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The linear stability of inviscid zonal jet flows on a rotating sphere is re-examined.
A semi-circle theorem for inviscid zonal flows on a rotating sphere is proved. It is
also shown that numerically obtained eigenvalues of the linear stability problem do
not converge well with a spectral method which was adopted in previous studies, due
to an emergence of critical layers near the poles. By using a shooting method where
the integral path bypasses the critical layers in the complex plane, the eigenvalues are
successfully obtained with ∼10 % correction of the critical rotation rates compared to
those obtained in Baines (J. Fluid Mech., vol. 73, 1976, pp. 193–213).
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1. Introduction
Characteristics of two-dimensional barotropic fluid on a rotating sphere, which is

one of the simplest models of planetary atmospheres taking into account the effects of
planetary rotation and density stratification, have long been investigated (see Hayashi
et al. 2007; Obuse, Takehiro & Yamada 2010), and on the β-plane (see Kuo 1949;
Tung 1981). The stability problem of barotropic zonal flows on a rotating sphere has
also been studied in relation to the existence of large-scale zonal flows in the planetary
atmospheres, such as on Jupiter and Saturn.

The first aim of this paper is to develop a semi-circle theorem for the inviscid
instability of zonal flows on a rotating sphere. The semi-circle theorem was first
derived by Howard (1961) for zonal flows in the non-rotating case, and was extended
to the β-plane by Pedlosky (1964, 1987). We extend the semi-circle theorem to zonal
flows on a rotating sphere, where the radius of the circle depends on the angular
velocity of the rotating frame of reference and we minimize the radius by choosing
the most convenient frame of reference. A similar method was employed by Thuburn
& Haynes (1996) who obtained a semi-circle theorem in which the radius does not
coincide with that given in this paper.

The second aim of this paper is to give corrected values of the critical rotation rate
of stability. Baines (1976) numerically studied the linear stability of inviscid barotropic
zonal flow solutions on a rotating sphere, the streamfunction of which is expressed
by the zonal spherical harmonics Y0

l , as well as inviscid Rossby wave solutions
expressed by the spherical harmonics Ym

l where m 6= 0. He solved the eigenvalue
problem numerically with a spectral method with the truncation wavenumber up to 20.
As suggested by the inflection-point theorem (Rayleigh’s criterion), the zonal jet flows
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Stability of inviscid zonal flow 155

are stabilized when the rotation rate of the sphere is increased. He obtained for various
zonal jet solutions the critical rotation rates at which the stability of zonal jets changes
from unstable to stable. He also argued that the values of the critical rotation rates
are only slightly above those estimated by the inflection-point theorem. The numerical
calculation of eigenvalues by Baines (1976) was significantly challenging at the time
prior to the major advance of computational environment, and the obtained values have
been frequently employed by many researchers. However, re-examining the numerical
calculation, we find that the eigenvalues obtained by the spectral method adopted by
Baines (1976) include numerical errors which do not decrease even by increasing
the truncation wavenumber as far as practically available in the computation. We
should also note Skiba’s argument (Skiba 2002) that numerical calculation of some
eigenvalues is not stable because of an accumulation of the continuous spectrum.

This paper re-examines the stability of inviscid barotropic zonal flows on a rotating
sphere, taking special care with the convergence of the eigenvalues. In § 2, the
governing equation and its linearized equation are presented. A semi-circle theorem
is derived in § 3. Section 4 elucidates imperfections of the numerical results of the
stability eigenvalues obtained by a spectral method, and instead a shooting method is
employed to overcome the problems. A conclusion follows in § 5.

2. Governing equations
A two-dimensional incompressible barotropic inviscid flow on a rotating sphere is

governed by the equation of vorticity,

∂∇2ψ

∂t
+ J(ψ,∇2ψ)+ 2Ω

∂ψ

∂λ
= 0. (2.1)

Here t is the time, λ and φ are the longitude and the latitude, and µ = sinφ is
the sine latitude; ψ is the streamfunction and ∇2ψ is the vorticity, where ∇2 is the
horizontal Laplacian on an unit sphere. The longitudinal and latitudinal components of
velocity (uλ, uµ) are given by uλ =−

√
1− µ2(∂ψ/∂µ) and uµ = 1/

√
1− µ2(∂ψ/∂λ),

respectively. J(A,B) = (∂A/∂λ)(∂B/∂µ) − (∂B/∂λ)(∂A/∂µ) is the Jacobian operator,
and Ω is the non-dimensional constant rotation rate of the sphere.

