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Abstract

We prove that the Fridman invariant defined using the Carathéodory pseudodistance does not always go
to 1 near strongly Levi pseudoconvex boundary points and it always goes to 0 near nonpseudoconvex
boundary points. We also discuss whether Fridman invariants can be extended continuously to some
boundary points of domains constructed by deleting compact subsets from other domains.
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1. Introduction

Let D be a bounded domain and Ω a bounded homogeneous domain in Cn and let
z ∈ D. Denote by O(Ω, D) the set of holomorphic maps from Ω into D. Denote by d
either the Carathéodory pseudosdistance c or the Kobayashi pseudodistance k on D.
Fridman [6, 7] introduced a holomorphic invariant, now called the Fridman invariant:

eΩ
d

D (z) = sup{tanh(r) : Bd
D(z, r) ⊂ f (Ω), f ∈ O(Ω, D), f is injective},

where Bd
D(0, r) is the d-ball centred at z with radius r. (In [6, 7], inf 1/r was used

instead of sup tanh(r).) We denote eΩ
c

D (z) by ẽΩD(z) and eΩ
k

D (z) by eΩD(z) in this paper.
When Ω is the unit ball Bn, we denote ẽBn

D (z) by ẽD(z) and eBn

D (z)) by eD(z).
Let D be the unit disk in C. The Carathéodory pseudodistance on Ω is defined as

cΩ(z, w) = sup{artanh(|λ|) : f ∈ O(Ω,D), f (z) = 0, f (w) = λ}.
Let

�Ω(z′, z′′) = inf{artanh(|λ|) : ϕ ∈ O(D,Ω),ϕ(0) = z′, ϕ(λ) = z′′}.
The Kobayashi pseudodistance for Ω is

kΩ(z′, z′′) = inf
{ N∑

j=1

�Ω(zj−1, zj) : N ∈ N, z0 = z′, z1, . . . , zN−1 ∈ Ω, zN = z′′
}
.
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Another invariant, called the squeezing function, was introduced by Deng et al. [2]:

sD(z) = sup{r : rBn ⊂ f (D), f ∈ O(D, Bn), f (z) = 0, f is injective}.

From the definitions, it is clear that eΩ
d

D and sD are invariant under biholomorphisms.
Many properties of ẽD, eD and sD have been explored (see the survey paper [4] and the
references therein). For results on the boundary behaviour of eD, we refer to [7, 11, 12,
14] and for the boundary behaviour of sD(z) to [3, 5, 9, 13].

Recently, Nikolov and Verma [14, Proposition 4] proved that eD goes to 1 near
strongly pseudoconvex boundary points. Because ẽD(z) ≤ eD(z), it is of interest to
investigate whether the same result holds for ẽD. Here we give a negative answer.
In fact, for any c ∈ (0, 1), there exist a bounded nonpseudoconvex domain Dc and a
strongly pseudoconvex boundary point a such that limz→a ẽDc (z) = c.

THEOREM 1.1. Let 0 < R1 < R2 < 2R1/(1 + R2
1) < 1 and let D = Bn \ K, where

n ≥ 2 and K = {z ∈ Cn | R1 ≤ ‖z‖ ≤ R2, Re zn ≥ 0}. Take p = (0, 0, . . . , R1) and
pk = (0, 0, . . . , (1 − 1/k)R1), k ∈ N. Then,

lim
k→∞

ẽD(pk) =
R2 − R1

1 − R1R2
.

Let Ω be a bounded domain in Cn, n ≥ 2. Let K be a compact subset of Ω such that
D = Ω\K is connected. Bharali proved that sD(z) ≤ tanh(kΩ(z; ∂D ∩ K)) [1, Theorem
1.8]. From Theorem 1.1, it is clear that there is no such estimation for ẽD under the
same condition.

Let K be a compact subset of Bn, n ≥ 2, such that D = Bn\K is connected. In [17],
we proved that

sD(z) = min
w∈∂K

tanh[cBn (z, w)].

Moreover, for some special K (for example, a pseudoconvex subdomain of Bn with
dense strongly pseudoconvex points in ∂K), we have sD(z) = ẽD(z). It follows from
Theorem 1.1 that ẽD = sD does not hold for general compact subsets K. See [15–17] for
more results on the comparison of the Fridman invariant and the squeezing function.

However, it is also natural to ask how ẽD(z) behaves near nonpseudoconvex
boundary points. We show that ẽD(z) goes to 0 near such points.

