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Alcohol consumption around the time of conception is highly prevalent inWestern countries. Exposure to ethanol levels during gestation has been
associated with altered development of the mesolimbic reward pathway in rats and increased propensity to addiction, however the effect of
exposure only around the time of conception is unknown. The current study investigated the effects of periconceptional alcohol exposure
(PC:EtOH) on alcohol and palatable food preferences and gene expression in the ventral tegmental area (VTA) and the nucleus accumbens of the
adult offspring. Rats were exposed to a liquid diet containing ethanol (EtOH) (12.5% vol/vol) or a control diet from 4 days before mating until
4 days after mating. PC:EtOH had no effect on alcohol preference in either sex. At 15 months of age, however, male PC:EtOH offspring
consumed more high-fat food when compared with male control offspring, but this preference was not observed in females. Expression of the
dopamine receptor type 1 (Drd1a) was lower in the VTA of male PC:EtOH offspring compared with their control counterparts. There was no
effect of PC:EtOH on mRNA expression of the µ-opioid receptor, tyrosine hydroxylase (Th), dopamine receptor type 2 (Drd2) or dopamine active
transporter (Slc6a3). These data support the hypothesis that periconceptional alcohol exposure can alter expression of key components of
the mesolimbic reward pathway and heighten the preference of offspring for palatable foods and may therefore increase their propensity towards
diet-induced obesity. These results highlight the importance of alcohol avoidance when planning a pregnancy.
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Introduction

Despite guidelines recommending abstinence of alcohol both
when planning and throughout pregnancy, recent studies
suggest that significant proportions of women are drinking
alcohol before pregnancy recognition. Studies from both
Australia and the United States report that between 50 and
60% of women are consuming alcohol around conception with
a large proportion of these women decreasing intake when they
become aware they are pregnant.1,2 Alcohol intake during
pregnancy, particularly at high levels, has been shown to have
lasting effects on offspring brain development and function.
Fetal alcohol spectrum disorders (FASD) is the term used to
describe the outcome of prenatal alcohol exposure and is
characterized by a raft of developmental, neurological and
behavioural issues.3 What is less understood, however, is how
alcohol exposure only around the time of conception [the
periconceptional period (PC)] can influence the subsequent
behavioural outcomes of the offspring.

One facet of behaviour that has been linked to alcohol
exposure during gestation is the propensity towards addictive

behaviours, including alcohol addiction. In humans, if a
mother consumed alcohol during early pregnancy her children
were four times more likely to develop an alcohol dependence
issue by age 21.4 Prenatal alcohol exposure has also been
associated with a greater perceived pleasantness of alcohol
odour in young adults.5 Similarly, in rodents, exposure to
alcohol towards the end of gestation (gestational days 17–20)
resulted in an increase in operant self administration of alcohol
in 5-day-old pups6 and increased preference for ingestion of
alcohol in adolescence.7

The increased propensity towards addictive behaviours
following ethanol exposure is thought to be a result of altered
gene expression within the mesolimbic reward pathway that is
responsible for mediating the response to rewarding stimuli.
This pathway involves the activation of dopamine signalling in
limbic regions of the brain, including the ventral tegmental area
(VTA) and the nucleus accumbens (NAc). In a study that
compared three doses of alcohol exposure at the end of preg-
nancy in rats, researchers found a concentration dependent
decrease in expression of the µ-opioid receptor in the NAc.8

However, in rats exposed to alcohol late in pregnancy,
enhanced relative µ-opioid receptor expression in the VTA of
offspring has been reported.7 Pituitary levels of dopamine D2
receptor have been shown to be decreased following gestational

*Address for correspondence: Professor K. Moritz, School of Biomedical
Science, The University of Queensland, Brisbane, QLD 4072, Australia.
(Email k.moritz1@uq.edu.au)

Journal of Developmental Origins of Health and Disease (2018), 9(2), 223–231.
© Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2017

