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In this paper we consider j-tuple-connected components in random k-uniform hypergraphs (the
j-tuple-connectedness relation can be defined by letting two j-sets be connected if they lie in a
common edge and considering the transitive closure; the case j = 1 corresponds to the common
notion of vertex-connectedness). We show that the existence of a j-tuple-connected component
containing Θ(n j) j-sets undergoes a phase transition and show that the threshold occurs at edge
probability

(k− j)!(k
j

)
−1

n j−k.

Our proof extends the recent short proof for the graph case by Krivelevich and Sudakov, which
makes use of a depth-first search to reveal the edges of a random graph.

Our main original contribution is a bounded degree lemma, which controls the structure of the
component grown in the search process.

2010 Mathematics subject classification: Primary 05C65
Secondary 05C80

1. Introduction

1.1. Phase transition in random graphs
The Erdős–Rényi random graph [11] G(n, p) (resp. G(n,M)) is one of the most intensely studied
in the theory of random graphs. It is well known, and it has been studied in great detail (see e.g.
[8, 12]) how the structure of the components changes as p (resp. M) grows. In the seminal paper
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[11] entitled ‘On the evolution of random graphs’, Erdős and Rényi discovered among other
things that the Erdős–Rényi random graph undergoes a drastic change of the size and structure
of largest components, which happens when the number of edges is around n/2. In terms of
the binomial model G(n, p), this phenomenon can be stated as follows. Consider G(n, p) with
p = c/n for a constant c > 0. If c < 1, then asymptotically almost surely (a.a.s. for short, meaning
with probability tending to one as n tends to ∞) all the components in G(n, p) have O(logn)
vertices, whereas if c > 1, then a.a.s. there is a unique component with ρn + o(n) vertices, the
so-called giant component, where ρ is the unique positive solution of the equation

1−ρ = exp(−cρ).

In 1984, Bollobás [7] made a breakthrough in the study of the so-called critical phenomenon
associated with the phase transition by studying the case c → 1 in more detail. His result was
improved by Łuczak in 1990 [17]. Let λ = λ (n) be such that

p =
1
n

+
λ

n4/3
. (1.1)

If λ → −∞, then a.a.s. all the components have order o(n2/3). If λ → +∞, then there is a.a.s.
a unique component of order � n2/3, while all other components have order o(n2/3). If λ is a
constant, then the size of the largest component is Θp(n2/3).

1.2. Phase transition in random hypergraphs
A k-uniform hypergraph H is a tuple (V,E), where V is the vertex set of H and E is its edge set
with E ⊆

(V
k

)
. The random k-uniform hypergraph Hk(n, p) is defined similarly to G(n, p): each

of the
(n

k

)
possible edges is included independently of the others with probability p.

Similar phase transition phenomena were discovered in random hypergraphs. In particular, a
straightforward generalisation of the giant component was studied in [4, 5, 13, 21], where the
following concept of ‘component’, called vertex-component, was studied: two vertices u and v
are connected in a k-uniform hypergraph H if there is a sequence e0, . . . ,e� of edges of H such
that u ∈ e0 and v ∈ e� and ei ∩ ei+1 �= /0.

The threshold for a giant vertex-component in Hk(n, p) was first determined by Schmidt-
Pruzan and Shamir [21]. More precisely, let p = c/

(n−1
k−1

)
. If c < (k− 1)−1 − ε for an arbitrarily

small but fixed ε > 0, then a.a.s. the number of vertices of the largest component is O(logn).
But if c > (k− 1)−1 + ε , then a.a.s. there is a unique component containing a linear number of
vertices, which is called the giant component; more precisely, the number of vertices of the giant
component is ρn+o(n), where ρ is the unique positive solution to the equation

1−ρ = exp(c((1−ρ)k−1 −1)).

This result was subsequently strengthened in various ways by Karoński and Łuczak [13], Ravelo-
manana and Rijamamy [20], Behrisch, Coja-Oghlan and Kang [4], and Bollobás and Riordan [9].

While in the graph case two vertices are connected if there is a path (or walk) between them,
in hypergraphs the notion of a path (or walk) is ambiguous, and in fact there are several possible
definitions. An s-tight path of length m in a k-uniform hypergraph H is a sequence e0, . . . ,em−1 of
edges of H such that ei = {vi(k−s)+1, . . . ,vi(k−s)+k} for some distinct vertices v j. In the case s = 1
we call an s-tight path a loose path, and for s = k−1 simply a tight path.
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Note that when p = (k−2)!/nk−1, the edges in Hk(n, p) typically intersect in at most one
vertex; thus, ‘morally’ if two vertices are connected then they are connected by loose paths
(mostly). The result of Schmidt-Pruzan and Shamir, incorporating some of the improvements
mentioned above, can be restated as follows.

Theorem 1.1 ([9, 13, 21]). Let k � 2 and n−1/3 	 ε = ε(n) < 1 be given, and let ρ be the
unique positive solution to the equation

1−ρ = exp

(
1+ ε
k−1

((1−ρ)k−1 −1)
)
.

Then a.a.s. the (vertex) size of the giant component in the random k-uniform hypergraph Hk(n, p)
is (1+o(1))ρn if p = (1+ ε)(k−2)!/nk−1 and O(logn/ε2) if p = (1− ε)(k−2)!/nk−1.

In this paper we study the following notion of j-tuple-connectedness in k-uniform hyper-
graphs, which generalises the notion mentioned above (if j = 1 we simply speak about vertex-
connectedness). We say two j-sets ( j-tuples of vertices) J0 and Js ( j ∈ {1, . . . ,k−1}) are j-tuple-
connected in the k-uniform hypergraph H if there is an alternating sequence of j- and k-element
subsets of V (H): J0,e0,J1,e1, . . . ,Js such that Ji∪Ji+1 ⊆ ei and ei ∈ E(H) for i = 0, . . . ,s−1. The
components then consist of j-element subsets of the vertex set of H. Again, one might wonder
when a j-tuple-connected giant component of size (i.e. number of j-sets) Θ(nj) emerges in the
random k-uniform hypergraph.

For the rest of the paper we will regard k and j as fixed constants. In particular, this means that
any parameter which is a function only of k and j is also a fixed constant.

1.3. Intuition: where to locate the thresholds?
The intuition (as in the case of random graphs) comes from the branching processes, which can
be described for the general case of j-tuple-connectedness as follows. Initially we start with a
single j-element set J0. We expect that there are m := p

(n− j
k− j

)
∼ pnk− j/(k− j)! edges e1, . . . ,em

containing J0 in Hk(n, p). The range of p is typically such that these edges intersect pairwise
only in J0, which leads to

(k
j

)
− 1 offspring for each edge ei. From the theory of branching

processes, the process survives forever with positive probability if
((k

j

)
−1

)
m > 1 (if everything

is independent). This suggests that the threshold should be

pk, j = pk, j(n) :=
(k− j)!(k

j

)
−1

n j−k. (1.2)

For j = 1 we obtain p = (k−2)!/nk−1, which is exactly the threshold: see [11, 21]. For j =
k−1 the conjectured threshold is 1/((k−1)n). Our main theorem shows that pk, j is the correct
threshold for all k, j, as was suggested recently by Bollobás and Riordan [9].