THEOREM 1.2. Let D be a bounded domain in Cn, n ≥ 2, and assume that ∂D is C2

smooth near p ∈ ∂D. If p is not pseudoconvex, then

lim
z→p

ẽD(z) = 0.

Because sD(z) ≤ ẽD(z) [14, Proposition 1], Theorem 1.2 immediately implies the
following result.
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COROLLARY 1.3. Let D be a bounded domain in Cn, n ≥ 2, and assume that ∂D is C2

smooth near p ∈ ∂D. If p is not pseudoconvex, then

lim
z→p

sD(z) = 0.

Let D � Cn, n ≥ 2, be a bounded domain and let S be a subset of O(D) which
contains all the bounded holomorphic functions. Define

∂SD :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩ξ ∈ ∂D :
there exists U, a connected open neighbourhood of ξ,
and V , a connected component of D ∩ U, such that
for all f ∈ S, there exists F f ∈ O(U) satisfying f |V = F f |V

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Bharali [1, Theorem 1.11] proved that limz→p sD(z) = 0 for each p ∈ ∂SD. If p ∈ ∂D
is not pseudoconvex, then p ∈ ∂SD. Thus, the above corollary can also be seen as a
special case of [1, Theorem 1.11].

LetΩ be a bounded domain in Cn, n ≥ 2, and K a compact subset ofΩ such that D =
Ω\K is connected. By Hartog’s extension theorem, ∂K ⊂ ∂SD. Hence Theorem 1.1
shows that, for p ∈ ∂SD, in general, limz→p ẽD(z) � 0.

We have the following result.

THEOREM 1.4. Let Ω be a bounded domain in Cn, n ≥ 2, and let K be a compact
subset of Ω such that D = Ω\K is connected. Then limz→p ẽD(z) exists for any p ∈ ∂K.

Let D and p be as in Theorem 1.1. Combining Theorem 1.1 with Theorem 1.4 shows
that

lim
z→p

ẽD(z) =
R2 − R1

1 − R1R2
.

It is easy to see that for any c ∈ (0, 1), there exist R1, R2 with 0 < R1 < R2 < 1 such that
(R2 − R1)/(1 − R1R2) = c.

It is then natural to ask whether the same result holds for eD. The answer is negative
as the following result shows.

THEOREM 1.5. Let 0 < R1 < R2 < 1, K1 = {z | R1 ≤ ‖z‖ ≤ R2, Re zn ≥ 0} and K2 =

{pj}j∈N, where pj = ((1 − 1/j)R1, 0, . . . , 0). Take K = K1 ∪ K2 and D = Bn \ K, n ≥ 2.
Then eD(z) cannot be extended continuously to ∂K.

2. Proof of the results

We will use Hartogs’s extension theorem (see, for example, [10, Theorem 1.2.6]),
which we state as the following lemma.

LEMMA 2.1. Let Ω be a domain in Cn, n ≥ 2, and let K be a compact subset of Ω such
that Ω\K is connected. If f is holomorphic on Ω\K, then there exists a holomorphic
function F on Ω such that F|Ω\K = f .

PROOF OF THEOREM 1.1. Because Bn is biholomorphic to Bn(0, R1) and they are both
homogeneous, for pk = (0, 0, . . . , (1 − 1/k)R1), there exists a holomorphic embedding
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fk : Bn → Bn(0, R1) such that fk(0) = pk and fk(Bn) = Bn(0, R1). By Lemma 2.1,
cD(z1, z2) = cBn (z1, z2), for all z1, z2 ∈ D. From [8, Corollary 2.3.5],

tanh cBn (a, z) =
[
1 − (1 − ‖a‖2)(1 − ‖z‖2)

|1 − 〈z, a〉|2
]1/2

.

Let w ∈ {z ∈ Bn | Re zn = 0}. It is easy to see that

tanh cBn (p, w) ≥ tanh cBn (p, 0) = R1.

Denote

dk =
R2 − (1 − 1/k)R1

1 − (1 − 1/k)R1R2
.

