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The sloshing of water waves in a vertical cylindrical tank is an archetypal damped
oscillator in fluid mechanics. The wave frequency is traditionally derived in the
potential flow limit (Lamb, Hydrodynamics, Cambridge University Press, 1932), and
the damping rate results from the combined effects of the viscous dissipation at
the wall, in the bulk and at the free surface (Case & Parkinson, J. Fluid Mech.,
vol. 2, 1957, pp. 172–184). Still, the classic theoretical prediction accounting for
these effects significantly underestimates the damping rate when compared to careful
laboratory experiments (Cocciaro et al., J. Fluid Mech., vol. 246, 1993, pp. 43–66).
Specifically, theory provides a unique value for the damping rate, while experiments
reveal that the damping increases as the sloshing amplitude decreases. Here, we
investigate theoretically the effects of capillarity at the contact line on the decay time
of capillary–gravity waves. To this end, we marry a model for the inviscid waves to
a nonlinear empiric law for the contact line that incorporates contact angle hysteresis.
The resulting system of equations is solved by means of a weakly nonlinear analysis
using the method of multiple scales. Capillary effects have a dramatic influence on
the calculated damping rate, especially when the sloshing amplitude gets small: this
nonlinear interfacial term increases in the limit of zero wave amplitude. In contrast
to viscous damping, where the wave motion decays exponentially, the contact angle
hysteresis can act as Coulomb solid friction, thus yielding the arrest of the contact
line in a finite time.

Key words: instability, interfacial flows (free surface), waves/free-surface flows

1. Introduction
Casually shaking a glass of water is sufficient to raise a tempest in it. Large

amplitude waves develop and exhibit nonlinear behaviours: overturning, breaking and
atomization. However, if the initial amplitude of motion is small enough, the resulting
sloshing dynamics is regular. In particular, gravity waves are restricted into modes
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Capillary hysteresis in sloshing dynamics 789

with a discrete set of wavenumbers, owing to the action of the container walls. The
confinement actually exacerbates the viscous dissipation in the fluid, which damps
the oscillations and eventually brings the interface to rest. In this small amplitude
regime, the nonlinearities in the governing equations are negligible and the sloshing
modes are classically computed in the limit of potential flow (Lamb 1932). The
angular eigenfrequencies of the first non-axisymmetric longitudinal mode, ωn, depend
on gravity, g, the fluid’s surface tension, σ , its density ρ and height h and the radius
R of the cylindrical container. The resulting dispersion relation is

ω2
n = gλn

(
1+

σ

ρg
λ2

n

)
tanh(λnh), (1.1)

where λn are the roots of the first derivative of the nth-order Bessel function satisfying
J′n(Rλn) = 0. Over the course of their motion, those capillary–gravity waves are
damped by viscous dissipation occurring (i) at the oscillating Stokes layers at the
walls, (ii) in the fluid bulk and (iii) at the free surface. The damping rates associated
with these three dissipation sources may be evaluated via a perturbative approach in
the limit of small kinematic viscosity ν. Specifically, Case & Parkinson (1957) showed
that dissipation in the Stokes layers – scaling as

√
ν – is stronger than that in the

bulk, scaling linearly with ν. Last, the dissipation at the free surface is even smaller,
scaling as ν3/2 (Ursell 1952). These three damping rates have different scalings
with respect to the physical quantities, but all are independent of the amplitude of
oscillation, as they were derived from a linear formulation.

Experiments from Benjamin & Ursell (1954), Case & Parkinson (1957), Keulegan
(1959) and Cocciaro, Faetti & Nobili (1991), Cocciaro et al. (1993) have however
revealed that the theoretical values of the damping rates significantly underestimate
the damping of gravity waves measured in laboratory-sized containers. Specifically,
Keulegan (1959) carried out an extensive experimental campaign to study the damping
of surface standing waves with several liquids, container sizes and materials. He found
that the damping depends on the material of the container and is in general higher
than that provided by the aforementioned linear theory, which – classically – does
not account for capillary effects. Further, Keulegan’s pioneering work revealed a
dependence of the damping rate on the wave amplitude. He found that the damping
rate for small amplitudes – after several wave cycles – was higher than that observed
at larger amplitudes, at the beginning of the experiment. Similar results were then
reported by different authors both for wetting and non-wetting conditions (Cocciaro
et al. 1991, 1993; Jiang, Perlin & Schultz 2004) and were attributed in part to
capillary effects.

In summary, experiments evidence the need for a more complete theoretical
framework that includes the dissipation due to capillary effects, that was not accounted
for in the work of Case & Parkinson (1957), where the interface is assumed to
intersect orthogonally the container’s wall (free-end edge boundary conditions). This
assumption was proved incorrect as experiments reveal that the contact angle θ
between the fluid–air interface η(r, φ, t) and the wall is varying throughout the fluid’s
motion (Hocking 1987). Additionally, this angle depends on the wetting properties of
the wall at the contact line η(r=R, φ, t) and the latter’s velocity. Subsequently, Miles
(1967) and Hocking (1987) assumed the contact line velocity to be proportional to
the contact angle variation ∂η/∂r≈π/2− θ , through a slip coefficient α,

∂η

∂t

∣∣∣∣
R

= α
∂η

∂r

∣∣∣∣
R

, (1.2)
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where R indicates that the derivative is taken at the wall. Hocking (1987) showed
that imposing equation (1.2) as a boundary condition in the inviscid sloshing problem
yields a finite damping rate, accounting for the viscous dissipation in the dynamic
meniscus region where capillary effects dominate. However, the detailed investigation
of Cocciaro et al. (1993) on the dynamic properties of the meniscus in partial wetting
conditions revealed that the slip coefficient α in the Hocking law (1.2) is a real
function of the contact line displacement. This observation points to a more complex
nonlinear relation between contact line velocity and contact angle. In particular, the
dynamic contact angle alternates between two values, one for the advancing contact
line and a lower one for the receding contact line (see figure 4 of their paper,
Cocciaro et al. 1993). Such a behaviour agrees well with the model proposed by
Dussan (1979) in the framework of a unidirectional flow over a flat plate at low
Reynolds number where a difference between the advancing and receding contact
angles is observed when the contact line is pinned (static hysteresis) as well as when
it slides with a certain velocity over the solid substrate (dynamic hysteresis). This
particular contact line model is sketched in figure 1(a), where the capillary number
is defined as Ca = µ

√
Rg/σ . The size of the static hysteresis range depends on the

roughness and chemical contamination of the solid surface (see de Gennes (1985)
and Leger & Joanny (1992)), and varies from a few degrees to more than a hundred
degrees. On the other hand, the dynamic component of the hysteresis is caused by
the liquid’s inability to flow over the solid surface (Eral, ’t Mannetje & Oh 2013)
and is typically investigated in the lubrication equation framework, which provides a
theoretical relation between the dynamic contact angle and contact line velocity: see
Voinov (1976) and Cox (1986). This relation is sometimes approximated by a linear
law, as in the case of sliding droplets of silicone oil (Le Grand, Daerr & Limat 2005;
Rio et al. 2005) or of water (Puthenveettil, Senthilkumar & Hopfinger 2013), where
the slip coefficient is seen to be of the order of α = 50 rad and α = 100 rad for the
advancing and receding contact line, respectively.

Furthermore, Cocciaro et al. (1993) showed that, depending on the maximum
displacement of the free surface, two different regimes of nonlinear damping were
found: a higher and a smaller amplitude regime. In the first one, the contact line slides
on the solid walls and the damping coefficient greatly increases when the amplitude
of oscillation decreases until it reaches a maximum value. Then, this coefficient
decreases. The interface pins and the small amplitude regime is reached. The contact
line remains at the same locus (pinned-end edge condition) and the macroscopic
contact angle oscillates around its static value. During this pinned regime the bulk
motion is seen to decay with constant damping rate.

The purpose of this work is to investigate theoretically the effect of contact line
hysteresis on the pinning of the free-edge mode in partial wetting conditions. This
regime corresponds to the high to small amplitude transition observed in Cocciaro
et al. (1993). We aim to provide a theoretical framework rationalizing the dependence
of damping on the amplitude of motion. To this end, we consider inviscid waves
subjected to a realistic nonlinear contact line law inspired by the hysteresis law
proposed by Dussan (1979), which is described in the next section. The resulting
system of equations is solved by means of a weakly nonlinear analysis using the
method of multiple scales (Stuart 1960). We finally derive a general asymptotic
formulation that accounts for nonlinear interfacial effects at the contact line.

The paper is organized as follows. The governing equations, including the contact
line model with hysteresis, are presented in § 2. The weakly nonlinear stability
analysis is formulated in § 3, where we compute the fundamental sloshing global mode
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0

(a) (b)

0

FIGURE 1. (Colour online) Sketch of two contact line models with contact angle, θ , as
a function of the contact line velocity times the capillary number Ca=µ

√
Rg/σ . (a) The

nonlinear model of Dussan (1979) with static hysteresis range [θr, θa] is shown. (b) The
nonlinear contact line model (2.5) used in this work is shown. It corresponds to the linear
Hocking law (1.2) with slip coefficient α, augmented with a steep dynamic hysteresis
range of size ∆.

and derive the governing amplitude equation considering two possible distinguished
limits. In § 4, results are discussed, focusing on the dissipative effect of the contact
angle hysteresis. Conclusions and perspectives are finally outlined in § 5.

