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Abstract Let A and G be finite groups and suppose that A acts via automorphisms on G with
(|A|, |G|) = 1. We study how certain conditions on the Sylow 2-subgroups of the fixed point subgroup of
the action CG(A) may imply the non-simplicity or solubility of G.
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1. Introduction

The Sylow 2-subgroups have a crucial role in the internal structure of finite groups and,
especially, non-abelian simple groups. For instance, as a consequence of Burnside’s normal
p-complement theorem (see [6, 7.2.1]) it follows that when the Sylow 2-subgroups of a
finite group G are cyclic, then G necessarily possesses a normal 2-complement, and,
by appealing to the Feit–Thompson theorem, it turns out that G is soluble. Likewise,
another celebrated non-simplicity criterion concerning Sylow 2-subgroups is the Brauer–
Suzuki theorem [2] (or more generally, Glauberman Z∗-theorem). It claims that if a finite
group G has a generalized (or ordinary) quaternion Sylow 2-subgroup and no non-trivial
normal subgroups of odd order, then G has a centre of order 2. In particular, G cannot be
simple. We shall make use of these facts without further reference. Another important and
necessary result is the classification of the finite simple groups having elementary abelian
or dihedral Sylow 2-subgroups, which were completely determined in [7,8], respectively.

Now, let G and A be finite groups of relatively prime orders such that the group A
acts on G. Under this coprime action hypothesis, we investigate what information on the
Sylow 2-subgroups of the fixed point subgroup CG(A) may provide solubility properties
in the whole group G. For example, it is known that if these 2-subgroups are trivial, that
is, when CG(A) has odd order, then G is soluble [3]. The same happens when the Sylow

c© 2018 The Edinburgh Mathematical Society 211

https://doi.org/10.1017/S0013091518000251 Published online by Cambridge University Press

mailto:abeltran@mat.uji.es
mailto:shaoguozi@163.com
https://doi.org/10.1017/S0013091518000251


212 A. Beltrán and C. Shao

2-subgroup of CG(A) is a direct factor of CG(A), and this is also a consequence of the
main theorem of [3]. On the other hand, several solubility conditions of G have been
given under the assumption that G has exactly one A-invariant Sylow p-subgroup for
p = 2 or 3 [1]. Going one step further, one may wonder whether we can get the solubility
of G from the fact that the Sylow 2-subgroups of CG(A) have a specific structure, that
is, they are either cyclic, elementary abelian, dihedral or generalized quaternion groups.
The answer is negative and it is not hard to find examples of simple groups acted on
by groups of coprime order satisfying such conditions. However, we shall show how these
conditions strongly limit both the simple cases and the non-soluble structure of the group.
Our results are based on the classification theorem of finite simple groups (CFSG) and
we shall use the standard notation appearing in [4]. All groups are supposed to be finite.

Theorem 1.1. Assume that a group A acts coprimely on a group G and that CG(A)
has a cyclic or elementary abelian Sylow 2-subgroup. Then G is soluble if and only if G
has no composition factor isomorphic to any of the following groups:

(1) PSL(2, 2n), with n ≥ 2; PSL(2, qn), where q is a prime power such that q ≡ 3, 5
(mod 8) and n ≥ 1, with qn �= 3;

(2) Sz(2n) with n ≥ 2;

(3) 2G2(3n) with n ≥ 2;

(4) the sporadic simple group J1.

Theorem 1.2. Assume that a group A acts coprimely on a group G and that the
Sylow 2-subgroups of CG(A) are generalized quaternion. Then G is soluble if and only if
G has no composition factor isomorphic to any of the following groups:

(1) PSL(2, 2n), with n ≥ 2; PSL(2, qn), where q is a prime power such that q ≡ 3, 5
(mod 8) and n ≥ 1, with qn �= 3;

(2) Sz(2n) with n ≥ 2;

(3) the alternating group A7;

(4) PSU(3, 2n) with n ≥ 2.

