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Abstract

Machine vision–based herbicide applications relying on object detection or image classification
deep convolutional neural networks (DCNNs) demand high memory and computational
resources, resulting in lengthy inference times. To tackle these challenges, this study assessed the
effectiveness of three teacher models, each trained on datasets of varying sizes, including
D-20k (comprising 10,000 true-positive and true-negative images) and D-10k (comprising
5,000 true-positive and true-negative images). Additionally, knowledge distillation was
performed on their corresponding student models across a range of temperature settings. After
the process of student–teacher learning, the parameters of all student models were reduced.
ResNet18 not only achieved higher accuracy (ACC≥ 0.989) but also maintained higher frames
per second (FPS ≥ 742.9) under its optimal temperature condition (T= 1). Overall, the results
suggest that employing knowledge distillation in the machine vision models enabled accurate
and reliable weed detection in turf while reducing the need for extensive computational
resources, thereby facilitating real-time weed detection and contributing to the development of
smart, machine vision–based sprayers.

Introduction

Turfgrass is widely grown in urban landscapes, including athletic, commercial, and residential
lawns; golf courses; roadsides; and parks (Pincetl et al. 2019). Turf provides various advantages,
including evaporative cooling in urban areas, soil remediation, atmospheric pollutant
absorption, and beautifying residential and nonresidential landscapes (El-Haggar and
Samaha 2019; Stier et al. 2013). Nevertheless, weed competition is a severe constraint for
turf management. Weeds compete with turfgrasses for environmental resources such as
sunlight, moisture, and soil nutrients (Hamuda et al. 2016; Liu and Bruch 2020), reducing turf
aesthetics and functionality (Monteiro 2017; Pincetl et al. 2019).Weedmanagement in turfgrass
landscapes traditionally relied heavily on broadcast herbicide application (McCullough et al.
2015; McElroy and Martins 2013), although weeds almost always present in nonuniform and
patchy distributions (Dai et al. 2019; Yu et al. 2019a), leading to herbicide application on areas
where weeds do not occur. The excessive use of synthetic herbicides poses a potential risk to
human health and may result in environmental pollution (Alengebawy et al. 2021;
Hasanuzzaman et al. 2020; Mennan et al. 2020; Yu et al. 2019b). For example, atrazine, a
photosystem II inhibitor, is commonly used in warm-season turfgrasses, yet it is frequently
detected in groundwater (Yu and McCullough 2016). Consequently, it has been classified as a
restricted-use pesticide in the United States (USEPA 2023). Manual spot spraying of herbicide
can reduce herbicide input but is time-consuming and labor-intensive, and thus is impractical
for large landscape areas (Kakarla et al. 2022).

Machine vision–based precision herbicide application technologies offer a viable solution
to minimize herbicide use and weed control costs (Jin et al. 2022b; Partel et al. 2019; Shuping
et al. 2023; Upadhyay et al. 2024a, 2024b). Traditional machine learning methods analyze
plant imagery, considering factors such as color (Tang et al. 2016), morphology (Perez et al.
2000), textural traits (Bakhshipour et al. 2017), and hyper- or multispectral features (Jiang et al.
2020; Pantazi et al. 2016), for the purpose of identifying target weeds or distinguishing between
crops and weeds. Nevertheless, detecting and differentiating weeds within crops is inherently
difficult due to their resemblances in color and morphology (Al-Badri et al. 2022; Hasan
et al. 2021).

In recent years, improvements in graphics processing unit (GPU) computing capabilities
have greatly advanced the development of deep convolutional neural networks (DCNNs)
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(Krichen 2023; Tulbure et al. 2022). Many innovative concepts,
such as activation functions, parameter optimization, model size,
and inference architecture, have been explored to further enhance
the performance of DCNNs (Khanam et al. 2024). DCNNs have
shown impressive capabilities in weed detection within turf
environments, as demonstrated in recent research (Jin et al. 2024;
Xie et al. 2021; Yu et al. 2019b). For instance, research elucidated
the efficacy of employing object detection (DetectNet) and image
classification neural networks (including AlexNet, GoogLeNet,
and VGGNet) to detect weeds in bermudagrass [Cynodon dactylon
(L.) Pers.] and perennial ryegrass (Lolium perenne L.) turfgrasses.
The findings highlighted that image classification neural networks
excelled in detecting images containing broadleaf and grassy weeds
within turfgrass (Jin et al. 2022a; Yu et al. 2019a, 2019c, 2020).
Nevertheless, deep learning–basedmethods for weed detection in turf
enhance accuracy at the expense of increasing computational load and
decreasing detection speed, which limits their practical application.
Many studies have demonstrated that models developed on high-
performance computers often have excessive parameters, which
complicates efficient inference on terminal devices (Chen and Ran
2019; El-Rashidy et al. 2020; Shakarami et al. 2021; Yang et al. 2022).
Consequently, it is fairly challenging to develop alternative
approaches for identifying weeds in turf while balancing the model’s
accuracy with real-time weed detection.

