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Abstract

Extreme value theory for random vectors and stochastic processes with continuous
trajectories is usually formulated for random objects where the univariate marginal
distributions are identical. In the spirit of Sklar’s theorem from copula theory, such
marginal standardization is carried out by the pointwise probability integral transform.
Certain situations, however, call for stochastic models whose trajectories are not
continuous but merely upper semicontinuous (USC). Unfortunately, the pointwise
application of the probability integral transform to a USC process does not, in general,
preserve the upper semicontinuity of the trajectories. In this paper we give sufficient
conditions to enable marginal standardization of USC processes and we state a partial
extension of Sklar’s theorem for USC processes. We specialize the results to max-stable
processes whose marginal distributions and normalizing sequences are allowed to vary
with the coordinate.
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1. Introduction

A common way to describe multivariate max-stable distributions is as follows: their margins
are univariate max-stable distributions; after standardization of the marginal distributions to a
common one, the joint distribution has a specific representation describing the dependence
structure. The separation into margins and dependence is in line with Sklar’s theorem [17],
which provides a decomposition of a multivariate distribution into its margins and a copula,
that is, a multivariate distribution with standard uniform margins. If the margins of the original
distribution are continuous, the copula is unique and can be found by applying the probability
integral transform to each variable. Conversely, to recover the original distribution, it suffices
to apply the quantile transformation to each copula variable. Although it is more common in
extreme value theory to standardize to the Gumbel or the unit-Fréchet distribution rather than to
the uniform distribution, the principle is the same. The advantage of breaking up a distribution
into its margins and a copula is that both components can be modelled separately.

Applications in spatial statistics have spurred the development of extreme value theory for
stochastic processes. If the trajectories of the process are continuous almost surely, then the
process can be reduced to a process with standardized margins and continuous trajectories via
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the probability integral transform applied to each individual variable. Conversely, the original
process can be recovered from the standardized one by applying the quantile transform to
each standardized variable. Moreover, these maps, sending one continuous function to another
one, are measurable with respect to the sigma-field on the space of continuous functions that
is generated by the finite-dimensional cylinders. These results hinge on the following two
properties. First, the marginal distributions of a stochastic process with continuous trajectories
depend continuously on the index variable. Second, the distribution of the random continuous
function associated to the process is determined by the finite-dimensional distributions.

For stochastic processes with upper semicontinuous (USC) trajectories, however, the two
properties mentioned above do not hold: the marginal distributions need not depend in a
continuous way on the index variable, and the distribution of path functionals such as the
supremum of the process is not determined by the finite-dimensional distributions of the process.
Still, max-stable processes with USC trajectories have been proposed as models for spatial
extremes of environmental variables [2], [5], [16]. As in the continuous case, construction
of, and inference on, such models is carried out by a separation of concerns regarding the
margins and the dependence structure. However, up to the present time, there is no theoretical
foundation for such an approach. Another possible application of max-stable USC processes
is random utility maximization when the alternatives range over a compact metric space rather
than a finite set [6], [7], [12].

In this paper we aim to fill the gap in theory and develop a framework for marginal standard-
ization for stochastic processes with USC trajectories. For the mathematical framework, we
follow [9] and [12] and we work within the space USC(D) of USC functions on a locally compact
subset D of some Euclidean space. The space USC(D) is equipped with the hypo-topology: a
USC function is identified with its hypograph, a closed subset of D × R; the hypo-topology on
USC(D) is then defined as the trace topology inherited from the Fell hit-and-miss topology on
the space F of closed subsets of D × R [15], [18].

The theory is specialized to max-stable USC processes. Our definition of max-stability
allows the shape parameter of the marginal distributions to vary with the index variable of the
stochastic process. As a consequence, the stabilizing affine transformations in the definition
of max-stability may depend on the index variable too. However, the coordinatewise affine
transformation of a USC function does not necessarily produce a USC function, so that care
is needed in the formulation of the definition and the results. In [3] and [12], in contrast,
the marginal distributions were assumed to be Fréchet with unit shape parameter, so that the
stabilizing sequences in the definition of max-stability are the same for all margins. It is often
taken for granted that the general case may be reduced to this simpler case, but, as argued in
the paper, for USC processes this is not guaranteed.

In Section 2 we set up the necessary background concerning USC processes. A general class
of measurable transformations on the space of USC functions is introduced in Section 3. Under
regularity conditions on the marginal distributions, this class includes the pointwise probability
integral transform and its inverse. This property allows us to state a partial generalization of
Sklar’s theorem for USC processes in general (Section 4) and for max-stable ones in particular
(Section 5). Section 6 concludes. Some additional results are deferred to Appendices A–D.

2. Random USC processes

We review some essential definitions and properties of random USC processes, or USC
processes for short. The material in this section may, for instance, be found in [1, Chapter 5],
[8, Chapter 1.1 and Appendix B], [15], [19], and [21].
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Marginal standardization of upper semicontinuous processes 775

Let D be a nonempty, locally compact subset of some finite-dimensional Euclidean space.
A function x : D → [−∞, ∞] is USC if and only lim supn→∞ x(sn) ≤ x(s) whenever sn →
s ∈ D. An equivalent property is that the set {s ∈ D : α ≤ x(s)} is closed for each α ∈ R.
The definition of lower semicontinuous (LSC) functions is similar, with a lim inf rather than a
lim sup and with the inequalities being reversed.

For x : D → [−∞, +∞], the epigraph and hypograph are commonly defined by

epi x = {(s, α) ∈ D × R : x(s) ≤ α}, hypo x = {(s, α) ∈ D × R : α ≤ x(s)}.
Observe that epi x and hypo x are subsets of D × R, even if the range of x contains −∞ or
+∞. A function is upper or lower semicontinuous if and only if its hypograph or epigraph,
respectively, is closed.

Let USC(D) be the collection of all USC functions from D into [−∞, ∞]. By identifying the
function z ∈ USC(D) with the set hypo z ⊂ D×R, any topology on the space F = F (D×R)

of closed subsets of D × R results in a trace topology on the space of USC functions.
The Fell hit-and-miss topology on F is defined as follows. Let K and G denote the families

of compact and open subsets of D × R, respectively. A base for the Fell topology on F is the
family of sets of the form

F K
G1,...,Gn

= {F ∈ F : F ∩ K = ∅, F ∩ G1 	= ∅, . . . , F ∩ Gn 	= ∅}
for K ∈ K and G1, . . . , Gn ∈ G. A net of closed sets converges to a limit set F if and only
if every compact K missed by F is eventually also missed by the net and if every open G hit
by F is eventually also hit by the net.

The Fell topology on F (D × R) induces a trace topology on USC(D), the hypo-topology.
Subsets of USC(D) which are open or closed with respect to the hypo-topology will be referred
to as hypo-open or hypo-closed, respectively. A sequence xn in USC(D) is said to hypo-
converge to x in USC(D) if and only if hypo xn converges to hypo x in the Fell topology. Since
the underlying space D × R is locally compact, Hausdorff, and second-countable (LCHS), the
space USC(D) thus becomes a compact, Hausdorff, second-countable space; see, for example,
[8, Theorem B.2]. A convenient pointwise criterion for hypo-convergence is the following: a
sequence xn ∈ USC(D) hypo-converges to x ∈ USC(D) if and only if,

for all s ∈ D : for all sn ∈ D, sn → s : lim sup
n→∞

xn(sn) ≤ x(s),

for all s ∈ D : there exists sn ∈ D, sn → s : lim inf
n→∞ xn(sn) ≥ x(s).

(2.1)

Let (�, A, P) be a complete probability space and let B(F ) be the Borel σ -field on F =
F (D×R) generated by the Fell topology. A random closed set of D×R is a Borel measurable
map from � into F . Similarly, a USC process ξ on D is a Borel measurable map from �

into USC(D). Equivalently, hypo ξ is a random closed subset of D × R taking values in the
collection of all closed hypographs. Some authors use the term ‘normal integrand’ to refer to
such processes, as a special case of stochastic processes with USC realizations; see [15, p. 12].
In this paper, a USC process is always a function ξ : D × � → [−∞, ∞] such that the map
� → F : ω �→ hypo ξ(·, ω) is Borel measurable.

The capacity functional of hypo ξ is the map T : K → [0, 1] defined by

T (K) = P{(hypo ξ) ∩ K 	= ∅}, K ∈ K.
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We also call T the capacity functional of ξ rather than of hypo ξ . Since D × R is LCHS, the
Borel σ -field B(F ) is generated by the sets

FK = {F ∈ F : F ∩ K 	= ∅}, K ∈ K;
see [8, p. 2]. The collection of complements of the sets FK being a π -system, the capacity
functional determines the distribution of a random closed set or a USC process.

