at discrete points {t1, t2, . . . , tn} in
the time interval [0,T ]. Also, assume the data are equispaced. Then,
{X�n,T , X2�n,T , X3�n,T , ..., Xn�n,T } are n observations, i.e., the diffusion’s skele-
ton, at {t1 = �n,T , t2 = 2�n,T , t3 = 3�n,T , ..., tn = n�n,T } with �n,T = T/n. In
the limit, let n → ∞, T → ∞, and �n,T = T/n → 0.
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As in the previous section, we work with additive functionals. For a
π -integrable, nonnegative function f (.), we have

�n,T

n

∑
i=1

f
(

Xi�n,T

) a.s.∼
∫ T

0
f (Xs)ds,

uniformly in T as �n,T → 0 fast enough. Further, Theorem 3.1 in Löcherbach
and Loukianova (2009) implies that

lim sup
T →∞

∫ T
0 f (Xs)ds

v
(

T
L2(v(T ))

)
L2(v(T ))

= CX

∫ ∞
−∞

f (Xs)π(ds),

where CX > 0 is a process-specific constant, v(T ) = Eϕ

(∫ T
0 f (Xs)ds

)
∼

T p log(T ) for any initial measure ϕ, and L2ϑ = log logmax{ϑ,ee} with ϑ ≥ 0, as
earlier in Proposition 2. Thus,

lim sup
T,n→∞

�n,T ∑n
i=1 f

(
Xi�n,T

)
v
(

T
L2(v(T ))

)
L2(v(T ))

= CX

∫ ∞
−∞

f (Xs)π(ds)

with �n,T → 0.
We can now proceed as earlier. Under null recurrence (H0 : p < 1),

�n,T ∑n
i=1 f

(
Xi�n,T

)
T

= Oa.s.

(
bp(T )

T

)
= oa.s.(1),

where bp(T ) = v
(

T
L2(v(T ))

)
L2(v(T )). Under positive recurrence (HA : p = 1),

�n,T ∑n
i=1 f

(
Xi�n,T

)
T

= Oa.s. (1) .

Define now the statistic

VR,n,T = 2√
R

R

∑
j=1

(
1

{
ηj ≤ λ

(
�n,T ∑n

i=1 f
(

Xi�n,T

)
T

)}
− 1

2

)
,

where the ηj s are, as earlier, R standard normal draws. We have the following.

THEOREM 4. Let {Xt }t∈R+ be a p-recurrent diffusion process. Let f be non-
negative, and such that f ∈ L1(E,E,π), and let λ(x) be monotonically decreas-
ing to zero as x → 0. Assume R,n,T → ∞ and �n,T = T/n → 0. Also, assume√

Rλ
(

bp(T )
T

)
→ 0 with

bp(T ) =
(

T

log log(L(T )T p)

)p

L

(
T

log log(L(T )T p)

)
log log(L(T )T p)

and L(T ) slowly varying at infinity.
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(i) Under H0 : p ≤ p < 1,

VR,n,T
d∗→ N (0,1) a.s.− P.

(ii) Under HA : p = 1, there are constants c1,c2 > 0 so that

P∗(R−1/2+c1 VR,n,T > c2

)
→ 1 a.s.− P.

Note that the admissible divergence rate of the number of random draws R should
now depend on the time span (T ) rather than on the number of observations (n)
in the sample.

6. SIZE AND POWER

We consider 5% level tests and simulate three data generating processes.

Model I
A classical autoregressive process, viz.

Xt = ρXt−1 +ut .

We set X0 = 0 and let ut be independent and identically distributed (i.i.d)
N (0,σ 2) with three values of σ , namely 1, 100, and 0.01. Under H0 : ρ = 1
the invariant measure of the process π(dx) ∼ dx .

Model II
An affine diffusion process with μ(x) = κ(φ − x) and σ(x) = σ , viz.

d Xt = κ(φ − Xt )dt +σdWt .

We set φ = 0, X0 = 0, and σ = √
0.008742. The process is simulated after dis-

cretization using a classical Milshtein scheme. The case κ = 0 gives null recur-
rence of the unit-root type. Under H0 : κ = 0, the invariant measure is, again,
π(dx) ∼ dx .