2. Governing equations

Let us consider a vertical cylindrical container of radius R filled to a depth H
with a liquid of density ρ. A cylindrical coordinate system is defined, where z is the
vertical direction corresponding to the axis of the container, and the zero is set at
the unperturbed interface position at the centreline, r is the radial direction and φ is
the azimuth (see figure 2). The fluid motion associated with a displacement of the
interface, η, is irrotational outside the viscous boundary layers at the walls and at the
interface. In the inviscid limit, the fluid velocity is derived from a velocity potential
Φ, which satisfies the continuity equation

1Φ = 0, (2.1)

together with a symmetry condition on the axis (Φ|r=0 = 0) and the no-penetration
condition at the walls:

∂Φ

∂r

∣∣∣∣
r=1

= 0,
∂Φ

∂z

∣∣∣∣
z=−H/R

= 0. (2.2a,b)

In the following, quantities are made non-dimensional by the radius, R, and the
characteristic velocity

√
gR. At z= η, the kinematic boundary condition is such that

no flow is allowed through the interface:

∂η

∂t
=−

∂Φ

∂r
∂η

∂r
−

1
r2

∂Φ

∂φ

∂η

∂φ
+
∂Φ

∂z
at z= η, (2.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

86
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.860


792 F. Viola, P.-T. Brun and F. Gallaire

FIGURE 2. (Colour online) Geometry of the circular basin of internal radius R, which
is filled with a liquid column of depth H. The interface η intersects the vertical wall
with the dynamic contact angle θ . The amplitude Z0 denotes the maximum initial interface
displacement.

and Laplace law prescribes the relation between the pressure, p, and the local
curvature, χ(η), namely

−p|η =
χ(η)

Bo
at z= η, (2.4)

where the Bond number prescribes the relative magnitude of interfacial effects and
gravity Bo= ρgR2/σ , where σ is the surface tension.

We turn to defining the boundary condition at the contact line η(r= 1, φ, t), which
plays a central role in our problem. Rather than the classic free-end edge condition
∂η/∂r|r=1 = 0 or the Hocking law in (1.2), we adopt a contact line model shown in
figure 1(b). In addition to the linear relation between dynamic contact angle θ , and
contact line velocity ∂η/∂t|r=1, we have modified this model to include a contact angle
step-like variation of size ∆ for small velocities:

θ − θs = αCa
∂η

∂t

∣∣∣∣
r=1

+
∆

2
tanh

(
βCa

∂η

∂t

∣∣∣∣
r=1

)
. (2.5)

The model (2.5) is depicted in figure 1(b), where α is the linear slip coefficient and
the steepness parameter β � 1 sets the velocity scale at which the contact angle
undergoes a variation of size ∆, referred to as the hysteresis range hereafter. This
rapid variation of the contact angle at small velocities is given by the hyperbolic
tangent term in (2.5), which is introduced to mimic the static hysteresis range present
in figure 1(a) through a steep dynamic hysteresis. It will become clear to the reader
in § 4 that the scaling of these coefficients, α, ∆, β, with the amplitude of oscillation
will greatly affect the attenuation of the sloshing waves.

Observe that we set the slip coefficient α constant during the advancing and
receding phase, meaning that the contact angle increases when the contact line
advances, exactly the opposite to the contact angle decreasing when the contact line
recedes. Incidentally, we hope that this choice will help highlight the role of ∆ in
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Capillary hysteresis in sloshing dynamics 793

the problem. Note that even if the flow is considered inviscid in the domain, viscous
forces balance capillary forces at the contact line. As a consequence, equation (2.5)
depends on the capillary number, Ca. In the following, we use (2.5) to model the
sloshing of capillary–gravity waves in a cylindrical basin which is imposed as a
boundary condition on η at the contact line due to the geometrical relation

∂η

∂r

∣∣∣∣
r=1

= cot(θ). (2.6)

3. Weakly nonlinear analysis

The system of equations introduced in the previous section is nonlinear and cannot
be solved analytically. We present a weakly nonlinear analysis valid in the limit
of small hysteresis range, ∆ = ε2∆̂ and small values of αCa = εα̂. These physical
quantities are scaled in order to generate a distinguished solution which incorporates,
as much as possible, all the features of the contact line law (2.5). Furthermore, we
consider two possible scalings for the steepness coefficient β,

βCa= β̂/ε (case I) or βCa= β̂/ε2 (case II), (3.1a,b)

that is a large number, in such a way as to induce a rapidly changing contact angle
at small contact line velocity, thus approximating a static contact angle hysteresis. Let
us consider the following asymptotic expansion:

Φ =Φ0 + εΦ1 + ε
2Φ2 +O(ε3),

η= η0 + εη1 + ε
2η2 +O(ε3),

p= p0 + εp1 + ε
2p2 +O(ε3),

θ = θ0 + εθ1 + ε
2θ2 +O(ε3).

 (3.2)

Substituting the expansion (3.2) in (2.1), (2.3), (2.4) and (2.5), a series of systems of
equations are obtained at the various orders in ε. At order ε0, the nonlinear problem
associated with the shape of the static meniscus will be obtained. At order ε we
recover the classic linear eigenvalue problem for the sloshing modes. Their frequencies
correspond to the eigenvalues of this first-order system. At the higher order ε2, an
amplitude equation is obtained: A(T) is a slow time modulation that provides the
weakly nonlinear correction to the first-order solution accounting for our contact line
model. Moreover, in the spirit of the multiple scales technique, a slow time scale is
introduced which is related to the physical fast time scale according to T = εt.

3.1. Order ε0

At order ε0, the static base state is retrieved. The potential Φ0 is null everywhere in
the domain and the pressure is hydrostatic, p = −z in our non-dimensional scheme.
The dynamic boundary condition (2.4) reduces to the equation for the static meniscus
in radial coordinates, which prescribes the zero-order interface deformation due to
capillary effects:

−η0 =−
1

Bo
χ(η0), (3.3)
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FIGURE 3. In (a) the static meniscus, η0, is shown as a function of the radial coordinate.
In (b) the static contact line region is detailed.

where χ(η0)= (η0,rr + η0,r(1+ η
2
0,r)/r)(1+ η

2
0,r)
−3/2 is the curvature of η0, which does

not depend on the azimuth. The second-order equation (3.3) is completed with two
boundary conditions. At the centreline, the static meniscus regularity condition

∂η0

∂r

∣∣∣∣
r=0

= 0 (3.4)

holds owing to axisymmetry. The contact line model (2.5) prescribes the boundary
condition at η0(r= 1),

θ0 = θs, (3.5)

which sets
∂η0

∂r

∣∣∣∣
r=1

= cot(θs), (3.6)

with θs 6= 0, 180◦ according to partial wetting conditions at the liquid meniscus.
Equation (3.3) is nonlinear in η0 and is solved using an iterative Newton method; see
§ A.1 for details on the numerical method.

Figure 3(a) shows the static meniscus η0(r) in the case of θs =π/4 and Bo= 500,
which typically corresponds to the value one would obtain for g= 9.81 m s−2 with a
glass (here R= 0.05 m) filled with water (ρ = 103 kg m−3, µ= 10−3 kg ms−1, σ =
70 mN m−1). The interface does not depend on H and is basically flat in the domain
aside from a region close to the wall spanning a distance of the order of the capillary
length,

√
σ/ρg ≈ 0.05 R here. In figure 3(b) equal axes are used to show that η0

intersects the wall with the prescribed static contact angle θs =π/4. We now turn to
the next order.

3.2. Order ε
At order ε the potential, Φ1, satisfies the first-order continuity equation

1Φ1 = 0, (3.7)

with the symmetry condition on the axis and no-penetration condition at the vertical
and bottom walls. From the unsteady Bernoulli equation, the first-order dynamic
condition (2.4) flattened at η0 is given by

∂Φ1

∂t
+ η1 −

1
Bo

∂χ(η)

∂η

∣∣∣∣
η0

η1 = 0 at z= η0, (3.8)
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where the last term is the first-order variation of the curvature χ(η) associated with
a small perturbation εη1:

dχ(η)
dη

∣∣∣∣
η0

η1=
(1+ η2

0,r)− 3rη0,rη0,rr

(1+ η2
0,r)

5/2︸ ︷︷ ︸
a(r)

1
r
∂η1

∂r
+

1
(1+ η2

0,r)
3/2︸ ︷︷ ︸

b(r)

∂2η1

∂r2
+

1
(1+ η2

0,r)
1/2︸ ︷︷ ︸

c(r)

1
r2

∂2η1

∂φ2
.