Theorem 1.3. Assume that a group A acts coprimely on a group G and that the
Sylow 2-subgroups of CG(A) are dihedral groups. Then G is soluble if and only if G has
no composition factor isomorphic to any of the following groups:

(1) PSL(2, q), with q a prime power, q > 3;

(2) Sz(2n) with n ≥ 2;

(3) the alternating group A7.
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2. Preliminaries

In this section, we present some results that we need for our purposes. Suppose that
a finite group G is acted on via automorphisms by another finite group A satisfying
(|A|, |G|) = 1. Under this coprime action hypothesis and for every prime p, the group A
naturally acts on the set of Sylow p-subgroups of G, there always exist A-invariant Sylow
p-subgroups in G, and any two of them are conjugate by some element in the fixed point
subgroup C = CG(A). Furthermore, for any A-invariant Sylow subgroup P of G, we have
that P ∩ C is a Sylow p-subgroup of C. We refer the non-familiar reader to [6, Chapter 8]
for a detailed presentation of the basic properties of coprime action. We only state here
some results that will be frequently used.

Lemma 2.1 (see [6, 8.2.2]). Let A act coprimely on G. Let N be an A-invariant
normal subgroup of G. Suppose that the action of A on N is coprime. Then CG/N (A) =
CG(A)N/N .

Lemma 2.2 (see [1, Lemma 2.3]). Suppose that a finite group A acts on a finite
group G = H1 × · · · × Hn, such that Ha

i ∈ {H1, . . . , Hn} for all a ∈ A and i ∈ {1, . . . , n}.
Assume further that A acts transitively on {H1, . . . , Hn}. Let H = H1 and B = NA(H).
Then CG(A) ∼= CH(B).

In the above lemma, the groups A and G need not have relatively prime orders. How-
ever, in our arguments this will be applied under the coprime action hypothesis and in
the following situation.

Lemma 2.3. Suppose that a finite group A acts coprimely on a finite group G
and that G does not have any non-trivial proper A-invariant normal subgroup. Then
G = H1 × · · · × Hn, where Hi are isomorphic simple groups and CG(A) ∼= CH(B), where
H = H1 and B = NA(H).

Proof. Since G does not possess non-trivial proper A-invariant normal subgroups,
then G is a minimal normal subgroup of GA, the semidirect product of G and A, and,
accordingly, G is the direct product of isomorphic simple groups, say G = H1 × · · · × Hn.
Moreover, one can easily prove that A must act transitively on the set {H1, . . . , Hn}, so
we apply Lemma 2.2 and the result follows. �

The next result contains certain known lists of non-abelian simple groups whose Sylow
2-subgroups have a concrete structure. We remark that when we say dihedral group, we
also include the case C2 × C2.

Lemma 2.4. Let G be a non-abelian simple group with a Sylow 2-subgroup P .

(a) If P is elementary abelian, then G is isomorphic to PSL(2, q), with q a prime power,
q > 3, q ≡ 3, 5 (mod 8) or q = 2n, J1 or 2G2(3n) with n = 2m + 1.

(b) If P is a dihedral group, then G is isomorphic to PSL(2, q), with q a prime power,
q > 3 odd, or the alternating group A7.
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In particular, when P is an elementary abelian group of order 4, then G is isomorphic to
PSL(2, q), with q a prime power q > 3, q ≡ 3, 5 (mod 8) or q = 4.

Proof. Part (a) is [5, Theorem, p. 485] and part (b) is [5, Theorem, p. 462]. Assume
now that P is elementary abelian of order 4. By (a), G is isomorphic to PSL(2, q),
q > 3, q ≡ 3, 5 (mod 8) or q = 2n, J1 or 2G2(3n), with n odd. However, any Sylow 2-
subgroup of J1 has order 8 (see [4]). The group 2G2(3n) satisfies |2G2(3n)| = 33n(33n + 1)
(3n − 1) with n odd; notice that 4 | 33n + 1 and 2 | 3n − 1, so |P | ≥ 8. We also know
that the Sylow 2-subgroups of PSL(2, 2n) have order 2n, so we get n = 2. On the other
hand, by order calculations, it is easily seen that every Sylow 2-subgroup of PSL(2, q)
with q > 3, q ≡ 3, 5 (mod 8) is elementary abelian of order 4. We conclude that G is
isomorphic to PSL(2, q), q > 3, q ≡ 3, 5 (mod 8) or q = 4, so the last part of the lemma is
proved. �

We need a description of the normal structure and the quotient structure of the gener-
alized quaternion groups and of the dihedral groups of order 2n, with n ≥ 3. We compile
all the specific information that we shall use later and provide a proof of it because, in
spite of the fact that the properties are known, we have not been able to find in the
literature a result which collects all those that we exactly need.