Our approach builds on the recent proof strategy of Krivelevich and Sudakov [14] who used
a search algorithm in graphs to give a simple and short proof of the phase transition in G(n, p).
More precisely, we first adapt their proof strategy for j = 1, thus deriving an alternative proof
of Theorem 1.1. Moreover, the approach via depth-first search allows us to study the largest
component in the early supercritical phase, i.e. when p = (1+ ε)(k−2)!/nk−1 with ε = ε(n) �
n−1/3, which gives the lower bound Ω(εn) for the size of the largest component in random
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hypergraphs. This range of ε matches that considered by Bollobás and Riordan [9] and is es-
sentially best possible.

Then we turn to the case of general k, j, which requires some additional work, most notably
Lemma 4.5. We obtain the following theorem, thus confirming the threshold for pk, j mentioned
above. By ω( f (n)) we denote any function g(n) such that g(n)/ f (n) → ∞ as n → ∞.

Theorem 1.2. Let 0< ε = ε(n)< 1 and 1� j � k−1 be given. Then a.a.s. the size of the largest
j-tuple-connected component in the random k-uniform hypergraph Hk(n, p) is O(ε−2 logn) if
p = (1− ε)pk, j.

Let δ ∈ (0,1) be any constant. If furthermore ε = ω(nδ−1 + n− j/3), then a.a.s. the largest
j-tuple-connected component in Hk(n, p) has size Ω(εn j) if p = (1+ ε)pk, j.

Note in particular that Theorem 1.1 is an immediate corollary, although we will prove The-
orem 1.1 first, since the proof of the special case is substantially simpler.

Note also that there is no lower bound on the size of ε in the first part of the theorem. However,
for very small ε , the bound on the largest component is not best possible, and may even be
greater than

(n
j

)
and therefore useless as a bound. We discuss the critical window in more detail

in Section 5.
While preparing this paper we discovered that independently Lu and Peng [16] have claimed

to have a proof of a similar result, although only for constant ε .
Our main contribution to the proof of Theorem 1.2 is Lemma 4.5, which will be formally

stated in Section 4. Briefly, it states that for some α ∈ (0,1) which is a function of ε , with high
probability the set of j-sets which have been discovered by time αnk is ‘smooth’ in the following
sense: for any 1 � �� j−1, any �-set is contained in O(αnj−�) such j-sets. (This is best possible
up to a constant factor.)

In the proof of Theorem 1.2 (and the special case j = 1, which is Theorem 4.3), for the case
p = (1 + ε)pk, j we will implicitly assume that ε is less than some small constant, say ε0, which
is dependent on k, j. This is permissible since if ε > ε0, then our aim is to prove that there is a
component of size Ω(εn j) = Ω(ε0n j) = Ω(n j), and thus the result for ε > ε0 is implied by the
result for ε = ε0.

1.4. Motivation from random simplicial complexes
A parallel development was initiated by Linial and Meshulam, who studied homological con-
nectivity of random simplicial complexes [15]. Furthermore, motivated by finding thresholds for
various algebraic notions of cycles in Hk(n, p), questions such as collapsibility and vanishing of
the top homology have been investigated in [1, 2, 3]. A k-uniform hypergraph H is collapsible
if one can delete all of its edges one by one, such that in each step we remove some edge e
containing a (k−1)-element set J if e does not intersect any other edge in J. It has been shown
in [3] that the first emerging cycle in the (k− 1)th homology group of Hk(n, p) is either Kk

k+1

or contains Ω(nk−1) edges. Our Theorem 1.2 in the case j = k − 1 may be seen as the study
of the acyclic case of Hk(n, p), where we have a sharp threshold for the emergence of a tightly
connected ‘hypertree’ with Θ(nk−1) edges covering all vertices.
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2. Exploration of random hypergraphs via depth-first search

Usually we denote the vertex set of a hypergraph H by [n] := {1,2, . . . ,n}. We also let e(H)
denote the order of the edge set E(H).

2.1. Exploration algorithm in hypergraphs
Now we introduce the depth-first search algorithm (DFS) for hypergraphs. We are given as input
two hypergraphs H and H on the same vertex set V with E(H) ⊆ E(H), and we would like to
discover all edges of H by querying the edges of H to determine whether they belong to H. We
will choose vertices and edges to query according to certain linear orderings (see Algorithm 1).

There are three types of vertices: neutral, active and explored (we borrow the terminology from
[19]). Additionally, vertices that are active or explored (i.e. any non-neutral vertices) are called
discovered. Initially, all vertices are neutral. We start our exploration from the smallest neutral
vertex, which we mark as active. Departing from some (currently considered) active vertex v we
query any previously unqueried triples which contain v and at least one neutral vertex (but no
explored vertices) in increasing order until we discover an edge e of H. Once such an edge is
found we mark all neutral vertices in e active and start the same query process from the vertex
which was marked active last. If no edge e could be found, we mark v as explored and start
the same querying process from the next active vertex. If no vertices are active then we have
discovered some component completely, and we proceed as in the beginning of the depth-first
search. Finally, once all vertices are discovered, we query all unqueried edges. Notice however
that at the moment when all vertices are discovered, we know the vertex-components of H.

A complete description of the algorithm is given in Algorithm 1.

2.2. Coupling
Let H := Hp denote the random subhypergraph of H where every edge of H is chosen inde-
pendently of the other edges with probability p. Further, let (Xi)i∈[e(H)] be a sequence of e(H)
i.i.d. Bernoulli random variables with mean p. We can associate with the ith query the random
variable Xi, meaning that if Xi = 1 then the queried edge is in H and otherwise not. Once we
have fixed the orderings of the vertices and edges and the values of the Xi, Algorithm 1 is a
deterministic one and it queries every edge of H exactly once, thus every {0,1}-sequence of
length e(H) corresponds to a unique subgraph of H.

In this way, for given fixed orderings σ and τ as in Algorithm 1, we couple the Xi with Hp. For
technical reasons which are not needed in the case of vertex-connectedness, we let the choice of
τ be uniformly random independently of σ (and also of Hp, since τ is chosen before any of Hp

is revealed). In fact, we will only need that τ is chosen randomly in this way at one point in the
paper (Lemma 4.6); an arbitrary ordering τ would work almost as well, but would lead to some
additional technical difficulties in the range when ε is very small.