Knowledge distillation is a contemporary neural network
technique aimed at diminishing neural network size while maintain-
ing or enhancing performance (Hinton et al. 2015). In knowledge
distillation, a small student model is typically supervised by a large
teachermodel (Ba andCaruana 2014; Buciluǎ et al. 2006; Hinton et al.
2015; Urban et al. 2017). Basically, a knowledge distillation system
consists of three fundamental components: knowledge, a distillation
algorithm, and teacher–student architecture. It involves the student
model emulating the teacher model to achieve competitive or even
superior performance. Existing distillation algorithms typically use a
fixed temperature as a hyperparameter in the softmax layer to control
the smoothness of the distribution and accurately determine the
difficulty level of the loss minimization process (Li et al. 2023). In
recent years, there has been growing research in the utilization of
knowledge distillation in the domain of agriculture, such as crop
segmentation (Angarano et al. 2023), fruit and vegetable defect
detection (Cai et al. 2024; Nithya et al. 2022; Zhou et al. 2023), and
plant leaf segmentation (Jung et al. 2022).

Knowledge distillation offers a method for converting complex
weed detection models into lightweight versions, facilitating
deployment on resource-constrained mobile or embedded devices
without sacrificing performance. This research hypothesized that
applying knowledge distillation to turf weed detection could
enhance weed detection performance while optimizing the use of
limited time and computational resources, thereby improving the
efficiency of developing effective neural network models. This
approach shows significant promise for smart weeding robots,
boosting their capability for real-time and precise herbicide
application. A key factor in knowledge distillation is the hyper-
parameter temperature (T), which plays a crucial role in balancing the
knowledge transfer between the teacher and student models.
Therefore, the objectives of this research were to (1) assess the
performance of three teacher models in detecting weeds in turf across
datasets of different scales, (2) compare the results of three student
models at different temperatures after knowledge distillation to
determine their respective optimal temperatures, and (3) evaluate
three student models individually at their respective optimal temper-
atures to identify the most suitable model for practical application.

Materials and Methods

Dataset

The experimental images in this research were captured at different
times from various turf landscapes containing diverse weed
species. Some images were captured in spring 2021 using a
Panasonic® digital camera (model DMC-ZS110) at two distinct
locations in China: sod farms in Jiangning District, Nanjing City,
Jiangsu Province, China (31.95°N, 118.85°E) and sod farms in
Shuyang, Jiangsu Province, China (34.12°N, 118.79°E), while
others were obtained in autumn 2018 using a SONY® Cyber-Shot
Digital Still Camera (model DSC-HX1) from two separate
locations in the United States: the University of Georgia Griffin
Campus in Griffin, GA, USA (33.26°N, 84.28°W), and multiple
golf courses in Peachtree City, GA, USA (33.39°N, 84.59°W). The
turf species in these locations was bermudagrass, and the most
commonly observed weed species were dallisgrass (Paspalum
dilatatum Poir.), dandelion (Taraxacum officinale F.H. Wigg. ssp.
officinale), doveweed [Murdannia nudiflora (L.) Brenan], Florida
pusley (Richardia scabra L.), lawn pennywort (Hydrocotyle
sibthorpioides Lam.), old world diamond flower (Oldenlandia
corymbosa L.), purple nutsedge (Cyperus rotundus L.), smooth
crabgrass [Digitaria ischaemum (Schreb.) Schreb. ex Muhl.], and
white clover (Trifolium repens L.). The camera was configured in
automatic mode for parameters such as exposure, focus, and white
balance. Images were captured at a height that resulted in a
ground-sampling distance of 0.05 cm pixel−1, under varying
lighting conditions, including clear, cloudy, and partially cloudy
weather. All the images were taken in a 16:9 ratio, with a resolution
of 1,920 by 1,080 pixels.

The raw images were initially cropped to dimensions of 240 by
240 pixels using Irfanview (v. 5.50, Irfan Ski jan, Jajce, Bosnia). As
demonstrated in Figure 1, each resulting image block was then
categorized into one of two classes: “weed,” representing sub-
images containing weeds, and “turf,” representing sub-images
without weeds. As shown in Table 1, 5,000 images per class were
selected to create the small training dataset D-10k, and each class
was expanded to include 10,000 images for the large training
dataset D-20k. Additionally, an additional 500 images per class
were set aside for the validation dataset, while another 500 images
per class were allocated for the testing dataset.