Lemma 2.5. Let G = Q2n = 〈a, b|a2n−1
= 1, b4 = 1, ab = a−1〉 be the generalized

quaternion group of order 2n with n ≥ 3 and let N be a non-trivial proper normal
subgroup of G. Then:

(a) if N ≤ 〈a〉, then either

(a.1) N = 〈a2n−2〉 = Z(G) and G/N ∼= D2n−1 , the dihedral group of order 2n−1, or

(a.2) Z(G) < N < 〈a2〉 and G/N ∼= Q2i with 3 ≤ i ≤ n − 2, or N = 〈a2〉 and G/N ∼=
C2 × C2, or

(a.3) N = 〈a〉 and G/N ∼= C2;

(b) if N � 〈a〉, then N is a generalized quaternion group and G/N ∼= C2.

Proof. Let H = 〈a〉. We divide the proof into two cases depending on whether N ≤ H
or not. Suppose first that N � H. Then G = HN and G/H ∼= N/(H ∩ N) ∼= C2. This
shows that a2 ∈ N . Since N must contain some aib for some integer 1 ≤ i ≤ 2n−1, we
obtain N = 〈a2, aib〉. If 2 � i, then ab ∈ N and thus N = 〈a2, ab〉. If 2 | i, then b ∈ N and
N = 〈a2, b〉. In both cases N is a generalized quaternion group and |G/N | = 2.

Suppose now that N ≤ H. We trivially have one of three possibilities: N = Z(G),
Z(G) < N < H or N = H. In each case, we have G/N ∼= D2n−1 , G/N ∼= Q2i with 3 ≤
i ≤ n − 2 or C2 × C2, respectively. �

The next lemma is elementary and we omit its proof.

Lemma 2.6. Let G = D2n be the dihedral group of order 2n. Then every normal
subgroup N of G is cyclic or dihedral. Furthermore, for every n ≥ 3, if |N | = 2n−1 then
G/N ∼= C2 and if |N | = 2i with i ≤ n − 2, then G/N ∼= D2n−i .
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Remark 2.7. The following fact is well known (see [4]). The list of groups of Lie type
which are non-simple is the following: A1(2) ∼= PSL(2, 2) ∼= S3; A1(3) ∼= PSL(2, 3) ∼= A4;
2A2(2) ∼= PSU(3, 2), which is a Frobenius group with complement Q8; 2B2(2) ∼= Sz(2), the
Frobenius group of order 20; B2(2) ∼= S6; G2(2), which has order 12096 and whose derived
subgroup is isomorphic to PSU(3, 3); 2G2(3) whose derived subgroup is isomorphic to
PSL(2, 23); and 2F4(2) whose derived subgroup is the Tits (simple) group. In particular,
we observe that in this list only the groups PSL(2, 2) and Sz(2) have cyclic Sylow 2-
subgroups (of orders 2 and 4, respectively), only the groups PSL(2, 2), PSL(2, 3) and
2G2(3) have elementary abelian Sylow 2-subgroups (of orders 2, 4 and 8, respectively), and
PSU(3, 2) is the only group with (generalized) quaternion Sylow 2-subgroups. Moreover,
none of the groups in the list has a dihedral Sylow 2-subgroup of order greater than 4.

3. Proofs

Before proving our main results we need to determine the non-abelian simple groups
satisfying certain coprime action conditions. We prove first a property about coprime
action on simple groups, appealing to the CFSG.

Lemma 3.1. Assume that a group A acts non-trivially and coprimely on a non-abelian
simple group G. Then G is a simple group of Lie type, say G = G(qr), defined over the field
with qr elements, where q is a prime power and r = |A/CA(G)|. Moreover, CG(A) ∼= G(q),
the simple group of Lie type of the same type as G, but defined on the field of q elements.