Remark 2.1. Note that the ordering τ is only used when starting a new component to determine
which vertex we will continue exploring: the rest of the algorithm is independent of τ . It is easy
to see that choosing τ in this way is equivalent to choosing a neutral vertex uniformly at random
from which to continue exploring. It is this interpretation that we will consider in Lemma 4.6.
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Algorithm 1: Hypergraph exploration DFS

Input: H, H = (V,E) ⊆H: k-uniform hypergraphs.
σ : linear ordering of E(H).
τ: linear ordering of V (H).

Output: C: set of vertex-connected components of H

1 C := /0;
2 let S be an empty stack;
3 repeat
4 let x be the smallest neutral vertex in the ordering τ;
5 mark x as active;
6 add x to S;
7 while S �= /0 do
8 Let x be the top vertex of S;
9 if ∃ the smallest unqueried edge e of H such that x ∈ e and e contains at least one

neutral vertex then
10 if e ∈ E(H) (‘query e’) then
11 add all neutral vertices of e in ascending order to the top of S;
12 mark these vertices as active;

13 else
14 remove x from S;
15 mark x as explored;

16 let C be the set of vertices explored in the while-loop above;
17 C := C ∪{C};

18 until all vertices are explored;
19 query all remaining edges of H in ascending order;

We will show the existence of a large component (Theorem 1.2) by proving that for appropriate
small α , after αnk queries Algorithm 1 (or one of its relatives, which will be defined later) will
have found a large j-tuple-connected component in Hk(n, p) a.a.s.

In the case of vertex-connectedness our H =
(
[n],

([n]
k

))
is the complete k-uniform hypergraph

and H is the random k-uniform hypergraph Hk(n, p).
In order to study j-tuple-connectedness we could alter Algorithm 1, in that we visit j-element

sets of vertices instead of single vertices. Instead of this, we define the
(k

j

)
-uniform hypergraph

H = Hk, j as follows.

Definition 2.2. The vertex set of Hk, j is
([n]

j

)
and the edges are those

(k
j

)
-element subsets of

V (Hk, j) that consist of all j-element subsets of some k-element set from [n].

Thus, we have reduced a question about j-tuple-connectedness in a k-uniform hypergraph to
one about vertex-connectedness in an appropriately defined auxiliary hypergraph H ⊆ Hk, j. In
the following we will analyse Algorithm 1 when applied to Hk, j and H = (Hk, j)p.
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At several points in this paper we will want to calculate an upper bound on the number of edges
found in some subset of the DFS process, e.g. the set of queried edges that contain a given vertex
v or, generally, a given �-set L. It will often be convenient to simplify such situations by allowing
some additional queries which are not actually made within this subset (or possibly within the
DFS process at all). Formally, we couple the subset of the DFS with a number of dummy variables
which are also i.i.d. Bernoulli random variables with probability p, and which mimic these addi-
tional queries. Then the number of ‘1’s in the subset we consider is certainly at most the number
of ‘1’s in the subset together with the dummy variables. In what follows we shall therefore
assume the existence of these extra queries without mentioning the formal interpretation.

2.3. Chernoff bounds
We will use the following version of the Chernoff bound from [12, Theorem 2.1].

Theorem 2.3. Let X be the sum of t i.i.d. Bernoulli random variables with mean p. Then for
a � 0,

P[X � E(X)+a] � exp

(
− a2

2(t p+a/3)

)
,

P[X � E(X)−a] � exp

(
− a2

2t p

)
.

3. Before the phase transition

First we prove that when p is not too large, all the components in a generalised random hyper-
graph on N vertices have size O(logN/ε2). We start with an auxiliary lemma [14, Lemma 1].

Lemma 3.1. Let M ∈ N, ε ∈ (0,1), c ∈ R and let (Xi)i∈[M] be i.i.d. random Bernoulli vari-
ables with mean p. If p � (1− ε)/c and t � 9c logM/ε2, then with probability at least 1 −
M exp(−ε2t/(3c)) � 1−1/M2, the sum of any t consecutive Xi is less than t/c−1.

Proof. For p = (1− ε)/c we have

E

(t0+t−1

∑
i=t0

Xi

)
= (1− ε)

t
c
.

We apply Theorem 2.3 to bound the probability that the sum within a fixed interval of length t is
at least

t
c
−1 = E

(t0+t−1

∑
i=t0

Xi

)
+ ε

t
c
−1,

that is,

P

[
t0+t−1

∑
i=t0

Xi >
t
c
−1

]
� exp

(
− (ε(t/c)−1)2

2((1− ε)t/c+ εt/(3c))

)
< exp

(
−ε2t

3c

)
� 1/M3.

The union bound over all possible intervals gives the claim.
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Theorem 3.2. Let H be an �-uniform hypergraph on N vertices with maximum degree Δ =
Δ(N), and let ε = ε(N)> 0. Then for p = p(N)� (1− ε)/((�−1)Δ), the random hypergraph Hp

has a.a.s. (as N → ∞) only vertex-connected components of size at most 9(�−1) log(ΔN/�)/ε2.

Proof. We couple Hp with a sequence (Xi)i∈[e(H)] of i.i.d. Bernoulli variables with mean p,
as described in Section 2.2 (observe: e(H) � ΔN/�). We run Algorithm 1 to explore the hyper-
graph Hp.

If there exists a component C ⊆ V (H) of size at least m := 9(�−1) log(ΔN/�)/ε2, then it
is found during some while-loop. Indeed, we must have found at least (m− 1)/(�− 1) edges
in the component after having explored at most m vertices, therefore having made at most mΔ
queries during this while-loop. In other words, there exists an interval of at most mΔ queries
in the process, of which at least (m− 1)/(�− 1) were successful. But Lemma 3.1 applied with
t = mΔ, with M = ΔN/�� e(H) and with c = (�−1)Δ shows that the probability that there exists

any such interval is at most 1/M2 = �2/(ΔN)2 N→∞−→ 0.

From Theorem 3.2 we immediately obtain the cases of Theorems 1.1 and 1.2 when p � (1−
ε)pk, j.

Corollary 3.3. Let k, j ∈ N with k > j and ε = ε(n) > 0 be given. If

p � (1− ε)
(k− j)!(k

j

)
−1

n j−k,

then a.a.s. the j-tuple-connected components of the random k-uniform hypergraph Hk(n, p) have
size O(ε−2 logn).

Proof. We define H = Hk, j as in Definition 2.2. Thus, every S ∈V (H) has degree degH(S) =(n− j
k− j

)
, implying that if

p � (1− ε)
(k− j)!n j−k(k

j

)
−1

� (1− ε)
1((k

j

)
−1

)( n
k− j

) ,
then a.a.s. Hp has components of size at most

9
ε2

((
k
j

)
−1

)
log

((n− j
k− j

)(n
j

)
(k

j

)
−1

)
� 9

ε2

(
k
j

)
log(nk)

= O(ε−2 logn).