ORIGINAL ARTICLE

doi:10.1017/S2040174417000824

https://doi.org/10.1017/S2040174417000824 Published online by Cambridge University Press

mailto:k.moritz1@uq.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1017/S2040174417000824&domain=pdf
https://doi.org/10.1017/S2040174417000824


alcohol exposure indicating the ability of the dopamine system
to altered prenatally.9 In addition to alcohol, the mesolimbic
reward pathway also regulates the preference for other substances,
including palatable foods, raising the possibility that prenatal
ethanol exposure could also influence the propensity of the off-
spring towards other addictive behaviours. Furthermore, exposure
to a cafeteria diet in utero has previously been shown to result in
decreased µ-opioid receptor expression in the VTA of both male
and female rat offspring10 which was associated with a heightened
preference for fat intake in offspring from weaning to 3 months of
age.11 Taken together, these studies demonstrate that both food
and alcohol preference can be programmed prenatally and that the
mesolimbic reward pathway is implicated in both instances.
However, it is not known if similar outcomes are programmed if
the exposure occurs only around the time of conception.

The aims of the current study were to assess the impact of
periconceptional alcohol exposure on the preference for both
alcohol and a high-fat diet in adult offspring and on the expres-
sion of key genes involved in dopamine and opioid signal-
ling in the mesolimbic reward pathway. We hypothesized that
offspring exposed to alcohol during the periconceptional period
would exhibit a greater preference for alcohol and a high-fat
diet, and that these behaviours will be associated with alterations
to the mesolimbic reward pathway.

Methods

Animal ethics approval

All work was completed at the University of Queensland. The
authors assert that all procedures contributing to this work comply
with the ethical standards of the Australian Code for the care and
use of animals for scientific purposes and has been approved by the
University of Queensland Anatomical Bioscience Animal Ethics
Committee.

Animal husbandry

Outbred female Sprague–Dawley rats were given a liquid diet
containing 12.5% vol/vol ethanol (EtOH; n=12) or a control
diet (Control; n=13) from 4 days before mating until 4 days after
mating. We have previously reported details of the components of
the diet and drinking patterns. Importantly, both control and PC:
EtOH exposed dams consume similar amounts of calories, thus
removing undernutrition as a potential confounding factor.12

Dams were allowed to give birth naturally and offspring were
weaned at postnatal day (PN) 28. All animals were group housed
under standard conditions and fed a standard rat chow (meat free
rat and mouse chow; Specialty Feeds, WA) from weaning until
experimentation commenced at 15 months. Tissue collection
occurred at the end of all experimentation at 19 months of age.

Food preference study

Animals were randomly allocated to this protocol. At
15 months of age rats were individually housed: male Control

n= 13 (from 10 litters), male PC:EtOH n= 13 (from 9 litters),
female Control n= 8 (from 8 litters) and female PC:EtOH
n= 8 (from 8 litters). Only 1–2 animals per sex per litter were
used and where more than one animal per litter was used results
for that litter were averaged before statistical analysis. After
a 4-day acclimatisation period, the consumption of standard
chow was measured every second day for a period of 4 days to
establish baseline consumption. Offspring were then given free
access to both a high-fat Western diet (HFD; 22% fat, 0.15%
cholesterol semi-pure rodent diet-SF00-219; Specialty Feeds)
and standard chow to assess food preference over a 4-day period.
Food intake was recorded and the position of the diets in the
cage was switched every 2 days. Food consumption per gram of
body weight was calculated for each of the trial periods. For
the purpose of analysis, the first 2 days of the food preference
were designated as period 1 and the 3rd and 4th days were
designated as period 2.

Alcohol preference study

At 18 months of age, ethanol preference was assessed in 16 male
(Control n= 8, PC:EtOH n= 8) and 17 female (Control, n= 9;
PC:EtOH, n= 8) offspring using a two-bottle choice paradigm
ethanol preference test13,14 using 1–3 animals of each sex from
any one litter. In brief, the rats were acclimatised to individual
housing for 4 days before baseline measurements being recorded.
Baseline consumption was measured for 4 days before the start of
the ethanol preference testing, during which food and water
consumption was measured daily at 3 pm. Following the habi-
tuation phase, one of the two water bottles in each cage was
replaced with a bottle containing 6% vol/vol EtOH. Food and
fluid consumption was measured daily for 4 days and the position
of the bottles was rotated each day. At the conclusion of the study
animals were returned to their home cages.

