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Hot-wire measurements are carried out in grid-generated turbulence at moderate to
low Taylor microscale Reynolds number Reλ to assess the appropriateness of the
commonly used power-law decay for the mean turbulent kinetic energy (e.g. k ∼ xn,
with n 6 −1). It is found that in the region outside the initial and final periods of
decay, which we designate a transition region, a power law with a constant exponent
n cannot describe adequately the decay of turbulence from its initial to final stages.
One is forced to use a family of power laws of the form xni , where ni is a different
constant over a portion i of the decay time during the decay period. Accordingly, it
is currently not possible to determine whether any grid-generated turbulence reported
in the literature decays according to Saffman or Batchelor because the reported data
fall in the transition period where n differs from its initial and final values. It is
suggested that a power law of the form k ∼ xninit+m(x), where m(x) is a continuous
function of x, could be used to describe the decay from the initial period to the
final stage. The present results, which corroborate the numerical simulations of
decaying homogeneous isotropic turbulence of Orlandi & Antonia (J. Turbul., vol. 5,
2004, doi:10.1088/1468-5248/5/1/009) and Meldi & Sagaut (J. Turbul., vol. 14, 2013,
pp. 24–53), show that the values of n reported in the literature, and which fall in the
transition region, have been mistakenly assigned to the initial stage of decay.
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1. Introduction
Since the pioneering work of Taylor (1935), homogeneous isotropic turbulence

(HIT) has been extensively studied in grid turbulence, which consists in passing a
uniform flow through a grid made of vertical and horizontal bars placed normal
to the main flow. Accordingly, over almost 80 years, grid turbulence has been
used for testing various theories of HIT including, for example, self-similarity laws,
Kolmogorov’s similarities (Kolmogorov (1941a,b), hereafter denoted K41) and the
decay law of the turbulent kinetic energy. One of the main difficulties with grid
turbulence is to generate turbulence at high Reynolds numbers (e.g. Reλ, the Taylor
microscale Reynolds number; Reλ = u′λ/ν, where u′ is the r.m.s. velocity, λ the
Taylor microscale and ν the kinematic viscosity of the fluid). Only a few experiments
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were successful in achieving relatively high Reλ by using so-called active grids (e.g.
Mydlarski & Warhaft 1996, 1998; Larssen & Davenport 2001; Kang, Chester &
Meneveau 2003). Recently, in a very interesting experiment, Sinhuber, Bodenschatz
& Bewley (2015) carried out measurements in passive grid turbulence with very
high Reynolds number in the range 5 6 x/M 6 40 by using air and pressurized
sulphur hexafluoride (x is the distance downstream of the grid and M the grid
mesh size). Note though that the results need to be analysed with care because,
as shown by Isaza, Salazar & Warhaft (2014) (see also Lavoie 2006), turbulence
in the region x/M 6 10–15 has an ‘anomalous’ behaviour similar to that seen
in fractal-grid turbulence, i.e. a larger decay power-law exponent and a turbulent
kinetic energy dissipation coefficient that varies like Re−1

λ (Valente & Vassilicos
2011) (it should be mentioned that the latter variation is also observed in the 3D
periodic turbulence of Goto & Vassilicos (2015)). In the near-field region downstream
of the grid, the streamwise inhomogeneity may not be sufficiently weak to be
neglected. Also the variation of Reλ with x is strong enough so that it cannot be
ignored. The reason for working with turbulence at high Reynolds number is to
test HIT theories when there is a large separation between the large and small
scales, i.e. when an inertial range exists and is represented by the 5/3 law in the
Kolmogorov-normalized velocity spectrum or the 2/3 law in the second-order velocity
structure function (K41). While the experimental implementation of high Reλ grid
turbulence is challenging, the realizability of very low Reλ grid turbulence (i.e. final
stage of decaying turbulence (Batchelor & Townsend 1948)) is equally challenging.
In this latter case, the intensity of the background turbulence level is of the order of
or greater than the turbulence generated by the grid, thus making the measurements
of the decay practically impossible. There is also the practical issue associated with
the fact that low Reλ grid turbulence requires long distances downstream of the grid
for the turbulence to become homogeneous in planes perpendicular to the mean flow.
Thus, an experimental study of the final period of decaying turbulence is extremely
difficult, if not impossible. There have been a few experimental investigations of
the final period (e.g. Tan & Ling 1963; Ling & Huang 1970; Tavoularis, Bennett &
Corrsin 1978), but the results are still inconclusive for the reason cited above.