We emphasize that the Borel σ -field on USC(D) is strictly larger than the one generated
by the finite-dimensional cylinders. Without additional hypotheses, the finite-dimensional
distributions of a USC process do not determine its distribution as a USC process. The evaluation
mappings USC(D) → [−∞, ∞]: x �→ x(s) being hypo-measurable, a USC process ξ is also
a stochastic process (i.e. a collection of random variables) with USC trajectories. The converse
is not true, however: for such stochastic processes, the map � → USC(D) : ω �→ ξ(·, ω) is not
necessarily hypo-measurable; see [13, Proposition 14.28] for a counterexample. Measurability
of maps to or from USC(D) with respect to the Borel σ -field induced by the hypo-topology
will be referred to as hypo-measurability.

3. Transformations of USC functions

Obviously, a USC function remains USC if multiplied by a positive, continuous function.
More generally, we will need to prove that under certain assumptions the mappings derived from
the probability integral transform or the quantile transform are hypo-measurable mappings from
USC(D) to itself. To do so, we will rely on the function class U(D) defined and studied next.

Definition 3.1. A function U : D×[−∞, ∞] → [−∞, ∞] belongs to the class U(D) if it has
the following two properties:

(i) for every s ∈ D, the map x �→ U(s, x) is nondecreasing and right-continuous;

(ii) for every x ∈ R ∪ {∞}, the map s �→ U(s, x) is USC.

See Remark 3.1 for the reason why we did not include x = −∞ in condition (ii).

Proposition 3.1. Let U ∈ U(D).

(i) If zn hypo-converges to z in USC(D) and sn → s in D as n → ∞, then lim supn→∞ U(sn,

zn(sn)) ≤ U(s, z(s)).

(ii) For every z ∈ USC(D), the function U∗(z) : D → [−∞, ∞] defined by (U∗(z))(s) =
U(s, z(s)) also belongs to USC(D).

(iii) For every compact K ⊂ D × R, the set {z ∈ USC(D) : hypo U∗(z) ∩ K 	= ∅} is
hypo-closed.

(iv) The map U∗ : USC(D) → USC(D) is hypo-measurable.

Proof. (i) Consider two cases: z(s) = ∞ and z(s) < ∞.
Suppose first that z(s) = ∞. By the assumptions on U , we have

lim sup
n→∞

U(sn, zn(sn)) ≤ lim sup
n→∞

U(sn, ∞) ≤ U(s, ∞) = U(s, z(s)).

Suppose next that z(s) < ∞. Let y > z(s). By hypo-convergence, we have

lim sup
n→∞

zn(sn) ≤ z(s);
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see (2.1). As a consequence, there exists a positive integer n(y) such that zn(sn) ≤ y for all
n ≥ n(y). By the properties of U , we have

lim sup
n→∞

U(sn, zn(sn)) ≤ lim sup
n→∞

U(sn, y) ≤ U(s, y).

Since y > z(s) was arbitrary and since x �→ U(s, x) is nondecreasing and right-continuous,
we find that lim supn→∞ U(sn, zn(sn)) ≤ infy>z(s) U(s, y) = U(s, z(s)).

(ii) In statement (i), set zn = z to see that lim supn→∞ U(sn, z(sn)) ≤ U(s, z(s)) whenever
sn → s in D as n → ∞.

(iii) Let K ⊂ D×R be compact. Suppose that zn hypo-converges to z in USC(D) as n → ∞ and
that hypo U∗(zn)∩K 	= ∅ for all positive integers n. We need to prove that hypo U∗(z)∩K 	= ∅

too.
For each positive integer n, there exists (sn, xn) ∈ K such that U(sn, zn(sn)) ≥ xn. Since K

is compact, we can find a subsequence n(k) such that (sn(k), xn(k)) → (s, x) ∈ K as k → ∞.
By (i), we have

U(s, z(s)) ≥ lim sup
k→∞

U(sn(k), zn(k)(sn(k))) ≥ lim sup
k→∞

xn(k) = x.

As a consequence, (s, x) ∈ hypo U∗(z) ∩ K .

(iv) The collection of sets of the form {z ∈ USC(D) : hypo(z) ∩ K 	= ∅}, where K ranges
over the compact subsets of D × R, generates the Borel σ -field on USC(D) induced by the
hypo-topology. By (iii), the inverse image under U∗ of each such set is hypo-closed and, thus,
hypo-measurable. We conclude that U∗ is hypo-measurable. �
Remark 3.1. In Definition 3.1(ii), we did not include x = −∞. The reason is that this case
is automatically included: by Proposition 3.1(ii) applied to the function z(s) ≡ −∞, the map
s �→ U(s, −∞) is necessarily USC too.

Definition 3.1(ii) is also necessary for the conclusion of Proposition 3.1(ii) to hold: given x,
define z(s) ≡ x.

A convenient property of U(D) is that it is closed under an appropriate type of composition.
This allows the deconstruction of complicated transformations into more elementary ones.

Lemma 3.1. If U and V belong to U(D), the function W defined by (s, x) �→ V (s, U(s, x))

also belongs to U(D), and W∗ = V∗ ◦ U∗.

Proof. First, fix s ∈ D. The map x �→ V (s, U(s, x)) is nondecreasing: for −∞ ≤ x ≤
y ≤ ∞, we have U(s, x) ≤ U(s, y) and, thus, V (s, U(s, x)) ≤ V (s, U(s, y)). The map
x �→ V (s, U(s, x)) is also right-continuous: if xn converges from the right to x as n → ∞,
then so does un = U(s, xn) to u = U(s, x) and, thus, V (s, un) to V (s, u).

Next, fix x ∈ R ∪ {∞}. We need to show that the function s �→ V (s, U(s, x)) is USC.
But the function z defined by s �→ U(s, x) is USC, and, by Proposition 3.1, so is the function
s �→ V (s, z(s)) = V (s, U(s, x)). �
Example 3.1. Here are some simple examples of functions U in the class U(D) and the
associated mappings U∗ : USC(D) → USC(D).

(i) If f : [−∞, ∞] → [−∞, ∞] is nondecreasing and right-continuous, the function
(s, x) �→ f (x) belongs to U(D). The associated map USC(D) → USC(D) is z �→ f ◦z.
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(ii) If y ∈ USC(D), the functions (s, x) �→ x ∨ y(s) and (s, x) �→ x ∧ y(s) both belong
to U(D). The associated maps USC(D) → USC(D) are z �→ z ∨ y and z �→ z ∧ y,
respectively.

(iii) If a : D → (0, ∞) is continuous then the function (s, x) �→ a(s) x belongs to U(D).
If b : D → R is USC then the map (s, x) �→ x + b(s) belongs to U(D). The associated
maps USC(D) → USC(D) are z �→ az and z �→ z + b, respectively.

A more elaborate example of a function in U(D) is induced by the collection of right-
continuous quantile functions of the marginal distributions of a stochastic process with USC
trajectories. See Appendix A for some background on right-continuous quantile functions.

Lemma 3.2. Let ξ = (ξ(s) : s ∈ D) be a stochastic process indexed by D and with values
in [−∞, ∞]. Let Fs : x ∈ [−∞, ∞] → Fs(x) = P[ξ(s) ≤ x] denote the right-continuous
marginal distribution function of ξ(s). Define

Qs(p) = sup{y ∈ R : Fs(y) ≤ p}, (s, p) ∈ D × [0, 1].
If ξ has USC trajectories, the function (s, x) �→ Qs((x ∨ 0) ∧ 1) belongs to U(D).

Proof. First, by Lemma A.1, the map [0, 1] � p �→ Qs(p) is nondecreasing and right-
continuous for every s ∈ D, and, hence, the same is true for the map [−∞, ∞] � x �→
Qs((x ∨ 0) ∧ 1).

Second, fix x ∈ [−∞, ∞] and write p = (x ∨ 0) ∧ 1 ∈ [0, 1]. We need to show
that the map s �→ Qs(p) is USC. Let sn → s in D as n → ∞; we need to show that
Qs(p) ≥ lim supn→∞ Qsn(p). Let Q′ be the right-continuous quantile function of the random
variable lim supn→∞ ξ(sn). The trajectories of ξ are USC, and, thus, ξ(s) ≥ lim supn→∞ ξ(sn),
which implies that Qs(p) ≥ Q′(p). By Lemma A.2, we then find Qs(p) ≥ Q′(p) ≥
lim supn→∞ Qsn(p), as required. �

4. Sklar’s theorem for USC processes

A d-variate copula is the cumulative distribution function of a d-dimensional random vector
with standard uniform margins. Sklar’s [17] celebrated theorem states two things.