A general zonal flow ψ = ψ0(µ) is a steady solution of the equation of vorticity
(2.1), regardless of the rotation rate. Here we consider steady zonal flow solutions with
l jets described by a 4π normalized spherical harmonic function Ym

l (λ, µ) as

ψ0 = Ψ0(µ)=− 1
l(l+ 1)

Y0
l (µ), (2.2)

which we call l-jet flow. Here, the number of jets is defined as the number of extreme
points of the longitudinal velocity, which is equal to the number of nodes of the
latitudinal distribution of the streamfunction.

In order to examine the linear stability of the inviscid zonal flow ψ0(µ), we
substitute ψ = ψ0(µ) + ψ ′(λ, µ, t) into (2.1) and neglect the second-order terms of
ψ ′. Assuming that ψ ′ = ψ̂(µ) exp[Im m(λ − ct)], we finally have a linearized equation
of vorticity

[U(µ)− c]∇2
mψ̂ +

{
2Ω − d2

dµ2

[
(1− µ2)U(µ)

]}
ψ̂ = 0. (2.3)

Here, U(µ) = −dψ0(µ)/dµ is the angular velocity of the basic zonal flow and ∇2
m is

defined as ∇2
m = (d/dµ)(1− µ2)(d/dµ)−m2/(1− µ2). The boundary conditions at the
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north and the south poles are given by

ψ̂(±1)= 0. (2.4)

Equations (2.3) and (2.4) constitute an eigenvalue problem with the eigenvalue c being
the complex angular phase velocity.

3. Semi-circle theorem
We introduce the latitudinal displacement of the perturbation η = η̂(µ) exp[Im m(λ−

ct)]. The material derivative of η is related to the latitudinal component of the
perturbation velocity u′µ as

u′µ =
Dη
Dt
=
(
∂

∂t
+ U

∂

∂λ

)
η. (3.1)

Then, ψ̂ can be expressed by η̂ as ψ̂ =√1− µ2(U − c)η̂. Substituting η̂ into (2.3)
and taking the inner product with

√
1− µ2η̂∗, where ∗ indicates complex conjugate,

we obtain ∫
dµ[(U − cr)

2−c2
i ]P= 2(Ω + cr)

∫
dµ(U − cr)Q+ 2c2

i

∫
dµQ, (3.2)

cr

∫
dµ(P+ 2Q)=

∫
dµU(P+ Q)−Ω

∫
dµQ. (3.3)

Here, cr and ci are the real and imaginary parts of c, and P = P(µ) and Q = Q(µ)
denote P(µ) = (1− µ2)

2 |dη̂/dµ|2+(m2 − 1) |η̂|2 > 0, and Q(µ) = (1 − µ2) |η̂|2 >
0. Expansion of φ = √1− µ2η̂ by the associated Legendre polynomials, φ =∑∞

n=mφ
m
n Pm

n (µ) gives ∫
dµ(P+ 2Q)> m(m+ 1)

∫
dµQ. (3.4)

When Ω > 0, (3.3) yields

cr 6

∫
dµUmax(P+ Q)∫

dµ(P+ 2Q)
6 Umax, (3.5a)

cr >

∫
dµUmin(P+ Q)∫

dµ(P+ 2Q)
−Ω

∫
dµQ∫

dµ(P+ 2Q)
> Umin − Ω

m(m+ 1)
, (3.5b)

where we have made an assumption for the angular velocity,

Umax = max
−16µ61

U(µ) > 0, Umin = min
−16µ61

U(µ) < 0. (3.6)

Thus, we obtain the following condition for the phase velocity:

Umin − Ω

m(m+ 1)
6 cr 6 Umax (for Ω > 0). (3.7)

The assumption (3.6) is temporal, and we will remove it at the end of this proof.
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An obvious inequality,

0 >
∫

dµ(U − Umin)(U − Umax)P=
∫

dµ[U2 − (Umax + Umin)U + UminUmax]P, (3.8)

with (3.2) and (3.3) yields

0 >
∫

dµ(c2
r + c2

i )(P+ 2Q)− (Umax + Umin)UP+ UmaxUminP+ 2ΩUQ, (3.9)

which leads to[(
cr − Umax + Umin

2

)2

+ c2
i −

(
Umax − Umin

2

)2
]∫

dµ(P+ 2Q)

6 |Ω|(Umax − Umin)

∫
dµQ. (3.10)

Then, using (3.4), we obtain(
cr − Umax + Umin

2

)2

+ c2
i −

(
Umax − Umin

2

)2

6
|Ω|

m(m+ 1)
(Umax − Umin). (3.11)

Here we should note that if the angular velocity of the system of coordinates is
changed from Ω to Ω + ω, where Umin 6 ω 6 Umax (see (3.6)), then U and cr become
U − ω and cr − ω with ci unchanged, i.e. the left-hand side of (3.11) is unchanged.
Therefore, by taking ω which minimizes |Ω + ω| we obtain more restricted ranges for
cr and ci as

Umin − |Ω + U|min
m(m+ 1)

6 cr 6 Umax (for Ω > 0), (3.12)

and(
cr − Umax + Umin

2

)2

+ c2
i 6

(
Umax − Umin

2

)2

+ |Ω + U|min
m(m+ 1)

(Umax − Umin), (3.13)

which gives the semi-circle theorem. Remarkably this semi-circle theorem is valid
even when U(µ) does not satisfy (3.6), because then we can choose rotating
coordinates where Umin − ω < 0 < Umax − ω. Therefore the assumption (3.6) is
unnecessary for the semi-circle theorem to hold.

A semi-circle theorem has been obtained by Thuburn & Haynes (1996), in which
the radius of the circle is different from that obtained here. Our derivation is different
in that the present P and Q allow us to utilize a property of Legendre functions. We
note that the radius of (3.13) is smaller than or equal to that of Thuburn & Haynes
(1996) except when 3− 2

√
2 6 |Ω +U|min/|Ω +U|max < 1/3 and both |Ω +U|min and

|Ω + U|max are sufficiently small. We should note that another semi-circle theorem was
stated in the Appendix of Ishioka & Yoden (1992), where |Ω + U|min/(m(m + 1)) in
(3.13) is replaced by |Ω + U|max/(m2 + 1+ m2/(2|m| + 3)).

4. Re-examination of the stability of inviscid zonal flow
In this section, we re-examine the linear stability of the inviscid zonal flow (2.2)

on a rotating sphere. This problem was previously investigated by Baines (1976), but
we show that some numerical corrections are necessary, taking into account singular
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FIGURE 1. The eigenvalues of linear stability of 3-jet zonal flow for m = 1 and 2 obtained
with the spectrum method with the truncation wavenumber N = 213: (a) and (b) show the
imaginary and real parts of the phase angular velocity ci and cr, respectively.The horizontal
and vertical axes are the rotation rate Ω and the eigenvalues respectively.

behaviour of eigenfunctions. The 1-jet and 2-jet zonal flows are linearly stable due
to conservation laws of angular momentum, energy and enstrophy (see Baines 1976).
However, l-jet zonal flows with l > 3 can be unstable, and we consider the cases of
3 6 l 6 9, the same range of l as Baines. The unstable modes of l-jet zonal flow do not
contain the spherical harmonics Ym

n (λ, µ) with |m| > l as proved by Skiba (1989) and
Ishioka & Yoden (1992). Also, zonal modes Y0

n (µ) are all neutral modes. Therefore, it
is sufficient to study disturbances with the azimuthal wavenumber 1 6 |m|6 l− 1.

