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To gain accuracy and, hence, physical reality of the data acquired by XRD measurements of 

fibre textures, a technique is elaborated to achieve experimental values, which are free of 

extinction effects. Its elaboration is based on combining basic definitions of the extinction theory 

and texture analysis. This technique is applicable to characterization of metal coatings that 

appear infinitely thick for X-rays. A nickel sample representing <100> + <221> texture 

components is used as a model. Resultant derived series of data on pole-density distribution of 

the {200} diffraction pole figure shows that the data corresponding to the main <100> texture 

component are strongly affected by extinction. On the contrary, due to definitions that require 

reduction of the intensity distribution to multiples of random density, the extinction-free values 

of the volume fraction of texture components do not differ substantially from those calculated by 

standard methods. Evidently, any of the standard methods for volume fraction measurements 

provides reasonable data if secondary extinction is even disregarded. 
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I. INTRODUCTION 

In order to evaluate pole-figure measurements quantitatively, one needs the normalization factor, 

which reduces measured intensity values to multiples of random density. For the case of fibre 

textures of electrolytically deposited layers, it has been shown that the normalization factor and 

hence the volume fraction of the texture components are calculated in a rather simple way 

requiring only one, incompletely measured, diffraction pole figure (Tomov et al., 1977; Tomov 

and Bunge, 1979). This method is here extended by a technique for analytical nullifying the 

extinction effects that is applied to measurements of pole density and volume fraction of texture 

components. To realize the purpose of this study, our concern is essentially with an exact 

relationship between diffraction and extinction at any of the levels of interaction between X-

radiation and crystal medium. 

II. BASIC DEFINITIONS OF EXTINCTION THEORY AND TEXTURE ANALYSIS 

The formalism considered here is valid for the symmetrical Bragg geometry with a plane-parallel 

plate sample appearing infinitely thick to the X-rays. According to theory (Sabine, 1988; Sabine, 

1992; Zachariasen, 1967), the secondary extinction (SE) decreases the measured intensity mI  of 

a reflection and, hence, the level of interaction of the diffraction process by a factor of y, the 

extinction factor being defined by 

                                                              kinm yII   .            (1) 

(Except for Im intensity, further on subscript m will be used to denote either intensity quantities 

suffering SE or structural parameters that are affected by extinction-induced systematic errors). 

Here, kinI  is the intensity that a Bragg reflection would have if kinematical theory would apply 

exactly to the system being examined: 

                                                         20SQPIIkin   .           (2) 

Here, I0 is the intensity of the incident beam, S is the cross section of the beam, Q is the 

reflectivity per unit crystal volume, μ is the ordinary linear absorption coefficient, and P is the 

pole density representing a volume fraction VdV / of crystallites whose <hkl> poles fall into an 

(infinitely small) space-angle element dΩ (Bunge, 1982): 

                                                           PdVdV /  .           (3) 

In the case of pure SE, an expression is given for the extinction factor y (Chandrasekhar, 1960; 

Zachariasen, 1963):  
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                                                2

12 / ppgQy     ,          (4) wher   

is an effective absorption coefficient including a first order approximation for the SE correction   

(Zachariasen, 1963) as well: 

                                                           2

12 / ppgQ  .           (5) 

Here, g is the SE coefficient derived theoretically by Darwin (1922) as a constant for a sample 

defined by FWHM of a respective reflection, and the polarization 2

12 pp  of the incident X-ray 

beam has been incorporated in  by Chandrasekhar (1960) and Zachariasen (1963):  

                                                       22cos1 2

B

n

np   ,            (6) 

where B  is the Bragg angle of reflection, and n=1,2. 