The difficulties encountered in achieving decaying grid turbulence with either very
high or very low Reynolds number mean that the issue of the decay of the turbulent
kinetic energy, k, is yet to be resolved. The lack of ideal flow conditions (e.g. very
high or very low Reλ) forces researchers to investigate the decay of turbulence in grid
turbulence with low to moderate Reynolds number, e.g. Reλ ranging from about 30 to
80. It is commonly believed that turbulence decays as a power law of the form k∼ xn,
where x is the downstream distance behind the grid and n is a negative constant. So
far, the theoretical predictions show that turbulence may decay according to Batchelor
(1949) or Saffman (1967). Note though that these predictions are valid only at very
high and very low Reλ. The first measurements in grid turbulence appeared to show
that n = −1 (e.g. Batchelor & Townsend 1947). But it is now well accepted that
n 6 −1, at least in grid turbulence generated in laboratories where Reλ is neither
very high nor very small. Under these conditions, the decay of turbulence is yet to
be resolved, as illustrated by the various values of n reported in the literature. For
example, in recent times, Krogstad & Davidson (2010), who carried out measurements
in grid turbulence with several grid geometries, argued that the turbulence behind a
grid decays according to Saffman (n=−1.2, Saffman 1967). Hearst & Lavoie (2014)
reported values of n of about −1.37 and −1.39 in turbulence behind a fractal grid
(for various values of n in decaying turbulence behind classical grids see Mohamed
& LaRue (1990) and Lavoie, Djenidi & Antonia (2007)).
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Recent numerical simulations (Meldi & Sagaut 2013) based on the eddy-damped
quasi-normal Markovian (EDQNM) model of decaying HIT showed that the
turbulence is in a transition period (from the initial to the final stages) when Reλ
ranges from approximately 1 to 100. The EDQNM results imply that, if one assumes
that the turbulence decays according to a power law, then the power exponent n
cannot be constant. Interestingly, this transition regime covers the range of Reλ at
which experiments in grid turbulence are carried out. Since it is well accepted that
|ninit|6 |nfinal|, where |ninit| and |nfinal| are the decay exponents at the initial and final
stages of the decay, respectively, then n must vary from its initial period value to
its final period value (as shown by Meldi & Sagaut 2013). In an earlier numerical
study of decaying HIT, Orlandi & Antonia (2004), who compared results based on
EDQNM, pseudospectral DNS and finite differences DNS, also reported a variation
of n for 4 6 Reλ 6 2000.

The non-constancy of n would suggest that one needs to use a family of power
laws of the form tni , where ni is a different constant over a portion i of the decay
time during this transition period. If one then accepts that a series of power laws
with different decay exponents is required to describe the decay of turbulence in
the transition period, one is then forced to conclude that it is not possible to assess
whether the turbulence decays according to Saffman (ninit = −1.2, nfinal = −1.5;
Saffman 1967), Batchelor (ninit = −10/7, nfinal = −2.5; Batchelor 1949) or any
other possible type of decay from a single grid turbulence experiment if either the
initial or the final stage of the decay is not part of the decay range covered by
the measurements. Bekritskaya & Pavel’ev (1983) analysed the data of Batchelor
(1948) and Gad-el-Hak & Corrsin (1974) and suggested that the decay could be
approximated by a power law provided that the exponent increases with decreasing
Reynolds number.

The present work focuses on the decay of a grid-generated turbulence when Reλ
varies from about 6 to 100. The aim of the study is to assess the appropriateness of
a power-law decay of the form k∼ xn and the behaviour of the exponent n.