Proof. It is known that the alternating groups and the 26 sporadic simple groups
do not admit a non-trivial coprime automorphism. In fact, it can be easily checked, for
instance in [4], that if G is any of such groups, then every prime divisor of the order of its
outer automorphism group, Out(G), also divides |G|. Hence, by using the CFSG, it follows
that G is a simple group of Lie type defined over some finite field F . Now, we consider
the action of A := A/CA(G) on G, where CA(G) denotes the kernel of the action of A
on G. It is clear that A also acts non-trivially (and coprimely) on G. Furthermore, since
this action is faithful, by replacing A by some conjugate in Aut(G), we may assume that
A is a subgroup of Aut(G) induced by some automorphism group of F . Now, if |A| = r,
it follows that |F | = qr for some prime power q. If we write G = G(qr), the simple group
of Lie type, then CG(A) = CG(A) ∼= G(q), the (not necessarily simple) Lie group of the
same type as G, but defined over the field of q elements. �

Theorem 3.2. Assume that a group A acts non-trivially and coprimely on a non-
abelian simple group G, and let P be a Sylow 2-subgroup of CG(A).

(a) If P is cyclic, then G ∼= PSL(2, 2n), with n ≥ 2 or G ∼= Sz(2n) with n ≥ 2.

(b) If P is elementary abelian, then G is isomorphic to one of these groups: PSL(2, 2n),
with n ≥ 2; PSL(2, qn), where q is a prime power such that q ≡ 3, 5 (mod 8) and
n ≥ 1, with qn �= 3; or 2G2(3n) with n ≥ 2.

Proof. We prove (a) and (b) at the same time. We reason by induction on |GA|,
where GA denotes the semidirect product of G by A. Let C := CG(A). By applying
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Lemma 3.1, we can assume that G is a simple group of Lie type, say G = G(qr), where
q is a prime power and r = |A/CA(G)|. Also, C ∼= G(q), the simple group of the same
Lie type, defined on the field of q elements. We distinguish whether C is simple or not.
If C is a non-abelian simple group, then we know that C cannot have cyclic Sylow
2-subgroups, and if C has an elementary abelian Sylow 2-subgroup, by Lemma 2.4(a)
we have C ∼= PSL(2, q), where q ≡ 3, 5 (mod 8) or q = 2m or C ∼= 2G2(3m), m = 2k + 1.
Hence G ∼= PSL(2, qr), where q ≡ 3, 5 (mod 8) or q = 2m, or G ∼= 2G2(3mr). Furthermore,
since 2 � r, notice that qr ≡ 3, 5 (mod 8).

Assume now that C is non-simple and let P be a Sylow 2-subgroup of C. According
to Remark 2.7, when P is cyclic then C ∼= PSL(2, 2) or Sz(2), and when P is elementary
abelian then C is isomorphic to PSL(2, 2), PSL(2, 3) or 2G2(3). In the first case, we have
G ∼= PSL(2, 2r) or Sz(2r) with r ≥ 2, so (a) is proved. In the second case, G ∼= PSL(2, 2r),
PSL(2, 3r) or 2G2(3r). Moreover, in the case G ∼= PSL(2, 3r), as r is odd, then 3r ≡ 3
(mod 8). By taking into account the above paragraph, we conclude that G is isomorphic
to one of the groups listed in (b). �

We are ready to prove the main results.

Proof of Theorem 1.1. We only need to prove the ‘if’ part of the theorem. Let
C := CG(A) and let Ω = {PSL(2, q), where q ≡ 3, 5 (mod 8) or q = 2n, Sz(2n), J1,
2G2(3n), with n ≥ 2}. Assume that G has no composition factor isomorphic to any of the
groups in Ω. We argue by minimal counterexample, so let us take G and A satisfying the
hypotheses with G non-soluble and |GA| as small as possible, where as usual GA denotes
the semidirect product.

Let N be a proper A-invariant normal subgroup of G. Then CN (A) = C ∩ N � C,
and it is clear then that every Sylow 2-subgroup of CN (A) is normal in some Sylow 2-
subgroup of C, so, in particular, it is cyclic or elementary abelian too. As N also has no
composition factor which belongs to Ω, minimality implies that N is soluble. Thus every
proper A-invariant normal subgroup of G is soluble.

Let N be a maximal A-invariant normal subgroup of G and suppose that N �= 1.
By Lemma 2.1, CG/N (A) = CN/N ∼= C/(C ∩ N), so CG/N (A) has cyclic or elementary
abelian Sylow 2-subgroups. Since G/N cannot have any composition factor isomorphic
to any group in Ω, minimality guarantees that G/N is soluble, and then the solubility of
N forces G to be soluble, a contradiction. As a result, N = 1, that is, G can be assumed
to have no proper non-trivial A-invariant normal subgroup. We shall prove that G is
non-abelian simple.