(I) For every copula C and every vector F1, . . . , Fd of univariate distribution functions, the
function (x1, . . . , xd) �→ C(F1(x1), . . . , Fd(xd)) is a d-variate distribution function with
margins F1, . . . , Fd .

(II) Every d-variate distribution function F can be represented in this way.

Reformulated in terms of random vectors, the two statements read as follows.

(I) For every random vector (U1, . . . , Ud) with uniform components and for every vector
F1, . . . ,Fd of univariate distribution functions, the random vector (Q1(U1), . . . ,Qd(Ud))

has marginal distributions F1, . . . , Fd , where Qj is the (right- or left-continuous) quantile
function corresponding to Fj .

(II) Every random vector (X1, . . . , Xd) can be represented in this way.

We also investigate the extent to which these statements hold for USC processes. According
to Proposition 4.1, the first statement remains true provided the sections s �→ Qs(p) of the right-
continuous quantile functions are USC. According to Proposition 4.2, the Sklar representation
is valid for USC processes whose marginal distribution functions have USC sections, and even
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then, the equality in distribution is not guaranteed. In Section 5 we will specialize the two
propositions to max-stable processes.

Proposition 4.1. (À la Sklar (I) for USC processes.) Let Z be a USC process having standard
uniform margins. Let (Fs : s ∈ D) be a family of (right-continuous) distribution functions and
let Qs(p) = sup{x ∈ R : Fs(x) ≤ p} for all (s, p) ∈ D × [0, 1]. Define a stochastic process ξ

by ξ(s) = Qs((Z(s)∨0)∧1) for s ∈ D. Then the following two statements are equivalent:

(i) ξ is a USC process with marginal distributions given by Fs;

(ii) for every p ∈ [0, 1], the function s �→ Qs(p) is USC.

Proof. For every s ∈ D, the random variable (Z(s) ∨ 0) ∧ 1 is equal almost surely to Z(s),
so that its distribution is uniform on [0, 1] too. By Lemma A.1(iv), the distribution function
of ξ(s) is given by Fs . As a consequence, Qs is the right-continuous quantile function of the
random variable ξ(s).

If (i) holds then the trajectories s �→ ξ(s) are USC. By Lemma 3.2, the function s �→ Qs(p)

is USC for every p ∈ [0, 1].
Conversely, if (ii) holds then the function U defined by (s, x) �→ Qs((x ∨ 0) ∧ 1) belongs

to U(D) defined in Definition 3.1. Let U∗ be the associated map USC(D) → USC(D); see
Proposition 3.1. Then ξ = U∗(Z) is a USC process since Z is a USC process and U∗ is
hypo-measurable by Proposition 3.1(iv). �
Proposition 4.2. (À la Sklar (II) for USC processes.) Let ξ be a USC process. Let Fs(x) =
P[ξ(s) ≤ x] for x ∈ [−∞, ∞] and let Qs(p) = sup{x ∈ R : Fs(x) ≤ p} for p ∈ [0, 1].
Suppose that the following two conditions hold:

(a) for every s ∈ D, the distribution of ξ(s) has no atoms in [−∞, ∞];
(b) for every x ∈ R ∪ {+∞}, the function s �→ Fs(x) is USC.

Then the following statements hold:

(i) the process Z defined by Z(s) = Fs(ξ(s)) is a USC process with standard uniform
margins;

(ii) the process ξ̃ defined by ξ̃ (s) = Qs(Z(s)) = Qs(Fs(ξ(s)) is a USC process such that
P[ξ̃ (s) = ξ(s)] = 1 for every s ∈ D. In particular, the finite-dimensional distributions
of ξ̃ and ξ are identical.

Proof. (i) By condition (a), the marginal distributions of Z are standard uniform. By con-
dition (b), the function U defined by (s, x) �→ Fs(x) belongs to U(D) (Definition 3.1) and we
have Z = U∗(ξ) with U∗ : USC(D) → USC(D) as in Proposition 3.1. By Proposition 3.1(iv),
the map U∗ is hypo-measurable, so that Z is a USC process too.

(ii) By Lemma A.1(v), we have P[ξ̃ (s) = ξ(s)] = 1 for every s ∈ D. The function Qs is
the right-continuous quantile function of ξ(s) and the stochastic process (ξ(s) : s ∈ D) has
USC trajectories. Then Proposition 4.1(ii) is fulfilled by an application of Lemma 3.2. By
Proposition 4.1(i), ξ̃ is a USC process. �
Remark 4.1. Although P[ξ̃ (s) = ξ(s)] = 1 for all s ∈ D, it is not necessarily true that
P[ξ̃ = ξ ] = 1, and not even that ξ̃ and ξ have the same distribution as USC processes;
see Examples B.2 and B.3. However, if P[for all s ∈ D : 0 < Fs(ξ(s)) < 1] = 1 and if
Qs(Fs(x)) = x for every s and every x such that 0 < Fs(x) < 1, then clearly P[ξ̃ = ξ ] = 1.
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The following Lemma helps clarifying the meaning of the assumptions of Proposition 4.2.

Lemma 4.1. (Regularity of the marginal distributions with respect to the space variable.) If ξ

is a USC process, conditions (a) and (b) in Proposition 4.2 together imply that the map s �→
Fs(x) = P[ξ(s) ≤ x] is continuous, for any fixed x ∈ R.

Proof. By condition (a), we have P[ξ(s) < x] = Fs(x) for each fixed (s, x), so that by
Lemma A.1(iii), we have

{s ∈ D : x ≤ Qs(p)} = {s ∈ D : Fs(x) ≤ p}
for every x ∈ [−∞, ∞] and p ∈ [0, 1]. Since ξ is a USC process, the function s �→ Qs(p)

is USC for p ∈ [0, 1] (Lemma 3.2). The set in the display is thus closed. But then the map
s �→ Fs(x) is lower semicontinuous, and, thus, by (b), continuous. �
Remark 4.2. Condition (a) in Proposition 4.2, continuity of the marginal distributions, can
perhaps be avoided by using an additional randomization device, ‘smearing out’ the probability
masses of any atoms, as in [14]. However, even if this may ensure uniform margins, it may
destroy upper semicontinuity; see Example 4.1. Since our interest is in extreme value theory,
in particular in max-stable distributions (Section 5), which are continuous, we do not pursue
this issue further.

Remark 4.3. Without condition (b) in Proposition 4.2, the trajectories of the stochastic process
(Z(s) : s ∈ D) may not be USC; see Example 4.2. However, condition (b) is not necessarily
USC either; see Example B.1.

The examples below illustrate certain aspects of Propositions 4.1 and 4.2. In the examples,
we do not go into measurability issues, that is, we do not prove that the mappings ξ from
the underlying probability space into USC(D) are hypo-measurable. To do so, one can, for
instance, rely on [8, Example 1.2, p. 3 and Theorem 2.25, p. 37].

Example 4.1. (What may happen without (a) in Proposition 4.2.) Consider two independent,
uniformly distributed variables X and Y on [0, 1]. Take D = [−1, 1], and define

ξ(s) =

⎧⎪⎨
⎪⎩

|s|X if −1 ≤ s < 0,

0 if s = 0,

sY if 0 < s ≤ 1.

Condition (b) in Proposition 4.2 is fulfilled: the trajectories s �→ Fs(x) = P[ξ(s) ≤ x]
are continuous for every x 	= 0 and still USC for x = 0. The marginal probability integral
transform produces Z(s) = X for s < 0 and Z(s) = Y for s > 0, while Z(0) = F0(0) = 1. The
process Z has USC trajectories but Z(0) is not uniformly distributed. If one wanted to modify
the definition of Z at 0 so that the modified version, Z̃, would still have USC trajectories and
such that Z̃(0) would be uniformly distributed, then one would need to have Z̃(0) ≥ X ∨ Y ,
contradicting the uniformity assumption. We conclude that it is impossible to write ξ(s) as
Qs(Z̃(s)), where Z̃ is a USC process with standard uniform margins.