Neural Network Models

In the context of the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC)-2015, the champion ResNet (He et al. 2016)
introduced “residual blocks” to address issues of gradient
vanishing and declining training set accuracy in deep neural
networks. Instead of attempting to directly learn the complete
underlying mapping from inputs to outputs, these blocks enable
the network to focus on learning the difference (residual) between
the input and the desired output. This architectural innovation
shifts the network’s task from fitting the entire low-level mapping
tomodeling the residual in relation to the original network, thereby
significantly reducing training complexity.

DenseNet (Huang et al. 2017) shares a similar goal of
overcoming the challenge of training deep neural networks by
incorporating “skip connections” or “shortcut connections.” It
strongly emphasizes “dense connectivity,” where every layer is
densely connected to every other layer, creating a tightly
interconnected network structure. This architectural approach
promotes extensive feature reuse across the network, thereby
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facilitating feature propagation and gradient flow throughout the
entire model, ultimately contributing to more effective training of
deep networks.

EfficientNet (Tan and Le 2019) is a set of eight convolutional
neural network models ranging from B0 to B7. EfficientNet achieves
more efficient results through uniform scaling of depth, width, and
resolution while shrinking the model size. The initial phase of
compound scaling involves a grid search to determine the relation-
ships among different scaling dimensions of the baseline network
under fixed resource constraints. Subsequently, appropriate scaling
factors are determined and applied to scale the baseline network to the
target network. The primary building block of EfficientNet is the
MBConv module, consisting of a layer that first expands and then
compresses channels, utilizing depth-wise separable convolutions to
competently reduce the number of parameters.

Knowledge Distillation

Complex models often possess an extended parameter space,
enhancing performance and generalization capabilities. Knowledge

distillation (Hinton et al. 2012) leverages the knowledge acquired
by complex models to guide the training of smaller models, thereby
compensating for the limited expressive capacity imposed by the
smaller scale of the latter. This leads to an improvement in the
performance of smaller models.

Assuming a reliable teacher model is accessible, the student
model can calculate the probability of each category output from
the teacher model, denoted as the “soft label.” In contrast, the
actual image labels are considered to be the “hard label.”
Classification models typically utilize a softmax layer to compute
the probability of each output category. The formula for this
calculation is as follows, where qi represents the output probability
of class i, and zi represents the output logit of class i.

qi ¼ exp zið Þ
P

i exp zið Þ [1]

Using the softmax output of the teacher model directly as the
soft label is not a practical approach. This is because when the
entropy for the probability distribution of the softmax output is
low, the probability of the negative category label tends to be close
to 0, and as a result, its contribution to the loss function becomes
negligible. Therefore, a new variable called “temperature” can be
introduced, and the softmax function can be calculated using the
following formula, where T represents the temperature.

qi ¼ exp zi=Tð Þ
P

j exp zj=T
� � [2]

After introducing the temperature factor T, the soft targets
produced by the softmax classifier largely preserve the probability
relationships between different sample classifications.

The application of knowledge distillation requires both a
teacher model and a student model, and the final loss is composed
of the cross-entropy functions of both models, calculated through
linear weighting. The training process is depicted in Figure 2. The
soft loss can mitigate the overfitting of hard labels by student
models (Cho and Hariharan 2019), and the final loss function is
represented as Equation 3, where pj represents the output of the
teacher model; pi represents the output of the student model; y
denotes the true label; CE stands for the cross-entropy function;
and λ is the hyperparameter that adjusts the weighting of the loss
function.

Loss ¼ �CE y; pið Þ þ 1� �ð ÞCE pj; pi
� �

[3]

Experimental Environment and Procedure

This study examined three teacher models: ResNet101,
DenseNet201, and EfficientNetB5; and three student models:
ResNet18, DenseNet121, and EfficientNetB0. Compared with the
teacher models, student models had shallower and less complex
architectures. Using ResNet as an example, the subsequent
numerical values indicate the diverse depths of various models.
ResNet101 has a greater depth, consisting of 101 convolutional
layers, while ResNet18 is relatively shallower, with only 18
convolutional layers (He et al. 2016).