2. Experimental set-up and measurement technique
The experiment is carried out in an open-circuit wind tunnel that was also used by

Lavoie et al. (2007) and Lee et al. (2012). The air flow is driven by a centrifugal
blower which is controlled by a variable-cycle (0–1500 r.p.m.) power supply. The
blower is supported by dampers and connected to the tunnel by a flexible joint
to minimize possible vibrations. At the inlet to a plenum chamber, an air filter
(594 mm × 594 mm × 96 mm) captures particles from the flow and a honeycomb
(l/d' 4.3) removes residual swirl. A wire screen with an open area ratio of 63 % and
a smooth 9:1 primary contraction at the outlet of the plenum chamber improve the
uniformity of the flow. A secondary (1.36:1) short contraction is mounted at a fixed
location downstream of the turbulence generator, which corresponds to x/M = 6.2,
19.2 and 54 for the LSQ43, SSQ43 and WMD36 grids (see below), respectively.
This contraction is used to improve global isotropy (Comte-Bellot & Corrsin 1966)
(more information on the secondary contraction can be found in Lavoie et al. (2007)).
Because the velocity of the flow is accelerated when fluid flows through the secondary
contraction an ‘equivalent’ time is defined as follows (Comte-Bellot & Corrsin 1966;
Mohamed & LaRue 1990; Lavoie et al. 2007):

t=
∫ x

0

ds
〈U(s)〉 (2.1)
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(a) (b) (c)

FIGURE 1. The geometry of the two different perforated grids (LSQ43 and SSQ43) and
the woven mesh grid (WMG36).
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FIGURE 2. (Colour online) Streamwise variation of Reλ for the grids used in the study.
Red open symbols: ♦,@,E LSQ43 grid (ReM = 37 500, 17 900 and 12 950); black open
symbols: @, E SSQ43 grid (ReM = 5800 and 4170); blue open symbols: @, E WMG36
grid (ReM = 1474 and 1200).

where 〈U(s)〉 is measured at the centreline of the working section. The angular
brackets denote time averaging.

Three grids are used to generate turbulence in the wind tunnel (figure 1). The first
(LSQ43) is a flat plate perforated with large square holes yielding a mesh of size
M=43.75 mm and solidity, σ , of about 43 %. The second, also made from a flat plate
perforated with small square holes (SSQ43), has a mesh size M= 14.15 mm and the
same solidity as the LSQ43 grid. The mesh size ratio between LSQ43 and SSQ43 is
3:1. The third is a woven mesh grid (WMG36) with σ = 36 % and M = 5 mm. The
effect of the grid mesh Reynolds number ReM = U0M/ν on the decay of turbulence
is investigated at several different speeds. The use of these three grids and different
values of U0, the incoming velocity, yielded values of Reλ in the range 6–100.

The streamwise variation of Reλ for the three grids is presented in figure 2.
Notice how the rate of decrease of Reλ reduces as ReM decreases. This makes the
measurements at small Reynolds numbers quite difficult as a very large distance is
required for Reλ to change significantly.

The measurements of the velocity fluctuations u and v in the longitudinal and
lateral directions, respectively, were carried out using hot-wire anemometry; both
single and X wires were used. The wires (diameter d≈ 2.5 µm and length l= 200d)
were etched from a coil of Wollaston (platinum) and were operated with in-house
constant-temperature anemometers (hereafter, CTA) at overheat ratio of 1.5. The
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output signals from CTA circuits were amplified, offset and low-pass filtered at
a cutoff frequency (fc) close to the Kolmogorov frequency fK = U0/2πη, where
η (= ν3/4〈ε〉−1/4) is the Kolmogorov length scale; 〈ε〉 is the mean dissipation rate
of the turbulent kinetic energy. The sampling frequency fs was at least 2fc. The
hot-wire signals were digitized into a PC using a ±10 V and 16 bit AD converter.
Measurements were conducted at several distances downstream from the grid. The
ratio η/l varied from about 0.26 to about 3.6 across all measurement sets.

3. Results
3.1. Reλ dependence of the power-law decay

The decay of the mean turbulent kinetic energy downstream of a grid is commonly
represented by a power law:

〈q2〉 = A(x− x0)
n (3.1)