Example 4.2. (What may happen without (b) in Proposition 4.2.) Consider two independent,
uniformly distributed variables X and Y on [0, 1]. On D = [0, 2], define

ξ(s) = X ∨ (Y1{1}(s)) =
{

X if s 	= 1,

X ∨ Y if s = 1,
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where 1{·} is the indicator function. Then ξ is a USC process and the distribution function, Fs ,
of ξ(s) is given by

Fs(x) = P[ξ(s) ≤ x] =
{

x if s 	= 1,

x2 if s = 1,

where x ∈ [0, 1]. As a consequence, the function s �→ Fs(x) is LSC but not USC if 0 < x < 1,
so that condition (b) in Proposition 4.2 is violated. Reducing to standard uniform margins
yields

Z(s) = Fs(ξ(s)) =
{

X if s 	= 1,

(X ∨ Y )2 if s = 1.

The event {0 < Y 2 < X < 1} has positive probability, and on this event we have (X∨Y )2 < X,
so that the trajectory s �→ Z(s) is not USC. Hence, statement (i) in Proposition 4.2 fails.

Some additional examples are postponed to Appendix B, which show that condition (b) in
Proposition 4.2 is not necessary, and that the USC processes ξ and ξ̃ in Proposition 4.2 may be
different in law as random elements of USC(D).

5. Max-stable processes

We apply Propositions 4.1 and 4.2 to max-stable USC processes. These processes and their
standardized variants are introduced in Subsection 5.2, after some preliminaries on generalized
extreme value distributions in Subsection 5.1. The main results are given in Subsection 5.3,
followed by some examples in Subsection 5.4.

5.1. Generalized extreme value distributions

The distribution function of the generalized extreme value (GEV) distribution with parameter
vector θ = (γ, μ, σ ) ∈ 
 = R × R × (0, ∞) is given by

F(x; θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

[
−

{
1 + γ (x − μ)

σ

}−1/γ ]
if γ 	= 0 and σ + γ (x − μ) > 0,

exp

[
− exp

{
− (x − μ)

σ

}]
if γ = 0 and x ∈ R.

(5.1)

The corresponding quantile function is

Q(p; θ) =

⎧⎪⎪⎨
⎪⎪⎩

μ + σ [{−1/ log(p)}γ − 1]
γ

if γ 	= 0,

μ + σ log

{
− 1

log(p)

}
if γ = 0,

(5.2)

for 0 < p < 1. The support is equal to the interval {x ∈ R : σ + γ (x − μ) > 0}. In particular,
the lower endpoint is equal to Q(0; θ) = −∞ if γ ≤ 0 and Q(0; θ) = μ − σ/γ if γ > 0.

For every n, there exist unique scalars an,θ ∈ (0, ∞) and bn,θ ∈ R such that the following
max-stability relation holds:

Fn(an,θx + bn,θ ; θ) = F(x; θ), x ∈ R. (5.3)

In fact, a nondegenerate distribution is max-stable if and only if it is GEV. This property
motivates the use of such distributions for modeling maxima over many variables. The location
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and scale sequences are given by

an,θ = nγ , bn,θ =
⎧⎨
⎩

(σ − γμ)(nγ − 1)

γ
if γ 	= 0,

σ log n if γ = 0.
(5.4)

For quantile functions, max-stability means that

Q(p1/n; θ) = an,θQ(p; θ) + bn,θ , p ∈ [0, 1]. (5.5)

Note that Q(e−1; θ) = μ and, thus, Q(e−1/n; θ) = anμ + bn.
In Sklar’s theorem, the uniform distribution on [0, 1] plays the role of a pivot. Here, it is

natural to standardize to a member of the GEV family. Multiple choices are possible. We opt
for the unit-Fréchet distribution, given by

�(x) = F(x; 1, 1, 1) =
{

0 if x ≤ 0,

e−1/x if x > 0.
(5.6)

The unit-Fréchet quantile function is given by Q(p; 1, 1, 1) = −1/ log(p) for 0 < p < 1.
If the law of X is unit-Fréchet then the law of Q(�(X); θ) is GEV(θ).

Consider now a stochastic process {ξ(s), s ∈ D}, such that ξ(s) follows a GEV distribution
with parameter θ depending on s, so that P[ξ(s) ≤ x] = F(x; θ(s)), with F as in (5.1). In view
of the conditions in Propositions 4.1 and 4.2, the following lemma is relevant.

Lemma 5.1. Let θ : D → 
. The functions s �→ F(x; θ(s)) and s �→ Q(p; θ(s)) are USC
for every x ∈ R and p ∈ [0, 1] if and only if θ is continuous.

Proof. If θ is continuous then the maps s �→ F(x; θ(s)) and s �→ Q(p; θ(s)) are
continuous and, thus, USC.

Conversely, suppose that the functions s �→ F(x; θ(s)) and s �→ Q(p; θ(s)) are USC
for every x ∈ R and p ∈ [0, 1]. The argument is similar to the proof of Lemma 4.1. By
Lemma A.1(iii), we have

{s ∈ D : x ≤ Q(p; θ(s))} = {s ∈ D : F(x; θ(s)) ≤ p}
for every x ∈ [−∞, ∞] and p ∈ [0, 1]; note that GEV distribution functions are continuous
functions of x. Since the map s �→ Q(p; θ(s)) is USC, the above sets are closed. But then the
map s �→ F(x; θ(s)) must be LSC, and, thus, continuous. Finally, the map sending a GEV
distribution to its parameter is continuous with respect to the weak topology; see Lemma D.1.
Hence, θ is continuous. �
Remark 5.1. If θ : D → 
 is continuous then the normalizing functions s �→ an,θ(s) and s �→
bn,θ(s) are continuous as well. Consider the map Un(s, x) = {x − bn,θ(s)}/an,θ(s) for (s, x) ∈
D × [−∞, ∞]. Clearly, Un ∈ U(D). By Proposition 3.1, the transformation USC(D) →
USC(D) : z �→ (z − bn,θ )/an,θ is then well defined and hypo-measurable.

5.2. Max-stable USC processes

Max-stable USC processes have been defined in the literature [8], [18], [20] as USC processes
whose distribution is invariant under the componentwise maximum operation, up to an affine
rescaling involving constants which are not allowed to depend upon the index variable s ∈ D.
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Likewise, the processes in [3] and [12] have marginal distributions which are Fréchet with
shape parameter γ ≡ 1 and lower endpoint μ − γ /σ ≡ 0, so that the scaling sequences are
an ≡ n and bn ≡ 0. Moreover, max-stability is defined in [3] in terms of finite-dimensional
distributions only. Definition 5.1 below extends these previous approaches by allowing for an
index-dependent rescaling, through scaling functions an and bn, and by viewing the random
objects as random elements in USC(D).

Definition 5.1. A USC process ξ is max-stable if, for all integer n ≥ 1, there exist functions
an : D → (0, ∞) and bn : D → R such that, for each vector of n independent and identically
distributed (i.i.d.) USC processes ξ1, . . . , ξn with the same law as ξ , we have

n∨
i=1

ξi
d= anξ + bn in USC(D), (5.7)

where ‘
d=’ denotes equality in distribution. A max-stable USC process ξ∗ is said to be simple

if, in addition, its marginal distributions are unit-Fréchet as in (5.6). In that case, the norming
functions are given by an(s) = n and bn(s) = 0 for all n ≥ 1 and s ∈ D, i.e. for i.i.d. USC
processes ξ∗

1 , . . . , ξ∗
n with the same law as ξ∗, we have

n∨
i=1

ξ∗
i

d= nξ∗ in USC(D). (5.8)

In (5.7) and (5.8), the meaning is that the induced probability distributions on the space
USC(D) equipped with the sigma-field of hypo-measurable sets are equal. In Definition 5.1, it
is implicitly understood that the functions an and bn are such that the right-hand side of (5.7)
still defines a USC process. If an is continuous and bn is USC then this is automatically the
case; see Lemma 3.1 and Example 3.1(iii).

Equation (5.7) is not necessarily the same as saying that (
∨n

i=1 ξi − bn)/an is equal in
distribution to ξ . The reason is that it is not clear that (

∨n
i=1 ξi − bn)/an is a USC process.

Whether this is the case or not remains an open question.
The evaluation map USC(D) → [−∞, ∞]: z �→ z(s) is hypo-measurable for all s ∈ D.

Equation (5.7) then implies the following distributional equality between random variables:
n∨

i=1

ξi(s)
d= an(s)ξ(s) + bn(s), s ∈ D.

As a consequence, the marginal distribution of ξ(s) is max-stable and, therefore, GEV with
some parameter vector θ(s) ∈ 
. The normalizing functions an and bn must then be of the form
an(s) = an,θ(s) and bn(s) = bn,θ(s) as in (5.4). If θ : D → 
 is continuous then the normalizing
functions are continuous too, and, by Remark 5.1, the USC process (

∨n
i=1 ξi − bn)/an is well

defined and equal in distribution to ξ .