In this study, a total of 48 image classification neural networks
were trained and tested, comprising 8 teacher models and
40 student models with varying temperatures and structures.
Initially, the weights of the teacher models, which were pretrained

Table 1. Training, validation, and testing dataset specifications.a

Training Validation Testing

Datasetb

Class Class Class

Turf Weed Turf Weed Turf Weed

————————— image quantity —————————

D-20k 10,000 10,000 500 500 500 500
D-10k 5,000 5,000 500 500 500 500

aImages at a resolution of 240 × 240 pixels were used for training, validation, and testing.
bD-20k indicates the training dataset with 10,000 “Turf” class images and 10,000 “Weed” class
images. D-10k indicates the training dataset with 5,000 “Turf” class images and 5,000 “Weed”
class images.

Figure 1. Representation of the two classes in the training, validation, and testing
datasets. “Turf” refers to sub-images that exclusively contain bermudagrass (Cynodon
dactylon). “Weed” refers to sub-images that contain one of the following species:
Paspalum dilatatum, Taraxacum officinale, Murdannia nudiflora, Richardia scabra,
Hydrocotyle sibthorpioides, Oldenlandia corymbosa, Cyperus rotundus, Digitaria
ischaemum, or Trifolium repens. Only sub-images containing a single weed species
were used for training, validation, and testing.
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on the ImageNet dataset (Deng et al. 2009), were delivered to their
corresponding model architectures using transfer learning. Three
teacher models were subjected to fine-tuning to adjust their fully
connected layer outputs for binary classification. To assess their
performance, each teacher model was independently trained on
two datasets of varying sizes: the larger dataset, designated as D-
20k, and the smaller dataset, referred to as D-10k. This separate
training approach allowed for a comparative analysis of the
model’s performance across datasets of different scales.
Subsequently, a knowledge distillation approach was employed
to transfer the acquired knowledge to lightweight student models.
The validation set accuracy and model stability were compared
under different temperature settings to determine the optimal
teacher and student models. The hyperparameters used for
training in different experimental setups are presented in
Table 2. All models were trained and tested on the open-source
PyTorch deep learning framework (v. 1.8.1, Facebook, San Jose,
CA, USA), which was installed on a workstation equipped with a
GeForce RTX 3080 Ti GPU (NVIDIA) and 64 GB of memory.

Evaluation

For both teacher and student image classification neural networks,
the assessment results were organized in a binary classification
confusion matrix encompassing four outcomes: a true positive
(TP), a true negative (TN), a false positive (FP), and a false negative
(FN). TP indicates the count of correctly predicted weed-free
samples, whereas TN represents the count of correctly predicted
samples with weeds. TP and TN are indicators reflecting the true
condition of weeds. Conversely, in cases where samples are actually
infestedwith weeds, FP signifies the incorrect prediction of samples as
weed-free, and FN signifies the incorrect prediction of samples as
infested with weeds. TP and TN expose instances of prediction errors
in recognizing the weed condition. The performances of the neural
networks were evaluated using Accuracy (ACC), precision, recall, F1
score, and the Matthews’ correlation coefficient (MCC) via confusion
matrices (Sokolova and Lapalme 2009).

ACC measures the percentage of accurately classified samples
within a specified dataset and was calculated using the following
formula:

ACC ¼ TPþ TN
TPþ TNþ FPþ FN

[4]

Precision measures the ability of the model to accurately detect
the target and was computed using the following formula:

Precision ¼ TP
TPþ FP

[5]

Recall measures the effectiveness of the neural network to
correctly identify the target and was defined using the following
formula:

Recall ¼ TP
TPþ FN

[6]

F1 score measures the overall performance of the neural
network and represents the harmonic mean of precision and recall,
which was determined using the following formula:

F1 score ¼ 2� Precision� Recall
Precisionþ Recall

[7]

MCC is a metric to quantify a predictive model’s performance
quality. It provides a more balanced assessment, yielding values
between −1 and 1. A score of 1 indicates a perfect prediction, 0
represents random predictions, and −1 signals total disagreement
between themodel and actual outcomes. It was calculated using the
following formula:

MCC ¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þp [8]

Furthermore, frames per second (FPS) is a critical metric in the
realm of computer graphics technology. It measures the number of
individual images processed and predicted by a neural network
model in a single second (Stewart et al. 2021). Higher FPS values
result in faster image classification speeds, indicating more robust
real-time processing performance.

Figure 2. Flowchart of the knowledge distillation training process.
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Finally, model size was utilized as an important metric for
comparing the parameter scale and complexity level of the teacher
and student models.