Therefore, the random hypergraph Hk(n, p) has, for the same p, j-tuple-connected components
of size at most O(ε−2 logn) a.a.s. Thus, the assertions of Theorems 1.1 and 1.2 follow when
p � (1− ε)pk, j.
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4. After the phase transition

4.1. Algorithm 2
For the regime when p � (1 + ε)pk, j, we slightly alter our algorithm in that in the main if -
condition during the while-loop we only consider those unqueried edges e ∈ E(H) such that
e \ {x} consists of only neutral vertices. Thus, when an edge in H (during some while-loop) is
found, we get

(k
j

)
− 1 new active vertices. We refer to this algorithm as Algorithm 2. Observe

that in this case we may not fully discover the j-tuple-connected components, but if we find a
sufficiently large partial component in this way, then this clearly gives a lower bound on the size
of the largest component.

4.2. Vertex-connectedness
First we look at the case of vertex-connectedness in the random k-uniform hypergraph. As
mentioned above, Algorithm 2 gives a lower bound on the size of the largest component (indeed,
it constructs a ‘hypertree’ in Hk(n, p) of this size). Furthermore, since in Hk(n, p) for p =
(1+ ε)(k−2)!/nk−1 the expected number of pairs of edges sharing at least two vertices is O(1),
we expect that even after removing all such pairs of edges, most of the largest component remains
connected via loose paths.

We will need the following martingale result, an asymmetric version of the Hoeffding inequal-
ity proved by Bohman [6].

Lemma 4.1 (Lemmas 6 and 7 from [6]). Suppose 0 = Y0,Y1, . . . ,Ym is a martingale in which
−c � Yi −Yi−1 � C for all 1 � i � m and some real numbers c,C > 0 with c � C/10. Then for
every 0 < a < cm,

P(|Ym|� a) � 2exp

(
−a2

3cCm

)
.

We use Lemma 4.1 to prove the following concentration result.

Lemma 4.2. Let j < k ∈ N and let X1, . . . ,Xαnk be i.i.d. Bernoulli random variables with para-
meter p � k!n j−k. Suppose α = α(n) is such that α3n j → ∞. Then with high probability, for
every 1 � t � αnk we have ∣∣∣∣ t

∑
i=1

Xi − pt

∣∣∣∣� α2n j.

Note that the concentration given by this lemma is useless for very small t. However, we will
only need to apply it for t = Θ(αnk), where it gives a better concentration than that which would
be given by applying a Chernoff bound and a union bound over all t.

Proof. Let us define a martingale Y0,Y1, . . . ,Yαnk as follows:

Y0 := 0,

Yi+1 :=

{
Yi +Xi+1 − p if |Yi|� α2n j,

Yi otherwise.
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Note that this may be seen as a martingale with a stopping time, where the stopping condition
is |Yi| > α2n j. It is easy to check that this is indeed a martingale. Furthermore, we have −p �
Yi+1 −Yi � 1− p � 1. Therefore, by Lemma 4.1 we have

P(|Yαnk |> α2n j) � 2exp

(
− (α2n j)2

3pαnk

)
� 2exp(−α3n j/(3k!)) = o(1).

Furthermore, note that the conclusion of Lemma 4.2 holds if and only if |Yαnk | � α2n j, and
therefore the above calculation proves the lemma.

With the above lemma to hand we follow the lines of [14, Theorem 2] to show the following
theorem.

Theorem 4.3. Let k ∈ N, k � 2 and let ε = ε(n) be a function satisfying ε = ω(n−1/3). If
p = (1 + ε)(k−2)!/nk−1, then a.a.s. the random hypergraph Hk(n, p) contains Ω(εn) vertices
that are pairwise connected by loose paths.

In particular, Hk(n, p) has a vertex-connected component of size Ω(εn).

Proof. We consider a sequence of i.i.d. Bernoulli random variables coupled with Hk(n, p), as
explained in Section 2.2. Our H is the complete k-uniform hypergraph Kk

n with n vertices.
We choose α := ε/(8k!).
We will show that between the query αnk/2 and the query αnk the stack S of active ver-

tices a.a.s. has not been empty, meaning that during this time Algorithm 2 is discovering a
single (large) component. Furthermore, Lemma 4.2 implies that a.a.s. the number of Xi that are
answered as 1 between the query αnk/2 and αnk is at least

(pαnk −α2n)− (pαnk/2+α2n) � (k−2)!αn/2−2α2n � ε
16k2

n.

Together, these two facts yield the assertion of Theorem 4.3, since there are still some unexplored
vertices, and therefore Algorithm 2 has found at least εn/(16k2) edges in some component and
each such edge makes k− 1 previously neutral vertices active, which results in a component of
size Ω(εn).

So let us assume for a contradiction that the high probability event of Lemma 4.2 holds, but
that after some t queries where t ∈ {αnk/2, . . . ,αnk}, the stack S is empty. Then Algorithm 2
has discovered pt±α2n edges in Hk(n, p). Since with each explored edge, k−1 vertices become
active, and after emptying the stack S all active vertices are explored, this implies that if s edges
have been found, then at least s(k− 1) + 1 vertices are explored. Observe that when the stack
S is empty there are only explored and neutral vertices. Further, if s′ vertices are explored then
Algorithm 2 must have made (at least) s′

(n−s′

k−1

)
queries. Further observe that this function is

increasing for s′ � n/(k +2)−1. We estimate how many edges have been queried at time t �αnk.
This number is at least

(pt −α2n)(k−1)
(

n− (pt −α2n)(k−1)
k−1

)

� pt −α2n
(k−2)!

(n− pt(k−1))k−1
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� pt −α2n
(k−2)!

nk−1(1− (1+ ε)(k−1)!α)k−1

� (1+ ε/2)t(1− ε/8) > t

for α � ε/(8k!). However, this is a contradiction since we assumed that only t queries have been
made so far.

Therefore, for large enough n, the probability that the stack becomes empty between queries
αnk/2 and αnk is at most the error probability in Lemma 4.2.

Remark 4.4. Similarly to the results in [14] we can show that the large component contains a
loose path of length Ωk(ε2n) in Hk(n, p) for p = (1 + ε)(k−2)!/nk−1. Roughly speaking, the
argument is as follows. We have already shown that the stack of active vertices does not become
empty between times αnk/2 and αnk. On the other hand, if the set of active vertices is small
enough (Θ(ε2n) will do), then this will not affect the previous calculations significantly. We can
therefore deduce that the set of active vertices never becomes smaller than Θ(ε2n) in this time
interval. But because we are exploring via a depth-first search process, the set of active vertices
automatically lies in a loose path (possibly with some explored vertices to complete the edges).