5.3. Sklar’s theorem for max-stable USC processes

We investigate the relation between general and simple max-stable USC processes via the
pointwise probability integral transform and its inverse. Max-stability of USC processes is
defined in (5.7) via an equality of distributions on USC(D) rather than of finite-dimensional
distributions. It is therefore not clear from the outset that max-stability is preserved by pointwise
transformations.

In Proposition 5.1 we state a necessary and sufficient condition on the GEV margins in order
to construct a general max-stable USC process starting from a simple one. In Propositions 5.2
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and 5.3 we treat the converse question, that is, when can a max-stable USC process be first
reduced to a simple one and then be reconstructed from it.

Proposition 5.1. (À la Sklar (I) for max-stable USC processes.) Let ξ∗ be a simple max-stable
USC process. Let θ : D → 
. Define a stochastic process ξ by ξ(s) = Q(�(ξ∗(s)); θ(s)) for
s ∈ D. Then the following two statements are equivalent:

(i) ξ is a USC process with marginal distributions GEV(θ(s));

(ii) for every p ∈ [0, 1], the function s �→ Q(p; θ(s)) is USC.

If these conditions hold then ξ is a max-stable USC process with normalizing functions an(s) =
an,θ(s) and bn(s) = bn,θ(s).

Proof. By Proposition 4.2(i) applied to ξ∗, the stochastic process Z(s) = �(ξ∗(s)) induces
a USC process whose margins are uniform on [0, 1]. The equivalence of statements (i) and (ii)
then follows from Proposition 4.1.

Assume that (i) and (ii) are fulfilled. We need to show that the right-hand side of (5.7) defines
a USC process and that the stated equality in distribution holds.

For positive integer n, define Un(s, x) = Q(�(nx); θ(s)) for (s, x) ∈ D × [−∞, ∞]. In
view of Lemma 3.1 and Example 3.1, the map Un belongs to U(D). Moreover, max-stability
(5.5) implies that

Un(s, x) = Q(�(x)1/n; θ(s)) = an,θ(s)Q(�(x); θ(s)) + bn,θ(s).

It follows that
an,θ(s)ξ(s) + bn,θ(s) = Un(s, ξ

∗(s)).
By Proposition 3.1, the function s �→ Un(s, z(s)) belongs to USC(D) for every z ∈ USC(D),
and the map Un,∗ from USC(D) to itself sending z ∈ USC(D) to this function is hypo-
measurable. We conclude that anξ + bn is a USC process.

Next, we prove that ξ is max-stable. Let ξ1, . . . , ξn be i.i.d. USC processes with the same
law as ξ . Furthermore, let ξ∗

1 , . . . , ξ∗
n be i.i.d. USC processes with the same law as ξ∗. For

every i ∈ {1, . . . , n}, we have

ξi
d= ξ = U1,∗(ξ∗) d= U1,∗(ξ∗

i ).

The last equality in distribution comes from the hypo-measurability of U1,∗. By independence,
it follows that

(ξ1, . . . , ξn)
d= (U1,∗(ξ∗

1 ), . . . , U1,∗(ξ∗
n )).

Write (ξ̃1, . . . , ξ̃n) = (U1,∗(ξ∗
i ), . . . , U1,∗(ξ∗

n )). By monotonicity, we have, for s ∈ D,

n∨
i=1

ξ̃i (s) =
n∨

i=1

Q(�(ξ∗
i (s)); θ(s)) = Q

(
�

( n∨
i=1

ξ∗
i (s)

)
; θ(s)

)
.

Since ξ∗ is a simple max-stable USC process, we have
∨n

i=1 ξ∗
i

d= nξ∗ in USC(D). But then
also

n∨
i=1

ξi
d=

n∨
i=1

ξ̃i

d= Q(�(nξ∗); θ)

= Q(�(ξ∗)1/n; θ)
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= an,θQ(�(ξ∗); θ) + bn,θ

= an,θ ξ + bn,θ .

We conclude that ξ is max-stable, as required. �

Proposition 5.2. (À la Sklar (II) for USC processes with GEV margins.) Let ξ be a USC
process with GEV(θ(s)) margins for s ∈ D. If θ : D → 
 is continuous then the following
statements hold:

(i) the process ξ∗ defined by ξ∗(s) = −1/ log F(ξ(s); θ(s)) is a USC process with unit-
Fréchet margins;

(ii) the process ξ̃ defined by ξ̃ (s) = Q(�(ξ∗(s)); θ(s)) is a USC process and, with proba-
bility 1, for all s ∈ D,

ξ̃ (s) =
{

ξ(s) if ξ∗(s) < ∞,

∞ if ξ∗(s) = ∞.

Proof. The marginal distributions of ξ are GEV and depend continuously on s. Condi-
tions (a) and (b) in Proposition 4.2 are therefore satisfied.

By Proposition 4.2(i), the process Z defined by Z(s) = F(ξ(s); θ(s)) is a USC process
with standard uniform margins. It then follows that ξ∗ defined by ξ∗(s) = −1/ log Z(s) is a
USC process too, its margins being unit-Fréchet.

Since 0 ≤ Z(s) ≤ 1 by construction, we have 0 ≤ ξ∗(s) ≤ ∞ and, thus, �(ξ∗(s)) = Z(s).
We find that ξ̃ (s) = Q(Z(s); θ(s)) = Q(F(ξ(s); θ(s)); θ(s)). By Proposition 4.2(ii), the
process ξ̃ is a USC process.

Recall that GEV distribution functions are continuous and strictly increasing on their dom-
ains. As a consequence, for all x such that x ≥ Q(0; θ(s)), we have

Q(F(x; θ(s)); θ(s)) =
{

x if F(x; θ(s)) < 1,

∞ if F(x; θ(s)) = 1.

Moreover, Lemma C.1 implies that ξ ≥ Q(0; θ) almost surely. Since ξ∗(s) < ∞ if and only
if F(ξ(s); θ(s)) < 1, we arrive at the stated formula for ξ̃ . �

Proposition 5.3. (À la Sklar (II) for max-stable processes.) Let ξ be a USC process with
GEV(θ(s))margins for s ∈ D. Assume that, for every compactK ⊂ D, we have sups∈K F(ξ(s);
θ(s)) < 1 with probability 1. As in Proposition 5.2, define two USC processes ξ∗ and ξ̃ by
ξ∗(s) = −1/ log F(ξ(s); θ(s)) and ξ̃ (s) = Q(�(ξ∗(s)); θ(s)) for s ∈ D. Then, almost surely,
ξ = ξ̃ . Furthermore, the following two statements are equivalent:

(i) the USC process ξ is max-stable;

(ii) the USC process ξ∗ is simple max-stable.

Proof. The fact that ξ∗ is a USC process with unit-Fréchet margins is a consequence of the
continuity of θ and Proposition 5.2(i). Let (Kn)n∈N be a compact cover of D; the existence
of a compact cover is guaranteed by the fact that D is locally compact and second-countable,
whence Lindelöf. We have P[for all n ∈ N : sups∈Kn

F (ξ(s); θ(s)) < 1] = 1 by assumption
and, thus, also P[for all s ∈ D : F(ξ(s); θ(s)) < 1] = 1. Proposition 5.2(ii) implies that ξ = ξ̃

almost surely.
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The functions s �→ an,θ(s) and s �→ bn,θ(s) are continuous. The map D × [−∞, ∞] →
[−∞, ∞] defined by (s, x) �→ an,θ(s)x + bn,θ(s) belongs to U(D). By Proposition 3.1, the
map from USC(D) to itself sending z to the function s �→ an,θ(s)z(s) + bn,θ(s) is well defined
and hypo-measurable. It follows that an,θ ξ + bn,θ is a USC process.

Suppose first that (ii) holds. By Proposition 5.1, the USC process ξ̃ is max-stable with
norming functions s �→ an,θ(s) and s �→ bn,θ(s). Since ξ and ξ̃ are equal almost surely in
USC(D), they are also in equal in law. Statement (i) follows.

Conversely, suppose that (i) holds. Let (ξ∗
i )ni=1 and (ξi)

n
i=1 be vectors of i.i.d. USC processes

with common laws equal to the ones of ξ∗ and ξ , respectively. For z ∈ USC(D), write
−1/ log F(z, θ) = (−1/ log F(z(s), θ(s))s∈D. The mapping z �→ −1/ log F(z, θ) from
USC(D) to itself is hypo-measurable, by an argument as in the proof of Proposition 5.2. For
i ∈ {1, . . . , n}, we have, in USC(D),

ξ∗
i

d= ξ∗ = − 1

log F(ξ, θ)

d= − 1

log F(ξi, θ)
.

