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ABSTRACT 
The minimum pressure drag of blunt forebodies in hypersonic flow is investigated using 
Newton’s Impact Theory. It is shown how the minimum drag shape varies with the body 
slenderness and the amount of blunting. As the blunting increases the drag approaches that of 
the minimum drag axisymmetric body. 

NOMENCLATURE 
CD		  drag coefficient of blunt spatula forebody with base area as reference area 
CDaxi	 drag coefficient of minimum drag axisymmetric forebody with base as reference area  
k		  constant of Newton Impact theory (usually two or the stagnation pressure) 
r		  radius of axisymmetric body 
ro

		
radius of axisymmetric body at x  =  0 

x		  streamwise co-ordinate from the forebody nose  
θ		  angle of inclination of body surface to the flow direction 
τ		  forebody base diameter over length

Subscript 

b		  base value
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1.0	 INTRODUCTION 
At hypersonic speeds, minimum drag forebodies of given length have a flat spatula shape with 
sharp leading edges(1). However the effect of aerodynamic heating at hypersonic speeds may 
require the leading edges to be blunt(2,3). This requirement could increase the drag sufficiently 
for the optimum shape to revert from the spatulate shape to an axisymmetric minimum drag 
shape similar to those found by Newton(4). The effect of blunting on the minimum pressure 
drag spatulate shape is considered here for forebodies of various slenderness using Newton’s 
Impact theory. The drag is compared with that of Newton’s(4) minimum drag axisymmetric body 
shapes, where the shapes(5) and pressure drag coefficients(6) are available as analytical expres-
sions depending on the slenderness ratio. Correlating these expressions(5,6), we have for a surface 
pressure coefficient given by kSin2q, that the body geometry, drag coefficient and slenderness 
ratio for the axisymmetric bodies are given in terms of the surface slope and slope at the base by 

						      SecθCosec3θ	   . . . (1)

	 . . . (2)

 

          . . . (3)

          . . . (4)

Although Newton derived his bodies without the bluntness constraint, a small flat region 
naturally occurs at the nose, such that applying a bluntness constraint to these bodies for the 
amounts of bluntness considered here makes little or no difference to the drag coefficient of 
these bodies. 

The minimum drag of the more general blunt bodies is found by making local changes in 
the shape and retaining them if they reduce in the drag. This technique depends upon the local 
nature of Newtonian theory and has been successfully used previously for sharp leading edge 
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Figure 1. Sharp leading edge body with t = ½. Figure 2. Drag coefficient compared with 
an axisymmetric minimum drag forebody.
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bodies(1). A three-quarter front view of a typical inviscid sharp leading edge minimum drag 
spatula shape derived by this technique(1) is shown in Fig. 1. The curves show the shape of the 
body at 16 equally spaced cross-sections as the body expands from the sharp leading edge to 
the circular base. 

In Fig. 2 the drag coefficients are compared with that of the minimum drag axisymmetric 
bodies with the same slenderness ratio. The comparative drag coefficient of the body of Fig. 1 
and similar sharp leading edge bodies of different slenderness, are shown in Fig. 2 by the inter-
section of the curves with the left hand vertical axis. The results for forebodies with t values of 
1, ⅔, ½ and ⅓ are shown, representing bodies which have lengths of 2, 3, 4 and 6 times the base 
radius and axisymmetric drag coefficients of 0·321, 0·165, 0·0981 and 0·0454 respectively. For 
sharp leading edge bodies, we see from the vertical axis in Fig. 2, that as the forebodies become 
more slender their drag coefficient decreases from about 88% of that of the equivalent axisym-
metric body when τ = 1 to nearly 80% when τ = ⅓. 

Newtonian impact theory has a constant (k) associated with the surface pressure coefficient 
on the body which has a direct effect on the drag coefficient. Traditionally k has the value of 
2, representing the limit of the stagnation pressure coefficient for infinite Mach number and a 
ratio of specific heats of unity. A more realistic value for k when considering blunt configura-
tions is to put k equal to the flow stagnation pressure coefficient. Although the particular value 
of k used effects the value of the drag coefficient it does not affect the shape of the minimum 
drag shape. The drag dependency on the value of k is removed by comparing the drag coeffi-
cient with that of a reference shape as in Fig. 2, so that the optimisation becomes independent 
of the value of k. It should be noted also, that because all the drag coefficients use the base area 
as reference, the drag ratio is the same as the drag coefficient ratio. 

2.0	 BLUNT LEADING EDGE BODIES 
When the leading edge of the shape shown in Fig. 1 is blunted without otherwise optimising 
its shape, the drag rapidly increases such that any advantage over the axisymmetric shape is 
soon lost. 