According to Lemma 2.3, we write G = H1 × · · · × Hn with C ∼= CH(B), where Hi are
isomorphic simple groups, H = H1 and B = NA(H). Also, we claim that the action of B
on H cannot be trivial. Otherwise, C ∼= H and thus the Sylow 2-subgroups of H would
be cyclic or elementary abelian. Then Lemma 2.4(a) would imply that H is isomorphic to
PSL(2, q), q > 3, q ≡ 3, 5 (mod 8) or q = 2n, J1 or 2G2(3n) with n odd, which contradicts
the hypotheses of the theorem. Now that we have proved that the action of B on H is non-
trivial (and coprime), we can apply Lemma 3.1 to obtain H = H(qt) and CH(B) = H(q),
both simple groups of the same Lie type, where qt and q are the corresponding orders of
the underlying fields, and t = |B/CB(H)|. Now, the fact that C ∼= CH(B) forces CH(B)
to have cyclic or elementary abelian Sylow 2-subgroups. Since H has no composition
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factor in Ω, if |HB| < |GA|, we get that H is soluble by minimality. This contradiction
shows that G is non-abelian simple.

Finally, we distinguish whether the action of A on G is trivial or not. When it is trivial,
we certainly have a contradiction by Lemma 2.4(a). On the contrary, if the action is non-
trivial, we apply Theorem 3.2 to obtain that G is isomorphic to PSL(2, 2r), PSL(2, qr),
with q ≡ 3, 5 (mod 8), Sz(2r) or 2G2(3r), contradicting the hypotheses too. �

Remark 3.3. We show that none of the simple groups appearing in the statement of
Theorem 1.1 can be eliminated, and for this reason this theorem cannot be improved.
Let H be any of the simple groups listed in Theorem 1.1, and choose p and q to be two
distinct primes with p odd and (q, |H|) = 1. Let A = Cq act trivially on H and cyclically
on the direct product of q copies of Cp, say K = Cp × · · · × Cp. Let us consider the
corresponding coprime action of A on G = H × K. We clearly have CG(A) ∼= H × Cp

and thus the Sylow 2-subgroups of CG(A) are the same as those of H. Therefore, G is a
non-soluble group with a composition factor isomorphic to H, and the Sylow 2-subgroups
of CG(A) are cyclic or elementary abelian.

Proof of Theorem 1.2. We argue by counterexample of minimal order. Let us take
G and A satisfying the hypotheses with G non-soluble and |GA| as small as possible. We
divide the proof into several steps.

Step 1. Every proper A-invariant normal subgroup of G is soluble.
Let N be an A-invariant normal subgroup of G. Then CN (A) = C ∩ N � C, so every

Sylow 2-subgroup of CN (A) is normal in some Sylow 2-subgroup of C. By applying
Lemma 2.5, we deduce that a Sylow 2-subgroup P of CN (A) is cyclic (possibly trivial) or
generalized quaternion. Assume first that P is cyclic. Suppose that N is non-soluble and
let W be the soluble radical of N . Take M/W > 1, a chief factor of GA with M ≤ N .
Notice that CM/W (A) ≤ CN/W (A), and then the Sylow 2-subgroups of CM/W (A) are
cyclic. By Lemma 2.3, we can write M/W = D1 × · · · × Dr, where Di are non-soluble
isomorphic simple groups, and CM/W (A) ∼= CD(B) where D = D1 and B := NA(D).
All these facts imply that the Sylow 2-subgroups of CD(B) are cyclic too. We note that
the action of B on D cannot be trivial, otherwise the simple group D would have a
cyclic Sylow 2-subgroup. Thus we can apply Theorem 3.2(a) to obtain D ∼= PSL(2, 2n)
or Sz(2n). As a result, G has a composition factor isomorphic to one of those groups,
a contradiction. Therefore, N is soluble, as we wanted to prove. When P is generalized
quaternion, the minimality of GA implies that N is soluble too.