Because R2 < 2R1/(1 + R2
1), there exists N > 0 such that for any k > N,

Bc
D(pk, artanh(dk)) ⊂ Bn(0, R1) = fk(Bn),

and hence ẽD(pk) ≥ dk.
We claim that ẽD(pk) ≤ dk. For w with ‖w‖ = R2, it is obvious that

tanh[cΩ(pk, w)] ≤ tanh[cΩ(pk, q)] = dk,

where q = (0, 0, . . . , R2). Suppose that ẽD(pk) > dk. Then, there exists r > artanh(dk)
and a holomorphic embedding gk : Bn → D such that gk(0) = pk and Bc

D(pk, r) ⊂
gk(Bn). Because the Carathéodory pseudodistance is continuous (see, for example, [8]),
we know that Bc

D(pk, r) and Bc
Bn (pk, r) are open. It follows that there exists δ > 0 such

that Bn(q, δ) ⊂ Bc
Bn (pk, r). Because Bc

D(pk, r) ⊂ gk(Bn) ⊂ D and cD(z1, z2) = cBn (z1, z2),
we have Bn(q, δ) ∩ gk(Bn) � ∅ and Bn(q, δ) ∩ ∂Bn(0, R2) ⊂ ∂(gk(Bn)).

However, it is clear that q ∈ ∂Bn(0, R2) is strongly pseudoconvex for Bn(0, R2). Thus,
there exists a local C2 defining function ρ such that

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(q)vjv̄k > 0,

for all v ∈ Cn satisfying
n∑

j=1

∂ρ

∂zj
(q)vj = 0.

However, gk(Bn) is pseudoconvex and it is clear that −ρ(z) is a local defining function
on some neighbourhood of q for gk(Bn). It follows that

n∑
j,k=1

∂2(−ρ)
∂zj∂z̄k

(q)vjv̄k ≥ 0,

for all v ∈ Cn satisfying
n∑

j=1

∂(−ρ)
∂zj

(q)vj = 0,
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which is a contradiction. Hence ẽD(pk) ≤ dk. So we have ẽD(pk) = dk, which implies

lim
k→∞

ẽD(pk) =
R2 − R1

1 − R1R2
. �

PROOF OF THEOREM 1.2. Because p is not pseudoconvex, we can find a connected
neighbourhood Up of p such that for any holomorphic function f on D, there exists a
holomorphic function F on Up with F|Up∩D = f |Up∩D.

It is clear that D1 = Up ∪ D is a connected open set. We claim that cD(z1, z2) =
cD1 (z1, z2), for all z1, z2 ∈ D.

Let f ∈ O(D,D). Then there exists a holomorphic function F on D1 such that F|D =
f . Moreover F(D1) = f (D). Indeed, if there exists w ∈ D1 such that F(w) � f (D),
then h(z) = 1/( f (z) − F(w)) is holomorphic on D, but with no holomorphic function
H(z) on D1 such that H|D = h, a contradiction. By the definition of Carathéodory
pseudodistance, we have cD(z1, z2) = cD1 (z1, z2), for all z1, z2 ∈ D.

Assume that limz→p ẽD(z) = 0 does not hold. Then there exists pk → p such that
limk→∞ ẽD(pk) = A > 0. Because limk→∞ cD1 (pk, p) = 0, for 0 < ε < A/2, we can find
N > 0 such that for any k > N, there exist rk > artanh(A − ε) and a holomorphic
embedding fk : Bn → D such that fk(0) = pk, Bc

D(pk, rk) ⊂ fk(Bn) and p ∈ Bc
D1

(pk, rk).
Because the Carathéodory pseudodistance is continuous, there exists δk > 0 such that
Bn(p, δk) ⊂ Bc

D1
(pk, rk). Because cD(z1, z2) = cD1 (z1, z2), we have D1(p, δk) ∩ fk(Bn) �

∅ and Bn(p, δk) ∩ ∂D ⊂ ∂( fk(Bn)).
Because p ∈ ∂D is not pseudoconvex, there is a local C2 defining function ρ such

that
n∑

j,k=1

∂2ρ

∂zj∂z̄k
(p)vjv̄k < 0,

for some v ∈ Cn satisfying
n∑

j=1

∂ρ

∂zj
(p)vj = 0.

However, fk(Bn) is pseudoconvex and it is clear that ρ(z) is a local defining function on
some neighbourhood of p for fk(Bn). It follows that

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(p)vjv̄k ≥ 0,

for all v ∈ Cn satisfying
n∑

j=1

∂ρ

∂zj
(p)vj = 0,

which is a contradiction. This implies that limz→p ẽD(z) = 0. �

To prove Theorem 1.4, the following lemma is needed.
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LEMMA 2.2. Let D be a bounded domain in Cn. Then,

|ẽD(z1) − ẽD(z2)| ≤ tanh[cD(z1, z2)], for all z1, z2 ∈ D.

PROOF. If ẽD(z1) = ẽD(z2) = 0, then we have the conclusion. Thus, without loss of
generality, assume that ẽD(z1) > 0.