 

III. HOW TO NULLIFY THE EXTINCTION EFFECT 

To nullify the extinction effect by XRD characterization of a crystal medium and, particularly, of 

a texture, one of the general disadvantages of the conventional (Darwin-Zachariasen) approach 

to treating the problem of extinction (Darwin, 1922; Zachariasen, 1963 and 1967) needs to be 

properly reconsidered. This disadvantage concerns a discrepancy between the theoretical models 

of the inner morphology of the crystal and their experimental evidence. So that examining the 

relationship between diffraction and extinction at any of the levels of interaction, our attention 

was focused to account for the global effect of the crystal, textural and micro-structural 

anisotropies. As a relative volume fraction of crystallites contributing simultaneously to the 

diffraction process, the pole density P comprises all sources of these anisotropies that are 

inherent of any particular sample. Whereas the crystal anisotropy is defined by the loading 

density Lhkl, i.e. the number of atoms per unit crystal area (Kleber, 1970) of {hkl} net-plane 

system, textural and micro-structural anisotropies includes such sources as size, shape, 

dislocation substructure, crystallographic orientation and crystallite arrangement (Bunge, 1988). 

Hence, by its very nature P controls any particular reflection of the XRD pattern. In this context, 

accounting for P in the interpretation of experimental results, the general disadvantage of the 

conventional approach to treating the problem of extinction could be eliminated. Thus, 

combining diffraction equation (2) used in texture analysis with SE correction ε (5) given by 

Darwin (1922) and Zachariasen (1963) yields an expression that is a theoretically derived 

version of the SE correction ε introduced a posteriori by Bragg et al. (1921): 
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                                                           2

12 ppkIkin  .           (7) 

Here, k defines a relationship between diffraction and extinction:  

                                                       SPIgk 02   .            (8) 

Thus reconsidering the above mentioned authors, the SE corrections (5) and (7) are constrained 

to be equal in value, and their coefficients are enriched with a clear physical meaning. Since g is 

originally introduced as a constant (Darwin, 1922; and James, 1965), we would like to analyse 

how it is related to the diffraction process and especially to its level of interaction controlled by 

PI0. In this respect, rewriting (8) as  

                                                          kSPIg 20  ,         (9) 

and supposing the lowest limiting value of the product (PI0→0) it becomes clear that, in the only 

case without diffraction (Ikin→0), there is no extinction (g→0). Hence, as Ikin is proportional to 

the factor PI0, g should also be proportional. Evidently, at any level of interaction of the 

diffraction process, the measured intensity Im is affected to a different extent by extinction. 

To treat the behaviour of k with respect to the variation of the level of interaction, we suppose 

that for I0=const the pole density changes from P to random density, i.e. P
r
=1 and then (8) has to 

be rewritten as: 

                                                          SIgk rr

02  .         (10) 

Here, it is also considered that g
r
 is proportional to P

r
. Dividing (8) by (10) and bearing in mind 

P=g/g
r
 one yields the identity  

                                                                 rkk   .          (11) 

The constancy of k is a precondition for nullifying the extinction effect. Such an intention is 

practically realized by equalizing a pair of its expressions that are defined by the intensities 

measured at a series of levels of interaction.  

 

IV. QUANTIFYING THE INCOMPLETELY MEASURED MULTI-COMPONENT 

DIFFRACTION POLE FIGURE 

Prior to consider the procedures for deriving extinction-free data on a diffraction pole figure, 

here we shall mention again earlier results on quantitative characterization of multi-component 

fibre texture (Tomov and Bunge, 1979). In this context, we suppose that the texture consists of c 

components whose crystallites are oriented with their <uvw>c crystal direction parallel (within a 
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few degrees) to the fibre axis. Any of these <uvw>c components is characterized by its relative 

volume fraction c

mM  that is defined by 

                                                             1
c

c

mM  .          (12) 

To calculate c

mM , one has to use a diffraction pole figure  mI , that is assumed to be 

incompletely measured, i.e. it is available only in the range º900 max   . For such a type of 

pole figure it is found that the normalized area (intensity) 
c

jmS ,  of the c texture component 

contributing to the pole-figure peak number j has to be expressed by: 

                                            c

m

c

j

mm

c

jm M
z

z
NIS

c
j

c
j

 








dsin

2

1

,  .        (13) 

Here,   is an angle of the spherical polar coordinate system fixed to the specimen in such a way 

that the direction 0  coincides with fibre axis, [ c

j1
 , c

j 2
 ] defines the range corresponding to the 

peak j, z is the number of the crystallographic equivalent <hkl> directions contributing to the 

pole figure, 
c

jz  is the number of the equivalent <hkl> directions of the c texture component 

contributing to the pole-figure peak number j, and Nm is the normalization factor that connects 

the pole density  mP  with the intensity  mI  measured at  -angle, i.e. 