By independence, we thus have (ξ∗
i )ni=1

d=(−1/ log F(ξi, θ))ni=1. Property (i) and max-stability
(5.3) now yield

n∨
i=1

ξ∗
i

d= − 1

log F(
∨n

i=1 ξi; θ)

d= − 1

log F(an,θ ξ + bn,θ ; θ)

= − 1

log{F(ξ ; θ)1/n}
= n

[
− 1

log F(ξ ; θ)

]
= nξ∗.

We conclude that ξ∗ is simple max-stable. �

Remark 5.2. (Regarding the finiteness of ξ∗ in Proposition 5.2(ii).) Recall that USC functions
reach their suprema on compacta. Let (Kn)n∈N be a compact cover of D. For every z ∈ USC(D),
we have z(s) < ∞ for all s ∈ D if and only if sups∈Kn

z(s) < ∞ for all n ∈ N. The event⋂
n∈N{sups∈Kn

ξ∗(s) < ∞} is thus the same as the event {for all s ∈ D : ξ∗(s) < ∞}.
Remark 5.3. (Regarding the continuity assumption on θ in Proposition 5.2.) According to
Lemmas 3.2 and 5.1, imposing the continuity of the GEV parameter vector θ(s) as a function
of s ∈ D is equivalent to imposing the upper semicontinuity of the function s �→ F(x, θ(s))

for each fixed x ∈ R.

5.4. Examples

In comparison to Proposition 4.2, we have added to Proposition 5.2 the assumption that the
margins be GEV. Although their distribution functions are continuous and strictly increasing
on their support, this does not resolve the issues arising when the marginal distributions are not
continuous in space, as in Example 4.2. In Example 5.1, which parallels Example 4.2, the GEV
parameter function s �→ θ(s) is not continuous and pointwise standardization to unit-Fréchet
margins produces a stochastic process whose trajectories are no longer USC almost surely.
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Example 5.1. (What may happen without the continuity of θ .) Consider two independent,
unit-Fréchet distributed variables X and Y . As in Example 4.2, take D = [0, 2], and define

ξ(s) = X ∨ (Y1{1}(s)) =
{

X if s 	= 1,

X ∨ Y if s = 1.

Then again, ξ is a USC process. It is even a max-stable one with normalizing functions an ≡ n

and bn ≡ 0. The marginal distribution functions are

F(x; θ(s)) = P[ξ(s) ≤ x] =
{

e−1/x if s 	= 1,

e−2/x if s = 1,

where x ≥ 0. Then the function s �→ Fs(x) is lower rather than USC, and the marginal GEV
parameter vector is

θ(s) = (γ (s), μ(s), σ (s)) =
{

(1, 1, 1) if s 	= 1,

(1, 2, 2) if s = 1,

which is not continuous as a function of s. Standardizing to Fréchet margins yields

ξ∗(s) = − 1

log F(ξ(s); θ(s))
=

⎧⎨
⎩

X if s 	= 1,
(X ∨ Y )

2
if s = 1.

The event {0 < X < Y < 2X} has positive probability, and on this event, we have (X∨Y )/2 =
Y/2 < X, so that the trajectory s �→ ξ∗(s) is not USC.

To conclude, we present a construction principle for simple max-stable USC processes.
In combination with Proposition 5.1, this provides a device for the construction of max-stable
USC processes with arbitrary GEV margins. The method is similar to the one proposed in
Theorem 2 of [16]. Proving max-stability of the USC process that we construct requires special
care, since max-stability in USC(D) does not follow from max-stability of the finite-dimensional
distributions.

Example 5.2. Let Y1 > Y2 > Y3 > · · · denote the points of a Poisson point process on (0, ∞)

with intensity measure y−2 dy. Let V, V1, V2, . . . be i.i.d. USC processes, independent of the
point process (Yi)i . Assume that V satisfies the following properties:

• P[infs∈D V (s) ≥ 0] = 1;

• E[sups∈D V (s)] < ∞;

• the mean function f (s) = E[V (s)] is strictly positive and continuous on D.

By Lemma C.3 below, infD V is indeed a random variable. Note that we do not impose that
infD V > 0 almost surely.

Define a stochastic process ξ on D by

ξ(s) = sup
i≥1

Yi

1

f (s)
Vi(s), s ∈ D.

We will show that ξ is ‘almost surely’ a simple max-stable USC process, in the following
sense:

(a) with probability 1, the trajectories of ξ are USC;
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(b) for some set �1 ⊂ � of probability 1 on which the trajectories ξ(·, ω) are USC, the map
ξ : �1 → USC(D) is hypo-measurable.

Consider the space of nonnegative USC functions

USC(D)+ = {z ∈ USC(D) : for all s ∈ D, z(s) ≥ 0} =
⋂
s∈D

{z ∈ USC(D) : z(s) ≥ 0}.

For each fixed s ∈ D, the set {z ∈ USC(D) : z(s) ≥ 0} is hypo-closed, since it is the complement
of the hypo-open set {z ∈ USC(D) : hypo z ∩ {(s, 0)} = ∅}. The set USC(D)+ is, thus, hypo-
closed, as an intersection of hypo-closed sets.

Set E = USC(D)+ \ {0D}, where 0D denotes the null function on D. Since USC(D) is a
compact space with a countable basis [8, Theorem B.2, p. 399], the space E is locally compact
with a countable basis. Classical theory of point processes applies and it is possible to define
Poisson processes on E by augmentation and/or continuous mappings.

Set Wi = Vi/f . Then, for i ∈ N, Wi is a random element of USC(D) such that Wi ∈ E

with probability 1. The point process � defined by

� =
∑
i≥1

δ(Yi ,Wi)

is, thus, a Poisson process on (0, ∞)×E with mean measure d�(y, w) = y−2 dy ⊗ dPW(w),
where PW is the law of W1; see [11, Proposition 3.8].

The ‘product’ mapping T : (0, ∞) × E → E defined by T (y, w) = yw, for y > 0 and
w ∈ E, is hypo-measurable. Provided that the image measure μ = �◦T −1 is finite on compact
sets of E, we find that the point process

� =
∑
i≥1

δ(YiWi)

is a Poisson process with mean measure μ on E; see [11, Proposition 3.7]. To check the
finiteness of μ on compact sets of E, we must check that, for K ⊂ D and x > 0, writing

FK×{x} =
{
z ∈ USC(D)+ : sup

s∈K

z(s) ≥ x
}
,

we have μ(FK×{x}) < ∞. Indeed, the set FK×{x} is hypo-closed in USC(D), and since USC(D)

is compact, the compact sets in E are the hypo-closed sets F in USC(D) such that F ⊂ E.
Thus, FK×{x} is compact. Also, any compact set in E must be contained in such a FK×{x}.
Now,

μ(FK×{x}) = −�
{
(r, w) ∈ (0, ∞) × USC(D) : r max

s∈K
w(s) ≥ x

}

= E

[∫ ∞

0
1{r≥infs∈K(x/W(s))}

dr

r2

]

= 1

x
E

[
sup
s∈Kj

W(s)
]

≤ 1

x

E[supD V ]
infD f

,

which is finite by assumption on V .
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To prove (a), we adapt an argument of [4, Proof of Theorem 2.1]. For fixed K ⊂ D compact
and x > 0, we have μ(FK×{x}) < ∞ and, thus, �(FK×{x}) < ∞ almost surely. Thus, there
exists a set �1 of probability 1, such that the following two statements hold for all ω ∈ �1:

(i) Wi(·, ω) ∈ E for all i ∈ N;

(ii) �(FK×{x})(ω) < ∞ for every rational x > 0 and every compact rectangle K ⊂ D with
rational vertices.

Take ω ∈ �1. We need to show that for s ∈ D and x ∈ Q such that ξ(s, ω) < x, we
have lim supt→s ξ(t, ω) ≤ x. Fix s and x as above, which implies that x > 0. Let Kn ↘ {s}
be a collection of compact rational rectangles as above such that s is in the interior of Kn.
Then F{(s,x)} = ⋂

n∈N FKn×{x} (the inclusion ‘⊂’ is immediate; the inclusion ‘⊃’ is obtained
by choosing, for z ∈ ⋂

n∈N FKn×{x} and for n ∈ N, a point sn ∈ Kn such that z(sn) ≥ x and
then observing that sn → s and, thus, z(s) ≥ x by upper semicontinuity). From our choice
of �1, we have �(FK1×{x}, ω) < ∞, so that the downward continuity property of the measure
�(·, ω) applies and

�(F{(s,x)}, ω) = lim
n→∞ �(FKn×{x}, ω).

