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Red sorrel is a common herbaceous creeping perennial weed in wild blueberry fields in Nova Scotia
that spreads by seeds and an extensive creeping root system. Experiments were established to
determine temperature thresholds for ramet sprouting from creeping root fragments and to develop
growing-degree-day (GDD) models for predicting ramet emergence and flowering under field
conditions in wild blueberry fields in Nova Scotia. Ramets sprouted from root fragments at
temperatures as low as 1 C, with an optimum temperature for ramet sprouting around 22 C. Ramet
sprouting was completely inhibited at temperatures above 35 C. Cumulative ramet emergence and
flowering under field conditions were adequately explained as functions of GDD by a three-
parameter power equation (R2 5 0.98) and a four-parameter logistic equation (R2 5 0.87),
respectively. Ramet emergence began between 110 and 265 GDD and continued throughout the
season at each site. Model prediction for the initiation of emergence was 92 GDD, and 50 and 95%
emergence were predicted to occur at 1,322 and 2,696 GDD, respectively. Red sorrel ramets began to
flower in the field between 308 and 515 GDD. Model prediction for the initiation of flowering was
289 GDD, and 50 and 95% flowering were predicted to occur at 545 and 1,336 GDD, respectively.
Model validation was conducted with the use of two additional independent data sets for emergence
and flowering and indicated good performance of the proposed models (R2 and root-mean-square
error values ranging from 0.96 to 0.99 and 4.0 to 13.8, respectively). The models allow for direct
comparison of red sorrel phenology to that of the wild blueberry and will aid in the development of
new management strategies.
Nomenclature: Red sorrel, Rumex acetosella L. RUMAA; wild blueberry, Vaccinium angustifolium
Ait.
Key words: Creeping herbaceous perennial, creeping root, phenology.

The wild blueberry is a rhizomatous perennial
berry species (Glass and Percival 2000). Commercial
fields are developed from native stands and managed
primarily on a 2-yr cycle in which fields are pruned in
the first year (nonbearing year) and harvested in the
second year (bearing year) (Agriculture and Agri-
Food Canada [AAFC] 2005). Fields are managed to
encourage the vegetative spread of blueberry plants,
but this also encourages the growth and spread of
perennial weeds (McCully et al. 1991; Yarborough
and Bhowmik 1989).

Red sorrel is a common herbaceous perennial
weed species in commercially managed wild
blueberry fields (McCully et al. 1991). The low
pH soils and lack of tillage associated with

commercial wild blueberry production contributes
to the persistence of red sorrel. Seed of red sorrel is
also a common contaminant on harvesting equip-
ment (Boyd and White 2009) and control from
commonly used herbicides, such as hexazinone, is
variable (Kennedy et al. 2010, 2011; Li 2013).

Red sorrel is dioecous and spreads by seeds and a
shallow creeping root system (Kennedy 2009).
Seedlings contribute to established red sorrel
populations in wild blueberry fields (White et al.
2014), but vegetative reproduction of ramets from
the creeping root system is the primary means of
population maintenance (Kennedy 2009; White et al.
2014). The majority of the creeping root system in
wild blueberry fields occurs in the upper 7 cm of soil
(White 2014), and roots are not fragmented or buried
by tillage in this production system. Root sprouting is
therefore unaffected by factors such as fragment size,
burial depth, and desiccation. Temperature alone
regulates bud sprouting in creeping roots of some
species under these types of conditions (McAllister
and Haderlie 1985), and, when expressed as growing
degree days (GDD), can be used to develop predictive
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models for ramet emergence that can be useful for
guiding weed management (Donald 2000; Webster
and Cardina 1999). Basic physiological data regard-
ing the sprouting response of red sorrel creeping roots
to temperature is lacking (Stopps et al. 2011), and no
attempts have been made to model ramet emergence
as a function of GDD.