Tissue collection

At 19 months of age, animals were fasted overnight before being
weighed and killed by overdose of pentobarbitone sodium
(Lethobarb; 0.1ml/100 g). Morphometric analysis of animals
including abdominal girth and tibia length were undertaken.
The brain was excised and the NAc and VTA isolated by dis-
section using methods described previously.11 The NAc and
VTA samples were snap frozen and stored at −80°C for sub-
sequent analysis of gene expression. Fat pads including the
subcutaneous, omental and retroperitoneal deposits were dis-
sected and weighed. The weights of omental and retroperitoneal
were summed to provide a measure of visceral fat mass.

Gene expression

RNA was extracted from both the NAc and VTA using
RNeasy extraction kits (Qiagen) and cDNA was synthesised
using IScript reverse transcription kit (Bio-Rad) as per the
manufacturer’s instructions. The mRNA expression of key
genes in the mesolimbic reward pathway, including: µ-opioid
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receptor (Oprm1: RN01430371_m1), dopamine active transporter
(slc6a3: RN00561892_m1), dopamine receptor D1a (drd1a:
RN03062203_s1), dopamine receptor D2 (Drd2: RN00561126_
m1) and tyrosine hydroxylase (Th: RN00566938_m1) were
determined by qRT-PCR using Taqman assays. The geometric
mean of housekeepers Actb and Rn18s were used to normalize
expression and results analysed using the ΔΔCt method.
Where gene expression was not normally distributed, data was
transformed using the natural log (ln) before statistical analysis.
There was no statistical difference between the Ct value of the
geometric mean of housekeepers between treatment groups.

Statistical analysis

The data for food and alcohol preference tests were analysed
separately for each sex. The effect of PC:EtOH exposure on
basal food consumption was assessed via Student's unpaired
t-test. Two-way repeated measures analysis of variance
(ANOVA), with time and treatment as factors was used to
assess the effect of PC:EtOH on food and alcohol preference,
with Bonferroni post-hoc analysis used to assess differences
between groups/time periods as required. The impact of
PC:EtOH on gene expression in the VTA and NAc, body
measures and total and relative fat mass was assessed using a
two-way ANOVA and Bonferroni post-hoc test with sex and
treatment as factors. All data are presented as mean ± S.E.M. *
indicates P< 0.05, ** indicates P< 0.01 and *** indicates
P< 0.001. All statistical analyses were performed using
GraphPad Prism 7.01.

Results

Body weight at both 15 months and at 18 months was not
affected by PC:EtOH exposure. At both 15 and 18 months
during food preference and alcohol preference tests, female rats
were lighter than male rats regardless of treatment (data not
shown). During baseline measurements, there was no effect of
PC:EtOH on chow consumption in either males or females,
but males consumed more food than females independent of
treatment group (P(Sex)< 0.0001; data not shown).

Food preference

There was no difference in consumption of the standard rat
chow during the baseline period between the Control and PC:
EtOH groups at 15 months of age in either males or females
(Fig. 1a and 1b). During period 1 (the first 2 days rats were
offered both chow and HFD), all animals ate more HFD
compared with chow, and consumption of both chow and
HFD was similar between groups (Fig. 1c–1f). In period 2 of
the food preference test, consumption of the HFD was lower
compared with period 1 in female offspring independent of
treatment (P(Period)< 0.0001; Fig. 1f). However, in males
there was a choice period× treatment interaction in the con-
sumption of HFD (P(Int)< 0.05; Fig. 1e). Control male off-
spring reduced HFD consumption whilst PC:EtOH male

offspring consumed a similar amount of the HFD during both
periods. Post-hoc analysis indicated a significant difference in
HFD consumption between treatment groups in period 2
(P< 0.01), despite eating a similar amount of normal chow.