Results and Discussion

Teacher Model Performance

In the present study, the three teacher models were trained on the
D-20k and D-10k datasets, and the performance of weed detection
was evaluated using the same validation and testing dataset, as
shown in Tables 3 and 4. Additionally, Figure 3 illustrates the
confusion matrices of teacher models on the testing dataset,
providing amore detailed presentation of themodel’s classification
outcomes. In general, the performances of weed detection neural
networks exhibited a minor improvement on the testing dataset
relative to the validation dataset. Specifically, following training on
the dataset D-20k, the accuracy for ResNet101, EfficientNetB5, and
DenseNet201 showed increases of 0.8%, 0.4%, and 0.8%,
respectively, when evaluated on the testing dataset. Similarly,
when trained on the dataset D-10k, the models demonstrated
accuracy improvement of 1.3%, 0.6%, and 0.7%, respectively. The
three distinct teacher models maintained consistently exceptional

performance, achieving ACC values of 0.974 or higher in
distinguishing between turf and weeds. This outcome could be
attributed to the characteristics of the dataset. Empirical
observations suggested that dataset D-10k contained a sufficiently
diverse array of images, thereby facilitating the effective adaptation
of the models to the data.

For the teacher model ResNet101, training on both datasets
resulted in no significant differences in performance metrics. The
ACC, precision, recall, F1 score, and MCC values of ResNet101 were
consistent across the D-20k andD-10k datasets. Notably, the F1 score
of ResNet101 on the testing dataset reached 0.987, marginally lower
by 0.6% compared with that of EfficientNetB5 evaluated on the same
testing dataset. These findings suggested that ResNet101 is less
sensitive to dataset size and remains robust even with limited training
data. Furthermore, ResNet101 exhibited a pronounced advantage in
processing speed, operating at 554.5 FPS, compared with
EfficientNetB5’s 375.2 FPS, in identifying and distinguishing sub-
images with weeds, demonstrating an approximate 1.48-fold increase
in processing speed. In summary, while EfficientNetB5 achieved the
highest accuracy and F1 score, ResNet101 exhibited a significantly
higher FPS, demonstrating superior processing speed. This trade-off
between accuracy and speed is critical for real-time applications such
as precision herbicide spraying, where timely detection is essential.

Table 2. Hyperparameter values used for training the teacher models.

Deep learning
architecture Optimizera Base learning rate Weight decay Batch size

Learning
rate policy Momentum Epochs

ResNet101 SGD 0.1 0.0001 32 step 0.9 100
EfficientNetB5 SGD 0.1 0.0001 16 step 0.9 100
DenseNet201 SGD 0.1 0.0001 32 step 0.9 100

aSGD, stochastic gradient descent.

Table 3. Validation results of teacher models for weed detection in bermudagrass turf.

Neural network Training dataseta ACCb Precision Recall F1 score MCCc

Resnet101 D-20k 0.979 0.984 0.974 0.979 0.958
D-10k 0.974 0.984 0.964 0.974 0.948

EfficientNetB5 D-20k 0.989 0.986 0.992 0.989 0.978
D-10k 0.987 0.986 0.988 0.987 0.974

DenseNet201 D-20k 0.982 0.988 0.976 0.982 0.964
D-10k 0.976 0.978 0.974 0.976 0.952

aD-20k indicates the training dataset with 10,000 “Turf” class images and 10,000 “Weed” class images. D-10k indicates the training dataset with 5,000 “Turf” class images and 5,000 “Weed” class
images.
bACC, accuracy.
cMCC, Matthews’ correlation coefficient.

Table 4. Testing results of teacher models for weed detection in turf.

Neural network Training dataseta ACCb Precision Recall F1 score MCCc Model size FPSd

Resnet101 D-20k 0.987 0.994 0.98 0.987 0.974 340.8MB 564.2
D-10k 0.987 0.994 0.98 0.987 0.974 340.8MB 554.5

EfficientNetB5 D-20k 0.993 0.998 0.988 0.993 0.986 227.9MB 380.1
D-10k 0.993 0.998 0.988 0.993 0.986 227.9MB 375.2

DenseNet201 D-20k 0.99 1.0 0.98 0.99 0.98 146.3MB 505.6
D-10k 0.983 0.996 0.97 0.983 0.966 146.3MB 511.4

aD-20k indicates the training dataset with 10,000 “Turf” class images and 10,000 “Weed” class images. D-10k indicates the training dataset with 5,000 “Turf” class images and 5,000 “Weed” class
images.
bACC, accuracy.
cMCC, Matthews’ correlation coefficient.
dFPS, frames per second.
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Figure 4 depicts the progression of ACC for each teacher model
trained on datasets of varying sizes. Initially, all models
demonstrated high ACC levels as a result of their pretraining
on the ImageNet database (Deng et al. 2009), which endowed
them with substantial generalization capabilities. Upon initia-
tion of the learning process and adjustment of their weights, a
rapid increase in the ACC curve was observed during the initial
stage. Subsequently, after 30 epochs, the models exhibited
marginal fluctuations before stabilizing at a level exceeding 95%
accuracy. Notably, across both datasets D-20k and D-10k, the
ACC values of the teacher models consistently surpassed 80%,
with certain models even exceeding 98%.