The majority of red sorrel ramets remain
vegetative in the year of emergence, as flowering
occurs primarily in overwintering ramets (White
et al. 2014). GDD have been used to help predict
phenological development of some winter annual
and monocarpic perennial species following expo-
sure to winter (Ball et al. 2004; Medd and Smith
1978; Roché et al. 1997), but this approach has not
been applied to overwintering ramets of a creeping
herbaceous perennial. Predictive models for the
emergence and development of wild blueberry
ramets have recently been developed (White et al.
2012) and allow for direct comparison to the
phenological development of weed species if similar
models can be developed.

The objectives of this research were (1) to
determine the sprouting response of red sorrel
creeping roots maintained at constant temperatures,
(2) to develop degree-day models to predict red
sorrel ramet emergence and flowering in wild
blueberry fields, and (3) to validate the proposed
degree-day models with independent data sets.

Materials and Methods

Temperature Experiments. Root Material and
General Methodology. Red sorrel creeping roots were
collected as needed from a wild blueberry field in
Collingwood, Nova Scotia, Canada (45u35910.9000N,
63u51937.5250W), in September, October, and No-
vember 2010. Roots were collected from the top 5 to
10 cm of soil with the use of a garden rake, placed in
paper bags, and stored in a cooler until arrival at the
lab, where roots were placed in a 4 C cold room until
needed. Roots were gently washed of excess soil under
running water at the time of use, and no roots used in
experiments were stored for more than 3 wk.

Three experiments were conducted to evaluate
the effect of temperature on ramet sprouting from
creeping roots. In all experiments, five 2-cm root
fragments were placed in petri dishes lined with two
pieces of Whatman No. 1 9-cm-diam filter paper
(Whatman Ltd., GE Healthcare Companies). Filter
paper was moistened with 5 ml of distilled water
just prior to placing roots in each dish. Petri dishes
were then sealed with ParafilmTM and covered with

aluminum foil to exclude light. Light was excluded
in all experiments because light levels could not be
kept constant in all incubators. A sprouted, upward-
pointing shoot on a root fragment was counted as a
ramet when the shoot was at or exceeded 5 mm in
length. In each experiment the total number of
ramets per root fragment were counted in each petri
dish 5 wk after initiation of the experiment and
expressed as the mean number of ramets per 2-cm
root fragment. Each experiment was repeated once.

Experiment 1: Identification of the Low-Temperature
Threshold for Root Sprouting. The objective of
experiment 1 was to determine the sprouting
response of red sorrel root fragments grown under
constant temperatures of 1, 2, 3, 4, and 5 C. Root
fragments were placed in low-temperature incuba-
tors (Precision Low Temperature Incubator, GCA
Corporation, Chicago, IL) for temperatures of 1, 2,
and 3 C, in a controlled environment chamber
(Model CMP5090, Conviron Controlled Environ-
ments Limited, Winnipeg, Manitoba, Canada) for
the 4-C temperature, and a cold storage room for
the 5-C temperature. Each treatment was replicated
12 times and results from both experimental runs
were combined for analysis.

Experiment 2: Identification of the Optimum Tem-
perature for Root Sprouting. The objective of
experiment 2 was to determine the sprouting
response of red sorrel root fragments grown under
constant temperatures of 5, 10, 15, 20, 25, and 35 C.
The 5-C treatment was conducted in a cold storage
room and the 10-, 15-, 20-, and 25-C treatments
were conducted in the same low-temperature
incubators used for the low-temperature experiment
described above. The 35-C treatment was conducted
in a general-purpose incubator (Model 403 L-C
Incubator, Thermo Scientific, Dubuque, IA). Each
treatment was replicated eight times and results from
both experimental runs were combined for analysis.

Experiment 3: Identification of the High-Temperature
Threshold for Root Sprouting. The objective of
experiment 3 was to determine the sprouting
response of red sorrel root fragments grown under
constant temperatures of 25, 30, 35, and 40 C. The
25-C treatment was conducted in the same incubator
as experiment 2. The 30- and 35-C treatments were
conducted in the same incubator used for the 35-C
treatment in experiment 2. The 40-C treatment was
conducted in a high-temperature general purpose
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incubator (Chicago Surgical and Electrical Co.,
Melrose Park, IL). Petri dishes in this experiment
were monitored every 3 to 5 d for moisture, and 3 to
5 ml of distilled water was added to each dish as
needed. Each treatment was replicated eight times
and results from both experimental runs were
combined for analysis.