4.1. Stability analysis with a spectral method
First, we present numerical results of stability obtained by a spectral method,
essentially in the same way as Baines (1976). In order to solve the eigenvalue problem
of (2.3) and (2.4) for a given azimuthal wavenumber m of the disturbance, we assume
the streamfunction ψ̂(µ) =∑N

n=mψ
m
n Pm

n (µ) where ψm
n are the expansion coefficients

and N is the truncation wavenumber. On evaluating the terms U(µ)∇2
mψ̂(µ) and

(d2/dµ2)[(1 − µ2)U(µ)]ψ̂(µ) in (2.3), we adopt a transform method, employing in
the physical space the numbers of longitudinal and latitudinal grid points I and J
satisfying I > 3N + 1 and J > 3N/2 in order to eliminate aliasing errors.

Figure 1 shows the numerical eigenvalues for m= 1, 2 in the case of the 3-jet zonal
flow. Baines (1976) calculated the eigenvalue for the same problem, and concluded
that the 3-jet flow is unstable for Ω−B = −5.35 < Ω < 1.76 = Ω+B . We show in
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FIGURE 2. (Colour online) The unstable eigenvalues around Ω = Ω−B , which is the critical
rotation rate obtained by Baines: (a) and (b) show the imaginary and real parts of phase
angular velocity, ci and cr, respectively. The horizontal and vertical axes are the truncation
wavenumber N and the eigenvalues, respectively.
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FIGURE 3. (Colour online) The vorticity of unstable eigenfunctions in the case of 3-jet zonal
flow at Ω =Ω−B with azimuthal wavenumber m = 1: (a) and (b) are obtained by the spectral
method with truncation wavenumber N = 213 and by the shooting method, respectively.

figure 2 the eigenvalues obtained in our numerical calculation around Baines’ negative
critical rotation rate Ω−B = −5.35 as a function of the truncation wavenumber N.
The imaginary part of phase angular velocity ci does not converge even when the
truncation wavenumber is increased up to 10 times of that used by Baines, although
the real part cr can be obtained with three-digit accuracy, which is equal to 1.27 at
Ω =Ω−B .

The eigenfunction at Ω = Ω−B is shown in figure 3(a). It is observed that the
vorticity diverges near µ = ±1, indicating singularities near the north and south poles.
The critical points, where U(µ) − cr = 0, appear around ±79.7◦ in latitude. The
divergence behaviour of ci is caused by lack of resolution around the critical layers of
the eigenfunction emerging near the poles.

On the other hand, when Ω > 0, the eigenvalues converge fairly well. We find that
the positive critical rotation rate Ω+c is 1.77194, and the critical azimuthal wavenumber
mc = 2. Figure 4 shows the eigenvalues around Ω = Ω+B . The eigenvalues can be
obtained with 0.1 % accuracy when the truncation wavenumber is increased up to 63.
The slightly unstable eigenfunction at Ω = 1.7719 is shown in figure 5. Obviously, no
critical point is found, in contrast to the cases near the negative critical rotation rate.
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FIGURE 4. (Colour online) Same as figure 2 but for the unstable eigenvalues around
Ω =Ω+B : (a) imaginary part, (b) real part.
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FIGURE 5. (Colour online) Same as figure 3 but for the vorticity of unstable eigenfunctions
of 3-jet zonal flow Y0

3 at Ω = 1.7719 with azimuthal wavenumber m = 2 with the truncation
wavenumber N = 213: (a) imaginary part, (b) real part.

4.2. Stability analysis with a shooting method

In the previous subsection, it is shown that in the spectral method ci does not converge
even when the truncation wavenumber is increased, because the critical layers appear
in the eigenfunctions. In this subsection, instead of the spectral method, we make use
of a shooting method to overcome the difficulty.