However blunting in this manner does not give the minimum drag. To find the minimum 
drag, the blunting needs to be included within the optimisation process, which is achieved 
here by applying a maximum surface curvature constraint on the body surface throughout 
the optimisation. The resulting minimum drag coefficients are shown in Fig. 2 for a range of 
forebodies. The horizontal axis gives the blunting radius of curvature as a percentage of the 
base radius and the vertical axis shows the pressure drag coefficient compared with that of the 

Figure 4. Minimum drag forebody  
with t = ½ and 2% blunting.

Figure 3. Minimum drag forebody 
with t = ½ and 1% blunting.
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minimum drag axisymmetric body. We see that the drag coefficient increases with the blunting 
radius for all the bodies, but the variation of the drag coefficient with the blunting depends on 
the slenderness of the body. For the most slender bodies (t = ⅓), the drag advantage over the 
axisymmetric body is rapidly eroded. For less slender bodies the effect is less, with the blunting 
having less impact on the drag when τ = 1.

 The changes in the shape vary as the blunting is increased from the sharp spatula body 
shown in Fig. 1 through to ‘flattened’ versions of the axisymmetric bodies. This shape change 
is shown in Figs 3 to 5 for t = ½ with blunting of 1%, 2% and 3% of the base radius. Even a 
1% blunting causes a reduction in the width of the spatula nose, from the full width shown in 
Fig. 1 to that of Fig. 3. By 2% blunting the flattened body shape is retained, but more of the 
body is swept as shown in Fig. 4. However, the pressure drag is still some 9% less than that 
of the axisymmetric body. Finally by 3% blunting, the body, as shown in Fig. 5, has become a 
flattened shape with a hemispherical nose. 

Alternatively varying the body slenderness with a constant blunting at 2%, we see from Figs 
6, 4 and 7 that the planform shape becomes more swept for the more slender bodies and from 
Fig. 2 the drag coefficient becomes closer to the axisymmetric value.

Consideration is given here to spatula shapes which minimise the forebody pressure drag 
upstream of a circular base, however in general other requirements on the forebody will modify 
the shape(7,8). As can be seen in Figs 3 to 7, spatula bodies tend to have greater wetted area, 
plan area and volume than the axisymmetric body with the same slenderness and blunting. 
The increase in the volume or plan area could be an advantage for some applications, but the 
increase in the wetted area could disadvantage spatula bodies by increasing the friction drag. For 
example, the body with τ = ½ and 2% blunting shown in Fig. 4 has a wetted area 8% greater than 
the axisymmetric body. In this case should the friction drag is greater than the pressure drag, the 

Figure 6. Minimum drag forebody 
with t = ⅔ and 2% blunting. 

Figure 7. Minimum drag forebody 
with t = ⅓ and 2% blunting. 

Figure 8. Blunt spatula body with an elliptical base. 

Figure 5. Minimum drag forebody 
with t = ½ and 3% blunting. 
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axisymmetric body may well have the lesser total drag, although this precludes any optimisation 
of spatula body shape to reduce the total drag. 

For non-circular bases the minimum drag shapes are modified, but they still tend to have 
similar spatula noses. Figure 8 shows the minimum drag shape with an ellipse base where the 
minor axis is half the major axis. The τ value is ½ based on the major axis and the blunting radius 
is 2% of the minor axis or 1% of the major axis. We see that the extent of the unswept leading 
edge is similar to that of Fig. 4 but the planform is less swept near the nose. The pressure drag 
coefficient is 0·037, which is 24% less than the minimum drag axisymmetric body with the same 
length and base area or 26% less than the equivalent self-similar minimum drag elliptical body. 

Further investigation of the effect of including friction drag and the effect of other base 
shapes would be useful. Also the accuracy of the drag coefficient of spatula shapes could be 
improved by using a more accurate flow calculation method. However to modify the shapes to 
further reduce the drag using a more complex method would be difficult, but a hybrid method 
which perturbs a known accurate solution may be possible. 

3.0	 CONCLUSIONS 
Blunt minimum pressure drag forebodies at hypersonic speeds can have a spatula planform 
with a blunt leading edge normal to the flow. Results are presented for circular base bodies for 
a range of body lengths and bluntness. 

The extent of the blunt unswept leading edge decreases with increasing bluntness until the 
shape reverts to a spherical nosed body. The change in the shape occurs more rapidly for more 
slender bodies. For a blunting of 3% of the base radius, a body of length 4 times the base radius 
becomes a flattened spherically nosed body. 

The drag can be up to 20% less than the axisymmetric minimum drag shape but the difference 
reduces with increasing blunting. A spatula body of length four times the base radius and 2% 
blunting has a pressure drag 9% less than the equivalent minimum drag axisymmetric body. 

Although the spatula shape variation is shown for circular based bodies, it is indicated how 
elliptical base shapes with a minimum drag coefficient have similar spatula noses. 
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