4.3. j-tuple-connectedness
Our aim in this section is to prove Theorem 1.2. For the remainder of this section we therefore
fix δ and ε = ε(n) as in Theorem 1.2. We will also assume that n � n0 for some sufficiently large
constant n0 which we do not determine explicitly (but which is implicitly dependent on k, j and
δ ). Let α = α(n) satisfy

ε
32k!2 jC

� α = ω(nδ−1 +n− j/3),

where C is a constant depending only on k, j which we determine implicitly later. (We note that
for the purposes of this paper, setting α = ε/(32k!2 jC) would be sufficient. However, in [10] we
will need to quote Lemma 4.5 for a wider range of α .) We first give an outline of the main ideas
of the proof.

Proof sketch of Theorem 1.2. We consider H =Hk, j as defined in Definition 2.2. As explained
in Section 2.2, the random

(k
j

)
-uniform hypergraph Hp we consider has a natural correspondence

with Hk(n, p). We perform Algorithm 2 as described above, that is, only when all vertices but
one are neutral do we query an edge in H. As in Theorem 4.3 we shall estimate the number of
queries made given that the stack S is emptied between αnk/2 and αnk queries.

This time, however, we need to take account of the fact that (since H is clearly not the
complete hypergraph) not every explored vertex in H forms an already queried edge with any(k

j

)
− 1 neutral vertices in H. This is because vertices of H are j-element subsets of [n] and

edges correspond to only those
(k

j

)
j-sets whose union gives a k-element set. Therefore, we will

need to keep track of the already discovered j-sets of Hk(n, p). More precisely, let Gj be the
j-uniform hypergraph on vertex set [n] whose edges are the j-sets which have been discovered
by Algorithm 2 up to time αnk (recall that the j-sets are vertices in Algorithm 2). We need to
bound the degrees of sets of vertices in Gj. Suppose for the moment that we are able to show
Lemma 4.5 below, stating that a.a.s. Gj has small maximum degrees depending on α . Then from
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each j-set we have made at least
(n− j

k− j

)
(1−O(α)) queries. Furthermore, we know that we have

found approximately pt edges, from each of which we discovered
(k

j

)
− 1 new j-sets. Thus the

number of queries is at least

pt

((
k
j

)
−1

)
nk− j

(k− j)!
(1−O(α)) = (1+ ε)(1−O(α))t > t

for α sufficiently small compared to ε . But this is a contradiction since at time t we have made
exactly t queries. This argument will be given in more detail at the end of this section.

Bounding the maximum degree of Gj. Let Gj(t) denote the j-uniform hypergraph on vertex
set [n] whose edges are the discovered j-sets at time t (so Gj = Gj(αnk)). For each 1 � � < j,
let Δ�(Gj(t)) denote the maximum �-degree of this hypergraph, i.e. the maximum over all �-
sets of the number of edges of Gj(t) containing this �-set. For convenience, we sometimes use
Δ0(Gj(t)) to denote the number of edges in Gj(t) (i.e. the natural generalisation for � = 0). The
aim of this section is to prove that a.a.s. Gj(αnk) does not have too large a maximum �-degree
for any 0 � �� j−1.

In fact we prove a slightly stronger statement which also applies to a breadth-first search
process. We first define two new breadth-first search algorithms.

• BFS1 is the breadth-first search analogue of Algorithm 1: any edge containing a neutral
vertex (which corresponds to a neutral j-set) may be queried. Formally, we change line 8 in
the algorithm to ‘Let x be the bottom vertex of S’.

• BFS2 is the breadth-first search analogue of Algorithm 2: only edges containing
(k

j

)
− 1

neutral vertices (which correspond to neutral j-sets) may be queried.

We analyse the maximum degrees given by each of the algorithms (Algorithm 1, Algorithm 2,
BFS1 and BFS2). Since we will never use specific information about which algorithm we are
considering, we will go through all the proofs together and simply refer to the ‘search algorithm’,
which may be any one of these four. We still use Gj(t) to refer to the hypergraph that has been
found by time t using any one of the algorithms.

Lemma 4.5 (bounded degree lemma). For some constant C, using any one of Algorithm 1,
Algorithm 2, BFS1 or BFS2, with probability at least 1− exp(−nδ/2),

Δ�(Gj(αnk)) �Cαn j−�

for all 0 � �� j−1.

Since we will be considering the structure of Gj(t), from now on we will think of the explor-
ation process as one on j-sets in Hk(n, p), rather than on vertices in Hp (there is of course a
natural correspondence between the two).

In fact, we will prove that Δ�(Gj(αnk)) �C�αn j−� for each �, for constants C� which we will
determine later, and then we may set C := max�{C�}. Note that by a simple application of the
Chernoff bound, the lemma is true for � = 0 if

C0 � 2
(k− j)!(k

j

)
−1

.
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For �� 1, we pick an �-set L and note that there are three ways in which the degree of L in Gj(t)
may grow as t increases during the search process.

(1) A new start at L occurs when there are no active j-sets (all discovered j-sets have been
explored) and the search algorithm picks a new j-set from which to start. If this j-set contains
L, then the degree of L in Gj(t) has grown by one. Recall that the search algorithm chooses
a j-set uniformly at random among all neutral j-sets: see Algorithm 1.

(2) A jump to L occurs when the search process queries a k-set K containing L from a j-set J
not containing L (though possibly intersecting L) and the edge K is present. Then for each
A ∈

(K\L
j−�

)
, the j-set A∪L becomes active (if it wasn’t already) and the degree of L in Gj(t)

grows by at most
(k−�

j−�

)
(this is exact for Algorithm 2 or BFS2).

(3) From an active j-set J containing L we may query a k-set K also containing L. If this forms
an edge then for each A ∈

(K\L
j−�

)
, the j-set A∪L becomes active (if it wasn’t already) and the

degree of L in Gj(t) grows by at most
(k−�

j−�

)
−1 (this is exact for Algorithm 2 or BFS2). We

call this a branching at L.

We will bound the contributions to the �-degree dL(Gj(t)) (defined as |{J ∈E(Gj(t)) : J ⊇ L}|)
made by each of these possibilities individually. However we must take care to avoid a circular
argument, since the bounds are interdependent.

Let E(t) be the event that Δ�(Gj(t))�C�αn j−� for all 0� � < j. We aim to show that with high
probability E(αnk) holds, which we do by showing that with high probability E(t −1) ⇒ E(t)
for every t �αnk. More precisely, we will first prove some probabilistic lemmas, saying that with
high probability, various very likely events will hold throughout the search process. The second
part of the proof will be deterministic, showing when these good events hold, E(t − 1) ⇒ E(t)
for any t � αnk, and since E(0) automatically holds, by induction E(αnk) holds.