Equation (2.3) is expressed in the normal form as follows:

d
dµ

(
ψ̂

φ̂

)
=

 0 1

− l(l+ 1)U(µ)+ 2Ω
{U(µ)− c}(1− µ2)

+ m2

(1− µ2)
2

2µ
1− µ2

(ψ̂
φ̂

)
, (4.1)

where φ̂ = dψ̂/dµ.
For a given value of Ω , we obtain the solution ψ̂− and φ̂− by integrating the

normal form of (4.1) from the edge point µ = −1 to a certain point µ0 ∈ (−1, 1)
with the boundary conditions (2.4). Then we obtain the other solution ψ̂+ and φ̂+ by
integrating it from µ= 1 to µ= µ0.
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The matching condition consists of continuity of streamfunction ψ̂ and its derivative
φ̂, which is expressed by

f (Ω, cr, ci)=
∣∣∣∣∣ψ̂+(µ0) ψ̂−(µ0)

φ̂+(µ0) φ̂−(µ0)

∣∣∣∣∣= 0. (4.2)

The point µ0 can be chosen at any point on the integral path. However, in this
problem, the critical points are expected to exist around both the poles µ = ±1. We
then select µ0 as the end point of each integration and take µ0 = 0.1 which is far from
both the poles.

In the above integrations, we should consider the singular points µ=±1 and critical
points µc such that U(µc)− c= 0.

First, in order to avoid the difficulty arising from the singular points, we change the
starting point of the numerical integration from µ = ±1 to certain nearby points. The
values of ψ̂ and φ̂ are obtained by using a power series expansion of the solution: at
the south pole µ=−1, ψ̂ is expanded into a power series of z= µ+ 1 as

ψ̂ = zm/2

(
1+

Jt∑
j=1

ajz
j

)
, (4.3)

where Jt is a sufficiently large number and is taken up to 20. The coefficients aj of
the series are successively determined by expanding (2.3) around µ=−1. The starting
point should be close to the south pole to keep the accuracy of the power series
expansion. Moreover, near marginal stability, the critical layer approaches the pole,
which means that the convergence radius becomes small, and therefore we have to
pay attention to the choice of the starting point. The same scenario holds also for the
north pole. Second, we have to solve the singular behaviour of the solution around the
critical point µ = µc. Near marginal stability, the critical point approaches the interval
[−1, 1], and the numerical integration along the µ-axis rapidly becomes difficult. Then,
in order to find the marginal stability eigenvalue as the limit of unstable eigenvalues,
we deform the integral path in the complex µ-plane to bypass the critical points
in such a way that π 6 argµ 6 2π or 0 6 argµ 6 π if U′(µc) > 0 or U′(µc) < 0,
respectively.

Specifically, we employ a piecewise linear path as shown in figure 6. On integrating
the normal form (4.1) from the south pole (A) µ = −1 to (E) µ0, we divide the
integration path into four sections: (A)→(B)→(C)→(D)→(E), where the power series
expansion is employed for the section (A)→(B), and the integrals for the other
sections are performed by the fourth-order Runge–Kutta method with the number
of grid points being ∼3 × 104. From the north pole (I) µ = 1 to (E), we perform the
calculation in a similar way to the above in the order of (I)→(H)→(G)→(F)→(E).

We perform this shooting method to determine c= cr + ici for given values of Ω by
use of the Newton method. The stopping condition of the Newton method is that the
rate of the correction of the eigenvalues is less than 10−8. The Jacobi matrix

∂Re [f ]
∂cr

∂Re [f ]
∂ci

∂Im [f ]
∂cr

∂Im [f ]
∂ci

 (4.4)

is evaluated by the central finite difference method with 1cr, 1ci = 10−6.
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Integral path

–1 0 1

z

Integral direction

Expansion (4.2)

(A)(B)

(C) (D)

(E)

(F) (G)

(H)

(I)

FIGURE 6. Schematic of the integral path on the complex plane µ ∈ C. The solid and the
dashed lines indicate the integrations by the expansion method and the Runge–Kutta method,
respectively. The critical points µc are given by the roots of U(µc)− c= 0.