Alcohol preference studies

In males, there was no impact of PC:EtOH on either total fluid
consumption, water consumption, EtOH consumption or %
EtOH consumption at any time during the alcohol preference
test period (Fig. 2a, 2c, 2e and 2g). Total fluid consumption
did, however, vary across the test period in both treatment
groups (P(Day)< 0.05). In female offspring, water consump-
tion increased (P(Day)< 0.001) while EtOH (P(Day)< 0.01)
and %EtOH (P(Day)< 0.001) consumption decreased across
the test period. In female offspring, total fluid consumption
also changed across the test period (P(Day)< 0.0001), with
control offspring initially decreasing intake on day 2, before
increasing intake on day 3 and then decreasing on day 4. PC:
EtOH offspring exhibited a different pattern; increasing their
total fluid intake until day 3 before decreasing (P(Int)< 0.05;
Fig. 2b). PC:EtOH total fluid intake was higher on days 2–4
(though not significantly). In addition, PC:EtOH female off-
spring tended to consume more water over the trial period and
had a significantly higher water consumption on test day 3
compared with Control females (P< 0.05; Fig. 2f). Despite the
increase in overall fluid consumption, there was no effect
of PC:EtOH on either EtOH consumption or %EtOH
consumption in females (Fig. 2h).

Body composition at postmortem

There was no effect of PC:EtOH exposure on body weight,
abdominal girth or the total or relative weights of either
subcutaneous, visceral fat in either sex (Table 1). There were
also no differences in the mass of subcutaneous, visceral fat
relative to tibia length between treatment groups. Independent
of treatment group, females were lighter (P(Sex)< 0.0001),
had a smaller abdominal girth (P(Sex)< 0.0001), less sub-
cutaneous fat and relative subcutaneous fat (P(Sex)< 0.0001)
compared with males. Female offspring also had less sub-
cutaneous, visceral fat relative to both body weight and tibia
length (P(Sex)< 0.001, P(Sex)< 0.05 and P(Sex)< 0.05,
respectively) and less retroperitoneal fat (P(Sex)< 0.0001,
Table 1) compared with males.

Gene expression at 19 months of age

PC:EtOH decreased the expression of Drd1a in the VTA of
offspring (P(Trt)< 0.05; Fig. 3a), with post-hoc analysis indi-
cating a significant decrease in male PC:EtOH offspring when
compared with control males (P< 0.001). The expression of
Drd1a mRNA in the VTA was lower in females than in males,
independent of treatment (P(Sex)< 0.05). In the NAc, Drd1a
mRNA expression was not affected by periconceptional alcohol
exposure, however, a similar trend in expression patterns was
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observed as in the VTA (Fig. 3b). PC:EtOH did not affect gene
expression of Drd2 or Oprm1 in either the VTA (Fig. 3c and 3e)
or NAc (Fig. 3d and 3f). The relative expression of Th and Slc6a3
mRNA to housekeepers in both brain regions was variable but
similar between groups in both the VTA and NAc (Table 2).

Discussion

The major finding of this study was that exposure to PC:EtOH
can influence food preference in a sex specific manner with
males exposed to PC:EtOH having a sustained preference
for high-fat food that was not present in Control offspring.
Surprisingly, at least in the paradigm tested in this study, PC:
EtOH did not affect alcohol preference in offspring which is in
contrast to previous studies in which ethanol was administered

throughout pregnancy. We investigated alterations to key
genes in two regions of the limbic reward pathway, identifying
significant changes in the VTA, suggesting that the reward
pathway may be permanently affected by PC:EtOH. These
findings are of significant interest given the high prevalence of
alcohol consumption prior to pregnancy recognition.
To date, few studies have investigated the relationship

between alcohol consumption during pregnancy, altered food
preference in offspring and the mesolimbic reward system. This
is despite the fact that children exposed to alcohol in utero
exhibit increased snacking and reduced reporting of satiety.15