(3.9)
Then, the first-order kinematic boundary condition reads

∂η1

∂t
=−

∂Φ1

∂r

∣∣∣∣
η0

∂η0

∂r
+
∂Φ1

∂z

∣∣∣∣
η0

at z= η0, (3.10)

where the radial and vertical derivatives of the potential Φ1 correspond to the radial
and vertical velocities at z= η0. The term ∂η0/∂r is the radial derivative of the zero-
order interface obtained at previous order. The contact line condition at ε is θ1 = 0,
which implies

∂η1

∂r

∣∣∣∣
r=1

= 0, (3.11)

and corresponds to the free-edge boundary condition.
By defining the state variable q1= (Φ1, η1), the system of equations can be written

in compact form using (3.7) and (3.8) as state equations,

(∂tB−A)q1 = 0, (3.12)

where the linear operators are defined by

B=
(

0 0
Iη 0

)
, A=

∆ 0

0 I −
1

Bo
∂χ(η)

∂η

∣∣∣∣
η0

 . (3.13a,b)

Equation (3.12) is subject to the boundary conditions at the interface (3.10) and at the
contact line (3.11). In addition, the axisymmetry condition Φ1 = 0|r=0 is imposed on
the axis, along with the no-penetration condition at the solid walls, ((∂Φ1/∂r)|r=1= 0
and ∂Φ1/∂z|z=−H = 0). The solution of (3.12) then reads

q1 = A(T)qA
1 eiωteimφ

+ c.c., (3.14)

where c.c. stands for the complex conjugate. The amplitude A(T) is a slow modulation
of the flow which depends on the slow time scale T = εt, and will be determined at
the next order. The integer m is the azimuthal wavenumber, and the eigenvalue iω is
associated with the eigenvector qA

1 such that

(iωB−A)qA
1 = 0, (3.15)

with qA
1 = (Φ

A
1 , η

A
1 ). The linear operators B and A are discretized by means of the

Chebyshev collocation method, where a two-dimensional mapping is used to map the
computational space to the physical space that has a curved boundary due to the static
meniscus η0. We refer to § A.2 for details on the numerical method and the associated
convergence study.
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FIGURE 4. (Colour online) First-order problem solution for the reference case. (a) Isolines
of the potential ΦA

1 . In (b) the first-order interface ηA
1 is shown along with its radial

derivative in the inset. The first-order contact line motion is reported in (c), where the
amplitude has been set to one.

In figure 4(a) the potential ΦA
1 is shown for the reference case of Bo=500, θs=π/4,

H= 3R and m= 1. We observe that the spatial gradients of ΦA
1 , which are connected

with the spatial variation of the velocity, are higher at the meniscus region where the
domain is curved. In contrast, the potential becomes smooth far from the interface
in agreement with classic sloshing theory, which predicts an exponential decay of
the wave velocity moving away from the interface. Note that the values reported in
the colour bar depend on the normalization of the eigenvector qA

1 defined up to a
multiplicative factor. Without loss of generality, the eigenvector is normalized here by
imposing that ηA

1 (1)=0.5, hence ηA
1 is a real vector and ΦA

1 is a purely imaginary field.
In figure 4(b) the interface ηA

1 is shown. According to the boundary conditions at the
centreline and at the wall, ηA

1 is zero at the centreline and intersects the container
walls orthogonally.

Figure 4(c) shows the contact line motion for the case where the slowly evolving
amplitude A(T) has been arbitrarily set to one (and will be determined in the next
section). Since the flow is inviscid, the contact line keeps oscillating without ever
being damped as there is no dissipation mechanism at play yet. The eigenvalue ω is
thus a real number, which corresponds to the non-dimensional frequency of sloshing.
In our reference case we find ω = 1.35 and the imaginary part is zero to machine
precision.

3.3. Order ε2

At order ε2, the second-order continuity equation reads

1Φ2 = 0, (3.16)

where Φ2 is the second-order velocity potential, which is symmetric with respect to
the axis and satisfies the no-penetration condition at the container boundaries. This
equation is similar to the first-order governing equation (3.7) due to the linearity of
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the continuity equation (2.1). In contrast, the dynamic condition (2.4) applied to η2
differs from the one at the previous order:

∂Φ2

∂t
+ η2 −

1
Bo

∂χ(η)

∂η

∣∣∣∣
η0

η2 =−
∂Φ1

∂T
+NRT, (3.17)

where forcing terms appear on the right-hand side. According to the definition of
q1 = (Φ1, η1) in (3.14), the term ∂Φ1/∂T is the slow time variation of the first-order
solution which oscillates at system natural frequency determined at the previous
order. The terms coming from second-order corrections of both the curvature and the
pressure do not resonate. They are quadratic, thus not relevant for further analysis.
Consequently, these non-resonant terms are not explicitly written in (3.17) but instead
are denoted NRT. We anticipate that, in order to determine the complex amplitude
A(T) at this order, a compatibility condition involving only the resonating terms will
be used. Similarly to what was done for the dynamic condition (3.17), we derive the
kinematic condition

∂η2

∂t
+
∂Φ2

∂r

∣∣∣∣
η0

η0,r −
∂Φ2

∂z

∣∣∣∣
η0

=−
∂η1

∂T
+NRT, (3.18)

where ∂η1/∂T is the slow time modulation of the interface motion and NRT gathers
all the non-resonating terms.

In compact form, the second-order problem is written as

(∂tB−A)q2 =F2, (3.19)

where A is here subjected to the non-homogenous boundary conditions (3.18)
and (3.43). The forcing term on the right-hand side is

F2 =−

(
0

∂Φ1/∂T|η0

)
=−

dA
dT

(
0

ΦA
1

∣∣
η0

)
︸ ︷︷ ︸

FA
2

eiωteimφ
+ c.c. (3.20)

This forcing term can resonate and induce a flow response that diverges as time
increases. Hence, a compatibility condition has to be imposed in order to have a
non-resonating particular solution to (3.20) of the type q2 = q̂2eiωteimφ

+ c.c. and
therefore preserve the asymptotic expansion scheme. By substituting this expression
in the second-order problem (3.19) we get

(iωB−A)q̂2 =FA
2 . (3.21)

This equation has a non-trivial solution if and only if FA
2 is orthogonal to the adjoint

mode q†, according to the Fredholm alternative. The adjoint global mode q† is the
solution of the adjoint equations:

(iω†B†
−A†)q†

= 0, (3.22)

where the linear operators A† and B† and the adjoint pulsation ω† are derived by
integrating by parts the system of (3.12). We refer to appendix B for the complete
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derivation of the adjoint equations and the definition of the adjoint mode. The
resulting compatibility condition reads

〈q†, (iωB−A) q̂2〉 = 〈q
†,FA

2 〉, (3.23)

where the brackets 〈 〉 define the Hermitian scalar product (B 1). By substituting the
expression for FA

2 from (3.20), we obtain

〈q†,FA
2 〉 =−

dA
dT

∫
η0

η†ΦA
1 dη0, (3.24)

where the symbol
∫
η0

denotes a surface integral on the zero-order surface η0(r)

with dη0 = r dr
√

1+ η2
0,r, as detailed in appendix B. Furthermore, the left-hand side

of (3.23) is non-zero because the kinematic and the contact line conditions are not
homogeneous at second order:

〈q†, (iωB−A)q̂2〉 = 〈(iω
†B†
−A†)q†, q̂2〉︸ ︷︷ ︸
=0

+

∫
η0

Φ
† dAηA

1

dT
dη0 −

sin3 θs

Bo
η† ∂η̂2

∂r

∣∣∣∣
r=1

,

(3.25)
where the integral on the free surface η0 comes from the slow time derivative in
the second-order kinematic condition (3.18), and the last term is associated with the
contact line model. The detailed calculation yielding these boundary and corner terms
is reported in appendix B.

At this point, the nonlinear contact angle correction due to the contact line model
enters in the analysis through the geometrical relation

∂η2

∂r

∣∣∣∣
r=1

=
−θ2

sin2(θs)
, (3.26)

with

θ2 +O(ε)= α̂
∂η1

∂t

∣∣∣∣
r=1

+
∆̂

2
tanh

(
βCaε

∂η1

∂t

)∣∣∣∣∣
r=1

, (3.27)

where ∆̂ is the rescaled hysteresis range, ∆ = ε2∆̂, and α̂ is the rescaled slip
coefficient, αCa= εα̂. In the following we derive the solutions coming from the two
possible scalings of the steepness coefficient β introduced in (3.1).

3.4. Amplitude equation: case I, βCa= β̂/ε
In this case the second-order contact line law (3.27) reads

θ2 = α̂
∂η1

∂t

∣∣∣∣
r=1

+
∆̂

2
tanh

(
β̂
∂η1

∂t

)∣∣∣∣∣
r=1

. (3.28)

In order to impose a compatibility condition in (3.25), which is needed to determine
the amplitude A(T) in (3.14), the terms oscillating at the natural frequency in the
contact line model (3.28) have to be considered, as done for the dynamic and
kinematic conditions (3.17), (3.18). However, the tanh function is nonlinear and not
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purely harmonic, but through the Fourier series its ω harmonic may be isolated (see
Nayfeh 2008):

tanh
(
β̂
∂η1

∂t

)∣∣∣∣
r=1

= tanh
(
β̂iωAηA

1 |r=1ei(ωt+mφ)
+ c.c.