We also perform this shooting method to determine Ωc and cr for ci = 0. Skiba
(2002) argued that numerical calculation of some eigenvalues is not stable because
of the accumulation of the continuous spectrum. In our calculation we checked the
numerical convergence of the eigenvalue by changing the number of grid points to
6 × 103 and 6 × 105 and confirmed that the relative errors of cr and ci (or Ωc and
cr) are less than 0.1 %. Also, we have changed the increments of 1cr and 1ci for the
evaluation of the Jacobi matrix from 10−6 to 10−5 and found that the relative errors
of the critical rotation rates and the eigenvalues remain less than 0.1 %. Further, we
have checked that the obtained eigenvalues and eigenfunctions are consistent with the
inflection-point theorem and the semi-circle theorem, and that the ratio of the energy
and the enstrophy of the eigenfunction is l(l + 1) as derived by Skiba (2009) for the
zonal flow Y0

l .
Figure 7 shows the stability eigenvalues obtained for the 3-jet zonal flow. For

the sake of comparison, the eigenvalues obtained by the spectral method are also
shown. It is seen that the eigenvalues obtained by the shooting method converge better
than those obtained by the spectral method. We find the negative critical rotation
rate Ω−c = −5.45685 and the critical azimuthal wavenumber mc = 1. The unstable
eigenfunction at Ω = Ω−B is shown in figure 3(b). The vorticity around the critical
layers is more accurately shown in the shooting method solution, compared with the
spectral method solution in figure 3(a).

We also show the critical rotation rates of other zonal jet solutions (2.2) in table 1.
There are ∼10 % differences between the critical rotation rates of Baines, Ω±B , and of
the present study, Ω±c . When the number of zonal jets l is odd and Ω < 0, the critical
layers emerge around both the north and the south poles. When l is even, the critical
layer arises around the south (north) pole for Ω > 0(<0). When l is odd and Ω > 0,
the critical eigenfunction does not have a singularity.

The inflection-point theorem states that when the basic flow is unstable, there is at
least one zero point of β̃ = 2Ω+dY0

l (µ)/dµ in the interval µ ∈ [−1, 1]. This condition
gives the possible range of the critical rotation rates, the upper and the lower bounds
of which are given in table 1 as Ω±I . However, Ω±I do not coincide with Ω±c , with
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Spectrum 
Bypassing

0

 0.005

 0.010

 0.015

 0.020

–5.50 –5.45 –5.40 –5.35 –5.30 –5.25 –5.20 –5.50 –5.45 –5.40 –5.35 –5.30 –5.25 –5.20

 1.15

 1.20

 1.25

 1.30
(a) (b)

FIGURE 7. (Colour online) The stability eigenvalues for the 3-jet zonal flow m = 1 around
the negative critical rotation rate: (a) and (b) show the imaginary and real parts of phase
angular velocity ci and cr, respectively. The horizontal and vertical axes indicate the rotation
rate Ω and the eigenvalues, respectively. The black dots are the results by the shooting
method, while the crosses (red online) are those by spectral method with N = 213.

l-jet Ω±c m±c µ±c Baines
Ω±B

m±B Relative error
(%)

Ω±I Relative difference
(%)

3 −5.4568 1 ±1 −5.35 1 1.95 −3
√

7 45.4
1.7719 2 — 1.76 2 0.673 3

√
7/4 11.9

4 −9.7700 1 1 8.78 1 9.49 −15 53.5
9.7700 1 −1 8.78 1 9.49 15 53.5

5 −19.22 1 ±1 −18.2 1 5.21 −15
√

11/2 29.4
4.022 3 — 3.90 3 3.03 −15

√
11/16 177

6 −28.389 1 1 −25.0 1 11.9 −21
√

13/2 33.3
28.389 1 −1 25.0 1 11.9 21

√
13/2 33.3

7 −44.445 1 ±1 −40.0 1 10.0 −14
√

15 24.2
7.8929 3 — 7.226 3 8.44 35

√
15/32 86.3

8 −59.618 1 1 −48.4 1 18.8 −18
√

17 24.4
59.618 1 −1 48.4 1 18.8 18

√
17 24.4

9 −83.340 1 ±1 −69.3 1 16.8 −45
√

19/2 17.6
13.665 3 — 11.5 1 15.8 −315

√
19/256 139

TABLE 1. The critical rotation rates of inviscid zonal flows Ψ0 =−Y0
l (µ)/l(l+ 1). Column