Comparing Figure 4A and 4B, it is evident that the teacher
model ResNet101 exhibited a consistently rising trajectory in its
ACC curve when trained on both D-20k and D-10k datasets.
Additionally, after 100 training epochs, the EfficientNetB5 model
showed a 0.7% and 1% increase in ACC over the DenseNet121 and
ResNet101 models, respectively, on the dataset D-20k. When
trained on the D-10k dataset, the EfficientNet model showed an
increase in ACC by 1.1% and 1.3% compared with DenseNet121
and ResNet101, respectively. During the stable period, the ACC
curve of EfficientNetB5 consistently outperformed those of the
DenseNet and ResNetmodels, potentially owing to its utilization of
compound scaling. This method can effectively balance the
model’s width, depth, and resolution, thereby maximizing the
utilization of computational resources.

Student Model Performance

The outcomes of student models on the validation dataset after
knowledge distillation under different T settings are illustrated
in Table 5. Significantly, applying temperature was intended to
balance soft and hard target losses (Cho and Hariharan 2019).
The optimal temperature for knowledge distillation was found
to be 1 for the ResNet, DenseNet, and EfficientNet models,
on both datasets D-20k and D-10k. These findings suggested
that these models possess inherent complexity alongside
robust generalization abilities, thereby enabling them to
successfully perform classification tasks on turf–weed datasets.
Therefore, there is no need for additional temperature factor
adjustments in the student models to balance the capability and
complexity. In certain instances, elevated temperature settings
may even have a negative impact on model performance (Wei
et al. 2022).

The optimal temperature of 1 indicated that during the process
of knowledge distillation, knowledge transfer between the teacher
and studentmodels occurred with a high degree of confidence. The
student models endeavored to precisely replicate the prediction
probability distribution of the teacher models, rigorously adhering
to the decisions made by the teacher models. Overall, the optimal
temperature of 1 observed across all three models signified that the
student models effectively inherited and leveraged the knowledge
from the teacher models, facilitating model deployment and
application.

Figure 3. Confusionmatrices of teachermodels on the testing dataset. Training of teachermodels on (A) the D-20k dataset and (B) the D-10k dataset. D-20k indicates the training
dataset with 10,000 “Turf” class images and 10,000 “Weed” class images. D-10k indicates the training dataset with 5,000 “Turf” class images and 5,000 “Weed” class images.
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The fluctuations in ACC values during the training process of
studentmodels are depicted in Figure 5. At the same time, the teacher
models (represented by the red lines) are also compared with relevant
student models at different T settings. Considering Figure 5 from the
perspective of varying T settings for the same model, it can be
observed that under conditions T= 4 and T= 5, each student model
exhibited notable fluctuations during the initial stages of training.

Upon entering the stabilization phase, theACCmetricswere observed
to be lower compared with those under alternative temperature
settings. Additionally, the ResNet model displayed the highest initial
ACC values, exceeding 0.85 with minimal curve fluctuation,
indicating its superior efficacy in knowledge distillation.

The evaluation metrics of each student model at the
corresponding optimal temperature on the testing dataset are

Figure 4. Fluctuations in accuracy (ACC) values during the training of teacher models on datasets of different sizes. Training of teacher models on (A) the D-20k dataset and
(B) the D-10k dataset. D-20k indicates the training dataset with 10,000 “Turf” class images and 10,000 “Weed” class images. D-10k indicates the training dataset with 5,000 “Turf”
class images and 5,000 “Weed” class images.

Table 5. Validation results of student models across different temperature settings.

Neural network Training dataseta Temperature ACCb Precision Recall F1 score MCCc

ResNet18 D-20k 1 0.986 0.99 0.982 0.986 0.972
2 0.984 0.992 0.976 0.984 0.968
3 0.982 0.988 0.976 0.982 0.964
4 0.98 0.988 0.972 0.98 0.96
5 0.974 0.988 0.96 0.974 0.948

EfficientNetB0 D-20k 1 0.983 0.988 0.978 0.983 0.966
2 0.982 0.992 0.972 0.982 0.964
3 0.972 0.978 0.966 0.972 0.944
4 0.976 0.986 0.966 0.976 0.952
5 0.98 0.986 0.974 0.98 0.96

DenseNet121 D-20k 1 0.983 0.988 0.978 0.983 0.966
2 0.979 0.986 0.972 0.979 0.958
3 0.975 0.982 0.968 0.975 0.95
4 0.977 0.988 0.966 0.977 0.954
5 0.981 0.992 0.97 0.981 0.962