GDD Models to Predict Ramet Emergence
and Flowering. Site Selection and Data Collection.
Data on red sorrel ramet emergence and flowering
were collected during both the nonbearing and bearing
years at three wild blueberry fields in Nova Scotia,
Canada, between 2009 and 2011 (Table 1). Study sites
at the Purdy (45u35934.9040N, 63u50949.9320W) and
Wyvern (45u32957.0420N, 63u55956.3110W) fields
were selected in the spring of the nonbearing year in
2009, with the Pigeon Hill site (45u35910.9000N,
63u51937.5250W) selected in autumn 2009 following
the autumn pruning operation prior to the nonbearing
year in 2010. A total of eight quadrats were established
for monitoring ramet emergence and flowering at each
site. Quadrat size was 0.09 m22, and all quadrat
locations established in the nonbearing year were
retained for bearing-year data collection at each site.

Emergence and flowering counts were initiated as
early as possible in the spring of both the nonbearing
and bearing years, generally by late April or early
May. Flowering counts were conducted once or twice
weekly at each site throughout spring and summer
until no new flowering ramets were observed. All
flowering ramets at each count were examined with a
hand lens to identify male and female flower organs
(stamens and pistils), and the total number of
identifiable male and female flowering ramets were
counted and marked with colored paper clips to keep

flowering ramets separate over counting dates.
Emergence counts were initiated at the same time
as flowering counts but were conducted once or twice
weekly throughout spring, summer, and fall until no
new ramets emerged. Newly emerged ramets at each
count were marked with colored elastics to keep
emergence cohorts separate. Flowering and emer-
gence counts were expressed on a percent cumulative
scale for modeling purposes.

Weather Data and GDD Calculations. Hourly air
temperature at each site was monitored with the use
of temperature loggers (HOBO Pro V2, Onset
Computer Corporation, Bourne, MA). Data loggers
were attached to wooden stakes and were located
about 0.5 m above the soil surface. Regional air
temperature data from the nearest Environment
Canada weather station were used to supplement
field-based temperature data so that GDD could be
calculated starting on April 1 (Julian date 91).
Cumulative GDDs were calculated with the use of
the formula:

GDD~
Xn

i~1

(Tmean{Tbase), ½1�

where Tmean is the mean daily air temperature, Tbase

is the lowest air temperature at which it is assumed
ramet flowering or emergence will not occur, and n
is the number of days over which GDDs are
calculated. In this equation, GDD 5 0 if Tmean #
Tbase, similar to the approach used by Gordon and
Bootsma (1993). Rainfall data for each site were
obtained from the nearest Environment Canada
weather station. Mean daily air temperature and
rainfall data for each site is provided in Figure 1.

Table 1. Description of study sites used to collect data for calibration and validation of growing-degree-day models developed for red
sorrel ramet emergence and flowering in wild blueberry fields in Nova Scotia, Canada. Nonbearing year sites established in 2009 and
2010 were retained for bearing-year data collection in 2010 and 2011, respectively.

Elevation Soil OMb

Site-year Production year m Soil typea Soil pHb %

Purdy-2009 Nonbearing 114 Sandy loam 4.8 5.5
Purdy-2010 Bearing
Wyvern-2009 Nonbearing 238 Sandy loam 4.6 6.0
Wyvern-2010 Bearing
Pigeon Hill-2010 Nonbearing 190 Sandy loam 4.8 10.0
Pigeon Hill-2011 Bearing

a Soil type for Purdy-2009, Purdy-2010, Wyvern-2009, Wyvern-2010, Pigeon Hill-2010, and Pigeon Hill-2011 obtained from
Nowland and MacDougall (1973).