Model III
A “natural scale” diffusion with μ(x) = 0 and σ(x) = σ(1+ x2)γ/2, viz.

d Xt = σ(1+ X2
t )

γ /2dWt .

We set σ = 1. Again, the process is simulated after discretization using a Milshtein
scheme. For γ ≤ 1

2 , the process is null recurrent. For γ > 1
2 , the process is positive

recurrent. The invariant measure is π(dx) ∼ dx
(1+x2)γ

.

In order to preserve the conditioning on the sample, we simulate a specific
sample and calculate 1,000 statistics (conditional on that sample) based on 1,000
draws of an R-vector of standard normal draws. This procedure gives us one re-
jection frequency, conditional on the sample. The same method is implemented

https://doi.org/10.1017/S0266466613000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466613000145


140 FEDERICO M. BANDI AND VALENTINA CORRADI

multiple times (100 times) before averaging the rejection frequencies across the
100 samples. In the case of Models I, in agreement with much existing work
on unit-root testing, results are based on samples of moderate length. We set n
equal to 500 and increase the sample size to n = 1,000 to evaluate the impact
of this increase. In the case of Models II and III, we set the sample size equal to
n = 5,000. This larger sample size is typical of the continuous-time finance litera-
ture in which the proposed models have been estimated. It corresponds to 20 years
of daily data. The quantity R is set equal to 1,000 but is sometimes extended to
10,000 to assess the gain in power and the corresponding loss in size associated
with an increase in the number of random draws. The functions λ(x) and f (x)
are set equal to xθ , for some θ > 0, and 2

1+x2 , respectively. The choice of f (x)
guarantees π -integrability in all three cases. We focus on a nonstationary null.
As discussed, the test is immediate to code up and hinges on tabulated critical
values, i.e., those of the standard normal distribution. We compare it to the classi-
cal Dickey-Fuller test as well as to Phillips’s Z test (Phillips, 1987). The latter is
computed using a Parzen kernel and an AR(1) filter to estimate the spectrum.

Even though the asymptotic properties of the test are not affected by the choice
of λ(.) and f (.), provided these functions satisfy the conditions listed in the the-
orems, finite sample performance is naturally influenced by these choices and
requires care. While a complete discussion of these issues is beyond the scope of
the present paper, we intend to give the reader general principles about how to
implement the test in practice.

We begin with Model I (Tables 1 and 2). We set θ = 5, thereby obtaining
λ(x) = x5. It is intuitive that a small σ 2 may easily translate into an oversized
test. Similarly, a large σ 2 will likely translate into an undersized test. The reason
for this is that a small σ 2 will result in observations that do not move away from 0
fast enough in a small sample, thereby yielding values of 2

1+x2 , which remain in a

neighborhood of about 2. This means that ∑n
t=1

2
1+X2

t
may grow roughly with the

sample size and lead to rejections of the null, even if ρ = 1. Conversely, a large σ 2

TABLE 1. Size and power calculations for Model I

Size Power
ρ = 1 ρ = 0.99 0.98 0.97 0.96 0.95

BC (σ = 1) 6.1% 11.7% 21.4% 38.2% 51.2% 70.3%
BC (σ = 100) 6.2% 11.8% 20.5% 34.4% 48.6% 68.5%
BC (σ = 0.01) 5.5% 9.6% 19.7% 32.8% 59.1% 76.6%
DF (σ = 1) 4.75% 11.3% 30% 58.7% 84.3% 96.3%
Z (σ = 1) 5.6% 21% 48% 79.1% 95% 99.3%

Note: The number of simulated samples is 100. The number of simulations per sample is 1,000. The number of data
points (n) is 500. The number of normal draws (R) is 1,000. The starting point is zero. DF stands for the Dickey-Fuller
test. Z stands for Phillips’s Z test.
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TABLE 2. Size and power calculations for Model I: Larger number of draws and
observations