Probabilistic lemmas. Let us first consider where the new starts are made. Since we select the
j-set for our new start uniformly at random (it corresponds to choosing a new vertex of H, and
the ordering of V (H) was chosen randomly), we expect the new starts to be, in some sense,
evenly distributed. The next lemma makes this more precise.

Set m = 2α(k− j)!nj and let m0 be the minimum of m and the number of new starts made
during the first αnk queries. Let A′ be the event that for every 1 � � � j − 1, every �-set is
contained in at most

max

{
4m j!

( j− �)!n�
,nδ

}

many j-sets that were chosen to be a new start during the first m0 new starts.
Let A(1) be the intersection of the event A′ and the event{αnk

∑
i=1

Xi � 2pαnk

}
.

Lemma 4.6. P(A(1)) � 1− exp(n−δ/2).
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Proof. By the Chernoff bound (Theorem 2.3) we have

P

(αnk

∑
i=1

Xi � 2pαnk

)
� exp

(
− pαnk

3pαnk

)
= exp(−Θ(αn j)) � exp(−n2/3).

Thus we may assume that we have discovered at most 2pαnk = O(αn j) edges so far, and
therefore the number of j-sets which are discovered is at most m +

((k
j

)
− 1

)
2pαnk = O(αn j).

Thus, whenever we made a new start so far, we always had at least 1
2

(n
j

)
j-sets available to choose

from, and so the probability of picking any one of these was certainly at most 2/
(n

j

)
.

Now given any �-set L, the number of j-sets in which L lies is less than
( n

j−�

)
. Therefore the

number of new starts at a j-set containing L has distribution dominated by

Bi

(
m,2

(
n

j− �

)/(
n
j

))
,

which in turn is dominated by the binomial distribution

Bi

(
max{m,n�+δ/2}, 3 j!

( j− �)!n�

)
.

By the Chernoff bound, the probability that this is greater than

max

{
4m j!

( j− �)!n�
,nδ

}

is at most exp(−n2δ/3), and a union bound over all � and L gives the lemma.

We next state an auxiliary lemma, which states that we may ‘pick out’ certain (random)
subsequences of queries and treat them as an interval in the search process. Recall that our
sequence of queries gives a sequence of independent Bernoulli random variables X1,X2, . . . ,X(n

k).

We will be considering a random subsequence t1, t2, . . . , ts from [
(n

k

)
]. We say ‘ti is determined by

the values of X1, . . . ,Xti−1’ to mean the following: for any j, whether the event {ti = j} holds is
determined by the values of X1, . . . ,Xj−1. In particular this means that ti is chosen before Xti is
revealed.

Lemma 4.7. Let S = (t1, t2, . . . , ts) be a (random, ordered) index set chosen according to some
criterion such that:

• ti is determined by the values of X1, . . . ,Xti−1,
• with probability 1 we have 1 � t1 < t2 < .. . < ts �

(n
k

)
.

Then (Xt1 , . . . ,Xts) ∼ (Y1, . . . ,Ys), where Y1, . . . ,Ys are independent Be(p) variables. In particular,
we may apply a Chernoff bound to ∑i∈S Xi.

We omit the proof of this simple and intuitively obvious result. We will apply Lemma 4.7 to
prove two further probabilistic lemmas.

For any x ∈ N, any 1 � � � j− 1 and any �-set L, let S(x,L) be the set of the first x times at
which we make a query which could result in a jump to L.
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Let A(2)
L (x) be the event that these queries result in at most 2px edges (i.e. ∑i∈S(x,L) Xi � 2px).

Further, let A(2) be the the intersection of all the events A(2)
L (x) over all choices of �,L and x �

nk− j+δ .

Lemma 4.8. For any nk− j+δ � x ∈ N, for any 1 � �� j−1 and any �-set L, we have

P(A(2)
L (x)) � 1− exp(−n2δ/3).

Furthermore, P(A(2)) � 1− exp(−nδ/2).

Proof. We apply Lemma 4.7 to bound the number of jumps to L within S(x,L). Thus

P(A(2)
L (x)) � 1− exp

(
− (px)2

3px

)

� 1− exp

(
− nδ (k− j)!

3
((k

j

)
−1

))

� 1− exp(−n2δ/3).

For the last statement, we take a union bound over all ∑ j−1
�=1

(n
�

)
� n j possible choices of L and all

choices of x (observing that x is certainly at most
(n

j

)
� n j). We therefore obtain

P(A(2)) � 1−n2 j exp(−n2δ/3) � 1− exp(−nδ/2)

as required.

We now aim to prove something similar for the number of branchings at a set L of size �. Fix L
and consider a neighbourhood branching process at L. More precisely, given a j-set J containing
L, we make a number of queries in the search process and whenever we discover an edge, at most
further

(k−�
j−�

)
−1 j-sets containing L become active (these are considered children of the original

j-set). For an upper bound we assume exactly
(k−�

j−�

)
−1 j-sets become active.

By deleting L from each of the sets we consider, we may view this as a search process on
( j−�)-sets starting at J \L in a (k−�)-uniform hypergraph. This may not correspond to a simple
time interval in the branching process, but we pick out only those queries which are made from
a j-set containing L (this is permissible by Lemma 4.7). The hypergraph in which this search
process takes place has n− � vertices, but for an upper bound we replace this by n. Furthermore,
we ignore the fact that some j-sets may already have been discovered some other way, and are
therefore not neutral within this search process. If we further assume that from any ( j− �)-set in
the process we may still query

( n
k− j

)
many (k− j)-sets (effectively ignoring the fact that we may

have seen some before), then we may consider the process no longer as a hypergraph process, but
as an abstract branching process in which the number of children has distribution r ·Bi

(( n
k− j

)
, p
)
,

where r = r(k, j, �) =
(k−�

j−�

)
− 1. (By the notation a · X , for a real number a and real-valued

probability distribution X , we mean the probability distribution given by P(a ·X = ai) = P(X = i)
for any real number i.)

For a probability distribution Q, let TQ be the tree of a branching process starting at a single
vertex in which each vertex has number of children with distribution Q independently. Given an
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integer x, define TQ(x) to be the union of x independent copies of TQ (or equivalently, the forest
of a branching process starting with x vertices with offspring distribution Q).

Let us define, for each 1 � �� j−1,

c� :=
1
2

+
1
2

(k−�
j−�

)
−1(k

j

)
−1

< 1

and observe that

max
1��� j−1

c� = c1.

Let

C† = C†(k, j) :=
8c1

(1− c1)2
� 4

1− c1
.

For any nδ � x ∈ N, for any 1 � �� j−1 and for any �-set L, let A(3)
L (x) be the event that the

first x neighbourhood branching processes started at L result in at most C†x branchings.
Let A(3) be the the intersection of all the events A(3)

L (x) over all choices of L and x � nδ .