In the same study, the altered food behaviours were associated
with obesity in female children and the authors suggested a link
between FASD and impaired dietary self-regulation.15 Within
our study, during the first choice period where animals were

Fig. 1. Basal consumption of standard rat chow average over 4 days for male (a) and female (b) rats at 15 months of age following
periconceptional alcohol (PC:EtOH; black) or control (Control; white) diet. Food consumption over 4 days of testing, over two choice periods
for male consumption of chow (c) and High Fat diet (e). Female consumption of chow (d) and High Fat diet (f) at 15 months of age. Data are
mean ± S.E.M. n= 8–10 per group with litter mates averaged. Data are analysed by t-test (a, b) and two-way repeated measures ANOVA (c–f).
**P< 0.01 by post-hoc analysis.
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given access to both chow and a high-fat diet, all animals con-
sumed a large amount of HFD, consistent with the expected
response to a novel stimulus. During the second choice period
however male PC:EtOH offspring maintained an increased
consumption of HFD when compared with control counter-
parts, suggesting a sustained preference for high-fat food. This
suggests these male PC:EtOH offspring may have an inability

to adjust intake when offered higher calorie food. Although
there is little research linking prenatal alcohol consumption and
offspring food preference, prenatal alcohol exposure on days
17–19 of gestation has been shown to increase the reinforce-
ment properties of sucrose in offspring.16 There are numerous
other examples where food preferences are programmed fol-
lowing prenatal perturbations. For example, maternal food
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restriction (50%) from gestational day 10 until weaning in the
rat led to a preference for highly palatable food in offspring in
young adulthood.17 Similarly, offspring of dams exposed to a
‘junk food’ diet from 2 weeks before mating and throughout
pregnancy demonstrate increased fat intake from weaning until
at least 3 months of age when given access to both the ‘junk
food’ diet and a standard rat chow.11 Importantly, the altered
food intake demonstrated in the male offspring during the food
preference test is restricted to the HFD and baseline food
consumption was not affected by PC:EtOH. These findings are
of significant interest given the dose and timing of alcohol
exposure used in this study reflect the drinking patterns and
high prevalence of alcohol consumption by women before
pregnancy recognition.1,18

Our finding that the altered preference for the HFD in PC:
EtOH offspring was confined to males is consistent with
previous studies that have also reported sex specific effects of
prenatal exposures on offspring food preference. In a rodent
study, exposure to a low-protein diet from conception through
to day 22 of gestation in rats had different effects on food
preferences in male and female offspring at 12 weeks. Thus,
female low-protein offspring consumed less standard chow
than control animals, but consumed 65% more high fat
and less carbohydrate than control offspring during a diet trial
in which they had free access to a choice of a high-protein,
high-carbohydrate and high-fat chow. In contrast, male

low-protein offspring did not exhibit a preference for high-fat
food but consumed less of the carbohydrate diet.19

The mesolimbic reward pathway has been linked with
alterations to preference for food following prenatal perturba-
tions. The expression of the µ-opioid receptor was decreased in
the VTA of offspring whose mothers were fed a ‘junk food’
diet through gestation.20 The role of the µ-opioid receptor in
programming the increased preference for alcohol in offspring
following prenatal alcohol exposure is further supported by the
finding that the increased appetitive responses to alcohol in rats
exposed prenatally to ethanol can be prevented by the simu-
ltaneous administration of naloxone, an opioid-receptor
antagonist.21 Expression of the DRD2 was also reduced
and expression of Th increased in offspring exposed to
a 50% food restriction in utero.17 Despite the increased
preference for the high-fat diet in adult male offspring in our
current study, we did not find any alterations in the expression
of key genes, µ-opioid receptor, Drd2 or Th in either the VTA
or NAc. We did however demonstrate decreased Drd1a
expression in male offspring in these regions. Although, there is
a large volume of literature linking decreased expression of
DRD2 in the brain and alterations to food preference following
prenatal exposures, less is known about DRD1 and its influ-
ence on food preference throughout life. A recent paper has
established that DRD1 in the dorsal hippocampus can mediate
socially acquired food preferences22 but that study did not