1 shows the number of jets l of the basic flows. Columns 2, 3, and 4 indicate the results
of the present study: the critical rotation rate Ω±c , the critical azimuthal wavenumber m±c ,
and the sine latitude of critical layers µ±c . Columns 5, 6, and 7 are the results of Baines
(1976) for the sake of comparison: the critical rotation rate Ω±B , the critical azimuthal
wavenumber m±B , and the relative errors of critical rotation rates between Baines (1976) and
the present study. Columns 8 and 9 indicate the critical rotation rates Ω±I estimated by
the inflection-point theorem and their relative difference from the critical rotation rate Ω±c
obtained by the present study.

relative differences up to ∼170 %. This suggests that stability characteristics of zonal
flows on a rotating sphere are rather different from those of parallel flows on a plane
where the inflection point is often related to the emergence of instability.
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We remark that in the case of the 3-jet flow, the critical rotation rate Ω−c can be
obtained analytically. In the 3-jet case, under the assumption that the critical point
exists at each pole, we find c = cr =

√
7/2 and U − cr = 5

√
7(µ − 1)(µ + 1)/8.

Substituting these into (2.3) with {(1− µ2)U}′′ =−3(3+ 1)U, we have

d
dµ

{
(1− µ2)

dψ̂
dµ

}
− α

1− µ2
ψ̂ =−3(3+ 1)ψ̂, (4.5)

where α = m2 + 16Ω/5
√

7 + 48/5. If α is a square of an integer number, α = m̃2,
the linear operator of the left-hand side of (4.5) becomes ∇2

m̃ and the eigenfunction
is the associated Legendre function Pm̃

3 (µ). We find the similarity of ψ̂ to P2
3(µ), and

we choose m̃ = 2, which yields Ωc = −33
√

7/16 = −5.456862 . . . , in agreement with
the numerical result. The case of m = 2, m̃ = 3 corresponds to Ωc = −3.807 where an
unstable mode arises from the neutral mode. According to the numerical results, for all
other combinations of m, m̃, unstable modes do not arise from the neutral modes.

5. Conclusion and discussion

In this paper we re-examine the linear stability of inviscid barotropic zonal flows on
a rotating sphere. A semi-circle theorem for zonal flows on a rotating sphere is derived.
The critical rotation rates for stability of zonal flows are obtained more accurately than
the previous study by Baines (1976).

By the spectral method, the critical eigenvalues could not be obtained accurately for
an even number of jets, because of the emergence of the critical layers near the north
and the south poles when the zonal flow approaches the marginal stability state. A
similar difficulty also arises for an odd number of jets with a negative rotation rate.
To obtain the critical eigenvalues and critical rotation rates with sufficient accuracy,
we make use of the shooting method and the power series expansion method, taking
into account the singular points. As a result, we find that the critical rotation rates of
Baines (1976) should be corrected by ∼10 %. On the other hand, in the cases of an
odd number of jets, the positive critical rotation rates are obtained without difficulty by
the spectral method, because of the absence of the critical layers.

So far in this paper, we have discussed the stability problem of Rossby waves
each streamfunction of which is expressed by a single spherical harmonic of Y0

l ,
i.e. zonal flows. In the aforementioned paper, Baines also studied the stability of
non-zonal Rossby waves, i.e. ψ0 proportional to Ym

l (λ, µ), (m 6= 0). However, we
have found in high-resolution computations, that some of the stability results for
these flows in Baines (1976) also suffer from inaccuracy due to the singular point
where the coefficient of the highest-order derivative of the eigenfunction vanishes. The
traditional technique of bypassing the singular point in the complex plane, which we
have employed in this paper, is applicable only to the problems of space dimension
one. Accurate results of the stability eigenvalues for the two-dimensional problem is
therefore still open to further study.
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we use a spectral transformation library ‘ISPACK’ (http://www.gfd-dennou.org/library/
ispack/) and a FORTRAN90 wrapper library ‘SPMODEL’ (http://www.gfd-dennou.org/
library/spmodel/).
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