ResNet18 D-10k 1 0.981 0.986 0.976 0.981 0.962
2 0.974 0.988 0.96 0.974 0.948
3 0.97 0.978 0.962 0.97 0.94
4 0.968 0.981 0.954 0.967 0.936
5 0.964 0.979 0.948 0.963 0.928

EfficientNetB0 D-10k 1 0.979 0.988 0.97 0.979 0.958
2 0.974 0.986 0.962 0.974 0.948
3 0.971 0.98 0.962 0.971 0.942
4 0.966 0.989 0.942 0.965 0.933
5 0.968 0.988 0.948 0.968 0.937

DenseNet D-10k 1 0.972 0.974 0.97 0.972 0.944
2 0.967 0.976 0.958 0.967 0.934
3 0.971 0.984 0.958 0.971 0.942
4 0.954 0.958 0.95 0.954 0.908
5 0.957 0.977 0.936 0.956 0.915

aD-20k indicates the training dataset with 10,000 “Turf” class images and 10,000 “Weed” class images. D-10k indicates the training dataset with 5,000 “Turf” class images and 5,000 “Weed” class
images.
bACC, accuracy.
cMCC, Matthews’ correlation coefficient.
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Figure 5. Fluctuations in accuracy (ACC) values during the training of student models across different T settings and sizes of datasets. Student–teacher learning with (A) the
ResNetmodel on the D-20k dataset; (B) ResNetmodel on the D-10k dataset; (C) the EfficientNetmodel on the D-20k dataset; (D) the EfficientNet model on the D-10k dataset; (E) the
DenseNet model on the D-20k dataset; and (F) the DenseNet model on the D-10k dataset. D-20k indicates the training dataset with 10,000 “Turf” class images and 10,000 “Weed”
class images. D-10k indicates the training dataset with 5,000 “Turf” class images and 5,000 “Weed” class images.
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documented in Table 6. Additionally, the confusion matrices for
these models on the testing dataset are presented in Figure 6. It can
be observed that the primary cause for model errors was the
incorrect classification of sub-images belonging to the “weed”
category as those devoid of weeds, with only minimal instances of
cases where the sub-images containing turf only were erroneously
identified as containing weeds. The result shows that the student
models could reliably detect weeds growing on turf.

A comparative analysis between the data presented in Tables 4
and 6 reveals that the teacher model, ResNet101, had a model size

of 340.8 MB. Conversely, following knowledge distillation, the
student model ResNet18 had a reduced size of 260.2 MB.
Additionally, after knowledge distillation, the EfficientNet model’s
size decreased from 227.9 MB to 146.9 MB, and the DenseNet
model’s size decreased from 146.3 MB to 130.1 MB. In all three
cases, the model size was reduced, indicating a reduction in model
parameters and a decrease inmodel complexity, demonstrating the
effectiveness of knowledge distillation.

Relative to the teacher models, ResNet18, EfficientNetB0, and
DenseNet121 exhibited a substantial increase in FPS on D-10k,

Table 6. Testing results of student models at their optimal temperature for weed detection in turf.

Neural network Training dataseta
Optimal

temperature ACCb Precision Recall F1 score MCCc Model size FPSd

Resnet18 D-20k 1 0.991 1.0 0.982 0.991 0.982 260.2 MB 742.9
D-10k 1 0.989 1.0 0.978 0.989 0.978 260.2 MB 762.4

EfficientNetB0 D-20k 1 0.982 0.998 0.966 0.982 0.964 146.9 MB 696.8
D-10k 1 0.987 0.998 0.976 0.987 0.974 146.9 MB 690.7

DenseNet121 D-20k 1 0.985 1.0 0.97 0.985 0.97 130.1 MB 580.3
D-10k 1 0.98 0.988 0.972 0.98 0.96 130.1 MB 562.3

aD-20k indicates the training dataset with 10,000 “Turf” class images and 10,000 “Weed” class images. D-10k indicates the training dataset with 5,000 “Turf” class images and 5,000 “Weed” class
images.
bACC, accuracy.
cMCC, Matthews’ correlation coefficient.
dFPS, frames per second.