Table 1. Parameters measured at postmortem at 19 months of age

Male Control Male PC:EtOH Female Control Female PC:EtOH Statistics

Body weight (g) 814 ± 27 777 ± 29 457 ± 18 474 ± 25 P(Trt)=NS
P(Sex)< 0.0001
P(Int)=NS

Abdominal girth (mm) 270.3 ± 5.8 270.5 ± 5.9 221.7 ± 4.9 229.5 ± 6.6 P(Trt)=NS
P(Sex)< 0.0001
P(Int)=NS

Subcutaneous fat (g) 83.1 ± 12.6 69.8 ± 4.8 21.9 ± 1.6 25.7 ± 3.8 P(Trt)=NS
P(Sex)< 0.0001
P(Int)=NS

Subcutaneous fat relative to tibia
length (g/mm)

1.56 ± 0.36 1.24 ± 0.11 0.47 ± 0.07 0.48 ± 0.06 P(Trt)=NS
P(Sex)< 0.0001
P(Int)=NS

Relative subcutaneous fat (g/gBW) 0.09 ± 0.01 0.09 ± 0.01 0.05 ± 0.00 0.05 ± 0.01 P(Trt)=NS
P(Sex)< 0.0001
P(Int)=NS

Visceral fat (g) 35.4 ± 2.4 31.7 ± 3.1 20.6 ± 2.3 19.1 ± 2.3 P(Trt)=NS
P(Sex)< 0.0001
P(Int)=NS

Visceral fat relative to tibia length (g/mm) 0.71 ± 0.09 0.52 ± 0.05 0.49 ± 0.08 0.35 ± 0.03 P(Trt)=NS
P(Sex)< 0.05
P(Int)=NS

Relative visceral fat (g/gBW) 0.06 ± 0.004 0.06 ± 0.004 0.08 ± 0.006 0.07 ± 0.005 P(Trt)=NS
P(Sex)< 0.05
P(Int)=NS

Fat data are dissected fat pad weights. Data are mean ± S.E.M. and analysed by two-way ANOVA. n= 9–11 per group.
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examine the VTA or NAc. Previous studies highlight the
importance of the DRD1 receptors in the VTA in reward-based
learning by using direct micro-injections of a DRD1a receptor
antagonist. Following cocaine pairing, conditioned place pre-
ference could be abolished using the antagonist in a dose
dependent manner.23 Sex differences in Drd1 expression have
been shown in a recent study using the Fore Core Genotypes
mouse model. This study identified that the expression of
Drd1 was effected by sex chromosome complement, with
significant interactions between gonadal sex and circulating
testosterone.24 In light of this, it is therefore perhaps not sur-
prising that we saw demonstrated decreased expression Drd1a in
the VTA of female offspring, across both treatment groups. As we

saw no other alterations in key markers of the mesolimbic reward
pathways, our results may indicate programmed deficits in
learning, rather than food preference directly, may be responsible
for the increased fat intake in PC:EtOH male offspring.
The absence of any differences in postmortem body weights

and fat mass in PC:EtOH exposed offspring suggests they do
not have higher levels of body fat at this age when animals
are fed a standard chow diet. This was unexpected in light of
our previous finding that periconceptional alcohol exposure
is associated with elevated fasted plasma glucose, impaired
glucose tolerance and decreased insulin sensitivity at 6 months
of age.12 We have also previously reported that PC:EtOH
causes fetal growth restriction25 and postnatal catch up

Fig. 3. mRNA expression of dopamine receptor D1a (Drd1a) (a, b), dopamine receptor D2 (Drd2) (c, d) and µ-opioid receptor (Oprm1) (e, f)
in the ventral tegmental area (VTA) (a, c, e) and nucleus accumbens (NAc) (b, d, f) of male and female offspring at 19 months of age following
periconceptional control (Control; white) or ethanol (PC:EtOH; black) diet. Data are mean ± S.E.M. n= 6–9 per group. Where data were not
normally distributed, data underwent natural log transformation before statistical analysis. Data are analysed by two-way ANOVA.
***P< 0.001 by post-hoc analysis.
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growth12 both of which have been associated with increased fat
deposition and risk of obesity in many previous studies.26–28

