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Objective. To investigate the behavior of restricted mean survival time (RMST) and designs of
a two-state Markov microsimulation model through a 2 × 4 × 2 full factorial experiment.
Method. By projecting patient-wise 15-year-post-trial survival, we estimated life-year-gained
between an intervention and a control group using data from the Cardiovascular Outcomes
for People Using Anticoagulation Strategies Study (COMPASS). Projections considered either
in-trial events or post-trial medications. They were compared based on three factors: (i) choice
of probability of death, (ii) lengths of cycle, and (iii) usage of half-a-cycle age correction.
Three-way analysis of variance and post-hoc Tukey’s Honest Significant Difference test
compared means among factors.
Results. When both in-trial events and post-trial study medications were considered,
monthly, quarterly, or semiannually were not different from one other in projected life-
year-gained. However, the annual one was different from the others: mean and 95 percent
confidence interval 252.2 (190.5–313.9) days monthly, 251.8 (192.0–311.6) quarterly, 249.1
(189.7–308.5) semiannually, and 240.8 (178.5–303.1) annually. The other two factors also
impacted life-year-gained: background probability (269.1 [260.3–277.9] days projected with
REACH-based-probabilities, 227.7 [212.6–242.8] with a USA life table); half-a-cycle age cor-
rection (245.5 [199.0–292] with correction and 251.4 [209.1–293.7] without correction).
When not considering post-trial medications, only the choice of probability of death appeared
to impact life-year-gained.
Conclusion. For a large trial or cohort, to optimally project life-year-gained, one should
consider using (i) annual projections, (ii) life table probabilities, (iii) in-trial events, and
(iv) post-trial medication use.

Introduction

Cardiovascular diseases are one of the leading causes of death in recent decades. To reduce the
cardiovascular burden in the aging population, many clinical trials and epidemiology studies
are ongoing in this area (1–3). To assist policy making, researchers often want to study the
long-term health effect of a novel intervention versus a standard care. This is challenging,
as there are very few studies that can follow-up with participants for long-term or even life-
time. Discrete-time Markov microsimulation models are often used in the field of cardiology
to simulate a trial and to project long-term survival (4–6). Such models, especially with
multiple states and their complicated mutual relationships, large cohorts, and average survival
estimated by the restricted mean survival time (RMST), are computationally demanding.
Therefore, a burning methodological question is how to improve the effectiveness of these
models. Recent literature discussed various efforts on constructing and expediting models
with dramatically complex structures. However, there are scarce discussions about fundamen-
tal parameters such as cycle lengths, half-a-cycle age correction and background probabilities
(7–18). Moreover, these parameters have been used without justification in many recent imple-
mentations and applications of Markov microsimulation models (4–6). Actually, with optimal
setup, these parameters can help to accelerate a modeling process too.

First proposed in 2010 (19;20), the measurement of RMST has been becoming popular in
medical research for its intuitive interpretation of treatment effects. Especially when the
assumption of proportional hazards is violated in the design and analysis of a study with
time-to-event outcomes, it is not appropriate to estimate the treatment effect using a single
hazard ratio for all time points. In this case, RMST can be an alternative approach (20;21).
This makes it meaningful to study the behavior of RMST here.

In this article, we demonstrate how to project “after-a-clinical trial survival” through a
two-state Markov microsimulation model and then estimate average survival time using
RMST. Moreover, we investigate whether three parameters of the model, cycle lengths,
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half-a-cycle age correction, and background probabilities, affect
the estimated incremental life-year-gained between intervention
and control groups and computational performance.

Data and Methods

By using a Markov two-state microsimulation model and a 2 ×
4 × 2 full factorial experiment, we examined how three parameters
affected the incremental life-year-gained between intervention
and control groups. The examination considered either the
impacts of in-trial events or that of post-trial medications in the
projection. We tested null hypotheses that the projected
life-year-gained did not differ by factors. The models were run
and analyzed based on the data from the Cardiovascular
Outcomes for People Using Anticoagulation Strategies Study
(COMPASS).