where 〈q2〉 = 〈u2〉 + 〈v2〉 + 〈w2〉 is twice the turbulent kinetic energy, x (= tU0/M, t
is the time) is a distance downstream of the grid, x0 is a virtual origin and n 6−1;
A, x0 and n are to be determined empirically. Note that, strictly, the distance x as
used in (3.1) is not the actual distance downstream of the grid but an equivalent
one as it accounts for the acceleration of the flow through the short contraction (i.e.
t is given by (2.1)). Since v2 = w2 in the turbulence generated by each grid, we
have 〈q2〉 = 〈u2〉 + 2〈v2〉, which eliminates the necessity to measure the third velocity
component. For the single-wire measurements, we used 〈q2〉 = 〈u2〉(1 + 2/ruv) with
ruv = 〈u2〉/〈v2〉 estimated from the X-wire measurements. A, x0 and n are assumed
to be constant in (3.1). Yet, one expects that |n| should increase to reach its final
value nfinal when Reλ decreases. In grid turbulence, Reλ decreases with increasing x,
as shown in figure 2, and thus one can expect that |n| increases with x. However,
if the rate of change in Reλ over some distance x is small enough (see figure 2),
one may assume n to be constant to a first approximation; this is the usual approach
reported in the literature. Figure 2 indicates that, while such an approximation seems
valid for SSQ43 and WMG36 over a relatively long distance, it is not as evident for
LSQ43 because of the relatively short distance. Nevertheless, we follow the common
practice of assuming that the variation in Reλ for the LSQ43 grid is small enough in
the region U0t/M > 25 to ignore. Thus, for each set of measurements with the three
grids, n will be assumed to be independent of x and (3.1) will hold, as illustrated
in figure 3, which shows, in a log–log representation, the variation of both 〈q2〉 and
〈ε〉 with the distance (x − x0)/M. The figure shows that 〈q2〉 follows a straight line
relatively well for each grid, supporting the law (3.1) over the range of x considered.
Since the transport equation for 〈q2〉 in grid turbulence is

〈ε〉 =−U0

2
∂〈q2〉
∂x

, (3.2)

then using (3.1) leads to 〈ε〉 ∼ (x − x0)
n−1. It is important to stress that, strictly,

(3.2) holds when the production of the turbulent and viscous diffusions of 〈q2〉 is
zero, which is the case in grid turbulence when x is at least larger than 20M–25M.
Djenidi & Antonia (2014) showed that 〈ε〉 = (ν/2)〈(∂ui/∂xj) + (∂uj/∂xi)〉, with all
terms included, satisfies (3.2) when x/M > 25 behind a grid made of floating flat
square elements and with a solidity of about 25 %. They also found that (3.2) cannot
be used to obtain 〈ε〉 when x/M 6 25 (see also Lavoie 2006). The power-law decay
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FIGURE 3. (Colour online) Decay of 〈q2〉 and 〈ε〉 for different grids and ReM. Open
red symbols: LSQ43,@: ReM = 17900,A: ReM = 12950. Open black symbols: SSQ43,@:
ReM=5800,A: ReM=4170. Open blue symbols: WMG36,@: ReM=2000,A: ReM=1474.

Grids U0 (m s−1) U0t0/M ruv −n Reλ ReM η/M L/M

LSQ43 12.8 6.1 na 1.13± 0.03 100−84 37 500 (0.003−0.006) (0.35−0.57)
LSQ43 6.4 6.6 0.97 1.14± 0.02 65−58 17 900 (0.004−0.010) (0.35−0.58)
LSQ43 4.6 5.8 0.95 1.15± 0.04 50−45 12 950 (0.005−0.010) (0.36−0.59)
SSQ43 6.4 −2.0 0.85 1.26± 0.02 30−23 5800 (0.03−0.06) (0.57−0.90)
SSQ43 4.6 −2.0 0.84 1.36± 0.02 23−17 4170 (0.02−0.05) (0.59−1.00)
WMG36 6.4 −26.0 na 1.46± 0.03 12−9 2000 (0.10−0.25) (0.90−1.70)
WMG36 4.6 −28.0 1.1 1.50± 0.02 10−7 1474 (0.12−0.30) (0.94−1.78)
WMG36 3.6 −28.0 na 1.52± 0.03 9−6 1200 (0.15−0.36) (0.99−1.87)

TABLE 1. Decay exponent n for LSQ43, SSQ43 and WMG36.

of 〈ε〉 is supported by the data in figure 3. The slope of the straight lines, which
gives the value of |n|, increases as ReM (or equivalently Reλ) decreases, confirming
that the magnitude of n increases with a decreasing Reλ. It is interesting that the
value of 〈ε〉 inferred from (3.2) is equal to the isotropic value 〈εiso〉, which Djenidi
& Antonia (2014) showed is equal to the actual value of 〈ε〉 for x/M > 10.