)
=

∞∑
k=−∞

dk(φ)eikωt. (3.29)

The complex amplitude and ηA
1 can be decomposed in modulus and phase, namely

A(T)= |A(T)|eiϑ(T) and ηA
1 = |η

A
1 |e

iϑη . By defining the variable ξ = ωt + mφ + π/2+
ϑη|r=1 + ϑ(T), the coefficient dk is given by

dk(φ) =
ω

2π

∫ π/ω

−π/ω

tanh(β̂ω|A||ηA
1 |r=1|2 cos(ξ))e−ikωt dt

= eik(mφ+π/2+ϑη+ϑ(T)) 1
2π

∫ π

−π

tanh(β̂ω|A||ηA
1 |r=1|2 cos(ξ))e−ikξ dξ︸ ︷︷ ︸

2
π

ck(|A|)

, (3.30)

where the prefactor 2/π has been introduced to simplify the upcoming analysis and
the Fourier coefficient ck(|A|) is only a function of the amplitude magnitude |A|
since β̂ is set by the contact line law and ω and |ηA

1 |r=1 by the first-order problem.
Consequently, the nonlinear term reads

tanh
(
β̂
∂η1

∂t

)∣∣∣∣
r=1

=
2
π

∞∑
k=−∞

ck(|A|)eikξ

=
2
π

c1(|A|)ei(ωt+mφ+π/2+ϑη |r=1+ϑ(T)) + c.c.+NRT, (3.31)

where we have isolated the harmonic oscillating at the sloshing natural frequency.
The Fourier coefficient c1(|A|) can be computed numerically. It varies between the
limiting value 1 at large amplitude and 0 when |A| is small. As anticipated above,
the exact shape of the function c1(|A|) depends on the first-order problem and has to
be recomputed when the oscillation frequency ω or the rescaled steepness coefficient
β̂ are changed. A typical curve of c1(|A|) for the reference case introduced in § 3.2
is shown by the solid line in figure 5.

Substituting equation (3.31) in the ε-order contact line model (3.26) yields

∂η2

∂r

∣∣∣∣
r=1

= −
α̂

sin2(θs)
iωηA

1 |r=1Aeiωteimφ
−

i1̂c1(|A|)
π sin2(θs)

ηA
1 |r=1

|ηA
1 |r=1|

A
|A|

eiωteimφ

∣∣∣∣∣
r=1

+ c.c.+NRT,

(3.32)
where the first term on the right-hand side is associated with the linear part of the
contact line model (2.5) and provides a correction to the dynamic contact angle, found
proportional to the contact line velocity. The second term on the right-hand side is
nonlinear with respect to the contact line velocity. Its origin is attributed to the fast
dynamic hysteresis, proportional to the rescaled hysteresis range ∆̂. Introducing the
auxiliary constant κ and the two real damping coefficients ζ and χ , defined as

κ = (η†ηA
1 )r=1

/∫
η0

η†ΦA
1 +Φ

†
ηA

1 dη0, ζ =
−iω sin(θs)α̂κ

Bo
, χ =

−i sin(θs)1̂κ

πBo|ηA
1 |r=1

,

(3.33a−c)
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FIGURE 5. The first Fourier coefficient c1(|A|) of the nonlinear term in the second-order
contact line model (3.27) shown as a function of the oscillation amplitude |A| in the case
of Bo= 500, θs =π/4 (so that ω= 1.35) and β̂ = 1. The solid line corresponds to case I
(Caβ = β̂/ε) whereas case II (Caβ = β̂/ε2) is shown by the dashed line.

the substitution of expression (3.32) in (3.25) yields the compatibility condition

dA
dT
+ ζA+ χc1(|A|)

A
|A|
= 0, (3.34)

where the last term corresponds to the function c1(|A|) multiplying the sign of A.
Since the function c1(|A|) is real, decomposing the complex amplitude in modulus
and phase, A(T)= |A(T)|eiϑ(T),

dϑ
dT
= 0. (3.35)

From equation (3.35) we argue that the sloshing frequency is not modified at leading
order and that the amplitude phase ϑ(T) is set by the initial condition ϑ(T)=ϑ0. The
value of |A| as a function of time, which dictates the relaxation dynamics caused by
the contact line dissipation, can be obtained by numerical integration of (3.34). The
corresponding contact line motion that accounts for the weakly nonlinear correction is

η1|r=1 = 2|A(T)||ηA
1 |r=1 cos(ωt+ ϑ0 +mφ + ϑη|r=1). (3.36)

Specifically, |A(T)| is the nonlinear correction on the amplitude, and ϑη is the phase of
ηA

1|r=1
, which is nil due to the way the eigenmode qA

1 has been normalized. It should
be noted that ηA

1 , ϑη and A(T) all depend on the normalization of the direct mode,
although the final result η1 does not.

We consider, as an illustrative example, the dynamics of the fundamental sloshing
mode, m= 1, following an initial deflection of the interface of amplitude Z0 = εA0 =

0.1 from rest (ϑ0 = 0) for the set of representative parameters chosen throughout this
section. The Bond number and the static contact angle are equal to Bo = 500 and
θs = π/4, and the contact line model parameters are set to Ca = 0.01, α = 60 rad,
∆= 20◦ and β̂= 1. Figure 6(a) shows the second-order contact line motion (blue line)
and |A(T)| (red line). As inferred from (3.35) we find that the sloshing frequency is
not modified by capillary effects. The amplitude contrasts with the first-order solution
(figure 4c). The contact line is significantly damped: the wave amplitude is more than
a hundred times smaller than the initial amplitude of our reference case after forty
periods. According to the amplitude equation (3.34) the effective damping appears as
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FIGURE 6. (Colour online) Contact line motion (blue line) modulated by the slow time
amplitude (red line) of the fundamental free-end edge sloshing mode, m = 1, following
an initial deflection of the interface of amplitude, Z0 = εA0 = 0.1, from rest (ϑ0 = 0). The
Bond number and the static contact angle are equal to Bo= 500 and θs = π/4, and the
contact line model parameters are set to Ca = 0.01, α = 60 rad, ∆ = 20◦ and β̂ = 6.5.
The steepness of the contact angle hysteresis is equal to (a) case I (Caβ = β̂/ε) and (b)
case II (Caβ = β̂/ε2).

the sum of two terms: a linear contribution, weighted by the linear damping coefficient
ζ , resulting from the linear part of the contact line model, and a contribution, scaled
by the nonlinear damping coefficient χ , originating from the dynamic contact line
hysteresis at small velocity. This last contribution is nonlinear in nature. We refer
the interested reader to appendix C for a validation of the asymptotic analysis against
direct numerical simulation of the governing equations. Let us now consider another
distinguished limit of the steepness coefficient βCa (case II) before deepening the
discussion of capillary damping effects.

3.5. Amplitude equation: case II, βCa= β̂/ε2

When the steepness factor β is larger, βCa = β̂/ε2, the second-order contact line
law (3.27) reads

θ2 +O(ε)= α̂
∂η1

∂t

∣∣∣∣
r=1

+
∆̂

2
tanh

(
β̂

ε

∂η1

∂t

)∣∣∣∣∣
r=1

. (3.37)

We need to isolate the resonating term in the nonlinear boundary condition in order
to impose a compatibility condition in (3.25). By taking the Fourier transform of the
nonlinear term in (3.37) we obtain

tanh

(
β̂

ε

∂η1

∂t

)∣∣∣∣∣
r=1

= tanh

(
β̂

ε
iωAηA

1 |r=1ei(ωt+mφ)
+ c.c.

)
=

∞∑
k=−∞

dk(φ)eikωt. (3.38)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

86
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.860


802 F. Viola, P.-T. Brun and F. Gallaire

The complex amplitude and ηA
1 can be decomposed in modulus and phase, namely

A(T)= |A(T)|eiϑ(T) and ηA
1 = |η

A
1 |e

iϑη . Using the variable ξ =ωt+mφ+π/2+ϑη|r=1+

ϑ(T), the coefficients dk are here given by

dk(φ)=
ω

2π

∫ π/ω

−π/ω

tanh(β̂/εω|A||ηA
1 |r=12 cos(ξ))e−ikωt dt. (3.39)

The hyperbolic tangent in the integrand can be expanded as the sum of the sign
function plus a correction f (ε, ξ), which satisfies

∫ π

−π
f (ε, ξ)e−ikωt dξ = O(ε).

Consequently, equation (3.39) reads

dk(φ) =
ω

2π

∫ π/ω

−π/ω

sgn(β̂/εω|A||ηA
1 |r=12 cos(ξ))e−ikωt dt+

ω

2π

∫ π/ω

−π/ω

f (ε, ξ)e−ikωt dt︸ ︷︷ ︸
O(ε)

= eik(mφ+π/2+ϑη |r=1+ϑ(T)) 1
2π

∫ π

−π

sgn(cos(ξ))e−ikξ dξ︸ ︷︷ ︸
2
π

ck

+O(ε), (3.40)

which further gives

tanh

(
β̂

ε

∂η1

∂t

)∣∣∣∣∣
r=1

=
2
π

∞∑
k=−∞

ckeikξ
=

2
π

c1ei(ωt+mφ+π/2+ϑη |r=1+ϑ(T)) + c.c.+O(ε)+NRT,

(3.41)
where we have isolated the harmonic oscillating at the sloshing natural frequency and
NRT denotes the non-resonating terms. The Fourier coefficient c1 does not depend
here on the amplitude and is equal to

2
π

c1 =
1

2π

∫ π

−π

sgn(cos(ξ))e−iξ dξ =
2
π
, ⇒ c1 = 1. (3.42)

Injecting equation (3.41) into the geometrical relation (3.37) and substituting in (3.26),
one gets

∂η2

∂r

∣∣∣∣
r=1

= −
α̂

sin2(θs)
iωηA

1 |r=1Aeiωteimφ
−

i∆̂
π sin2(θs)

ηA
1 |r=1

|ηA
1 |r=1|

A
|A|

eiωteimφ

∣∣∣∣∣
r=1

+ c.c.+NRT.