Data

The data were from the COMPASS trial, which was a randomized,
double-blinded, controlled trial with a 3-by-2 partial factorial
design. Its study design and main results have been published pre-
viously (2;3). To look for optimal strategies of secondary cardio-
vascular prevention, the trial compared two usages of rivaroxaban
and aspirin: (i) rivaroxaban alone (5 mg twice daily) versus
aspirin (100 mg once daily), (ii) rivaroxaban-(2.5 mg twice daily)-
plus-aspirin (100 mg once daily) versus aspirin (100 mg once
daily). There were 27,395 participants with stable atherosclerotic
vascular diseases. Compared with aspirin 100 mg once daily, it
found that rivaroxaban (2.5 mg twice daily) plus aspirin
(100 mg once daily) reduced the risk of a composite outcome of
myocardial infarction (MI), stroke, or cardiovascular death in
subjects with coronary artery diseases (CAD) or peripheral artery
diseases (PAD) (hazard ratio and its 95 percent confidence inter-
val [CI] were .76 [.66–.86], p value <.001) (3). As only rivaroxa-
ban-plus-aspirin was found superior to aspirin, we focused our
simulation models and analyses on these two groups of partici-
pants. There were 18,278 participants, among which there were
9,152 randomized to the rivaroxaban-plus-aspirin and 9,126 to
the aspirin-only groups. The mean age of participants was 68
years old. The mean follow-up was 23 months.

Methods

The projection considered three scenarios: (A) directly using
background probability of death without adjustment; (B) assum-
ing impact of three in-trial events on top of the background
probability: MI, ischemic stroke, and a modified version of the
International Society on Thrombosis and Homeostasis (ISTH)
criteria for major bleeding (3); (C) assuming both impacts of
in-trial events and post-trial study medications. We investigated
three factors: (i) two sets of probability of death: a 2013 USA
life table (22), or modified REduction of Atherothrombosis for
Continued Health (REACH) registry 20-month risks-based prob-
abilities (23); (ii) four lengths of cycle: monthly, quarterly, semi-
annually, or annually, (iii) with or without half-a-cycle correction
on age. The effects of three factors on the projection were studied
through a 2 × 4 × 2 full factorial experiment with a replicate
(whose design table was given in Supplementary Table 1, available
with the full text of this article online). In a scenario, there were
sixteen subexperiments. In a subexperiment, a two-state Markov
simulation model was run for 200 times (Figure 1 in the main

text, Supplementary Figures 1–3). As a result, there were 200
RMSTs calculated for an intervention group. The distribution of
life-year-gained was shown in Supplementary Figure 4 and
Table 2. To stabilize results, the mean of 200 trials was used as
the final result of the subexperiment (Figure 2 in the main text,
Supplementary Tables 3, 4 and Figures 4, 5).

The two-state Markov simulation model was constructed as
follows (Supplementary Table 5). For participants who survived
to the end of the trial, to avoid noise of data collected close to
the end of the in-trial period, their individual post-trial projection
started from two-and-a-half years after their randomization. To
directly assess these individual patients’ post-trial survival,
we considered only two states: life and death (Figure 1). The age-
and sex-specific probabilities of death, which would increase with
a cycle of projection, were considered as the background probability.
Impacts that could affect death would be estimated by background
probabilities and various adjustments (Supplementary Figure 3).
A possible adjustment was the impact of in-trial events. Time-
dependent Cox regression models estimated the effects of in-trial
MI, ischemic stroke, and major bleeding. These effects were mul-
tiplied to the background probability of all-cause mortality when
required. When participants were assumed to take study drugs
post-trial, they would continue with a same treatment allocation
as that of the in-trial period. In reality, participants were offered
the successful intervention at the end of the trial. However, for
our projections, we assumed a conservative approach that partic-
ipants would continue their original study intervention post-trial.
Therefore, we adjusted the background probability by a constant
drug effect of rivaroxaban-plus-aspirin versus aspirin on all-cause
mortality (3). Aspirin alone was not assumed to have an effect on
post-trial survival. Participants’ life expectancy was projected by
cycle, with a half-a-cycle age correction being applied if required.
There are various discussions on this correction in the literature
(17;18). The half-cycle-correction was applied at the beginning
of the projection, considering a transition usually occurring
from a state to another in the middle of a cycle.