The determination of n is conditioned by x0. It is then critical that x0 is obtained
as accurately and unambiguously as possible. In this study, it was estimated by using
a trial-and-error method adopted by Comte-Bellot & Corrsin (1966) and later Lavoie
et al. (2007). Assuming the decay laws (3.1) and (3.2), we have λ2 = 10ν(q2/〈ε〉)=
−(10ν/U0n)((tU0/M0)− (t0U0/M)). Different values of tU0/M (= x0) were tried until
λ2/MU0(t− x0) exhibited the longest plateau when plotted against U0(t− t0)/M. This
is illustrated in figure 4 for SSQ43 at ReM = 4710. Lavoie et al. (2007) showed that
the uncertainty in x0 is about ±1, which results in a ±0.03 variation in the estimate
of n.

Table 1 contains values of U0, x0, n, the ratio ruv, Reλ, ReM, η/M and L/M.
Interestingly, the values of x0 and ruv for a given grid appear to be independent
of ReM. Of interest are the values of η/M and L/M across the various set of
measurements. The maximum value of L/M is about 1.9, which suggests that the
lateral dimensions of the tunnel are large enough to neglect any effect they may have
on the decay of turbulence. Figure 5(a) shows the variation of n as function of Reλ.
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FIGURE 4. Examples of plots used for estimating the virtual origin. Ratio λ2/MU0(t− t0)
for SSQ43 and U0 = 4.6 m s−1. The curve exhibiting the longest plateau corresponds to
U0t0/M used in the power law (3.1).
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FIGURE 5. (Colour online) Decay exponent n as function of Reλ. (a) Present three grids.
(b) Selection of data from the literature. See table 2 for the symbols and their references.

We also show in figure 5(b) various values of n extracted from several studies cited
in table 2. The trend of the present data (figure 5a) is consistent with that seen in
figure 5(b), i.e. the value of −n increases when Reλ decreases. When Reλ becomes
large, n tends to approach a constant. It is not clear whether the scatter observed
for n at large Reλ is due to measurement uncertainties or reflects an actual effect
of the initial conditions. These measurements were obtained in active decaying grid
turbulence (see table 2 for the references).

Figure 5 highlights the need to exercise caution when interpreting the results
of decaying grid turbulence in the context of determining whether it follows the
Saffman (n=−1.2; Saffman 1967) or Batchelor (n=−10/7; Batchelor 1948) decay
laws at low Reλ. In particular, when the Reynolds number is below about 100, one
cannot conclude, solely on the basis of the value of n, whether the turbulence decays
according to Saffman (1967) or Batchelor (1948) because n has departed from its
value at high Reynolds number, and Reλ is not small enough for n to have reached
its ‘final period’ value. The present results do not agree with the results of Ling &
Huang (1970), who argue that n=−2 when Reλ 6 30.

The present variation of the decay exponent with Reλ is compared (figure 6) with
that from the numerical simulations of Orlandi & Antonia (2004) and Meldi & Sagaut
(2013). The data of Orlandi & Antonia (2004) correspond to Batchelor decaying
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 –2.0

 –2.5

100 10–1104 103 102 101

n

Initial period of decay Transition period of decay Final period of decay

FIGURE 6. (Colour online) Variation of n as function of Reλ. Solid circles, same as in
figure 5; stars, present data using (3.3) (the thin dash-dotted line through the symbols
is used only as a visual guide); solid triangles, EDQNM (Orlandi & Antonia 2004); @,
pseudospectral (Orlandi & Antonia 2004); lines, EDQNM (Meldi & Sagaut 2013) with
ninit = −10/7 (dashed) or ninit = −1.2 (solid). The transition regime is only tentatively
delimited by the vertical lines. This range corresponds to that in which the majority of the
data for n, as inferred from decaying turbulence behind passive grids, has been reported.