By our choice of s, x, and ω, the left-hand side in the display is 0. Since the sequence
on the right-hand side is integer valued, there exists n0 such that, for all n ≥ n0, we have
�(FKn×{x}, ω) = 0. This implies that, for n ≥ n0, we have

sup
t∈Kn

Yi(ω)Wi(t, ω) < x, i ∈ N.

We complete the proof of (a) by noting that

lim sup
t→s

ξ(t, ω) ≤ sup
t∈Kn0

ξ(t, ω) = sup
i∈N

sup
t∈Kn0

Yi(ω)Wi(t, ω) ≤ x.

To prove (b), we need to show that, for any compact K ⊂ D × R, the set

A = {ω ∈ �1 : hypo ξ(·, ω) ∩ K 	= ∅}
is a measurable subset of �. Note first that ξ(·, ω) ∈ USC(D)+ for ω ∈ �1; use property (i)
above of �1. It follows that A = �1 as soon as K is not a subset of D × (0, ∞). Assume that
K ⊂ D × (0, ∞).

On �1, we have hypo ξ ∩ K 	= ∅ if and only if �({z ∈ E : hypo z ∩ K 	= ∅}) ≥ 1. Now
FK = {z ∈ E : hypo z ∩ K 	= ∅} is a hypo-measurable subset of E, so that X = �(FK) is a
random variable. It follows that A = X−1([1, ∞]) ∩ �1 is measurable, yielding (b).

A standard argument yields that the margins of ξ are unit-Fréchet. To show that ξ is simple
max-stable, we need to show that, for independent random copies ξ1, . . . , ξn of ξ , the capacity
functionals of

∨n
i=1 ξi and nξ are the same. That is, we need to show that, for every compact

set in D × R, we have

P

[
hypo

( n∨
i=1

ξ

)
∩ K = ∅

]
= P[hypo(nξ) ∩ K = ∅]. (5.9)

The left-hand side is equal to

P

[( n⋃
i=1

hypo ξi

)
∩ K = ∅

]
= P[for all i = 1, . . . , n : hypo ξi ∩ K = ∅]

= (P[hypo ξ ∩ K = ∅])n. (5.10)

https://doi.org/10.1017/jpr.2017.34 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.34


790 A. SABOURIN AND J. SEGERS

Without loss of generality, we may assume that

K =
p⋃

j=1

(Kj × {xj }),

where p ∈ N, Kj ⊂ D is compact, and xj is real for j ∈ {1, . . . , p}. Indeed, the capacity
functional of a USC process is entirely determined by its values on such compacta; see [8, p.
340]. We may also choose xj > 0, since otherwise both sides of (5.9) vanish. For such a set
K , we have

P[hypo ξ ∩ K = ∅]
= P

[
�

{
z ∈ E : there exists 1 ≤ j ≤ p, max

Kj

z ≥ xj

}
= 0

]
= exp

(
−�

{
(r, w) ∈ (0, ∞) × E : there exists j ≤ p, r max

s∈Kj

w(s) ≥ xj

})

= exp

(
−E

[∫ ∞

0
1{there exists j : r≥mins∈Kj

(xj /W(s))}
dr

r2

])

= exp

(
−E

[∫ ∞

0
1{r≥minj mins∈Kj

(xj /W(s))}
dr

r2

])

= exp

(
−E

[
max

j

maxs∈Kj
W(s)

xj

])
.

For ξ replaced by nξ , we obtain the same result, but with xj replaced by xj /n. In view of (5.10),
the desired equality (5.9) follows.

6. Conclusion

The aim of this paper has been to extend Sklar’s theorem from random vectors to USC
processes. We have stated necessary and sufficient conditions to be able to construct a USC
process with general margins by applying the pointwise quantile transformation to a USC
process with standard uniform margins (Propositions 4.1 and 5.1). Furthermore, we have
stated sufficient conditions for the pointwise probability integral transform to be possible for
USC processes (Propositions 4.2, 5.2, and 5.3). These conditions imply, in particular, that the
marginal distribution functions are continuous with respect to the space variable (Lemma 4.1).
We have also provided several examples of things that can go wrong when these conditions are
not satisfied. However, finding necessary and sufficient conditions remains an open problem.

The motivation has been to extend the margins versus dependence paradigm used in mul-
tivariate extreme value theory to max-stable USC processes. The next step is to show that
marginal standardization is possible in max-domains of attraction too. One question, for
instance, is whether the standardized weak limit of the pointwise maxima of a sequence of USC
processes is equal to the weak limit of the pointwise maxima of the sequence of standardized
USC processes; see [11, Proposition 5.10]. Interesting difficulties arise: weak convergence of
finite-dimensional distributions does not imply, and is not implied by, weak hypoconvergence;
Khinchin’s convergence-of-types lemma does not apply in its full generality to unions of random
closed sets; see [8, p. 254, ‘Affine normalization’]. This topic will be the subject of further
work.
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Appendix A. Right-continuous quantile functions

The right-continuous quantile function, Q, of a random variable X taking values in [−∞, ∞]
and with distribution function F(x) = P[X ≤ x], x ∈ [−∞, ∞], is defined as

Q(p) = sup{x ∈ R : F(x) ≤ p}, p ∈ [0, 1]. (A.1)

By convention, sup ∅ = −∞ and sup R = ∞. The fact that Q is right continuous is stated in
Lemma A.1(ii). The function Q is denoted by F−1+ in [10, p. 749], where properties (ii) and (iv)
of Lemma A.1 are mentioned. The corresponding statements for the right-continuous inverse,
p �→ inf{x ∈ R : F(x) ≥ p}, are well known; see, for instance, Section 0.2 of [11].

Lemma A.1. Let X be a random variable taking values in [−∞, ∞]. Define Q : [0, 1] →
[−∞, ∞] as in (A.1).

(i) For all p ∈ [0, 1], we have Q(p) = sup{x ∈ R : P(X < x) ≤ p}.
(ii) The function Q is nondecreasing and right continuous.

(iii) For every x ∈ [−∞, ∞] and every p ∈ [0, 1], we have x ≤ Q(p) if and only if
P[X < x] ≤ p.

(iv) If V is uniformly distributed on [0, 1] then the distribution function of Q(V ) is F , i.e.
Q(V ) and X are identically distributed.

(v) If the law of X has no atoms in [−∞, ∞] then P[X = Q(F(X))] = 1.

Proof. (i) Fix p ∈ [0, 1]. Since P[X < x] ≤ P[X ≤ x] = F(x), we have

Q(p) := sup{x ∈ R : F(x) ≤ p} ≤ sup{x ∈ R : P[X < x] ≤ p} := x0.

Conversely, if Q(p) = +∞, there is nothing to prove. Assume then that Q(p) < +∞, so
that p < 1. Let y > Q(p). We need to show that y > x0 too, that is, P[X < y] > p.
But P[X < y] = sup{F(z) : z < y}, and this supremum must be larger than p, since, for all
z > Q(p), we have F(z) > p.

(ii) The sets {x ∈ R : F(x) ≤ p} become larger with p, the function Q is nondecreasing. Next,
we show that Q is right continuous at any p ∈ [0, 1]. If Q(p) = ∞, there is nothing to show,
so suppose that Q(p) < ∞ (in particular, p < 1). Let ε > 0. Then Q(p) + ε > Q(p) and,
thus, F(Q(p) + ε) = p + δ > p for some δ > 0. For r < p + δ, we have F(Q(p) + ε) > r

too, and, thus, Q(r) < Q(p) + ε, as required.

(iii) First suppose that x < Q(p); we show that P[X < x] ≤ p. The x = ∞ case is impossible,
and if x = −∞ then P[X < x] = 0 ≤ p. So suppose that x ∈ R. Using statement (i), there
exists y ∈ R with x ≤ y ≤ Q(p) such that P[X < y] ≤ p. But then also P[X < x] ≤ p.

Second, suppose that x > Q(p); we show that P[X < x] > p. Clearly, we must have
Q(p) < ∞, and so we can without loss of generality assume that x is real. But then P[X <

x] > p by statement (i).
Finally, consider x = Q(p); we show that P[X < Q(p)] ≤ p. If Q(p) = −∞ then

P[X < Q(p)] = 0 ≤ p. If Q(p) > −∞ then P[X < y] ≤ p for all y < Q(p), and, thus,
P[X < Q(p)] = supy<Q(p) P[X < y] ≤ p too.