After the individualized post-trial projection was done in a
simulation, RMST was used to estimate life expectancies of
two intervention groups. Life-year-gained was the difference in
life expectancies between two groups. Kaplan–Meier estimates
of survival functions were computed on the combined survival
of both in-trial and post-trial periods for an intervention
group. Then, RMST was calculated as the area under a survival
curve by directly integrating the Kaplan–Meier estimate from
the time of zero to mean 17 years (Supplementary Table 5)
(21). Given the big sample size of the COMPASS trial, the
Kaplan–Meier estimates should be reasonably stable. Moreover,
as participants were randomized to two intervention groups
(rivaroxaban plus aspirin vs. aspirin), potential confounding fac-
tors would be balanced out on average. This was shown on key
demographic characteristics in Eikelboom et al. (3). Therefore,
there is no further adjustment on covariates applied in the com-
putation of RMST.

For the choice of background probability, we compared how a
USA life table (22) and the REACH-based-probabilities (23)
would affect projection. The USA life table (22) was available
online and reflected the risks of death of a general population,
while REACH-based-probabilities (23) reflected those of a popu-
lation with atherothrombosis. As the COMPASS population had
stable atherosclerotic vascular diseases, we would also use the
REACH-based-probabilities (23) to simulate the potential impact
of post-trial cardiovascular burden on the risk of death for this
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cohort. The REACH registry followed 49,689 outpatients globally
for 2 years (23;24). A risk model was established in terms of
REACH scores and 20-month risks on two-thirds of the popula-
tion and validated on the rest one-third (23). It predicted

cardiovascular events and death on participants with established
atherothrombotic diseases. These factors were considered: sex,
age, smoking, diabetes mellitus, BMI <20 kg/m2, number of vas-
cular beds, cardiovascular events in a past year, congestive heart

Figure 1. Conceptual diagram of a two-state Markov micro-simulation model with 15-year post-trial projection, assuming that participants continue to take post-
trial study medications and in-trial events.
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failure, atrial fibrillation, statin therapy, aspirin (ASA) therapy,
high risk regions (Eastern Europe or Middle East) and low risk
regions (Japan or Australia). The middle risk regions, North
America or Western Europe, were used as a referenced region of
risk. The COMPASS participants were 68.2 years old on average
at baseline. Among them, there were 22 percent females, 90.6 per-
cent with CADs, and 27.3 percent with PADs (3). The REACH par-
ticipants, based on which the REACH model was established, were
68.4 years old on average at baseline. There were 33.1 percent
female, 72.4 percent with CADs, and 14.9 percent with PADs
(23). Both cohorts were close to each other in terms of these base-
line characteristics, even though they investigated different hypoth-
eses. Although the USA life table (22) was comparatively easier to
find, it might not sufficiently represent a population with cardio-
vascular diseases. COMPASS patients might suffer higher risks of
mortality than that of the life table. Therefore, we would compare

how two sets of background probabilities, either from the USA life
table (22) or the REACH-based-probabilities (23), affected the
projection.

Steps of analyses were outlined in Supplementary Table 6.
Three-way analysis of variance (ANOVA) and post-hoc Tukey’s
Honest Significant Difference (HSD) tests compared means of
incremental life-year-gained among factors. Assumptions of
ANOVA models were checked in the Supplementary Figure 7.
The two-way or three-way interactions were considered; however,
this experiment, as an initial study, did not have enough degrees
of freedom for analysis of these terms. All statistical tests were
performed at a two-sided significance level of .05. Statistical anal-
yses were performed using statistical software packages SAS 9.4 on
Linux and R 3.5.1 for Windows.