Let 0 < ε < ẽD(z1). By definition, there is a holomorphic embedding f : Bn → D
such that Bc

D(z1, artanh[ẽD(z1) − ε]) ⊂ f (Bn).
If z2 � Bc

D(z1, artanh[ẽD(z1) − ε]), then clearly

ẽD(z2) ≥ ẽD(z1) − ε − tanh[cD(z1, z2)].

Assume that z2 ∈ Bc
D(z1, artanh[ẽD(z1) − ε]). It is easy to check that tanh(t3) ≤

tanh(t1) + tanh(t2) for all ti ≥ 0, i = 1, 2, 3, with t3 ≤ t1 + t2. Then for all z with
tanh[cD(z2, z)] < eΩD(z1) − ε − tanh[cD(z1, z2)]},

tanh[cD(z1, z)] ≤ tanh[cD(z2, z)] + tanh[cD(z1, z2)] < ẽD(z1) − ε.

This implies that

Bc
D(z2, artanh[ẽD(z1) − ε − tanh[cD(z1, z2)]]) ⊂ Bc

D(z1, artanh[ẽD(z1) − ε]) ⊂ f (Bn).

Hence

ẽD(z2) ≥ ẽD(z1) − ε − tanh[cD(z2, z1)].

Because ε is arbitrary,

ẽD(z2) ≥ ẽD(z1) − tanh[cD(z1, z2)].

If ẽD(z2) = 0, then ẽD(z1) ≤ tanh[cD(z1, z2)] and hence

|ẽD(z1) − ẽD(z2)| ≤ tanh[cD(z1, z2)].

If ẽD(z2) > 0, then following the same discussion as for ẽD(z1) > 0,

ẽD(z1) ≥ ẽD(z2) − tanh[cD(z2, z1)].

This completes the proof. �

PROOF OF THEOREM 1.4. By Lemma 2.1, cD(z1, z2) = cΩ(z1, z2), for all z1, z2 ∈ D.
Let p ∈ ∂K. For any ε > 0, there exists δ > 0 such that tanh cD(z1, z2) ≤ ε for all
z1, z2 ∈ Bn(p, δ) ∩ D. By Lemma 2.2, |ẽD(z1) − ẽD(z2)| ≤ tanh[cD(z1, z2)] ≤ ε. Hence
limz→p ẽD(z) exists for any p ∈ ∂K. �

For the proof of Theorem 1.5, we need the following two results.

LEMMA 2.3 [8, Corollary 3.4.3]. Let D be a bounded domain and A an analytic subset
of D of codimension at least two. Then,

kD\A = kD|(D\A)×(D\A).
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LEMMA 2.4 [14, Proposition 4]. Let D be a bounded domain and p0 a strongly
pseudoconvex boundary point. Then,

lim
z→p0

eD(z) = 1.

PROOF OF THEOREM 1.5. Let p = (R1, 0, . . . , 0). It is clear that p ∈ ∂K and pk → p.
Set Dj = D ∪ {pj}.

We will first prove that limz→pj eD(z) = 0. Fix j and suppose that there exist
zi → pj such that limi→∞ eD(zi) = A > 0. By Lemma 2.3, kD(z1, z2) = kDj (z1, z2), for
all z1, z2 ∈ D. For 0 < ε < A/2, we can find N > 0 such that for any i > N, there are
ri > artanh (A − ε) and a holomorphic embedding fi : Bn → D such that fi(0) = zi,
Bk

D(zi, ri) ⊂ fi(Bn) and pj ∈ Bk
Dj

(zi, ri). Because the Kobayashi pseudodistance is con-
tinuous (see, for example, [8]), there exists δi > 0 such that Bn(pj, δi) ⊂ Bk

Dj
(zi, ri).

Because Bk
D(zi, ri) ⊂ fi(Bn), we have {z | 0 < ‖z − pj‖ < δi} ⊂ fi(Bn) but pj � fi(Bn),

which contradicts the fact that fi(Bn) is pseudoconvex.
Denote S = {z | ‖z‖ = R1, Re zn > 0}. It is clear that S is a smooth subset of

∂D and each point of S is strongly pseudoconvex. Assume that eD(z) can be
extended continuously to ∂K. Because limz→pj eD(z) = 0 and pj → p, we have
limz→p eD(z) = 0. However, there exist wj ∈ S→ p. By Lemma 2.4, limz→wj eD(z) = 1.
Hence limz→p eD(z)= 1, which is a contradiction. �
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