However, a gold standard measurement such as dual-energy
X-ray absorptiometry would be needed to confirm these
findings. As our rats were studied at quite an advanced age it is
important to note that differential fat deposition could have
occurred during other periods of development and adulthood
that we did not investigate. As such, future studies are needed
to explore metabolic parameters in animals as they age.

Contrary to expectations, and despite PC:EtOH male off-
spring having a preference for the HFD, neither male or female
PC:EtOH offspring exhibited an increased preference for alcohol.
This is in contrast to the large body of literature demonstrating
that alcohol exposure at various times during gestation leads to
offspring having a higher propensity toward alcohol. Indeed,
alcohol and drug abuse have been identified as major secondary
disabilities reported in young adults who were exposed to alcohol
in utero.29–31 This suggests that exposure to alcohol during the
periconceptional period alone does not have the same effect on
offspring reward pathways and perhaps that direct exposure to
alcohol via the placenta (and then amniotic fluid) and/or milk
(during lactation) is needed for taste sensitization. Despite not
observing any alteration in alcohol seeking behaviour, we did find
evidence of female offspring in the PC:EtOH group consuming
more water throughout the testing period. This increase in water
consumption could indicate alterations to the renal system rather
than an alteration to reward seeking behaviours as we had
hypothesized. Indeed, studies have shown that prenatal alcohol
exposure in rats can be associated with increases in water
consumption, urine output and altered arginine-vasopressin
producing neurons in the offspring.32 As increased diuresis is
implicated in cases of diabetes, further investigation of the kid-
neys and renal systems in this model is warranted.

In summary, periconceptional alcohol exposure induced a pre-
ference for HFD in male, but not female offspring but had no
effect on alcohol preference in either sex. This alteration in food
preference was associated with a decreased expression of Drd1a
mRNA in the VTA of offspring but was not associated with
alteration to other components of the mesolimbic reward pathway
or alterations to fat distribution in offspring. This is particularly
interesting as it highlights that alterations to food intake may be the
result of changes in systems not directly influenced by the reward
pathway andmay be linked to altered learning in offspring exposed
to periconceptional alcohol. In addition, following PC:EtOH,
female offspring consumed more water, which indicates a pro-
grammed outcome not related to food preference. These findings
support the current guidelines in many countries which advise the
avoidance of alcohol when planning a pregnancy.
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Table 2. mRNA expression of tyrosine hydroxylase and dopamine active transporter in the ventral tegmental area (VTA) and nucleus accumbens (NAc) of
offspring

Male Control Male PC:EtOH Female Control Female PC:EtOH Statistics

VTA [median (range)]
Th 0.72 (0.07–16.81) 1.91 (0.07–14.75) 0.12 (0.03–0.16) 0.40 (0.09–5.43) P(Trt)=NS

P(Sex)=NS
P(Int)=NS

Slc6a3 1.76 (0.03–38.25) 7.23 (0.06–39.50) 0.11 (0.02–0.4) 0.76 (0.18–16.01) P(Trt)=NS
P(Sex)=NS
P(Int)=NS

NAc (Mean ± S.E.M.)
Th 1.04 ± 0.13 4.15 ± 1.79 1.10 ± 0.08 2.07 ± 1.05 P(Trt)=NS

P(Sex)=NS
P(Int)=NS

Slc6a3 1.11 ± 0.19 1.59 ± 0.71 0.56 ± 0.16 1.31 ± 0.78 P(Trt)=NS
P(Sex)=NS
P(Int)=NS

Tyrosine hydroxylase (Th), dopamine active transport (Slc6a3), data for the VTA was natural log transformed before statistical analysis via
two-way ANOVA, n= 5–7 per treatment group.
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