Finally, to understand the computational burden models can
cause, we ran the 15-year post-trial projection on various sizes

Figure 2. Projection of incremental life-year-gained on all-cause mortality by cycle lengths, half-a-cycle age correction, and background probabilities under three
scenarios: (A) neither in-trial events nor post-trial study medications; (B) with in-trial events NOT post-trial study medications; and (C) with in-trial events and
post-trial study medications.
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of simulated cohorts (Supplementary Table 7). Intuitively, projec-
tions with or without half-a-cycle correction were supposed to
run at a similar speed. Moreover, it would take longer to run a
model with the life-table than with the REACH 20-month risks,
as patients might die faster with the later ones. Therefore, we
focused on studying the computational times needed for projec-
tion with half-a-cycle correction and a life-table in three
scenarios.

Results

Trends on the Projected Life Expectancies

After projection, rivaroxaban-plus-aspirin group still showed
benefit over the aspirin group by its longer life expectancy
(Supplementary Figure 6 and Table 3). For both intervention
groups, with half-a-cycle age correction, the projected life expectan-
cies were slightly longer than those without correction. Moreover,
as the aspirin group was not supposed to take rivaroxaban post-
trial, this group had almost the same estimates for the scenarios
adjusted on in-trial events and with and without post-trial rivarox-
aban. Considering more potential cardiovascular-related risks, the
life expectancies projected using REACH-based-probabilities (23)
were shorter than those using a USA life table (22).

For the scenario with post-trial study medications and in-trial
events and with half-a-cycle age correction, using a USA life table,
life expectancies of the rivaroxaban-plus-aspirin group averaged
over 200 simulations were 5,019.6 days projected monthly,
5,066.4 days quarterly, 5,133.5 days semiannually, and 5,256.1
days annually. The averaged life expectancies of the aspirin
group were 4,789.1 days projected monthly, 4,836.2 days quar-
terly, 4,908.1 days by semiannually, and 5,045.1 days annually.
Using the REACH-based-probabilities (23), the rivaroxaban-
plus-aspirin group had a life expectancy of 4,642.5 days projected
monthly, 4,668.3 days quarterly, 4,709.3 days semiannually, and
4,789.4 days annually. The aspirin group had a life expectancy
of 4,371.8 days projected monthly, 4,398.5 days quarterly,
4,442.0 days semiannually, and 4,529.9 days annually.

Trends on the Projected Life-Year-Gained

Similar to the life expectancy, life-year-gained was also estimated for
a subexperiment by averaging over 200 simulations. There were pos-
itive mean life-year-gained in all three scenarios (Figure 2 in the
main text; Supplementary Figures 4, 5 and Table 4). Among these
scenarios, the life-year-gained was the longest with both impacts
of post-trial study medications and in-trial events. Based on a
USA life table (22) and a half-a-cycle age correction, the
life-year-gained was most conservative: 230.5 days (95 percent CI,
184.5–276.4) projected monthly, 230.1 days (95 percent CI,
192.5–267.7) quarterly, 225.4 days (95 percent CI, 182.0–268.9)
semiannually, and 211.1 days (95 percent CI, 173.4–248.8) annually.
For the remaining scenarios without considering post-trial study
medications, the estimated life-year-gained ranged between 45
and 65 days. Projections adjusted for in-trial events were generally
shorter than without adjustment. Moreover, adjusted for in-trial
events, based on a USA life table (22) and a half-a-cycle age correc-
tion, the annual projection (59.7 days, 95 percent CI, 21.8–97.6)
was close and comparable to that from using REACH-based-prob-
abilities (58.7 days, 95 percent CI, 10.4–107.1).