Size Power
ρ = 1 ρ = 0.99 0.98 0.97 0.96 0.95

BC (σ = 1) n = 500, R = 10,000 7.8% 22% 44.8% 69.3% 87% 95.2%
BC (σ = 1) n = 1,000, R = 10,000 5.2% 11.5% 44.9% 78.1% 91% 99.73%

Note: The number of simulated samples is 100. The number of simulations per sample is 1,000. The number of data
points (n) is 500 or 1,000. The number of normal draws (R) is 10,000. The starting point is zero.

will make the process drift away from 0 quickly even in a small sample, thereby
yielding small values of 2

1+x2 and, hence, excessively “nonstationary” dynamics
in a finite sample, even when |ρ| < 1. To this extent, in order to eliminate the
finite sample impact of the shocks’ variance, we first standardize the data by the
(estimated) standard deviation of the shocks. This is going to lead to 2

1+x2 values,
which in light of the unit variance properties of the standardized data will be in the
vicinity of 1 when the data are stationary and will be closer to zero under the null.
As we show below, the proposed correction achieves a finite sample invariance to
the shocks’ variance that mirrors the asymptotic invariance of the proposed tests
as well as that of more classical tests for unit roots.

Table 1 reports size and power for alternative choices of σ 2. Size is very satis-
factory. As expected in light of the superior efficiency of classical unit root tests
in the context of linear processes, power is a bit smaller than for the existing tests.
Increases in the number of random draws R (from 1,000 to 10,000, in our case)
will, however, yield slight size distortions but substantial power increases, leading
to an overall performance that is comparable to that of extant, popular alternatives
(Table 2). As expected, increasing the number of observations leads, in general,
to superior performance across the board. The obvious size improvements might,
however, be accompanied by slight deteriorations in power for very close alterna-
tives (see Table 2).

We now turn to Model II (Table 3). We only report the case σ 2 = 0.008742,
which is typical of the literature on short-term interest rate estimation using daily
data in continuous time (see, e.g., Pritsker, 1998). As was done in the case of
Model I, in order to improve finite sample performance, relying on the linearity
of the data generating process, we standardize the data by the estimated shocks’
standard deviation. Alternative values of σ 2 could therefore be handled similarly
and would yield, as for Model I, identical results. The integrable function f (x) is
set equal to 2

1+x2 , as earlier. We employ n = 5,000, a typical sample size in the
continuous-time literature, and set, as before, R = 1,000. The coefficient θ is now
chosen equal to 3, rather than 5. The reason for this modification has to do with the
larger sample size. If the sample is large, the function λ(.) will play less of a role.
Asymptotically, in fact, one could even dispense with λ(.) or, equivalently, set
θ = 1 if assuming that λ(.) is a power function. In essence, the smaller the sample
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TABLE 3. Size and power calculations for Model II

Size Power
κ = 0 κ = 2 κ = 6 κ = 8

BC (σ =
√

0.008742) 4.8% 16.0% 78.0% 95.2%
DF (σ =

√
0.008742) 4.7% 85% 100% 100%

Z (σ =
√

0.008742) 5.2% 90% 100% 100%
ρ 1 0.992 0.976 0.968

Note: The number of simulated samples is 100. The number of simulations per sample is 1,000. The number of data
points (n) is 5,000. The number of normal draws (R) is 1,000. The starting point is zero. ρ is the autoregressive
parameter implied by the choice of κ for daily data (dt = 1/252). DF stands for the Dickey-Fuller test. Z stands for
Phillips’s Z test.

size, the faster λ(.) has to go to zero to aid the asymptotics. The larger the sample
size, the more ineffective the function λ(.) has to be in order to avoid undersizing
and power losses. Said differently, if assuming a power function, we advocate
decreasing the size of θ as n increases. In the case of Model II, we vary κ to assess
size and power. The implied, given choices of κ , autoregressive parameters are
reported in the last line of Table 3. The results are analogous to those derived from
Model I. The test is properly sized but is less powerful than classical alternatives
in the literature. Both the Dickey-Fuller test and Phillips’s Z test have very high
power for local alternatives (κ = 2) given the assumed sample size. Needless to
say, an increase in the number of random draws R would increase the power of
the proposed test, as earlier, while determining some size deterioration.