b pH and % OM (% organic matter) determined from four soil cores taken to a depth of 10 cm at each site. Cores were combined to
form a composite sample for each site. Composite samples submitted to the Nova Scotia Department of Agriculture Provincial
Analytical Laboratory, Truro, Nova Scotia, for analysis.
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Statistical Analysis. Temperature Experiments. The
mean number of ramets per 2-cm root fragment in
experiment 1 were analyzed with the use of linear
regression (PROC REG, SAS Version 9.2, SAS
Institute, Cary, NC). In experiment 2 a nonlinear,
four-parameter Gaussian model was fitted to the
mean number of ramets per 2-cm root fragment.
The model was of the form:

y~y0za � exp {0:5(x{x0=b)2
� �

, ½2�
where y is the mean number of ramets per 2-cm root
fragment, y0 is the value of x when y 5 0, x is
temperature, x0 is the temperature that produces the
peak mean number of ramets per 2-cm root
fragment, a is the theoretical maximum mean
number of ramets per 2-cm root fragment, and b
is a shape parameter. The model was fit with the use
of the Gauss-Newton algorithm in PROC NLIN in
SAS (SAS Version 9.2, SAS Institute, Cary, NC).
Assessment of model fit was determined by
calculating the coefficient of determination (R2) and

adjusted coefficient of determination R2
Adj

� �
, de-

scribed below. Data for experiment 3 were subject to
ANOVA (PROC GLM, SAS Version 9.2, SAS
Institute, Cary, NC) with temperature modeled as a
fixed effect.

GDD Models. Cumulative ramet flowering and
emergence were plotted as functions of GDD.

Fitting of nonlinear equations, as well as parameter
estimates for these equations, was conducted with
the use of the Gauss-Newton algorithm in PROC
NLIN in SAS (SAS Version 9.2, SAS Institute,
Cary, NC). Percent cumulative flowering ramets
(Y ) was related to cumulative GDD with a four-
parameter logistic equation of the form

y~azb= 1z x=x0ð Þc½ �, ½3�
where y is percent cumulative flowering at any given
GDD, a and c are shape parameters, b is the
theoretical maximum percent cumulative ramet
flowering, x is time in GDD, and x0 is the time,
in GDD, until 50% flowering. The base air
temperature for ramet flowering was determined
by iterating a series of base temperatures (0 to 10 C
in 1-C intervals) in Equation 2 until the best fit was
obtained between percent cumulative ramet emer-
gence and cumulative GDD (Izquierdo et al. 2009).
The best fit was obtained for Tbase equal to 0 C.
Given no current biological justification for using
an alternative Tbase, 0 C was chosen based on best fit
and simplicity in data calculation in both the
current study and for potential end users of the
proposed model.

Percent cumulative ramet emergence (Y ) was
related to cumulative GDD with a three-parameter
power equation of the form

y~azbxc, ½4�

Figure 1. Daily mean air temperature (line) and rainfall (bars) during red sorrel ramet emergence and flowering at (A) Purdy-2009,
(B) Wyvern-2009, (C) Pigeon Hill-2010, (D) Purdy-2010, (E) Wyvern-2010, and (F) Pigeon Hill-2011. Mean daily air temperature
was obtained from HOBO temperature loggers placed 0.5 m above the soil surface at each site. Rainfall data for all sites were obtained
from the Environment Canada weather station located at Nappan, Nova Scotia. Flowering data were collected between Julian date 91
and 240. Emergence data were collected between Julian date 91 and 334.
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where y is percent cumulative ramet emergence at
any given GDD, a is the approximate value of y
when x 5 0, x is time, in GDD, and b and c are
shape parameters. The base air temperature for
ramet emergence was determined through iteration,
as described above. The best fit was obtained for
Tbase equal to 0 C.

Goodness of fit for the proposed models was
determined by calculating the coefficient of deter-
mination (R2) and adjusted coefficient of determi-

nation R2
Adj

� �
:

R2~1{
X

yobs{ypred

� �2
h i. X

yobsð Þ2
h i

½5�

and

R2
Adj~1{ n 1{R2

� ��
n{p

� �
, ½6�

where yobs and ypred are the observed and predicted
values, respectively, n is the number of observations,
and p is the number of parameters in the regression
equation (Bowley 2008), and the root-mean-square
error (RMSE):

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nð Þ

Xn

i~1

yobs{ypred

� �2

s
: ½7�

Goodness of model fit was based on low RMSE and
R2

Adj values close to 1. The proposed flowering and

emergence models were validated with two addi-
tional site-years of flowering and emergence data
that were not included in the model calibration.
Flowering and emergence data from each site were
expressed on a percent cumulative scale and plotted
against cumulative GDD. Flowering and emergence
predictions were calculated with the model and
plotted against observed flowering and emergence at
each site, and the R2

Adj and RMSE described above

were used to assess agreement between observed
data and model predictions.