Depending on scenarios, the three factors were found to have
different effects on the projected life-year-gained. Without the

impact of post-trial study medications and in-trial events, only
the usage of background probability from a USA life table pro-
jected significantly longer life-year-gained than REACH-based-
probabilities did (Table 1 and Supplementary Table 4: mean
and 95 percent CI, 52.9 [49.3–56.5] days with the life table and
47.9 [49.3–56.5] otherwise). For the scenario without post-trial
study medications but with the impact of in-trial events, using
half-a-cycle age correction or not was not found to project
significantly different (Table 1 and Supplementary Table 4:
mean and 95 percent CI, 57.9 [52.8–63.0] days without correction
and 59.3 [55.6–62.9] with correction). The background probabil-
ity was again significant (Table 1 and Supplementary Table 4:
mean and 95 percent CI, 60.4 [58.1–62.7] days with the life
table and 56.8 [54–59.6] with REACH 20-month risk-based prob-
abilities). With both post-trial study medications and in-trial
events, there were main effects for the three factors (Table 1
and Supplementary Table 4): half-a-cycle age correction (mean
and 95 percent CI, 245.5 [199.0–292.0] days with correction
and 251.4 [209.1–293.7] days without correction), cycle length
(mean and 95 percent CI, 252.2 [190.5–313.9] days projected
monthly, 251.8 [192.0–311.6] quarterly, 249.1 [189.7–308.5]
semiannually, and 240.8 [178.5–303.1] annually), and background
probability (mean and 95 percent CI, 269.1 [260.3–277.9] days
projected with REACH-based-probabilities and 227.7 [212.6–
242.8] days with a USA life table). For scenarios without post-trial
study medications, the length of cycle did not affect the projection
of life-year-gained (Table 1). However, with both post-trial study
medications and in-trial events, annual projection on life-year-
gained was significantly different from monthly, quarterly, or
semiannual one (Table 2). Projecting annually was 11.4 days
shorter than monthly (95 percent CI, −17.4, −5.3), 11 days
shorter than quarterly (95 percent CI, −17.0, −4.9), and 8.3
days shorter than semiannually (95 percent CI, −14.3, −2.2).
Either monthly, quarterly, or semiannual projection was not found
different from one another. The distributions of life-year-gained
for subexperiments were shown in Supplementary Figure 4 and
Table 2. The distributions shifted higher using REACH
20-month risks than using life tables. They shifted slightly when
projecting going from monthly to annually. Age correction did
not affect the distributions meaningfully.

Computing Burden Caused by Models

In our computing environment (Supplementary Table 7), to pro-
ject 15-year post-trial in three scenarios using 200 simulations for
200,000 participants, it took 142.4 minutes to project monthly,
74.7 minutes quarterly, 56.6 minutes semiannually, and 49.2 min-
utes annually.

Discussion

Markov microsimulation models are popularly used to analyze
long-term health benefit for a secondary prevention strategy of
cardiovascular diseases and to assist policy decision making.
How to verify designs and improve the efficiency of these models,
especially with the measurement of RMST, is still not well under-
stood. This article tries to address this problem by evaluating the
projecting performance of a two-state Markov microsimulation
model with three factors: choice of probability of death, lengths
of cycle of projection, and usage of half-a-cycle age correction.
We find it projects well by using annual projection and a life
table, assuming post-trial study medications and in-trial events,
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if applicable. This finding is very relevant to the current practice
of health economic analysis. Even in very recent years, there are
various implementations of Markov microsimulation models
with usage of these factors that require vigorous justification.
For example, Magnuson et al. (4) used a two-state Markov micro-
simulation model with a USA life table to do monthly post-trial
projection on 14,107 patients from the PEGASUS-TIMI 54
Trial. Bress et al. (5) adopted a semiannual microsimulation to
project on a hypothetical cohort of 10,000 SPRINT-eligible adults.
Kypridemos et al. (6) simulated 29-year experience of cardiovas-
cular diseases prevention for a hypothetical 200 million adults on
an annual basis. With the large sample sizes of these cohorts and
populations, the computational expense could be heavy. Our work
helps to justify and speed up such simulations.