turbulence, while those of Meldi & Sagaut (2013) correspond to both Batchelor and
Saffman decaying turbulence. Meldi & Sagaut (2013) showed that different curves
n = f (Reλ) are obtained with different initial values of ninit. Although the EDQNM
curves deviate from the experimental data, both the experiments and simulations
indicate unambiguously that n varies in the transition period, thus revealing that the
decay of turbulence cannot strictly follow a unique power law in this transition period.
Nevertheless, one may consider using a family of power laws of the form xni , where
ni is a different constant over a portion i of the decay time during this transition
period or region. A possible practical alternative that one can infer from figure 6 is
to use a power law of the form 〈q2〉 ∼ xninit+m(x), where the continuous function m(x)
is such that nfinal − ninit 6 m(x) 6 0. This latter form could be used to describe the
entire decay (i.e. initial, transient and final stages). Since most of the grid turbulence
measurements are carried out in the transition region, it is not surprising that a
rather large range of values of n has been reported in the literature and mistakenly
assigned to the initial period of decay. Interestingly, the experimental values of −n
at the higher Reλ fall below those of both Saffman and Batchelor. While no definite
conclusion can be drawn from figure 6 on the actual type of decay, this result does
not support the argument that grid turbulence, at least when generated by the present
grids, is likely to follow Saffman (Krogstad & Davidson 2010), although it is closer
to Saffman than Batchelor. Further, the data in figure 5(b) suggest that the decay of
turbulence behind active grids follows neither Saffman nor Batchelor, as indicated by
the values of n at large Reλ.

Recently, Djenidi & Antonia (2015) used a self-preservation (SP) analysis on the
scale-by-scale energy budget equation for decaying HIT and developed an expression
for n with an explicit dependence on Rel:

n=−1+ 2(t− t0)
1

Rel

dRel

dt
. (3.3)
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Reference Grid Reλu Symbol

Batchelor & Townsend (1947) Passive 21−29 ?

Batchelor & Townsend (1947) Active 28−30 ?

Comte-Bellot & Corrsin (1971) Sq34∗ 47 �
Huang & Leonard (1994) Simulation 10−50 ⊕
Kang et al. (2003) Active 625−716 +
Kistler & Vrebalovich (1966) Rd33.5 670 ⊗
Lavoie (2006) Sq35 43−44 @
Lavoie (2006) Rd35 30 @
Lavoie (2006) Sq35 43−44 @
Mydlarski & Warhaft (1996) Passive 50−100 C
Mydlarski & Warhaft (1996) Active 267−473 C
Lee et al. (2012) Rd44 37 ×
Lee et al. (2012) Rd44W 33 ×
Lee et al. (2012) Rd35 25 ×
Lee et al. (2012) Sq35 40 ×
Schedvin, Stegen & Gibson (1974) Sq30 280 p
Zhou & Antonia (2000) Sq35 50−100 A
Zhou & Antonia (2000) Sq35 50−55 D
Zhou & Antonia (2000) Sq35 34−43 D
Present data (2014) LSQ43 41−100

SSQ43 17−29
WMG36 6−12

TABLE 2. Reference table for the decay exponent. Symbols are used in figure 5(b). The
data were compiled by Lee et al. (2013).

where Rel is a Reynolds number based on a set of velocity and length scales
conforming with SP. Expression (3.3) is valid strictly when SP is satisfied at all
scales of motion. If one assumes that SP is approximately satisfied in decaying grid
turbulence, i.e. Reλ varies weakly downstream of the grid, then one can expect (3.3)
with Reλ replacing Rel to be approximately valid. This appears to be confirmed
in figure 6, where the values of n calculated with (3.3) are reported. There is
relatively good agreement between these latter values and those of n inferred from
the power-law decay.

Note that care must be taken when measuring n when a power-law decay is
assumed. One must ensure that Reλ decreases weakly in the region considered. This
is not the case in the near-grid region, as highlighted in figure 2. This is most evident
for a fractal-grid turbulence (Valente & Vassilicos 2011; Hearst & Lavoie 2014)
where the near-grid region is larger than for conventional grid turbulence. Despite
this shortcoming, Valente & Vassilicos (2011) and Hearst & Lavoie (2014) measured
n and found values of about −2.5 and −2.79, respectively, in the near-grid region.
Associated with a rapid decay of turbulence in the near grid, one must also consider
the effect of the lateral inhomogeneity of the flow caused by the individual wakes
generated by the grid elements. Corrsin (1963) proposed at least three criteria that
must be satisfied for ensuring homogeneity in grid turbulence (grid made of horizontal
and vertical bars): (i) large grid porosity, (ii) large L=M (L is the height/diameter of
the wind tunnel) and (iii) measurements should be taken at least 40M downstream of
the grid (see also Grant & Nisbet 1957). As mentioned in the introduction, recently
Sinhuber et al. (2015) carried out measurements in a (conventional) passive grid