Table 4 reports results for a nonlinear alternative, i.e., Model III. The parameter
γ controls, in this case, the stationarity properties of the process. If 0 < γ ≤ 0.5,
the process is null recurrent. It is positive recurrent if γ > 0.5. This is a case of
volatility-induced stationarity, a specification introduced in the context of inter-
est modeling in continuous time (Conley et al., 1997). We assess size by setting
γ equal to 0.1 and 0.2 and power by setting γ equal to 0.6, 0.7, and 0.8. In
agreement, again, with the continuous-time literature and Model II, the sample

TABLE 4. Size and power calculations for Model III

Size Power
γ = 0.1 γ = 0.2 γ = 0.6 γ = 0.7 γ = 0.8

BC (σ = 1) 5.6% 7.4% 63.2% 93.2% 100%
DF (σ = 1) 4.2% 4.9% 7.0% 8.8% 12.2%
Z (σ = 1) 5.3% 7.0% 12.3% 17.2% 24.0%
ρ̂ 0.9998 0.9987 0.9971 0.9966 0.9964

Note: The number of simulated samples is 100. The number of simulations per sample is 1,000. The number of
data points (n) is 5,000. The number of normal draws (R) is 1,000. The starting point is zero. ρ̂ is the estimated
autoregressive parameter. DF stands for the Dickey-Fuller test. Z stands for Phillips’s Z test.
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size is 5,000 observations. The number of random draws is 1,000. The parameter
θ is, again, equal to 3. We find that traditional tests have very little power in this
case. This is true across the board, not only for local alternatives (γ = 0.6). Con-
sistent with this observation, the autoregressive parameter is always estimated at
values that are extremely close to 1. Conversely, the additive-functional-based test
is only slightly oversized but has extremely high power. This result is striking and
points to the inability of traditional coefficient-based tests to adapt to nonlinear
structures in the data. We find, for instance, that with 10 times as many observa-
tions (namely, with a sample size of 50,000 observations) the local power of the
Dickey-Fuller test would still be around 30%. This is in sharp contrast with the
63.2% rejection probability of the test that we propose for a more realistic sample
size of 5,000 observations.

7. FINAL REMARKS

As we emphasize above, the tests are asymptotically invariant to the magnitude of
the process’s shocks. They are, however, not invariant in finite samples, since the
scale of the function f (.) depends on the variability of Xt . While in the nonlin-
ear case one does not have, in general, a clean way to standardize the data using
the estimated variance of the process’s shocks, it may still help to rescale Xt by
a nonparametric estimator of its conditional variance suitably averaged over the
evaluation points in order not to alter the regularity properties of the chain. The
conditional variance may be identified along the lines of Bandi et al. (2011) who,
for classes of discrete-time models analogous to the ones covered in this paper,
discussed consistency and asymptotic normality of a nonparametric conditional
variance estimator without requiring assumptions on the degree of recurrence
(for the continuous-time case, we refer to Bandi and Phillips, 2003).

There are alternative ways in which randomized nonstationarity tests can be
constructed. The issue of finite sample invariance should have implications for the
construction of the tests in the presence of alternative possible test specifications.
It should also influence empirical implementations for any chosen specification.

We start with the former, i.e., test construction. As pointed out by a referee,
whom we thank, a statistic having a normal limiting distribution under the null
of nonstationarity and diverging under the alternative conditionally on the sample
could, for instance, also be defined as

V R,n = ξ +√
Rλ

(
1

n

n

∑
t=1

f (Xt )