                                                            mmm PNI   .         (14) 

From (13), an expression follows for determination of the volume fractions: 

                                                          
m

c

jm

c

j

c

m
N

S

z

z
M

,
  .         (15) 

Since the volume fractions c

mM  are independent of the number of the specific peak j, the 
c

j

c

j zS  

ratio is also independent of j. Hence, the normalization factor can be determined using any one 

peak of each texture component and summing up over c that is over all texture components, 

yields: 

                                                          
c

c

j

c

jm

m
z

S
zN

,
 ,         (16) 
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where j denotes one of the peaks belonging to the texture component c. Once the factor Nm is

known, the volume fractions c
mM as well as the pole density distribution of the {hkl} pole figure 

 mP can be obtained from (15) and (14), respectively. 

V. NULLIFYING EXTINCTION EFFECTS BY CALCULATION OF POLE DENSITIES 

AND VOLUME FRACTIONS OF TEXTURE COMPONENTS

To define extinction-free pole density P or volume fractions of texture components, a proper 

procedure is designed for data collection (Figure 1). To this end, the same diffraction pole figure 

of textured sample is twice measured by change of the incident beam intensity from of textured sample is twice measured by change of the incident beam intensity from I0,i to I0,i*

caused by a stepwise decrease of the generator current values from i to i* (i=2i*) :*) :according to

n
kVVAiI )(0  . (17)

Here, A is a constant, VK is the critical excitation potential of the Kα radiation, and n=1.5

(Guinier, 1956). As a whole, the measurement procedure is carried out at constant generator 

tension V. Figure 1 shows that any pair of the particular levels of interaction measured at the 

same  angle of the diffraction pole figure is characterized by: (i) kinematical intensities, 

    *,, ikinikin II  ; (ii) respective normalization factors, *,, ikinikin NN  ; (iii) extinction-free 

pole densities,   rPP  (Pr=1 (Bunge, 1982)) and the coefficient r
ii

r
ii kkkkk **  that

according to (11) is the same for each of the levels of interaction (Tomov, 2011).

Figure 1. Prescription for data collection procedure based on controlled variation of the levels of 
interaction of the diffraction process. These levels were quantified using parameters within the 
kinematical approximation. The relationship Ri,i* between a pair of levels of interaction controlled by the 
incident beam intensities I0,i and I0,i* is caused by variation of the generator current from i to i* (i=2i*), 
respectively. The angle  is defined to the sample normal direction.
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In case of the diffraction pole figure measured at i current density, we write: 

                                                         ikinikin NIP ,,    .         (18) 

Using (1), (4) and (7), the kinematical intensity from (18) is expressed by the respective 

measured intensity Im: 

                                               imimiikin IppIkI ,

2

12,,   .        (19) 

Since the ikinN ,  factor represents intensity reduced to multiples of random distribution, it has to 

be expressed by analogy of (19): 

                                              imim

r

kikin NppNkN ,

2

12,,    .        (20) 

Solving the system of equations (19) and (20) for r

ii kk   (see (11)) yields the expression: 

                                              
  

  1)()(

)()(
2

12,

,,










PppI

NIP
k

im

imim

i
 .        (21) 

The second measurement of the same pole figure, carried out at i* current density, defines the set 

of expressions for  P ,  *,ikinI , *,ikinN , and *ik , accordingly: 

                                                        *,*, ikinikin NIP    ,         (22) 

                                           *,

2

12*,**, imimiikin IppIkI   ,       (23) 

                                           *,

2

12*,**, imim

r

iikin NppNkN    ,        (24) 

                                             
  

  1)()(

)()(
2

12*,

*,*,

*









PppI

NIP
k

im

imim

i  .        (25) 