The strength of our study includes a straightforward and effi-
cient structure of the model, usage of individual participants’ data
instead of aggregated data, and also accounting for the fact that
events were measured at discrete time points. We systematically
investigated three factors which are key parameters in a Markov

microsimulation model, and conducted formal statistical testing
on hypotheses and also investigated their computing time.
There are a few limitations. First, the projection was adjusted
for in-trial nonfatal MI, ischemic stroke, and major bleeding in
a scenario. As the in-trial follow-up time was short, there were
not too many participants who had these events. Therefore, this
adjustment was small. However, the life-year-gained estimated
with this adjustment was still slightly higher than those estimated
without this adjustment. This also agreed with the in-trial finding
on the benefit of the intervention compared with the control in
terms of survival. Moreover, the model still needs to be validated
on studies with long-term follow-up data. Finally, as COMPASS
trial is comparatively large, it is worthwhile to look into the per-
formance of models on smaller data sets in the future.

The annual projection could be a trade-off between accuracy
and computing efficiency. For three scenarios, (i) unadjusted,
(ii) with only the impact of in-trial events, and (iii) with both
impacts of post-trial study medications and in-trial events, life
expectancy and life-year-gained, projected monthly, quarterly,

Table 1. Analyze the effects of half-a-cycle age correction, cycle lengths, and background probabilities on projected of life-year-gained (in days): three-way ANOVA
analyses

Degrees of Freedom Sum of Squares Mean Square F Value P Value

Scenario A: Neither in-trial events nor post-trial study medications

Half-a-cycle age correction 1 1.90 1.90 .810 .39

Cycle length 3 19.25 6.42 2.74 0.099

Background probability 1 100.83 100.83 43.05 <.001

Residuals 10 23.42 2.34

Scenario B: With in-trial events but NOT post-trial study medications

Half-a-cycle age correction 1 6.83 6.83 4.520 .06

Cycle length 3 2.25 .75 .497 .69

Background probability 1 53.96 53.96 35.71 <.001

Residuals 10 15.11 1.51

Scenario C: With both in-trial events and post-trial study medications

Half-a-cycle age correction 1 139 139 17.70 .002

Cycle length 3 335 112 14.23 <.001

Background probability 1 6,809 6,809 868.10 <.001

Residuals 10 78 8

Table 2. Tukey’s HSD test: pairwise comparisons on projected life-year-gained with various cycle lengths: difference in life-year-gained (in days) and 95 percent
confidence intervals

Pairwise-comparisons on
projected life-year-gained
with cycle lengths

Scenario A: Neither post-trial
study medications nor in-trial

events

Scenario B: With in-trial events
but NOT post-trial study

medications
Scenario C: With both post-trial study

medications and in-trial events

Quarterly versus monthly .9 (−2.4, 4.2) −.6 (−3.3, 2.1) −.4 (−6.5, 5.7)

Semiannually versus monthly 1.2 (−2.1, 4.5) .4 (−2.3, 3.1) −3.1 (−9.1, 3.0)

Annually versus monthly 3.0 (−.3, 6.3) .2 (−2.5, 2.9) −11.4 (−17.4, −5.3)

Semiannually versus quarterly .3 (−3.0, 3.6) 1.0 (−1.7, 3.7) −2.7 (−8.7, 3.4)

Annually versus quarterly 2.1 (−1.2, 5.4) .8 (−1.9, 3.5) −11.0 (−17.0, −4.9)

Annually versus semiannually 1.8 (−1.5, 5.2) −.2(−2.9, 2.5) −8.3 (−14.3, −2.2)
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and semiannually, were not found significantly different from one
other. The annual projection was significantly different from the
other three. Without considering post-trial study medications, the
life-year-gained projected annually was numerically close to those
by other lengths of cycle. With post-trial study medications, pro-
jected life-year-gained was more conservative than other lengths
of cycle. This result might be counterintuitive, as the projection
would seem to be more accurate with a shorter length of cycle.
However, the finding was consistent with Soares and Castro
(11), which compared various discrete-time aggregated models
with different cycle lengths, instead of microsimulation models,
on a simulated data set. Moreover, we argue that given the discrete
occurrence of events, a discrete-time Markov microsimulation
model, with annual projection, is sufficient to estimate the health
benefit of an intervention versus a control by their life-year-
gained. Additionally, the time required by the projection by
year theoretically reduces to 1/12 of that by month, 1/4 of
that by a quarter, 1/2 of that by semiyear. With 200,000 partici-
pants and 200 simulations, the savings would be 93.2 minutes
from monthly, 25.5 quarterly, and 7.4 semiannually. The saving
would be much bigger with a 200-million-participant cohort
as that in Kypridemos et al. (6). Thus, the annual projection
could be a choice that does not lose too much accuracy but
gains computing efficiency. This is especially applicable to a
patient-level model running on a large clinical trial or nationwide
cohorts.