)
,

where ξ is a simulated N(0,1) draw. Because
√

Rλ
(

1
n ∑n

t=1 f (Xt )
)

is almost

surely zero under H0, provided R = o
(
λ−2

(
bp(n)

n

))
, and diverges almost surely

under HA, V R,n has the same asymptotic properties as VR,n . The advantage of
V R,n is that ξ is exactly normal, rather than asymptotically normal as the first term
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in (2). Such a statistic, which is logically identical to the one we propose, is easy to
compute, provides additional intuition for the identical conditions on R and λ(.),
illustrated in Theorem 1, and complements our proposed VR,n . However, due to

the fact that both size and power depend on the magnitude of λ
(

1
n ∑n

t=1 f (Xt )
)

for a finite n, we believe that the finite sample scale of f (.) will affect V R,n

more severely than VR,n . Simulations, not reported here for conciseness, show
that for the same choices of R, λ(.), and f (.), V R,n is oversized as compared to
VR,n . The reason for this outcome is that the relative impact of the magnitude

of λ
(

1
n ∑n

t=1 f (Xt )
)

on VR,n is attenuated by the use of the indicator function

in our context. The component that multiplies
√

R in VR,n is, in fact, between 0
and 1

2 , whereas the component multiplying
√

R in V R,n is also positive and, in
theory, arbitrarily large. In this sense, we conjecture that V R,n is, in general, more
sensitive than VR,n to scaling issues and the related selection of λ(.) and f (.).
Hence, it is less preferable in practice.

We now turn to implementation. The choice of λ(.), f (.) and R is important and
nontrivial. It is a price to pay to handle nonlinear dynamics. As outlined above,
one may set λ(x) = xθ , where θ ranges between 2 and 5, say, with a preference
for a smaller θ the larger the sample. Provided π -integrability is guaranteed, the
choice of f (x) may not be limited to the class of functions a

1+x2 , with a > 0,
used in our Monte Carlo exercise. As emphasized above, rescaling the data and
selecting an appropriate f (.) to attenuate finite sample scaling issues for a smaller

sample size appear important. As for R, one needs
√

Rλ
(

bp(n)
n

)
→ 0 asymptot-

ically for correct sizing. The larger R, the higher power is. Hence, in principle,

one should select R ∼ λ−(2−ε)
(

bp(n)
n

)
, with ε > 0 as small as possible. The focus

of this paper is on laying out ideas and providing preliminary recommendations
for implementation. The design of adaptive rules to select λ(.), f (.) and R is
important and should be the subject of future work.

8. CONCLUSIONS

A great deal of work in econometrics, particularly in financial econometrics, has
been focusing on nonlinear models. Stationarity is often tested upfront and subse-
quently invoked if supported by classical tests as a way to justify inferential pro-
cedures that rely on it either for identification or to derive limiting results. This
sequential approach is pragmatic and defensible. However, it generates a theoret-
ical inconsistency between the use of classical stationarity/nonstationarity tests,
which assume linearity before inference begins, and subsequent nonlinear in-
ference. To address this issue, this paper introduces and formalizes initial ideas
for nonstationarity testing based on sample conditioning and randomization. We
show how randomization and conditional inference can be jointly put to work
to derive nonstationarity tests that are robust to nonlinearities of unknown form.
In particular, we show how one may handle situations in which well-defined
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parameter-based nonstationarity tests, as in the unit-root tradition, cannot be
derived.

While randomization has some history in statistics, its use for occupation
density-based nonstationarity testing is, to the best of our knowledge, novel. We
use it here to evaluate relative “magnitudes,” namely the magnitude of sums of
integrable functions of the data as compared to the magnitude of the sample size
itself. We show that, when properly conducted, this comparison will give us infor-
mation under mild assumptions about stationary/nonstationary behavior irrespec-
tive of the linearity properties of the underlying data-generating process. Much
remains to be done. While the class of processes that we evaluated is wider than
that covered by classical unit-root tests, it now seems important to broaden the
scope of application further.

NOTES

1. Bandi, Corradi, and Moloche (2009) discuss bandwidth selection in continuous time.
2. As said, the case p = 1, with the addition of some innocuous regularity conditions, corresponds

to the case of positive recurrent (stationary) chains.
3. This is in contrast with fractional Dickey-Fuller tests in which the statistic depends on both

the fractional differencing parameter under the null and under the alternative (Dolado, Gonzalo, and
Mayoral, 2002).
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APPENDIX

Proof of Theorem 1. Given Assumption A, by Proposition 2,

lim sup
n→∞

∑n
t=1 f (Xt )

bp(n)
= �(p +1)

p p(1− p)1−p

∫
f (x)π(dx) a.s.,

where bp(n) =
(

n
log log(L(n)n p)

)p
L
(

n
log log(L(n)n p)

)
log log(L(n)n p). Hence, under the

null of p < 1,
∑n

t=1 f (Xt )
n = Oa.s.