Solving (21) and (25) for  P  under nullifying the extinction effect by equalizing the 

coefficients ki=ki* yields extinction-free value of the pole density corresponding to the   angle: 

                                            
    

    




*,,*,,

*,,*,,

imimimim

imimimim

IINN

NNII
P




  .        (26) 

This procedure is applied for any measured   angle of the diffraction pole figure. 
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 To calculate extinction-free volume fraction M
c
 of the c component, the normalized 

intensity (area) 
c

jmS ,  of the c component contributing to the pole-figure peak number j has to be 

corrected for extinction. Under XRD measurement conditions defined by I0,i and I0,i* (see Figure 

1), (13) is respectively rewritten as: 

                                   c

hkl

c

j

ikin

jc

im

jc

im

r

i

jc

ikin M
z

z
NSppSkS ,

,

,

2

12

,

,

,

,    .       (27) 

                                c

hkl

c

j

ikin

jc

im

jc

im

r

i

jc

ikin M
z

z
NSppSkS *,

,

*,

2

12

,

*,*

,

*,    .     (27a)  

Replacing ikinN ,  with its corresponding expression from (20) in (27), one obtains: 

                      c

c

j

imimi

jc

im

jc

im

r

i

jc

ikin M
z

z
NppNkSppSkS ,

2

12,

,

,

2

12

,

,

,

,    .      (28) 

Solving the terms on the right hand side of (28) for r

ii kk   yields 

                                             
   

    c

j

cjc

im

c

jim

jc

im

c

i
zzMppS

zzNSM
k






2

12

,

,

,

,

,
 .        (29) 

By analogy, combining (24) and (27a) under r

ii kk **   yields for ki* an expression similar to that 

of (29): 

                                             
   

    c

j

cjc

im

c

jim

jc

im

c

i
zzMppS

zzNSM
k






2

12

,

*,

*,

,

*,

*


 .        (30) 

At the end, solving the system of equations (29) and (30) for cM  under nullifying the extinction 

effect ki=ki* yields an extinction-free value for the volume fraction of texture components: 

                                             
 
 












jc

im

jc

imimim

imim

jc

im

jc

im

j

c

SSNN

NNSS

z

z
M

,

*,

,

,*,,

*,,

,

*,

,

,  .        (31) 

By rule, the nullification procedure starts with kinematical definitions of the quantity under study 

and finishes with a solution of a system of two independent equations of ki=ki* that yields the 

operative formulae (26) and (31). Despite that these formulae contain only the series of 

measurement data affected differently by extinction, the value of any of the studied quantities (

 P  and cM ) is constrained by its kinematical definitions to be extinction-free. 
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VI. EXPERIMENTAL, RESULTS AND DISCUSSION

An electrodeposited nickel coating (Ni2), appearing infinitely thick to X-rays, was studied. It 

represents a fibre texture with a main <100> and twin-related <221> components. The {200} 

diffraction pole figure was measured twice within the interval 70º0  using conventional 

texture goniometer and Ni filtered CuKα radiation (Figure 2). The two scanned versions  imI ,

and  *,imI of the {200} diffraction pole figure were carried out under a compensative condition

*)*(  ii  . This condition is experimentally realized by reducing the incident beam intensities 

from generator current from i to i* (i=2i*) and a respective from generator current from I0,i to I0,i* caused by a decrease of the 

increase of the data collection time per scanned step from τ to τ*. Under such a condition the 

 imI , and  *,imI intensity distribution curves would be overlapped one with another if there is 

no extinction. Actually, because the two curves are affected differently by extinction, their 

course in the range of a few degrees around the ideal [001] direction of the pole figure is 

apparently distinguished. Each of the observed differences, at a given  angle, is controlled by 

means of g coefficient dependence on the level of interaction P defined by (9) that PI0

predetermines the magnitude of the extinction correction (5). Thus, the experiment performed 

under a compensative condition predetermines the extinction effect to be such as it is, which 

reveals that the intensity distribution  imI , is more strongly extinction-affected than  *,imI .