Figure 6. Confusion matrices of student models at their optimal temperature on the testing dataset. Training of student models on (A) the D-20k dataset and (B) the D-10k
dataset. D-20k indicates the training dataset with 10,000 “Turf” class images and 10,000 “Weed” class images. D-10k indicates the training dataset with 5,000 “Turf” class images
and 5,000 “Weed” class images.
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with enhancements of 207.9, 315.5, and 55.9, respectively. This
suggests improvements in model light-weighting, enhanced image
processing speed, and improved computational efficacy. ResNet18
still had the highest FPS at 762.4, signifying faster inference rates and
surpassing the other neural networks in real-time classification.
Moreover, among the three student models evaluated at their
respective optimal temperatures, ResNet18 exhibited superior
performance. On the large dataset D-20k, the ACC, F1 score, and
MCC values for ResNet18 were 0.991, 0.991, and 0.982, respectively.
These values exceeded those of EfficientNetB0 by 0.9%, 0.9%, and
1.8% and surpassed the values for DenseNet121 by 0.6%, 1.1%, and
2.2%, respectively.On the small datasetD-10k, theACC, F1 score, and
MCC values for ResNet18 were 0.989, 0.989, and 0.978, respectively.
These values surpassed those of EfficientNetB0 by 0.2%, 0.2%, and
0.4% and exceeded those of DenseNet121 by 0.9%, 0.9%, and 1.8%,
respectively. Overall, the distilled studentmodel, ResNet18, achieved a
balance betweenACC and efficiency, which wasmore appropriate for
the binary classification task of turf–weed images.

Considering our results in comparison with other studies,
Ghofrani and Toroghi (2022) leveraged the knowledge distillation
technique to improve the accuracy of a small client-side model in
plant disease recognition, achieving a 97.58% ACC. Similarly, Wei
et al. (2022) applied knowledge distillation to the neural network
training process, resulting in a 98.7% ACC on the Oxford102
flower dataset. On the other hand, Zhou et al. (2023) developed a
surface defect detection system for carrot (Daucus carota L.)
combine harvesting based on multistage knowledge distillation,
achieving an accuracy of only 90.7%. In contrast, the distilled
student model used in this research, ResNet18, demonstrated
competitive capabilities with an ACC of 98.9%. This model
effectively balanced ACC and efficiency, making it particularly well
suited for the binary classification task of turf–weed images.

Various herbicides, such as synthetic auxins (e.g., 2,4-D,
dicamba, and MCPP) (McElroy and Martins 2013; Reed et al.
2013), acetyl-CoA carboxylase inhibitors (e.g., clethodim, sethox-
ydim, and fenoxaprop-P-ethyl) (McCullough et al. 2016; Tate et al.
2021), as well as protoporphyrinogen oxidase inhibitors
(e.g., sulfentrazone) (Brosnan et al. 2020; Yu et al. 2018) are used
for weed control in turf. Precise application can significantly
reduce herbicide usage, lowering costs and mitigating adverse
environmental impacts. In a recent study, Jin et al. (2023) evaluated
a smart sprayer prototype designed for precision herbicide
application in turf. Significantly, their study employed DCNN
models, which incorporated a vast array of parameters, and
succeeded in achieving an F1 score exceeding 0.989 in identifying
weeds in turf. However, the research did not extend to the real-time
implementation of precision spraying, primarily due to the slow
inference speed.

To the best of our knowledge, no previous research has explored
the impact of knowledge distillation on the development of
lightweight and efficient weed detection models. In the present
study, our results suggest that the knowledge distillation approach
from teacher models to studentmodels offers three key advantages:
(1) feasibility with a relatively small training dataset containing
5,000 images per class, (2) a substantial reduction in model size,
and (3) the capability for real-time weed detection. Further
research is needed to evaluate the performance of employing
knowledge-distilled models in the machine vision subsystem of
smart sprayers for real-time weed detection and precision
herbicide spraying in turfgrass landscapes.

In summary, knowledge distillation can achieve superior weed
detection performance in turf while balancing accuracy and

efficiency. All three teacher models displayed no significant
difference on different scales of datasets, including both the D-20k
and the D-10k. Each of the three student models achieved the best
performance when T= 1, indicating their reliable identification
capabilities for weed detection in turf. Moreover, ResNet18
achieved higher ACC of ≥0.989 and MCC values of ≥0.978 and
maintained higher FPS rates of≥742.9. Both ACC and FPS metrics
are essential in real-world scenarios for achieving accurate and
efficient weed detection. Therefore, we conclude that the ResNet18
model delivered superior results and was better suited for
succeeding deployment on resource-constrained devices, although
the EfficientNetB0 and DenseNet121 models had smaller sizes.
Compared with DCNN models with substantial computational
workload, knowledge distillation can reduce model size and delay
through teacher–student learning, thereby facilitating real-time
weed detection and precision spraying. Additional research is
ongoing to optimize the distillation algorithm and match different
model structures for teacher–student models.
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