Lemma 4.9. For any nδ � x ∈ N, for any 1 � � � j− 1 and for any �-set L, with probability
at least 1− exp(−x) � 1− exp(−nδ ), the event A(3)

L (x) holds. Furthermore, with probability at
least 1− exp(−nδ/2), the event A(3) holds.

Proof. For an upper bound, we may model the x neighbourhood branching processes as

T ∼ Tr·Bi(( n
k− j),p)(x).

We consider exploring this branching process via a search process (either depth- or breadth-first
search will do here), and can thus couple the branching process with a (possibly infinite) sequence
of independent Bernoulli(p) variables Y1,Y2,Y3, . . . , such that each variable which takes the value
1 corresponds to a set of r children being discovered.

In order for T to have total size at least C†x, the first C†x vertices which we explore in the
search process must have at least (C† − 1)x children in total. Thus the first C†x

( n
k− j

)
of the Yi

would have to contain at least (C†−1)x/r many 1s. Let us observe that the expected number of
1s in this interval is

C†x

(
n

k− j

)
p �C†x

1+ ε(k
j

)
−1

�C†x
c�
r

for ε small enough (recalling that r =
(k−�

j−�

)
−1). Thus, using the Chernoff bound (Theorem 2.3)

with

a = (C†−1)
x
r
−C†x

(
n

k− j

)
p � x

r
(C†−1−C†c�) �

C†x(1− c�)
2r

,
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we obtain the probability bound

P(|T |�C†x) � P

(
Bi

(
C†x

(
n

k− j

)
, p

)
� (C†−1)

x
r

)

� exp

(
−
(

C†x(1− c�)
2r

)2/
2

(
C†xc�

r
+

C†x(1− c�)
6r

))

= exp

(
−C†x

8r
· (1− c�)2

(5/6)c� +1/6

)

� exp

(
−C†x(1− c1)2

8c1

)
� exp(−x),

where the last line holds since C† � 8c1/(1− c1)2.
This proves the first part of the lemma, and for the second part we simply take a union bound

over all choices of �,L and x (of which there are certainly at most n2 j in total).

Finally, let

A(all) := A(1) ∧A(2) ∧A(3).

The following is an immediate corollary of Lemmas 4.6, 4.8 and 4.9.

Corollary 4.10. P(A(all)) = 1−3exp(−nδ/2).

Inductive proof. Recall that E(t) is the event that Δ�(Gj(t)) � C�αn j−� for all 0 � � < j. In
this section we will show that A(all) ⇒ E(αnk). More precisely, we prove that A(all) ⇒ E(t) for
all t � αnk by induction on t.

• Let d(1)
L (t) be the number of new starts at L by time t and let D(1)

� (t) := maxd(1)
L (t), where

the maximum is over all sets L of size �.
• Let d(2)

L (t) be the number of jumps to L by time t and let D(2)
� (t) := maxd(2)

L (t), where the
maximum is over all sets L of size �.

• Let d(3)
L (t) be the number of branchings at L up to time t and let D(3)

� (t) := maxd(3)
L (t), where

the maximum is over all sets L of size �.

Let Ĉ0 := 2, C∗
0 := 2 and recursively define

C� := max

{
Ĉ� +C∗

� +
8 j!(k− j)!
( j− �)!

,C�−1

}
,

Ĉ�+1 := max

{
2�+2 (k− j)!(k

j

)
−1

C�,8

}
,

C∗
�+1 := 2k!Ĉ�+1C

†,

for � � 0, where C† is the constant from Lemma 4.9. (For the sake of the definition of C0, we
adopt the convention that C−1 = 0.)

https://doi.org/10.1017/S096354831800010X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800010X


758 O. Cooley, M. Kang and Y. Person

• Let E(1)(t) be the event that for each 0 � � < j,

D(1)
� (t) � 8 j!(k− j)!

( j− �)!
αn j−�.

• Let E(2)(t) be the event that for each 0 � � < j, D(2)
� (t) � Ĉ�αn j−�.

• Let E(3)(t) be the event that for each 0 � � < j, D(3)
� (t) �C∗

� αn j−�.

We further define E∗(t) := E(1)(t)∧E(2)(t)∧E(3)(t). Note that since

C� � Ĉ� +C∗
� +

8 j!(k− j)!
( j− �)!

we have E∗(t) ⇒ E(t). We will actually prove that A(all) ⇒ E∗(t) for all t � αnk by induction on
t. The base case is trivial, since E∗(0) holds with probability 1.

We aim to show that if A(all) holds, then none of E(1)(t),E(2)(t),E(3)(t) can be the first to fail
before time αnk. However, we must be careful with the time steps since it may be that two of
these events become false simultaneously.

Lemma 4.11. A(1) ∧E(t) ⇒ A(1) ∧E(1)(t +1) for t � αnk.

Proof. That A(1) ∧ E(t) ⇒ A(1) is immediate, so we only need to show that A(1) ∧ E(t) ⇒
E(1)(t + 1). Note that by E(t), we have Δ�(Gj(t)) � C�αn j−� for all 0 � � � j − 1. Thus, for
each j-set we have made at least(

n− j
k− j

)
−

j−1

∑
�=0

(
j
�

)
Δ�(Gj(t))

(
n−2 j + �

k−2 j + �

)
= (1−O(α))

(
n

k− j

)

queries. Thus, the number of new starts we have made is certainly at most

αnk

(1−O(α))
( n

k− j

) � 2α(k− j)!n j,

which is precisely the m in the definition of A(1). Therefore by A(1), for any �-set L we have made
at most (8 j!(k− j)!/( j− �)!)αn j−� new starts at L, as required.

Lemma 4.12. A(2) ∧E(t) ⇒ A(2) ∧E(2)(t +1) for t � αnk.

Proof. Similarly to Lemma 4.11, it is enough to show that A(2) ∧E(t) ⇒ E(2)(t +1)
Given an �-set L, we consider the number of jumps to L by time t. For each 0 � i < �, the

number of queries to L from j-sets which intersect L in a set I of i vertices is certainly at most
Δi(Gj(t)) � Ciαn j−i (since E(t) holds, we can bound the number of j-sets which have been
active and contain I). We have

(
�
i

)
such sets I, and for each of these, if we are to jump to L

we have already chosen j + �− i vertices, and therefore have at most
( n

k− j−�+i

)
choices for the

remaining vertices. Thus the total number of queries by time t which may have resulted in jumps
to L is at most

�−1

∑
i=0

(
�

i

)
Ciαn j−i

(
n

k− j− �+ i

)
� 2�C�−1αnk−�.
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Thus by A(2), the number of jumps to L is at most

2 ·2�C�−1αnk−�p = (1+ ε)2�+1C�−1αn j−� (k− j)!(k
j

)
−1

� Ĉ�αn j−�.