Results and Discussion

Temperature Experiments. Experiment 1: Identifi-
cation of the Low-Temperature Threshold for Root
Sprouting. The mean number of ramets per 2-cm
root fragment increased linearly between 1 and 5 C
(Figure 2A). Results of the linear regression indicate
an increase of 0.185 ramets per 2-cm root fragment
per degree Celsius increase between 1 and 5 C and a
base temperature for ramet sprouting of 20.065 C
(Figure 2A). This base temperature is very similar to
the 0-C base temperature identified through the

Figure 2. (A) The relationship between the mean number of ramets per 2-cm red sorrel root fragment and constant temperatures of
1, 2, 3, 4, and 5 C. Symbols are the mean number of ramets per 2-cm root fragment. Error bars represent one SE of the mean. The line
is a fitted linear regression equation. (B) The relationship between the mean number of ramets per 2-cm red sorrel root fragment and
constant temperatures of 5, 10, 15, 20, 25, and 35 C. Symbols are the mean number of ramets per 2-cm root fragment. The line is a
fitted nonlinear Gaussian equation of the form y 5 y0 + a * exp[20.5(x 2 x0/b)2]. Parameter estimates and goodness-of-fit statistics for
the Gaussian model are provided in Table 2.

Table 2. Parameter estimates and goodness-of-fit statistics for the Gaussian equation fit to red sorrel ramet sprouting at constant
temperatures of 5, 10, 15, 20, 25, and 35 C.

Parametersa

Equation a b y0 x0 RAdj
2

y 5 y0 + a * exp[20.5(x 2 x0/b)2] 1.1657 (0.4823) 9.9013 (3.9920) 20.2672 (0.5107) 21.6647 (0.8484) 0.9177

a Standard errors of each parameter estimate appear in parentheses.
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iterative process used to develop the GDD models
for this species. Temperatures below freezing were
not directly tested in our experiments, however, so
0 C was used as an initial estimate as Tbase for
sprouting. Base temperatures for seed germination
or sprouting of vegetative propagules are often
species specific (Holt and Orcutt 1996; Steinmaus
et al. 2000), though our estimate of 0 C for red
sorrel is in general agreement with that used for
modeling emergence of Canada thistle [Cirsium
arvense L. (Scop.)] from creeping roots in North
Dakota (Donald 2000) and common dandelion
(Taraxacum officinale Weber in Wiggers) from
rootstock in Western Canada (Hacault and Van
Acker 2006). A higher base temperature has been
reported for modeling the emergence of hemp
dogbane (Apocynum cannabinum L.) and spreading
dogbane (A. androsaemifolium L.) from creeping
roots (Webster and Cardina 1999; Wu et al. 2013).
Base temperatures for emergence of ramets from
creeping roots of other perennial species, however,
are lacking.

Experiment 2: Identification of the Optimum Tem-
perature for Root Sprouting. The mean number of
ramets per 2-cm root fragment increased in a
sigmoidal fashion up to temperatures near 20 C but

then declined as temperatures approached 35 C
(Figure 2B). The Gaussian model fit the data well
and predicted a maximum mean number of ramets
per 2-cm root fragment at a temperature near 22 C
(Table 2). The optimum temperature for root
sprouting of Canada thistle is reported to be 15 C
(Hamdoun 1972), slightly lower than the optimum
of approximately 22 C found for root sprouting in
red sorrel. It is unclear why the mean number of
ramets per root fragment was higher at 5 C in the
low-temperature experiment than in the optimum-
temperature experiment (Figure 2), but roots for
the low-temperature experiment were collected in
late September as opposed to the mid-November
collection date for roots used in the optimum
temperature experiment. The sprouting capacity of
creeping root fragments of some perennial species is
reported to decline in late autumn and winter (Liew
et al. 2012; Swan and Chancellor 1976), potentially
due to endodormancy induced by abiotic factors
such as photoperiod (Horvath et al. 2003; Liew et
al. 2012). It is unknown if red sorrel creeping roots
exhibit such behavior, but the potential impacts on
results of root sprouting experiments should be
considered in the future.