(
bp(n)

n

)
= oa.s.(1). First, note that for all j, conditional
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on the sample, v j,n = ηj

λ

(
∑n

t=1 f (Xt )
n

) d∗
∼ N

⎛⎜⎝0, 1

λ2

(
∑n

t=1 f (Xt )
n

)
⎞⎟⎠. Let

�n =
{

ω : λ−1
(

∑n
t=1 f (Xt )

n

)
> ε > 0

}
so that, under H0, P (limn→∞ �n) = 1. We shall proceed conditional on ω ∈ �n . We
obtain

VR,n = 2√
R

R

∑
j=1

(
1
{
v j,n ≤ 1

}−E∗ (
1
{
v j,n ≤ 1

}))+ 2√
R

R

∑
j=1

(
E

∗ (
1
{
v j,n ≤ 1

})− 1

2

)
,

where E∗ (
1
{
v j,n ≤ 1

}) = 1/2+ P∗ (
0 ≤ v j,n ≤ 1

)
. Now,

P∗ (
0 ≤ v j,n ≤ 1

)
= 1(

2πλ−2
(

∑n
t=1 f (Xt )

n

))1/2

∫ 1

0
exp

⎛⎜⎝− x2

2λ−2
(

∑n
t=1 f (Xt )

n

)
⎞⎟⎠dx

= O

(
λ

(
∑n

t=1 f (Xt )

n

))
(A.1)

= O

(
λ

(
bp(n)

n

))
. (A.2)

Thus, for all ω ∈ �n,

VR,n = 2√
R

R

∑
j=1

(
1
{
v j,n ≤ 1

}−E∗ (
1
{
v j,n ≤ 1

}))+ O

(√
Rλ

(
bp(n)

n

))
,

where the last term is o(1) since, for all p ≤ p,
√

Rλ
(

bp(n)
n

)
→ 0 as n, R → ∞. Given

(A.2), and recalling that E∗ (
v j,nvs,n

) = 0 for s �= j conditionally on the sample,

Var∗
(

1√
R

R

∑
j=1

(
1
{
v j,n ≤ 1

}−E∗ (
1
{
v j,n ≤ 1

})))

= 1

R

R

∑
j=1

(
E

∗ (
1
{
v j,n ≤ 1

}−E∗ (
1
{
v j,n ≤ 1

}))2
)

= 1

R

R

∑
j=1

(
E

∗ (
1
{
v j,n ≤ 1

}− P∗ (
v j,n ≤ 1

))2
)

= P∗ (
v j,n ≤ 1

)(
1− P∗ (

v j,n ≤ 1
))

=
(

1/2+ O

(
λ

(
bp(n)

n

)))(
1/2+ O

(
λ

(
bp(n)

n

)))
= 1/4+ O

(
λ

(
bp(n)

n

))
.
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Thus, VR,n is correctly standardized for a classical central limit theory for i.i.d. sequences

to apply and VR,n
d∗→ N (0,1) . Now, let

�+
n =

{
ω : λ−1

(
∑n

t=1 f (Xt )

n

)
< �, 0 < � < ∞

}
so that, under HA, P

(
limn→∞ �+

n
) = 1. For ω ∈ �+

n , λ−1
(

∑n
t=1 f (Xt )

n

)
a.s.→ M. Hence,

v j,n
d∗→ N (0, M2). As in the null case, the statistic may be expressed as

2√
R

R

∑
i=1

(
1
{
v j,n ≤ 1

}− 1

2

)
= 2√

R

R

∑
i=1

(
1
{
v j,n ≤ 1

}−E∗ (
1
{
v j,n ≤ 1

}))
+2

√
R

(
E

∗ (
1
{
v j,n ≤ 1

})− 1

2

)
, (A.3)

where, again, E∗ (
1
{
v j,n ≤ 1

}) = 1/2 + P∗ (
0 ≤ v j,n ≤ 1

)
with P∗ (

0 ≤ v j,n ≤ 1
)

as
in (A.1). Now, for any ω ∈ �+

n , the first term on the right-hand side of (A.3) con-
verges in distribution to a (nonstandard) zero-mean normal random variable. However,
P∗ (