(3.43)
As in case I we can distinguish a linear term on the right-hand side and a nonlinear
term attributed to the fast variation of the hysteresis range at small contact line
velocity. Specifically, this term only depends on the phase of the velocity, a result
consistent with the use of the sgn function (which only depends on the sign of its
argument). As a result, this term provides a different correction depending on whether
the interface is advancing or receding.

Substituting (3.43) in (3.25) yields the compatibility condition

dA
dT
+ ζA+ χ

A
|A|
= 0, (3.44)

where the last term on the left-hand side corresponds to the sign of A and where ζ
and χ have been defined in (3.33). Similarly to (3.34), the effective damping appears
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as the sum of a linear contribution, weighted by the linear damping coefficient ζ ,
resulting from the linear part of the contact line model and a nonlinear contribution,
scaled by the nonlinear damping coefficient χ , originating in the contact line
hysteresis.

Decomposing the complex amplitude in modulus and phase, A(T) = |A(T)|eiϑ(T),
equation (3.44) may be integrated analytically:

|A(T)| =
(

A0 +
χ

ζ

)
e−ζT
−
χ

ζ
, ϑ(T)= ϑ0, (3.45)

where A0 and ϑ0 depend on the initial conditions. Equation (3.45) represents the
weakly nonlinear correction to the first-order solution (3.14) associated with the
contact line model (2.5), yielding the contact line motion (3.36).

The second-order contact line motion following an initial deflection of amplitude
Z0= εA0=0.1 is shown in figure 6(b). The same set of parameters used for figure 6(a)
is used, except for the steepness factor Caβ, which is now taken equal to 1/ε2

(β̂ = 1). Similarly to case I, the contact line motion is found to be damped by
capillarity. However, the wave attenuation in (b) is faster than in (a) where the
oscillation still persists for t > 200. In contrast, in case II, the wave amplitude is
seen to decrease abruptly in a linear fashion at the end of the motion (see (3.45)),
yielding a finite time arrest: the oscillating motion is nil for sufficiently large time.
These features are discussed in the upcoming section.

4. Discussion
Our multiple scale analysis has revealed the nonlinear nature of sloshing when

dynamic capillary hysteresis is included. In this section, we discuss the dynamics of
the fundamental sloshing mode, focusing on the wave attenuation:

γ (t)=−
d log(|A(εt)|/A0)

dt
=−

ε

|A(T)|
d|A(T)|

dT
, (4.1)

which corresponds to the derivative of the logarithmic decrement shown in figure 7(a).

4.1. Case I: βCa= β̂/ε
Substituting the amplitude equation (3.34) in the instantaneous damping rate
definition (4.1), we get

γ (t)= εζ + εχ
c1(|A|)
|A(εt)|

, (4.2)

as shown in figure 7(b) (solid line). The wave attenuation is not constant during
sloshing and the instantaneous damping rate depends on the wave amplitude. For
sufficiently large amplitude, such that c1(|A|) tends to one, the decay is practically
exponential with damping rate approaching the limiting value

γ (t= 0)= εζ + ε2 χ

Z0
. (4.3)

Two contributions to the damping rate thus prevail at initial times: (i) one associated
with the linear contact line friction, which is here proportional to α, through ζ , and
(ii) a damping rate proportional to the hysteresis range ∆, through χ , and inversely
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FIGURE 7. (Colour online) (a) Amplitude modulation in logarithmic scale versus time and
(b) capillary damping rate versus the wave amplitude of the fundamental free-end edge
sloshing mode, m = 1, following an initial deflection Z0 = εA0 = 0.1. The Bond number
and the static contact angle are equal to Bo=500 and θs=π/4, and the contact line model
parameters are set to Ca= 0.01, α = 60 rad, ∆= 20◦ and β̂ = 6.5. The steepness of the
dynamic contact angle hysteresis at small contact line velocity is equal to Caβ = β̂/ε for
case I (solid line) and Caβ = β̂/ε2 for case II (black dashed line). The red vertical line
depicts the finite time at which the amplitude goes to zero in case I.

proportional to the initial amplitude Z0. Note that the second 1/Z0 contribution was
found by Miles (1967) in the limit of small critical velocity, and assuming that
the mean energy relaxes exponentially. Then the damping rate varies owing to the
second term on the right-hand side of (4.2), which has an explicit dependence on
|A|. In particular, the numerator c1(|A|) varies slowly for intermediate amplitudes
(see figure 5), whereas the denominator |A| decreases linearly. Thus, the damping
rate increases significantly when the sloshing amplitude decreases. However, at
smaller oscillating amplitudes, c1(|A|) decreases linearly with respect to |A|, with
slope c′(0) = dc1/d|A|||A|=0, and the ratio c1/|A| tends to a constant value. As a
consequence, the system enters in a low amplitude linear regime, with damping rate

γ (t=∞)→ εζ + εχc′(0)= εζ + εχπ/2β̂ω|ηA
1 |r=1, (4.4)

and the free-end edge mode decays exponentially.

4.2. Case II: βCa= β̂/ε2

In the case of higher hysteresis steepness coefficient, the amplitude equation (3.44)
yields

γ (t)= εζ + εχ
1

|A(εt)|
, (4.5)

which is shown in figure 7(b) (dashed line). The wave attenuation is seen to depend
on the wave amplitude. The decay is approximately exponential at large amplitude,
and the damping rate is equal to that in (4.3). The wave attenuation then increases
when the amplitude decreases. Rather than reaching a low amplitude linear regime
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the damping rate keeps increasing. In particular, we find the existence of a finite time
t∗ such that the damping rate diverges:

γ (t= t∗)→∞, (4.6)

with

t∗ =
1
εζ

log
(

1+
ζ

χ

Z0

ε

)
. (4.7)

The finite time singularity of the damping rate yields the arrest of the contact line,
whose amplitude becomes exactly zero for t = t∗ (see (3.45)). Recalling that χ ∝ ∆
(3.3), we argue that the contact angle hysteresis at small contact line velocity is at
the origin of this finite time arrest of the free-end edge mode. Consistent with this
assertion we find that t∗ diverges if ∆ is set to zero. In this limit the system relaxes
exponentially with damping rate εζ . Conversely, even a small value of the hysteresis
range – as small as 1◦ – is sufficient to induce a significant dissipative effect that, in
turn, largely impacts the dynamics, and, in particular, leads to an arrest of free-end
edge mode in finite time.

We now turn to investigating the parametric dependence of the time of arrest t∗. To
this end, we use the configuration introduced in § 3 as a reference and vary (i) the
Bond number, Bo, (ii) the static contact angle, θs, as well as (iii) the contact line
model parameters, αCa and ∆, and (iv) the set of the initial condition, Z0= εA0. Using
§ 3, we anticipate that the first-order solution solely depends on θs and Bo. The contact
line model parameters αCa and ∆, and the initial condition A0 only enter the problem
at second order. Using the definitions for ζ and χ introduced in (4.7), we obtain a
scaling law for t∗:

t∗ ∝
Bo

ωκ sin(θs)

1
αCa

log
(

1+
αCaπω

∆
Z0

)
. (4.8)

In figure 8 we show the variation of t∗ as a function of the key parameters of the
problem. The time of arrest evidently increases with the initial interface deflection, Z0,
that sets the initial energy of the system, which must be dissipated to recover the rest
configuration. A higher value of Z0 thus requires a longer time before the interface
comes back to rest. However, dependence of t∗ with respect to Z0 is logarithmic
(see (4.8)), such that the time of arrest increases less than linearly with Z0. Regarding
the slip coefficient α, an increase of its value yields an increase of the damping
rate, and, in turn, a decrease of t∗. This result remains true for all the values of ∆
considered (see figure 8b). The frequency ω and the scalar quantity κ (introduced in
(3.3)) both arise from the first-order problem. Consequently, they both depend on the
static angle, θs, and the Bond number, Bo, in a complex way. As a consequence, no
scaling law for t∗ with θs and Bo may be immediately deduced from (4.8) a priori.
However, we have found numerically that both ω and κ do not vary significantly
with θs and Bo, respectively. In figure 8(c) the linear dependence of t∗ with Bo is
reported, whereas in Figure 8(d) we show that the time of arrest decreases when the
static contact angle θs is increased. This aspect is corroborated by the ratio Bo/ sin θs
in (4.8).