Experiment 3: Identification of the High-Temperature
Threshold for Root Sprouting. Mean ramet data for
experiment 3 could not be made to conform to the
assumptions for the variance analysis, but no ramets
sprouted at temperatures greater than 35 C (Table 3)
and the results are reflective of those reported in
Figure 2B. This temperature is well above the mean
maximum temperatures observed at the study sites
(Figure 1) and indicates that models incorporating
impacts of high temperature thresholds on emer-
gence may be unnecessary. These thresholds are also
highly reflective of the predominant air temperatures

Table 3. Effect of constant temperatures of 25, 30, 35, and
40 C on the mean number of red sorrel ramets per 2-cm
root fragment.

Temperature Mean ramets

C Ramets per 2-cm root fragment
25 0.94 6 0.126a

30 0.94 6 0.134
35 0.04 6 0.027
40 0.0

a Values (mean 6 standard error).

Figure 3. (A) Calibration of a growing-degree-day (GDD; Tbase 5 0 C) model for predicting red sorrel ramet emergence in wild
blueberry fields in Nova Scotia and validation of the proposed model at (B) Purdy-2010 and (C) Wyvern-2009. Symbols are the mean
of eight observations at each site. Lines are calibrated model predictions.
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recorded at each study site (Figure 1) and indicate
that red sorrel is highly adapted to the climatic
conditions prevalent in Atlantic Canada.

GDD Models to Predict Ramet Emergence
and Flowering. Red sorrel ramet emergence began
between 110 and 265 GDD (mid to late April)
(Figure 3A). Emergence continued throughout the
season at each site and ramet populations reached
90% emergence between 2,091 and 2,565 GDD
(mid to late September) (Figure 3A). The proposed
power model fit the field data well and accurately
predicted emergence in the field as a function of
GDD (Figure 3A; Table 4). Model prediction for
the initiation of emergence was 92 GDD, and 50
and 95% emergence were predicted to occur at
1,322 and 2,696 GDD, respectively. Red sorrel
ramets therefore emerge much earlier, and for a
much longer duration, than ramets of the wild
blueberry (White et al. 2012). Model predictions
for ramet emergence generally agreed with observed
values (Figure 3B and 3C; Table 5), with the
primary exception being the deviation of the
observed emergence from the predicted emergence
at Purdy-2010 (Figure 3B; Table 5). Additional
emergence data sets should therefore be collected to
help improve model fit and provide additional
opportunity for model validation.

The general emergence pattern of red sorrel
ramets as a function of GDD is much more
prolonged than is reported for emergence of other
perennial weeds from creeping roots. For example,
ramet emergence of spreading dogbane in wild
blueberry fields was much more rapid, with ramet
populations reaching 50 and 100% emergence at
184 and 420 GDD (Tbase 5 6 C) (Wu et al. 2013).
Similar GDD thresholds are also reported for
spreading dogbane ramet emergence from creeping
roots in Ohio (Webster and Cardina 1999). Ramets
of Canada thistle reached 1 and 80% emergence
from creeping roots at 197 and 587 GDD (Tbase 5
0 C) in spring wheat in North Dakota (DonaldT
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Table 5. Goodness-of-fit statistics for validation of proposed
growing-degree-day (GDD; Tbase 5 0 C) models for predicting
red sorrel ramet emergence and flowering in wild blueberry fields
in Nova Scotia, Canada.