Since L was chosen arbitrarily, this holds for all L, and therefore E(2)(t + 1) is satisfied, as
required.

Lemma 4.13. A(3) ∧E∗(t) ⇒ A(3) ∧E(3)(t +1) for t � αnk.

Proof. Since we assume that E∗(t) holds, the number of neighbourhood branching processes
which we start at a set L is at most the number of new starts at L plus

(k−�
j−�

)
times the number of

jumps to L, or at most (
8 j!(k− j)!
( j− �)!

+
(

k− �

j− �

)
Ĉ�

)
αn j−� � 2k!Ĉ�αn j−�.

For an upper bound, we will assume that we have exactly 2k!Ĉ�αn j−� � nδ neighbourhood
branching processes. Then by A(3)

L (2k!Ĉ�αn j−�), the total number of vertices in all of these
branching processes is at most 2k!C†Ĉ�αn j−� as required.

Since L was chosen arbitrarily, this holds for any L, and thus E(3)(t +1) holds.

Now combining Lemmas 4.11, 4.12 and 4.13, we have that for t � αnk

A(all) ∧E∗(t) ⇒ A(all) ∧E(1)(t +1)∧E(2)(t +1)∧E(3)(t +1)

⇔ A(all) ∧E∗(t +1).

Since E∗(0) holds trivially, by induction we may deduce that A(all) ⇒ E∗(αnk) ⇒ E(αnk), and
therefore

P(E(αnk)) � P(A(all)) � 1−3exp(−nδ/2)

as required. This completes the proof of Lemma 4.5.

Proof of Theorem 1.2. We now complete the proof by filling in the details of the argument
sketched earlier. We now choose α = ε/(32k!2 jC).

We assume that the stack S is empty at some time t ∈ {αnk/2, . . . ,αnk} (and thus there is a
new while-loop between queries αnk/2 and αnk). Thus we can estimate, using Lemma 4.2, that
a.a.s. at least t p−α2n j edges have been found by time t. Recall that since we run Algorithm 2,
whenever an edge appears, we discover

(k
j

)
−1 new j-sets of vertices, so

e(Gj(t)) �
((

k
j

)
−1

)
(t p−α2n) a.a.s.

We note that

α2n j

t p
�

2
((k

j

)
−1

)
α

(k− j)!
� k!α � ε/4
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and so ((
k
j

)
−1

)
(t p−α2n j) �

((
k
j

)
−1

)
t p(1− ε/4).

Furthermore, we know from Lemma 4.5 that Δ�(Gj(t)) �Cαn j−� a.a.s. Since every k-subset of
[n] which contains exactly one j-set which is an edge of Gj(t) and

(k
j

)
−1 not in Gj(t) (the stack

S is empty) must have been queried at this time, we infer that at time t (a.a.s.) at least((
k
j

)
−1

)
t p(1− ε/4)

((
n− j
k− j

)
−

j−1

∑
�=0

(
j
�

)
Δ�(Gj(t))

(
n−2 j + �

k−2 j + �

))

> t(1+3ε/5)
(k− j)!

nk− j

((
n− j
k− j

)
−2 jCαnk− j

)
> (1+ ε/2)(1−2 j(k− j)!Cα)t

queries were made. This is larger than t if α � ε/(2 j+2(k − j)!C) and therefore we obtain a
contradiction (since up to this time only t queries have been made). Thus, between αnk/2 and αnk

the stack remains non-empty, which again implies by Lemma 4.2 that at least α pnk/2− 2α2n j

edges are in some j-tuple-connected component, which therefore contains at least((
k
j

)
−1

)
(α pnk/2−2α2n j) = Ω(εn j)

j-sets. This completes the proof of Theorem 1.2.

Remark 4.14. As we did for vertex-connectedness, we could modify our calculations to prove
that with high probability the set of active j-sets does not become small between times αnk/2
and αnk. However, for j > 1 the set of active j-sets does not automatically form a j-tight path
since they could, for example, all contain one vertex. We would, however, obtain a long j-tight
walk which is non-repeating in the sense that a j-set is only visited once in the walk.

Remark 4.15. The most difficult part of the proof, the bounded degree lemma (Lemma 4.5),
explicitly allowed the search process to be a breadth-first search rather than a depth-first search.
In fact, the rest of the proof would also work equally well for a breadth-first search. The only
point at which we actually need a depth-first search process is in Remarks 4.4 and 4.14, where we
note that the set of active vertices forms either a path or a j-tight walk. The breadth-first search
algorithm is used in [10].

5. Concluding remarks

For p = (1+ε)pk, j, a natural conjecture is that a unique largest component of size Ω(εnj) should
exist with high probability for any ε such that ε3n j → ∞. In this paper, we have the additional
condition that ε � nδ−1 (for some δ > 0). For j = 1,2, this condition is already implied by
ε3n j → ∞, so in these cases our range of ε is best possible. However, once j � 3, the condition
ε � nδ−1 takes over.

The extra condition arises because of our proof method: in the bounded degree lemma, we
wish to show that degrees which we expect to have size Θ(εnj−�) do not exceed their expected

https://doi.org/10.1017/S096354831800010X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800010X


Largest Components in Random Hypergraphs 761

size by more than a constant factor (a.a.s.). For this to be plausible, we certainly need Θ(εnj−�)
to be large, which for � = j − 1 leads to the extra condition on ε . If one were to attempt to
remove this condition while still using this proof method, presumably some information about
the distribution of degrees (which may now be small) would be required.

We have shown here that the largest component has size Ω(εnj), which for constant ε is
certainly the correct order of magnitude. In [10], the asymptotic size of the largest component is
determined and its uniqueness (i.e. that all other components are much smaller) proved, although
the range of ε is slightly more restrictive than that allowed here. The argument in that paper
makes fundamental use of the bounded degree lemma from this paper. Independently Lu and
Peng [16] also claim to have proved the asymptotic size and uniqueness of the largest component,
though only for constant ε .

It would also be interesting to know about the structure of the components and in particular
whether there is a simple generalisation of the well-known fact that for graphs all small compon-
ents (i.e. any except the giant component, if it exists) are either trees or unicyclic graphs a.a.s.
For the case j = 1, results in this direction were obtained in [13, 20].

Finally, one could also study the emergence of the s-cores of a random hypergraph. For 1 �
� < k we have defined the degree of a set of � vertices, and so we have a well-defined notion
of minimum �-degree. We can therefore ask when a.a.s. there exists a non-empty subhypergraph
of Hk(n, p) with minimum �-degree at least s, which is called the s-core. This has already been
studied in the case � = 1 by Molloy [18], but for other values of � this question remains wide
open.
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