Next, we assessed the necessity of a half-a-cycle age correction.
ANOVA showed that regardless of scenarios and treatments, this
correction was found significant to the projection of life expec-
tancy. It was significant to the projected life-year-gained only
when post-trial study medications was considered and the inter-
vention group was projected to live considerately longer than
the group of control. In this case, the corrected projection, com-
pared with the uncorrected one, estimated slightly longer life
expectancy and shorter life-year-gained. The life-year-gained pro-
jected annually was about 8–14 days shorter than that of without
correction. For the other two scenarios when the post-trial study
medications was not considered, the half-a-cycle age correction
was not found significant to the projection of life-year-gained.
Numerically, there was a difference of about 2–4 days in
life-year-gained between corrected and uncorrected projections
by various lengths of cycles. This showed that the simulation
could be conservative and robust for projecting life-year-gained,
regardless using a correction or not. It echoed Barenfiregt (18):
even though a half-a-cycle age correction tried to address a situa-
tion that a life-to-death transition could occur halfway through a
cycle, it was unnecessary because a life table itself had accommo-
dated and provided a better solution. Analysts may be cautious
when applying background probabilities without such a built-in
correction on midway state-to-state transition.

By comparing with REACH-based-probabilities (23), it
seemed conservative to use a USA life table (22) to project
life-year-gained. After including the 23-month actual follow-up
experience for each individual participant from the COMPASS
trial, the model carried these participants’ characteristics into
post-trial projection. This avoided the complexity of simulating
participants’ pre- and during-trial experience and allowed a sim-
ple structure on post-trial projection. Although we included two
states of life and death in the model, we could also consider
other states of health to better simulate the reality that patients
might experience intermediate cardiovascular burdens. To get a
sense of how such burdens affected post-trial survival, we replaced

the background probabilities from the life table with
REACH-based-probabilities. As expected, the life expectancy pro-
jected from the life table was longer than that from the REACH-
based-probabilities. Interestingly, shorter life-year-gained was
projected with the life table than with REACH risks, if partici-
pants were assumed to take study medications post-trial. When
not considering post-trial medications, both approaches produced
comparable results. This implied that a model could still predict
the life-year-gained well when it over-estimated the life expec-
tancy to a similar degree in both treatment arms. This finding
was consistent with Gerdtham and Zethraeus (8), although the
latter observed a similar phenomenon when comparing the pro-
jection of a few parametric survival models. Therefore, it is suffi-
cient to do the projection of life-year-gained based on the life
table. This result is especially relevant to the implementation of
a Markov microsimulation model. Even though the population
of the REACH registry is close to that of the COMPASS trial
regarding certain baseline characteristics, they are still different
in many aspects. Although there are many other multiple-variable
prediction models for cardiovascular outcomes in the literature,
one still needs to examine the models for their usefulness
and applicability to a certain population (25). So it remains a
challenge to accurately estimate the intermediate burden of
diseases for a Markov model. Hence, it is a blessing that the
life table, which is readily available, can help to project
life-year-gained well.

Conclusion

For large trials or cohorts, optimal projections of life-year-gained
after a trial has ended should consider using (i) annual projection,
(ii) probabilities from a life table, (iii) in-trial events, and (iv)
post-trial medication use, if applicable. Our proposed model is
easily applied in projecting long-term event-free survival and esti-
mating the effectiveness of a novel intervention versus a control.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0266462320000446.
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