Model validated Site-year RAdj
2 RMSEa

Emergence Purdy-2010 0.96 13.8
Wyvern-2009 0.99 4.0

Flowering Wyvern-2010 0.99 5.7
Pigeon Hill-2010 0.99 6.9

a RMSE 5 root-mean-square error.
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2000). Inherent differences in the biology of these
species when compared to red sorrel, however, may
make comparisons of emergence patterns difficult.
Ramets of spreading dogbane and Canada thistle die
back to soil level each year and do not generally
persist for more than one season (Moore 1975;
Robison and Jeffrey 1972). In contrast, surviving
red sorrel ramets from a single season persist for at
least two growing seasons (White et al. 2014). These
species therefore exhibit inherent differences in the
demographic aspects of ramet production at the
genet level that ultimately affect ramet emergence
patterns observed in the field.

Red sorrel ramets began to flower in the field
between 308 and 515 GDD (mid to late May)
(Figure 4A). Flowering generally occurred quite
rapidly at each site and ramet populations reached
90% flowering between 623 and 1,308 GDD (mid-
June to mid-July) (Figure 4A). The proposed model
fit the field data well and accurately predicted
flowering in the field as a function of GDD
(Figure 4A; Table 4). Model prediction for the
initiation of flowering was 289 GDD, and 50 and
95% flowering were predicted to occur at 545 and
1,336 GDD, respectively. Model validation indi-
cated good performance of the proposed model
(Figures 4B and 4C; Table 5).

Predicted GDD thresholds for red sorrel flower-
ing were similar to thresholds previously established
for wild blueberry (White et al. 2012), with 50% of
blueberry and red sorrel ramets having open flowers
at 477 and 545 GDD (Tbase 5 0 C), respectively.
Peak blueberry bloom occurs between 562 and 565
GDD (White et al. 2012), and red sorrel flowering
therefore occurs during a critical time for pollina-
tion of the wild blueberry. Red sorrel flowers are
foraged by introduced pollinators (Hughes 2012),
though the overall impact of this foraging on
pollination of the wild blueberry is unclear. Hughes

(2012) also found large amounts of pollen from
male red sorrel flowers deposited inside open
blueberry flowers. Red sorrel pollen increased the
incidence of Botrytis cinerea infection on blueberry
flowers under controlled conditions (Hughes 2012),
though the impact of red sorrel pollen on disease
incidence under field conditions has not been
confirmed. Wild blueberry growers nonetheless
report increased requirement for fungicide applica-
tions to control outbreaks of B. cinerea in fields with
heavy red sorrel infestations, a requirement poten-
tially accentuated by the overlapping flowering of
the two species.

In terms of management, the emergence model
helps explain the general lack of control from
current management practices and provides insight
into effective new strategies. Weed control with soil-
applied herbicides prior to blueberry emergence in
the spring of the nonbearing year is one of the
primary components of weed management in wild
blueberry. The most common herbicide applied in
this manner is hexazinone, which is generally
applied in late April or early May prior to blueberry
emergence. Hexazinone tends to dissipate rapidly in
blueberry soils, however, with less than 10% of
applied hexazinone remaining 60 d after application
(Jensen and Kimball 1985, 1987). Red sorrel ramets
emerging in late summer and early autumn therefore
avoid contact with hexazinone and established genets
likely recover following dissipation of the herbicide.
New management strategies should focus on identi-
fying new herbicide products with longer soil
activity, and targeting peak ramet populations with
postemergence herbicides. Postharvest pruning pro-
vides a window for postemergence herbicide appli-
cations, but growers prune harvested fields in late
autumn because of improved cutting efficiency of
blueberry stems, and/or to prevent yield losses
associated with early pruning (Yarborough and Hess

Figure 4. (A) Calibration of a growing-degree-day (GDD; Tbase 5 0 C) model for predicting red sorrel ramet flowering in wild
blueberry fields in Nova Scotia and validation of the proposed model at (B) Wyvern-2010 and (C) Pigeon Hill-2010. Symbols are the
mean of eight observations at each site. Lines are calibrated model predictions.
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1998). In fields with heavy red sorrel infestations,
however, growers should consider the impact of late
pruning on the activity of foliar-applied herbicides
used for red sorrel control. Coordinating blueberry
pruning with the onset of peak ramet populations
through the use of the proposed degree-day model
should provide a basis for maximizing the delay in
autumn pruning without compromising weed con-
trol.
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