Step 2. G has no proper non-trivial A-invariant normal subgroup.
Let N be a maximal A-invariant normal subgroup of G and assume that N �= 1. By

Step 1, notice that G/N cannot be soluble. As G/N does not have non-trivial proper
A-invariant normal subgroups, we may apply Lemma 2.3 to write G/N = S1 × · · · × St,
where Si are isomorphic (non-abelian) simple groups, and CG/N (A) ∼= CS(B), where
S = S1 and B = NA(S). We claim that the action of B on S is non-trivial. Suppose
that this action is trivial. Since CG/N (A) = CN/N and CS(B) = S, we deduce that
C/(C ∩ N) ∼= S. By applying Lemma 2.5, it follows that any Sylow 2-subgroup P of S is
cyclic, dihedral or generalized quaternion. However, as S is a non-abelian simple group, P
cannot be cyclic or generalized quaternion. Then P must be dihedral, so S is isomorphic to
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PSL(2, q), with q > 3 odd, or A7, by Lemma 2.4(b). This provides a composition factor of
G isomorphic to PSL(2, q), or A7, a contradiction. We conclude that B acts non-trivially
on S as claimed.

Therefore, we can apply Lemma 3.1 and we have S = S(qr), the simple group of Lie
type defined over a field of qr elements, and CS(B) = S(q), of the same type. Since
CG/N (A) ∼= C/(C ∩ N), again by Lemma 2.5, the Sylow 2-subgroups of CG/N (A) are
cyclic of order 2, dihedral or generalized quaternion. Then a Sylow 2-subgroup T of
CS(B) is also cyclic of order 2, dihedral or generalized quaternion, and we consider each
one of the possibilities separately.

Suppose first that T is cyclic of order 2. Of course, CS(B) cannot be simple, in fact,
Remark 2.7 yields CS(B) ∼= PSL(2, 2). Consequently, S ∼= PSL(2, 2r), contradicting the
hypotheses. Suppose now that T ∼= Q2n with n ≥ 3. Then minimality implies that S is
soluble, a contradiction too. Finally, we suppose that T is a dihedral group and distinguish
two cases depending on whether CS(B) is simple or not. When CS(B) is simple, then
by Lemma 2.4(b), we have CS(B) ∼= PSL(2, q) where q > 3 is odd. We deduce that S ∼=
PSL(2, qr) and this shows that G has a composition factor isomorphic to PSL(2, qr), a
contradiction. Suppose that CS(B) is not a simple group (of Lie type). Then no group
appearing in Remark 2.7 has any Sylow 2-subgroup isomorphic to a dihedral group except
PSL(2, 3) (whose Sylow 2-subgroup is C2 × C2); this leads to G ∼= PSL(2, 3r) with r > 1,
which also provides a contradiction. Therefore, G has no proper non-trivial A-invariant
normal subgroup.

Step 3. Final contradiction.
By Step 2 and Lemma 2.3, we can write G = H1 × · · · × Hn, where the Hi are isomor-

phic (non-abelian) simple groups, and C ∼= CH(B) with H = H1 and B = NA(H). In
particular, CH(B) possesses a generalized quaternion Sylow 2-subgroup. Now, if H < G,
by minimality we get that H is soluble, a contradiction, so G is a non-abelian simple
group. Furthermore, by Lemma 3.1, G is a simple group of Lie type, say G = G(qr),
defined over the finite field of qr elements with r = |A/CA(G)|, and C = G(q). Since
the Sylow 2-subgroups of C are generalized quaternion, C cannot be a non-abelian sim-
ple group. Hence, according to Remark 2.7, we conclude that C must be isomorphic to
exactly PSU(3, 2), and so G ∼= PSU(3, 2r), which is the final contradiction. �

Remark 3.4. It may seem unusual that the group A7, which does not admit a non-
trivial coprime action, may be a composition factor of a group G satisfying the conditions
of Theorem 1.2. However, it is enough to consider H = 2.A7, the central extension of A7

by a cyclic group of order 2, which has generalized quaternion Sylow 2-subgroups of
order 16. Now, if we take A ∼= Cq and K ∼= Cp × · · · × Cp as in Remark 3.3, and let A act
(coprimely and non-trivially) on G = H × K, we clearly have CG(A) ∼= H × Cp, whose
Sylow 2-subgroups are generalized quaternion groups.