The dependence of t∗ on Bo and θs may be rationalized when recalling that the
dissipation, D, in a liquid wedge sliding on a solid substrate may be approximated in
the following way (de Gennes et al. 2002):

D∼ σ(θ 2
− θ 2

s )∼
1

Bo
(θ + θs)(θ − θs). (4.9)
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FIGURE 8. (Colour online) Finite time of arrest t∗ reported as a function of (a) the initial
contact line displacement, (b) the slip coefficient, (c) the Bond number and (d) the static
contact angle. The + symbols displayed in (d) correspond to t∗ computed with a finer
mesh (see appendix A), showing convergence with respect to grid resolution.

The capillary-induced dissipation originates from the work of surface tension, which
is non-zero only when the contact angle θ deviates from its equilibrium value θs. An
increase in Bo lowers the dissipation and thus increases t∗. On the other hand, an
increase in θs, while keeping constant the contact line model parameters, is positively
correlated with the dissipation: increasing θs, while keeping constant α and ∆, merely
translates upwards the plot in figure 1(b) yielding the contribution θ + θs in (4.9) to
increase while keeping constant θ − θs.

Finally, from the relative position of the curves displayed in figure 8 obtained
varying ∆, we recover that an increase of ∆ always enhances the damping and
lowers the value of t∗, consistently with (4.8).

4.3. Comparison with the experiments of Cocciaro et al. (1993)
We now compare the weakly nonlinear analysis with the experimental observations
of Cocciaro et al. (1993). Remarkably, these authors report careful measurements of
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Asymptotic analysis

FIGURE 9. (Colour online) (a) Contact line model corresponding to the experimental
conditions of Cocciaro et al. (1993) as can be deduced from figure 3 of their paper
(solid line) and the contact line model used in this section (dashed line). (b) Dimensional
capillary-induced damping rate over π versus the contact line amplitude as measured by
Cocciaro et al. (1993) (solid line) at the container axis. The damping rate of the free-edge
mode computed with the asymptotic analysis (dashed line) is computed using (4.5) and
setting the physical parameters as in the experiment: θs = 62◦, Bo = 346.4, Ca = 0.011
and ∆ = 43◦, α = (αr + αa)/2 ≈ 150. The damping rate due to the dissipation in the
oscillating Stokes layer at the wall as found theoretically by Case & Parkinson (1957)
(see equation (4.10)), is shown by the red line.

the contact line dynamics. In particular, they measure the contact line elevation, Ac
according to their notation, and the dynamic contact angle, θ , versus the tilt angle at
the axis, α1. With this information and the assumption of sinusoidal motion of the
contact line, which is supported by experimental evidence, it is possible to derive
the contact angle as a function of the contact line velocity that is here reported in
figure 9(a). This behaviour well resembles the contact line law we have used in our
analysis: a steep hysteresis range (of size ∆ = 43◦) for small contact line velocity
and an approximately linear dynamic range with αa ≈ 100 for advancing interface
and αr ≈ 200 for the receding one. As previously discussed in the Introduction (§ 1),
two different regimes are found by Cocciaro et al. (1993): at higher amplitude the
contact line slides on the solid substrate and the fluid interface well matches that of
a free-edge mode. In contrast, at small amplitudes the pinned mode dominates the
sloshing dynamics and the dynamic contact angle oscillates around its static value. The
transition between the two regimes is evident when the damping rate is monitored; see
figure 9(b) where the original data from Cocciaro et al. (1993) are reproduced (solid
line) as a function of the contact line amplitude, Ac, rather than the amplitude of the
tilt angle, α1, using their figure 3a for this conversion. When the wave amplitude is
large (Ac> 2 mm) the damping rate increases for a decreasing amplitude of oscillation
until it reaches a maximum value. Then, in the transition between the two regimes, the
damping rate decreases until reaching a uniform value for the pinned motion, which
is hardly visible in this representation (but clear in their figure 9a).

As discussed above, our asymptotic analysis merely describes the dynamics of the
free-edge mode that dominates the liquid sloshing in a circular container until the
contact line starts to pin. A comparison with the experimental results of Cocciaro et al.
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(1993) is then possibly restricted to the case of higher amplitude (Ac > 2 mm). With
this aim, the damping rates computed with the asymptotic analysis are also shown
in figure 9(b) (dashed line). Due to the steep contact angle hysteresis observed in the
contact law in figure 9(a), the damping rates are calculated by using (4.5) (case II) and
the other physical parameters are set as in the experiment: ∆= 43◦, α= (αr+αa)/2≈
150, θs = 62◦, Bo= 346.4 and Ca= 0.011. Although the contact angle hysteresis, ∆,
and the slip coefficient, α, are slightly larger with respect to the values allowed by the
asymptotic machinery, the damping rates predicted by the asymptotic analysis (without
any tuneable parameter) match well with those measured experimentally by Cocciaro
et al. (1993) in the high amplitude range (Ac > 2 mm). Conversely, our theory does
not capture the decreasing of the damping rate for lower amplitudes (Ac < 2 mm).

We speculate that this discrepancy depends on the sticking of the interface at small
amplitudes that requires the introduction of the pinned-edge mode to be described,
which is not accounted for in our analysis. It has to be remarked, in fact, that the
damping rate in the experiments was measured by measuring the tilt angle at the
container’s axis, α1, where both free-edge and pinned modes are present, rather than
at the contact line, where the pinned mode does not contribute. These two possible
ways of measuring the wave decay are equivalent at large amplitudes but are different
at small amplitude (see figure 3(a) of Cocciaro et al. 1993). In particular, the damping
rate measured at the contact line could have a diverging behaviour similar to that
observed in our analysis since the contact line pins at a finite time and the free-edge
mode expires.

In the same figure, we also show the viscous damping rate associated with the
dissipation in the oscillating Stokes layers as found by the theory of Case & Parkinson
(1957):

γµ =
3.52
2π

√
ν

R3/4g1/4
ω. (4.10)

The viscous damping rate, γµ (red line), significantly underestimates the wave decay at
higher amplitude and does not depend on the oscillation amplitude of the free surface,
in disagreement with experimental results. At small amplitude, γµ is found to be close
to the damping rate observed in the pinned regime, where the dissipation in the Stokes
layer is no longer overshadowed by that in the dynamic meniscus.

5. Conclusions
We have presented a weakly nonlinear formulation for sloshing waves in a circular

cylinder in partial wetting conditions. A nonlinear contact line model was incorporated
into our asymptotic analysis as a boundary condition at the moving contact line. In
particular, we have adopted a contact line model where a steep dynamic hysteresis
range is married to the widely used Hocking law, which is a linear relation. In
the limit of steep dynamic hysteresis this model mimics well the experimental
observations in unidirectional flows where both static and dynamic hysteresis ranges
are seen (Dussan 1979; Le Grand et al. 2005; Rio et al. 2005). In our asymptotic
expansion, two distinguished solutions are considered depending on the steepness of
the contact angle hysteresis that scales as βCa∼ ε−1 (case I) or as βCa∼ ε−2 (case II).
In both cases, the zero-order problem consists of the static meniscus shape in the
cylindrical geometry considered. At first order, the linear problem satisfied by the
sloshing gravity–capillary waves is obtained. The resulting global modes are neutrally
stable since no dissipation source is found at zero and first orders. Therefore, in the
spirit of multiple scale analysis, a slowly varying amplitude and phase modulation
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are introduced at second order. They correspond to the weakly nonlinear correction
accounting for capillary effects at the contact line.

The phase modulation is found not to enter at first order, so that capillary effects
do not affect significantly the sloshing frequency. This result is in agreement with
the experimental observations of Keulegan (1959) and Cocciaro et al. (1993) where
a weak dependence on the amplitude has been observed for the oscillation frequency
in partial wetting conditions.

Capillary effects, however, have a dramatic influence on the damping rate: the
amplitude modulation results in a significant attenuation of the first-order waves.
According to the amplitude equations (3.34) and (3.44), capillary effects make two
contributions to the damping rate: (i) a nonlinear contribution related to the contact
angle hysteresis at small contact line velocities and (ii) a linear contribution imparted
to the linear dependence between the contact angle and the contact line velocity. In
our analysis, the capillary-induced damping rate is found to depend on the wave
amplitude. This fact is consistent with the experimental observations of Keulegan
(1959) and Cocciaro et al. (1993). The damping rate is first practically uniform when
the wave amplitude is large, and then increases significantly at small amplitudes, as a
consequence of the hysteresis contribution, although the details of the low amplitude
behaviour depend on the scaling of the steepness parameter, β. In the case of steeper
transitions between advancing and receding contact angle (case II, Caβ = β̂/ε2) the
increase is such that the damping diverges in finite time leading to the arrest of the
contact line motion.

We argue that this finite time arrest of the contact line could correspond to the
transition from high to small amplitude observed experimentally by Cocciaro et al.
(1993) when the free-edge mode expires and the bulk keeps a small amplitude
motion following the pinned mode. The latter is not captured at order ε but only in
the non-resonant solution of the order ε2 problem. One important limitation of our
leading-order model is therefore that it fails to capture the transition from free-end
edge to pinned-end edge mode, because it only predicts the evolution of the amplitude
A of the free-edge mode. This might explain the discrepancy between the damping
rate results reported in figure 7(b), which account solely for the free-edge mode, and
those in figure 9 of Cocciaro et al. (1993) where the damping rate is measured at the
container’s axis monitoring the superposition of the free-edge and pinned-edge modes.
In any case we have shown that capillary effects modify the conventional physical
picture associated with sloshing, where waves decay exponentially, thus virtually
never exactly reach zero amplitude. With capillary effects this is no longer the case.