Finally, the compensative condition ensures (nearly) the same statistical errors for any pair of 

intensities measured at the same  angle of both  imI , and  *,imI curves.
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Figure 2. Two recorded variants  imI , and  *,imI of the {200} diffraction pole figure of an electrodeposited nickel (Ni2) 

coating whose measurement was carried out under a compensative condition *)*(  ii  by using a texture goniometer and 
Ni filtered CuKα radiation.

Further, the apparently distinguished differences between the two recorded versions  imI , and 

 *,imI of the 200 diffraction pole figure are quantitatively illustrated in Figure 3. Except the 

pole density distributions  imP , and  *,imP (shortly  mP ), Figure 3 displays the extinction-

free  P distribution as well. Using the  P distribution as a reference, the percentage 

extinction-induced systematic errors  %, imP and  %*, imP (shortly  %mP are defined by

         2100%  mmm PPPP  . (32)

A variation of these errors,  %, imP and  %*, imP , is given in a range of the main <100> 

texture component, where the pole densities are rather high (Figure 4). Depending on the 

variation of the levels of interaction, these errors illustrate the extinction effects caused by 

particular variations of both values  P and . Evidently, the  mP distributions . Evidently, the I0

corresponding to the main <100> suffer extinction-induced systematic errors of different values. 
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The errors are highest in the ideal direction ( =0) of the fibre texture where the errors 

 %, imP  and  %*, imP  amount to 20.8 and 11.3%, respectively. 

 

Figure 3. <100> pole density  imP ,  and  *,imP  distributions of a nickel (Ni2) coating that were calculated directly by the 

measured intensities (see (14)), whereas  P  was calculated under nullifying the extinction effects (see (26)). 

 

Figure 4. Variation of the percentage extinction-induced systematic errors of  %, imP  and  %*, imP  of the <100> 

pole density  %, imP  and  %*, imP  distributions, respectively, in a range where they are apparently distinguished. 
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In contrast to the  imP ,  and  *,imP  distributions corresponding to the <100> component that 

are strongly affected by extinction (see Figures 3 and 4), the volume fractions 
c

imM ,  and 
c

imM *, , 

calculated by using the two measured versions of the same pole figure, are weakly affected by 

extinction. In this particular case, the ‘weakening’ of the extinction effects is artificially 

presupposed by the normalization procedure used for the calculation of 
j

imS , , 
j

imS *, , Nm,i, and Nm,i* 

quantities. Any of these normalized quantities reduces simultaneously to multiples of random 

density both the measured intensity values and the corresponding extinction effects. Each of the 

resultant reductions is   dependent, i.e. the contribution to the random density is proportional to 

the normalization term  sin)(mI , where   [rad] is the scan step (13). Therefore, the volume 

fractions 
c

imM ,  and 
c

imM *,  are calculated under implicitly reduced extinction effects comparable 

to those inherent of the random densities. That is why the absolute values of the percentage 

errors in the volume fractions 
c

imM ,  and 
c

imM *,  deviate from the extinction-free volume fractions 

cM  by less than 3% (Table I). 

Table I Volume fractions 
c

imM ,  and 
c

imM *,  of the <100> and <221> texture components affected 

differently by extinction. These fractions were calculated according to (15) from the diffraction 

pole-figure versions  imI ,  and  *,imI . The cM  volume fractions of the same components, 

calculated under extinction-free conditions, deviate by less than 3% from the extinction-affected 

ones. 

 

<uvw> 
c

imM ,  
c

imM *,  
c

iiM *,  

<100> 0.702 0.711 0.723 

<221> 0.298 0.289 0.277 

 

VII. CONCLUDING REMARKS 

The main advantage of this approach is to gain accuracy and, hence, physical reality of the data. 

The pole density distribution corresponding to the main <100> texture component is strongly 

affected by extinction. 
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Due to definitions that require reduction of the intensity distribution to multiples of random 

density, any of the standard methods for volume fraction measurements provides reasonable data 

if the secondary extinction is even disregarded (Tomov et al., 1977; Tomov and Bunge, 1979). 
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