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

42
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.428


Power-law exponent in the transition period of grid turbulence 553

turbulence with very high Reynolds number (104 6 ReM 6 5 × 106; unfortunately no
value of Reλ is provided in their paper). They measured n=−1.18, and argued that
the turbulence decays according to Saffman. However, while the Reynolds number
is very high, the range of x/M over which they measured n falls within the region
where turbulence is not homogeneous. Further, the results of Sinhuber et al. (2015)
contrast with those of Isaza et al. (2014), who showed that the turbulence in the
region 5 6 x/M 6 15 is not homogeneous and n = −1.9, while n = −1.34 for
156 x/M 6 70. They also showed that turbulence in the first range (referred to as the
near-field) displays an anomalous behaviour similar to that observed in fractal-grid
turbulence. Nevertheless, it is noteworthy to point out that Sinhuber et al. (2015)
made a compilation of values of n as a function of ReM from previous studies in
decaying HIT. The trend shown by the data is in good agreement with the present
results. However, the authors did not identify the transitional period and attributed
the variation of n with ReM to changes in initial and boundary conditions between
experiments.

Finally, comments are warranted on the nature of the initial and transition periods
of decay in HIT. The initial period is associated with a high Reλ and an approximately
constant n followed by the transition period where n varies. In grid turbulence, the
hypothesis of HIT can only be valid when the flow becomes homogeneous in a
plane perpendicular to the main flow and very weakly inhomogeneous along the
main flow, which, according to Corrsin (1963), is well observed when x/M > 40. It
is thus important not to associate the decay of turbulence in the region x/M 6 40
with the initial period, even though Reλ can be large; or at least one must ensure
that turbulence is homogeneous in a plane perpendicular to the main flow in that
region. On the other hand, so far, the decay in passive grid turbulence observed in
the literature for x/M > 40 where the values of n fall within the range obtained here
is consistent with the transition period observed in this study.

4. Conclusion
A grid-generated turbulence at moderate to low Reλ was investigated with the aim

of ascertaining whether the commonly used power-law decay of the turbulent kinetic
energy, k, is appropriate. Several grid geometries were used to allow Reλ to vary
from about 6 to 100, a range that covers most of the Reynolds numbers obtained
in passive grid turbulence reported in the literature. It is shown that the decay of
turbulence does not strictly follow a power law of the form k ∼ xn with n constant.
The results, supported by the numerical data of decaying HIT (Orlandi & Antonia
2004; Meldi & Sagaut 2013) and the experimental results (see Sinhuber et al. (2015)
for a compilation of values of n in various experiments and simulations of decaying
HIT), suggest that, on an empirical ground at least, one may consider using a family
of power laws of the form xni , where ni is a different constant over a portion i of
the decay time during this transition period, with |ni| increasing as Reλ decreases,
and nfinal 6 ni 6 ninit. A possible practical alternative for describing the entire decay
is 〈q2〉 ∼ xninit+m(x), where nfinal − ninit 6 m(x)6 0.

The present study sheds light on the lack of consensus in the literature on the value
of n for what is presumed to be the initial period of decay for grid turbulence. It
also underlines the current impossibility of differentiating between the Batchelor and
Saffman predictions for the value of n in the initial period. The range −1.4 to −1.1
for n reported in the literature indicates that the measurements have almost certainly
been carried out in what should more appropriately be designated as the transition
period of decay, at least for passive decaying grid turbulence.
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To address properly the question of the decay of turbulence behind a grid, one is
required to perform measurements in a very long wind tunnel so the variation of Reλ
downstream of the grid is significant enough to lead to a non-negligible variation in
n, if a solution in the form of a power law is sought. The range of x/M to consider
for such a study should correspond to the range where turbulence is homogeneous
in the lateral directions and weakly inhomogeneous in the streamwise direction. This
range is beyond the near-grid region of classical grid turbulence that Hearst & Lavoie
(2014) and Isaza et al. (2014) identified with the ‘anomalous’ behaviour range.

The present results (e.g. figure 6) suggest that, ideally, the Taylor microscale
Reynolds number should vary from about 0.1 to about 300. Sinhuber et al. (2015)
showed that a very high ReM can be achieved with conventional passive grids in the
region x/M 6 30. However, these high ReM measurements need to be extended in
the region x/M > 40 and over a long distance so both the initial and the transition
periods of the decay can be observed in grid turbulence. The final period of decay
can be achieved over a long distance downstream of the grid, but the background
turbulence prevents any reliable measurements.
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