Experimental results leaning in the same direction have recently been reported in the
case of biphasic systems, where capillary effects are emphasized using foam (Viola
et al. 2016b). Adding foam to a liquid introduces nonlinear capillary forces which
dramatically damp its oscillatory motion and lead the damping rate to increase at
small oscillation amplitude. In the same work, the dynamics of sloshing with foam
was modelled using a simple phenomenological oscillator derived by imposing the
balance of the forces acting on the oscillating mass and using dimensional analysis.
The same approach can be adopted here to derive a model equation for the single
phase sloshing in the presence of steep dynamic hysteresis as in case II. We notice
that the traction force pulling the meniscus toward the dry region, associated with
the contact angle hysteresis, merely depends on the contact velocity through its sign.
Specifically, this force is independent of the absolute value of the contact line velocity.
As a result, this capillary-induced force may be interpreted as a Coulomb-like friction
force, as already pointed out by Miles (1967) who derived an analytical expression for
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FIGURE 10. Schematic of the sloshing system with hysteresis: the inertial, ẍ, and
restoring, x, terms are balanced by linear, αẋ, and solid, 1sgn(ẋ), friction.

the damping rate of gravity waves subjected to a solid friction localized at the contact
line. Conversely, the linear term in the contact line law (2.5) corresponds to a traction
force, whose intensity is proportional to the contact line velocity in the limit of small
contact angles. Combining these effects, we propose to model sloshing as an oscillator,
subject to viscous damping – a traditional dissipation source – here augmented by an
additional term analogous to solid friction. In figure 10, we provide the sketch of a
model system, mechanically equivalent to sloshing as described in our framework. It
consists of a mass–spring element, a dashpot and a solid friction element:

ẍ+ x+ αẋ+1ẋ/|ẋ| = 0, (5.1)

whose asymptotic solution reduces to the amplitude equation (3.44) in the limit of
small coefficients α and ∆, further indication that the effect of the contact line
hysteresis may be interpreted as Coulomb solid friction. An equation similar to (5.1)
has been used by Noblin, Buguin & Brochard-Wyart (2004) to model the contact line
dynamics of sessile drops subjected to vibrations, suggesting that our framework may
be extended to other problems where the motion of a contact line is involved.

We finally note that the weakly nonlinear stability analysis carried out here provides
a general framework to account for capillary effects in the surface gravity–capillary
waves in a container. Indeed, contact line models other than the one used here can
readily be introduced in the proposed formulation. Furthermore, accounting for the
pinned-end edge mode, which dominates the bulk dynamics after the interface pinning,
would be a natural follow-up of the analysis introduced in this article.
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Appendix A. Numerical code
A.1. Static meniscus

At order ε0 the static meniscus shape in a cylindrical basin has to be determined.
The governing equation (3.3) is discretized through Chebyshev collocation method and
the Gauss–Lobatto–Chebyshev (GLC) collocation grid s ∈ [−1, 1] is mapped into the
physical space r∈ [0,R] through the linear mapping r=R(s+ 1)/2. Hence the solution
to the nonlinear equation is obtained by means of an iterative Newton method which
is made up of the following steps.

(i) Find an approximate guess solution η0 which satisfies the boundary conditions
(3.4) and (3.5).
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(ii) Solve for δη0 the linear system

dχ(η)
dη

∣∣∣∣
η0

δη0 =−χ(η0), (A 1)

with homogeneous boundary conditions, where the Jacobian dχ(η)/dη is defined
in (3.9).

(iii) Set η0 = η0 + δη0.
(iv) Compute the L2-norm of δη0. If ||δη0||L2 > 10−12 go to step (b).
(v) Set the static meniscus to η0.

A.2. Global stability analysis

At order ε1 the linear eigenvalue problem (3.15) has to be solved and the equations,
together with the boundary conditions, are discretized through Chebyshev collocation
in a similar fashion to Viola, Arratia & Gallaire (2016a). The physical domain is in
general not rectangular due to the presence of the static meniscus η0. For this reason
the physical domain with coordinates (r, z) has to be mapped into the Chebyshev
space (s, t) through the transformation

r=
R
2
(s+ 1), z= (t+ 1)

(
H
2
+
η0(s)

2

)
−H, (A 2a,b)

where η0 is the static meniscus. The partial derivatives in the physical space are related
to the derivative in the computational space according to the relations

∂u
∂r
=

1
r,s

u,s −
z,s

r,sz,t
u,t

∂u
∂y
=

1
z,t

u,t

∂2u
∂r2
=

1
r2
,s

u,ss +
z2
,s

r2
,sz2
,t

u,tt −
z,tz,ss − 2z,sz,st

r2
,sz2
,t

u,t −
2z,s
r2
,sz,t

u,st
∂2u
∂y2
=

1
z2
,t

u,tt,

 (A 3)

where the derivatives of the physical coordinates with respect to the computational
coordinates depend on the mapping function; see Heinrichs (2004). In our case,

r,s = R r,ss = 0 r,t = 0 r,st = 0 r,tt = 0

z,s =
t+ 1

2
η,s z,ss =

t+ 1
2
η,ss z,t =

H
2
+
η(s)

2
z,st =

η,s

2
z,tt = 0.

 (A 4)

The integrals appearing in (3.3) are computed with the Clenshaw–Curtis quadrature
formula, where the quadrature weights are adapted to the mappings used following
the method presented in Sommariva (2013). The number of nodes in the radial
and vertical direction is Nr = Nz = 60, which ensures convergence of the results. In
figure 8(d) the time of arrest as a function of θs and ∆ computed with the finer grid
Nr =Nz = 80 is reported as proof of convergence.
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Appendix B. Adjoint equations
In this section we determine the adjoint equations to the first-order problem (3.15),

associated with the Hermitian scalar product:

〈qα, qϑ〉 =
∫
Ω

ΦαΦϑ dΩ +
∫
η0

ηαηϑ dη0, (B 1)

where the overline symbol designates the complex conjugate. The first term is a
weighted volume integral with dΩ = r dr dz. The second one corresponds to a surface

integral on the zero-order surface η0(r) with dη0 = r dr
√

1+ η2
0,r. In this section we

will demonstrate that the first-order system of equations and boundary conditions are
self-adjoint with respect to the scalar product (B 1).

By definition, the adjoint operator of the direct operator iωB−A, satisfies

〈q†, (iωB−A)q〉 = 〈(iω†B†
−A†)q†, q〉, (B 2)

where q†
= (Φ†, η†) is a vector. Hence, the adjoint operator iω†B†

− A† is derived
by integration by parts, transferring the differential operators from the vector q to
the vector q†. The boundary conditions for the adjoint operator are chosen so as to
nullify the boundary integrals coming from the integration by parts. The right-hand
side of (B 2) reads∫

Ω

Φ
†
1Φ dΩ +

∫
η0

η†

(
iωΦ + η−

1
Bo

[
a(r)

r
∂η

∂r
+ b(r)

∂2η

∂r2
−

m2c(r)
r2

η

])
×

dη0√
1+ η2

0,r

= 0, (B 3)

where we recall m is the azimuthal wavenumber, and integrating by parts we get∫
Ω

1Φ
†
Φ dΩ +

∫
∂Ω

Φ
†
∇Φ · n dS−

∫
∂Ω

Φ∇Φ
†
· n dS

+

∫
η0

−iωη†Φr dr+
∫
η0

(
η†
−

1
Bo

[
a(r)

r
∂η†

∂r
+ b(r)

∂2η†

∂r2
−

m2c(r)
r2

η†

])
ηr dr

−
1

Bo

[
rb(r)

(
η† ∂η

∂r
−
∂η†

∂r
η

)]r=1

r=0

= 0. (B 4)

The first integral comes from the integration of the continuity equation, and it is
nullified by imposing that the adjoint potential 1Φ†

= 0 is harmonic. The integrals on
the domain boundary ∂Ω involving the normal velocity ∇Φ ·n are the boundary terms
resulting in the integration by parts of the continuity equation. These terms vanish at
the solid wall because of the no-penetration condition

∂Φ

∂r

∣∣∣∣
r=1

=
∂Φ

∂z

∣∣∣∣
z=−h

=
∂Φ†

∂r

∣∣∣∣
r=1

=
∂Φ†

∂z

∣∣∣∣
z=−h

= 0, (B 5)

and at the axis because of the symmetry condition

Φ|r=0 =Φ
†
|r=0 = 0. (B 6)
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At the free interface the domain is curved, and the normal vector is n= 1/
√
(1+ η2

0,r)

( −η0,r
1 ). By using the kinematic boundary conditions (3.10), equation (B 4) reads∫

η0

(
−iωη† + η0,r

∂Φ
†

∂r
−
∂Φ

†

∂z

)
Φ

dη0√
1+ η0,r2

+

∫
η0

(
−iωΦ† + η†

−
1

Bo

[
a(r)

r
∂η†

∂r
+ b(r)

∂2η†

∂r2
−

m2c(r)
r2

η†

])
η

dη0√
1+ η0,r2

−
1

Bo

[
rb(r)

(
η† ∂η

∂r
−
∂η†

∂r
η

)]r=1

r=0

= 0. (B 7)

From the first two terms in (B 7) the adjoint kinematic and dynamic interface
conditions are retrieved:

−iωη†
+ η0,r

∂Φ†

∂r
−
∂Φ†

∂z
= 0,

−iωΦ†
+ η†
−

1
Bo

[
a(r)

r
∂η†

∂r
+ b(r)

∂2η†

∂r2
−

m2c(r)
r2

η†

]
= 0.