0 ≤ v j,n ≤ 1
)

> 0 and, thus, the second term diverges at rate
√

R. n

Proof of Theorem 2. Let v j,n = ηj

λ

(
bp (n)

∑n
t=1 f (Xt )

) d∗
∼ N

(
0,λ−2

(
bp(n)

∑n
t=1 f (Xt )

))
. Now, for

any sample, under the null, by Proposition 2, λ
(

bp(n)

∑n
t=1 f (Xt )

)
= Oa.s.

(
λ
(

bp(n)
n

))
. On the

other hand, for any sample, under the alternative, λ
(

bp(n)

∑n
t=1 f (Xt )

)
= Oa.s.

(
λ
(

bp(n)
bp(n)

))
.

The statement, then, follows by the same argument used in the proof of Theorem 1. n

Proof of Theorem 3. We solely have to prove that 1
n ∑n

t=1 f (Xt ) = Oa.s.

(√
log logn

n

)
.

The statement of the theorem will then follow from the same arguments leading to Theorem
1. To this extent, we show the result for the case f (Xt ) = 1{a ≤ Xt ≤ b}. Because the
indicator function of a compact set is dense in the class of bounded functions, the proof
is without loss of generality. Let Bt = ω0Wt with Wt a standard Brownian motion. Let
A = [a,b] and, with an abuse of notation, define A/

√
n = [

a/
√

n,b/
√

n
]

and

A√
n

−
(

Bt√
n

− Xt√
n

)
=

[
a√
n

−
(

Bt√
n

− Xt√
n

)
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b√
n

−
(

Bt√
n

− Xt√
n

)]
.

Finally, let �
(

A√
n

)
= Pr

(
a√
n

≤ ω0 Z ≤ b√
n

)
, with Z denoting a standard normal random

variable. The function �
(

A√
n

−
(

Bt√
n

− Xt√
n

))
is defined analogously. Let, also, φ be the

density function associated with �. We have,

1

n

n

∑
t=1

f (Xt ) = 1

n

n

∑
t=1

1

{
Bt√

n
∈ A√

n
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+ 1

n
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{
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n
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(
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n

−
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and

1

n

n

∑
t=1

f (Xt ) = 1

n

n

∑
t=1
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1
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Bt√

n
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n

}
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n
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n
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n
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n
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∑
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{
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n
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n

}
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(
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n

n

∑
t=1

(
�

(
A√
n

−
(

Bt√
n

− Xt√
n

))
−�

(
A√
n

))
= In + I In + I I In + I Vn .

The strong invariance principle for the Brownian motion ensures that In =
Oa.s.

(√
log logn

n

)
. It is immediate to see that I In = O

(
1√
n

)
. Given Assumption B, be-

cause of the strong stochastic equicontinuity of the indicator function, I I In = Oa.s.
( 1√

n

)
.

Finally, letting dn ∈
(

a√
n

−
(

Bt√
n

− Xt√
n

)
, b√

n
−

(
Bt√

n
− Xt√

n

))
, in light of Assumption B,

I Vn = 1

n

n

∑
t=1

φ (dn)

(
Bt√

n
− Xt√

n

)
= Oa.s.

(√
log logn

n

)
,

because of the functional law of the iterated logarithm for strong mixing processes (e.g.,
Eberlein, 1986). Thus,

1

n

n

∑
t=1

f (Xt ) = Oa.s.

(√
log logn

n

)
. n

Proof of Theorem 4. Given Theorem 3.1 in Löcherbach and Loukianova (2009), it
follows from the same argument as that of the proof of Theorem 1. In this case, however,
the rate of growth of the occupation measure depends on the time span T rather than on
the sample size n. n
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