Proof of Theorem 1.3. We only need to prove the ‘if’ part and argue by minimal
counterexample. Suppose that G and A satisfy the hypotheses with G non-soluble and
|GA| as small as possible.

Step 1. Every proper A-invariant normal subgroup of G is soluble.
Let N be an A-invariant normal subgroup of G. As CN (A) = C ∩ N � C, then every

Sylow 2-subgroup P of CN (A) is normal in some Sylow 2-subgroup of C. By Lemma 2.6,
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we have that P must be cyclic (possibly trivial) or dihedral. Assume first that P is cyclic
and suppose that N is non-soluble. Let W be the soluble radical of N and let M/W be
a chief factor of GA with M ≤ N . As CM/W (A) ≤ CN/W (A), every Sylow 2-subgroup of
CM/W (A) is cyclic. We can apply Lemma 2.3 and write M/W = D1 × · · · × Dr, where Di

are isomorphic simple groups, and CM/W (A) ∼= CD(B), where D = D1 and B = NA(D).
We deduce that a Sylow 2-subgroup of CD(B) is cyclic too. Observe that the action of B
on D cannot be trivial; hence, Theorem 3.2 gives D ∼= PSL(2, 2n) or Sz(2n). This forces
G to have a composition factor isomorphic to one of those groups, a contradiction. In this
case, N is soluble. On the other hand, if we assume that P is dihedral, then N is soluble
too by minimality.

Step 2. G has no proper non-trivial A-invariant normal subgroup.
Let N �= 1 be a maximal A-invariant normal subgroup of G. As N is soluble by Step 1,

we have that G/N must be non-soluble. By Lemma 2.3, we write G/N = S1 × · · · × St,
where Si are isomorphic non-abelian simple groups, and CG/N (A) ∼= CS(B), where
S = S1 and B = NA(S). First, we prove that the action of B on S is non-trivial. Suppose
on the contrary that the action is trivial. Since C/(C ∩ N) ∼= CG/N (A) ∼= CS(B) = S, it
follows from Lemma 2.6 that every Sylow 2-subgroup P of S is cyclic or dihedral. As S
is non-abelian simple, the first case cannot happen. Then P must be dihedral and, by
Lemma 2.4(b), S must be isomorphic to PSL(2, q), with q > 3 odd, or A7. As a conse-
quence, G has a composition factor isomorphic to one of these groups. This contradiction
proves that B acts non-trivially on S. Thus we apply Lemma 3.1 and obtain that S
is simple of Lie type, S = S(qt), and is defined over the field with qt elements where
t = |B/CB(S)|. Also, CS(B) = S(q) has the same Lie type. By applying Lemma 2.1,
we have CG/N (A) ∼= C/(C ∩ N) ∼= CS(B), so we deduce that a Sylow 2-subgroup T of
CS(B) is cyclic or dihedral. Suppose first that T is cyclic. In this case CS(B) can-
not be non-abelian simple, and by Remark 2.7 we get CS(B) ∼= PSL(2, 2) or Sz(2).
Hence S ∼= PSL(2, 2t) or Sz(2t), contradicting the hypotheses. If T is dihedral, then the
minimality implies that S is soluble. This contradiction completes the proof of this step.

Step 3. Final contradiction.
By Lemma 2.3, we can write G = H1 × · · · × Hn, where the subgroups Hi are isomor-

phic simple groups, and C ∼= CH(B), where H = H1 and B = NA(H). Also, H must
be non-abelian. The hypotheses imply that CH(B) has a dihedral Sylow 2-subgroup. If
H < G, minimality implies that H is soluble, a contradiction. For this reason, G must be
non-abelian simple. Then Lemma 3.1 shows that G is of Lie type, say G = G(qr), defined
over the finite field with qr elements, q being a prime power and r = |A/CA(G)|. Further-
more, C = G(q). Now, the Sylow 2-subgroups of C are dihedral. Among the groups listed
in Remark 2.7, none has dihedral Sylow 2-subgroups, except the group PSL(2, 3) (whose
Sylow 2-subgroup is C2 × C2). This case gives G ∼= PSL(2, 3r), which leads to a contra-
diction. Finally, if C is non-abelian simple, then Lemma 2.4(b) yields G ∼= PSL(2, qr),
with qr > 3 odd, or G ∼= A7, which contradicts the hypotheses too. �
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