 (B 8)

To complete the adjoint system of equations the last term in (B 7), which comes from
the integration by parts of the capillary pressure in the direct dynamic condition, has
to be nullified. In r= 0 this term is null because of the integral argument is weighted
by r. In contrast, at the contact line b(r= 1)= sin3(θs) and the condition

−
sin3(θs)

Bo

(
η† ∂η

∂r
−
∂η†

∂r
η

)∣∣∣∣
r=1

= 0 (B 9)

defines the natural boundary condition at the contact line. In the case of free-end edge
interface,

∂η

∂r

∣∣∣∣
r=1

=
∂η†

∂r

∣∣∣∣
r=1

= 0. (B 10)

It should be noted that also the pinned boundary condition η = η†
= 0 is a natural

boundary condition of the problem. Hence the direct problem at order ε is self-adjoint
with respect to the Hermitian scalar product (B 1):

iω†B†
−A†

=−iωB−A, (B 11)

with ω†
=−ω. The vector q† which satisfies the adjoint equations [−iωB−A]q†

= 0
is the adjoint mode.

Appendix C. Asymptotic analysis validation: comparison with direct numerical
simulation

In this section the validity of the weakly nonlinear analysis is discussed through a
comparison with a direct numerical simulation of the governing equations presented
in § 2, in the limit of small oscillations. The continuity equation

1Φ = 0, (C 1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

86
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.860


814 F. Viola, P.-T. Brun and F. Gallaire

is completed by the dynamic and kinematic conditions at the free surface that in the
case of static contact angle θs =π/2 read

∂Φ

∂t
+ η−

1
Bo
η= 0 at z= 0,

∂η

∂t
=
∂Φ

∂z

∣∣∣∣
0

at z= 0.

 (C 2)

Symmetry conditions at the axis and the no-penetration condition at the solid walls
also need to be satisfied. The nonlinear wetting condition is then imposed at the
contact line:

−
∂η

∂r

∣∣∣∣
r=1

= αCa
∂η

∂t

∣∣∣∣
r=1

+
∆

2
tanh

(
βCa

∂η

∂t

∣∣∣∣
r=1

)
at z= 0 and r= 1. (C 3)

In order to investigate the dynamics of the fundamental sloshing mode (first
azimuthal mode) the state vector q(t; r, φ, z)= (Φ, η) can be written as a truncated
Fourier series,

q̂(t; r, φ, z)= q̂1(t; r, z)eiφ
+ c.c., (C 4)

where c.c. stands for complex conjugate. By injecting the modal expansion (C 4) in
the nonlinear equation (C 3) we get

−
∂η̂1

∂r

∣∣∣∣
r=1

eiφ
+ c.c.=αCa

(
∂η̂1

∂t

∣∣∣∣
r=1

eiφ
+ c.c.

)
+
∆

2
tanh

(
βCa

(
∂η̂1

∂t

∣∣∣∣
r=1

eiφ
+ c.c.

))
︸ ︷︷ ︸∑

n Fneimφ

,

(C 5)
where the last term on the right-hand side has to be Fourier transformed to get a
boundary condition for the fundamental mode

∂η̂1

∂r

∣∣∣∣
r=1

eiφ
+ c.c.=−αCa

∂η̂1

∂t

∣∣∣∣
r=1

eiφ
−
∆

2
F1(β,Ca, t)eiφ

+ c.c., (C 6)

with

F1(β,Ca, t)=
1

2π

∫ 2π

0
tanh

(
βCa

(
∂η̂1

∂t

∣∣∣∣
r=1

eiφ
+ c.c.

))
e−iφ dφ. (C 7)

The resulting equations for q̂1(t; r, z) are then discretized in space by means of a
pseudospectral Chebyshev–Chebyshev method as introduced in § 3.2 and appendix A.
A backward differentiation formula of second order is employed for time integration.
This integration scheme is implicit and especially suited for solving stiff differential
equations like our case where the continuity of mass (C 1) is an algebraic constraint
for the unsteady kinematic and boundary conditions (C 2). The discretized state vector
qn after n time steps of size δt is obtained by solving

3
2Bqn

− 2Bqn−1
+

1
2Bqn−2

= δt(Aqn
+ f (vc)) (C 8)
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FIGURE 11. (Colour online) (a) Contact line model for ∆=5◦, α=1, Bo=500, Ca=0.01
and θs=π/2. The steepness coefficient is varied as β= 100, 1000 and 10 000. The contact
line motion according to the weakly nonlinear analysis (blue line, its amplitude is depicted
by a red line) and the solution from numerics (circles) are shown for (c) β = 100, (d)
β = 1000 and (e) β = 10 000. The corresponding damping rates are reported in (b).

where A and B contain the discretized equations; see (3.13). The vector f (vc) is nil
everywhere except for its component corresponding to the contact line (z = 0 and
r= 1), which is equal to the last term of (C 6). The remaining term on the right-hand
side of (C 6) is contained in B while the left-hand side of (C 6) is discretized in
A. The quantity vc is the contact line velocity vc = (∂η/∂t)|r=1 that can be treated
explicitly or implicitly respectively. With an explicit scheme using the interface
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FIGURE 12. (Colour online) (a) Contact line model for β = 1000, α= 1, Bo= 500, Ca=
0.01 and θs = π/2. The contact angle hysteresis is varied as ∆ = 5◦, 10◦ and 20◦. The
contact line motion according to the weakly nonlinear analysis (blue line, its amplitude is
depicted by a red line) and the solution from numerics (circles) are shown for (c) ∆= 5◦,
(d) ∆= 10◦ and (e) ∆= 20◦. The corresponding damping rates are reported in (b).

position at previous times, vc reads

vc = v
n−1
c =

ηn−1 + 4/3ηn−2 + 1/3ηn−3

2/3δt
(C 9)
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and can be readily used to compute qn. In contrast, if an implicit formula is used, the
velocity

vc = v
n
c =

ηn + 4/3ηn−1 + 1/3ηn−2

2/3δt
(C 10)

depends on the unknown interface position ηn and an iterative procedure is needed
due to the nonlinear relation f (vc). In this case, in order to advance from the time
tn−1 towards the next one tn

= tn−1
+ δt, a guess contact line velocity vn∗

c is chosen
(typically the one at previous time step vn−1

c ) which is then used to compute qn∗∗

through (C 8). If the difference between the updated contact line velocity vn∗∗
c and

the guess velocity is larger than a given threshold, the guess velocity is conveniently
modified and the procedure repeated. This method has been implemented by using
fsolve, a built-in Matlab function designed to solve nonlinear equations, which has
been employed here to determine the contact line velocity vn

c at every time step. The
two methods provide similar results. The implicit treatment of the contact line velocity
allows for larger time step, typically δt = 0.05 rather than δt = 0.01 used in explicit
case, but the subiterative procedure slows down computation speed.

Let us now compare the dynamics of the fundamental sloshing mode resulting
from the numerical simulation with that coming from the weakly nonlinear analysis
introduced in the main body of the paper. In figure 11 the contact line hysteresis is
set to ∆= 5◦ whereas the steepness coefficient is varied as β = 100, 1000 and 10 000:
see figure 11(a). The corresponding contact line motion is reported in figure 11(c,d,e)
where the asymptotic solution (blue line) and its instantaneous amplitude (red line)
match well the numerical results (circles) for all the values of β. Furthermore, a
satisfactory agreement on the damping rate, γ (t), is also observed: see figure 11(b).
In particular, for β= 100 the damping rate is practically uniform and increases almost
linearly for β= 1000. In the case of higher steepness factor β= 10 000, γ (t) increases
significantly, getting three times the initial value at t= 350.

In figure 12 the steepness coefficient is fixed to β = 1000 and the contact angle
hysteresis is progressively increased as ∆= 5◦, 10◦ and 20◦. The other parameters are
set as in the previous case: see captions. The resulting contact line laws are shown in
figure 12(a): the contact angle depends nonlinearly on the contact line velocity and
the more ∆ increases, the more θ varies. The resulting contact line motions as a
function of time are shown in figure 12(c,d,e) pointing to good agreement between
asymptotics and numerics. The damping rates are then shown in figure 12(e) thus
revealing a stronger nonlinear behaviour for higher contact line hysteresis ∆ that is
captured both from the asymptotic analysis and numerics.

Despite the good agreement between asymptotic analysis and numeric simulations,
the steepness coefficient β and the hysteresis parameter ∆ could not be further
increased in the numerical simulations with respect to the values reported here. This
is due to the stiffness of the governing equations and the strong nonlinearity of the
adopted contact line law which arguably require more sophisticated time schemes
to integrate the solution in the case of a steeper and more intense contact angle
hysteresis.
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