(iv) Without loss of generality, assume that 0 ≤ V ≤ 1 (if not, then replace V by (V ∨ 0) ∧ 1,
which is almost surely equal to V ). Let x ∈ [−∞, ∞]. By statement (iii), we have x ≤ Q(V )
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if and only if P[X < x] ≤ V . As a consequence, P[x ≤ Q(V )] = P[P[X < x] ≤ V ] =
1 − P[X < x] = P[x ≤ X]. We conclude that Q(V ) and X are identically distributed and,
thus, that Q(V ) has distribution function F too.

(v) By definition, x ≤ Q(F(x)) for every x ∈ R. For x = −∞ and x = +∞, the same
inequality is trivially fulfilled too (recall that F(∞) = 1 and Q(1) = ∞). As a consequence,
X ≤ Q(F(X)).

Conversely, let P be the collection of p ∈ [0, 1] such that the set {x ∈ R : F(x) = p}
has positive Lebesgue measure. These sets being disjoint for distinct p, the set P is at most
countably infinite. If x < Q(F(x)) then there exists y > x such that F(x) = F(y) and, thus,
F(x) ∈ P . However, the law of F(X) is standard uniform, so that P[F(X) ∈ P ] = 0. Hence,
X = Q(F(X)) almost surely. �
Lemma A.2. Let (Xn)n∈N be a sequence of random variables defined on the same probability
space and taking values in [−∞, ∞]. Let Qn and Q be the right-continuous quantile functions
(A.1) of Xn and lim supn→∞ Xn, respectively. Then

Q(p) ≥ lim sup
n→∞

Qn(p), p ∈ [0, 1].

Proof. If Q(p) = ∞, there is nothing to show, so suppose that Q(p) < ∞. Let y > Q(p);
we will show that y ≥ lim supn→∞ Qn(p). This being true for all y > Q(p), we will have
proved the proposition.

By Lemma A.1(i), we have P[lim supn→∞ Xn < y] > p. By Fatou’s lemma, there exists
a positive integer n(y) such that P[Xn < y] > p for all integer n ≥ n(y). But for such n, we
have y > Qn(p) too. Hence, y ≥ lim supn→∞ Qn(p), as required. �

Appendix B. Additional examples related to Proposition 4.2

Example B.1. (Condition (b) in Proposition 4.2 is not necessary.) Let D = [−1, 1] and let X

and V be independent random variables, X standard normal and V uniform on [0, 1]. Define

ξ(s) =

⎧⎪⎨
⎪⎩

X if −1 ≤ s ≤ 0,

X − 1 if 0 < s < V ,

X if V ≤ s ≤ 1.

Let � be the standard normal cumulative distribution function and choose x ∈ R. Then
Fs(x) = P[ξ(s) ≤ x] = �(x) if s ∈ [−1, 0], while, for s ∈ (0, 1], we have

Fs(x) = P[s < V ]P[X − 1 ≤ x] + P[V ≤ s]P[X ≤ x] = (1 − s)�(x + 1) + s�(x).

The function s �→ Fs(x) is constant on s ∈ [−1, 0], while it decreases linearly from �(x + 1)

to �(x) for s from 0 to 1, the right-hand side limit at 0 being equal to �(x + 1), which is
greater than �(x), the value at s = 0 itself. Hence, the function s �→ Fs(x) is lower but not
USC, and condition (b) in Proposition 4.2 does not hold. Nevertheless, the random variables
Z(s) = Fs(ξ(s)), s ∈ D, are given as

Z(s) = Fs(ξ(s)) =

⎧⎪⎨
⎪⎩

�(X) if −1 ≤ s ≤ 0,

(1 − s)�(X) + s�(X − 1) if 0 < s < V ,

(1 − s)�(X + 1) + s�(X) if V ≤ s ≤ 1.

The trajectory of Z is continuous at s ∈ [−1, 1] \ {V } and USC at s = V , hence, USC overall.
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Example B.2. (Processes ξ and ξ̃ in Proposition 4.2 may be different in law (1).) Let X and Y

be independent, uniform random variables on [0, 1]. For s ∈ D = [0, 1], define

ξ(s) = X + 1{Y=s} =
{

X if s 	= Y ,

X + 1 if s = Y .

Since P[Y = s] = 0 for every s ∈ [0, 1], the law of ξ(s) is standard uniform. Conditions (a)
and (b) in Proposition 4.2 are trivially fulfilled with Fs(x) = (x ∨ 0)∧ 1 for x ∈ [−∞, ∞] and
Qs(p) = p for p ∈ [0, 1), while Qs(1) = ∞. We obtain

Z(s) = Fs(ξ(s)) =
{

X if s 	= Y ,

1 if s = Y ,

and, thus,

ξ̃ (s) = Qs(Z(s)) =
{

X if s 	= Y ,

∞ if s = Y .

The processes ξ̃ and ξ have different capacity functionals and, thus, a different distribution as
random elements in USC(D): for K = [0, 1] × {x} with x > 2, we have P[hypo ξ ∩ K 	=
∅] = 0, while P[hypo ξ̃ ∩ K 	= ∅] = 1.

Example B.3. (Processes ξ and ξ̃ in Proposition 4.2 may be different in law (2).) Let X

and Y be independent random variables, with X uniformly distributed on [0, 1] ∪ [2, 3] and Y

uniformly distributed on [0, 1]. For s ∈ D = [0, 1], define

ξ(s) = X ∨ (1.5 × 1{Y=s}) =
{

X if s 	= Y or X > 1,

1.5 if s = Y and X ≤ 1.

Then P[ξ(s) = X] = 1 for all s ∈ [0, 1], so that the marginal distribution and quantile
functions Fs and Qs do not depend on s and are equal to those of X, denoted by FX and QX.
The random variable U = FX(X) is uniformly distributed on [0, 1]. Since FX(1.5) = FX(1) =
1
2 , we have

Z(s) = FX(ξ(s)) =
{

U if s 	= Y or X > 1,
1
2 if s = Y and X ≤ 1.

However, as QX( 1
2 ) = 2, we obtain

ξ̃ (s) = QX(Z(s)) =
{

X if s 	= Y or X > 1,

2 if s = Y and X ≤ 1.

On the event {X ≤ 1}, which occurs with probability 1
2 , the hypographs of ξ and ξ̃ are different.

Appendix C. Lower bounds of USC processes

Lemma C.1. If ξ is a USC process then the function �(s) = sup{x ∈ R : P[ξ(s) < x] = 0} for
s ∈ D is USC. Moreover, ξ∨� is also a USC process, and we have P[ξ ≥ �] = P[ξ = ξ∨�] = 1.

Proof. The function � is equal to the function s �→ Qs(0), with Qs the right-continuous
quantile function (A.1) of ξs . By Lemma 3.2, the function � is USC, and by Example 3.1, the
map USC(D) → USC(D) : z �→ z ∨ � is hypo-measurable, so that ξ ∨ � is a USC process too.
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By Lemma C.2, there exists a countable subset, Q�, of D with the following property: for
all x ∈ USC(D), we have x(s) ≥ �(s) for all s ∈ D if and only if x(t) ≥ �(t) for all t ∈ Q�.
Since �(t) = Qt(0), we have P[ξ(t) ≥ �(t)] = 1 for all t ∈ Q�; see Lemma A.1(iii). Since Q�

is countable, also P[for all t ∈ Q� : ξ(t) ≥ �(t)] = 1. By the property of Q� mentioned earlier,
the event {for all t ∈ Q� : ξ(t) ≥ �(t)} is equal to both {ξ ≥ �} and {ξ = ξ ∨ �}. �

Lemma C.2. For every z ∈ USC(D), there exists a countable set Qz ⊂ D such that

z(s) = inf
ε>0

sup
t∈Qz : d(s,t)≤ε

z(t), s ∈ D. (C.1)

In particular, for every x ∈ USC(D), we have x(s) ≥ z(s) for all s ∈ D if and only if x(t) ≥ z(t)

for all t ∈ Qz.

Proof. The set hypo z is a subset of the metrizable separable space D × R. Hence, it is
separable too. Let Q be a countable, dense subset of hypo z. Let Qz be the set of t ∈ D such
that (t, x) ∈ Q for some x ∈ R. Then Qz is a countable subset of D.

Let y(s) denote the right-hand side of (C.1). Since z is USC, we have z(s) ≥ y(s) for all
s ∈ D.

Conversely, let s ∈ D. If z(s) = −∞ then trivially y(s) ≥ z(s). Suppose that z(s) > −∞.
Let −∞ < α < z(s), so that (s, α) ∈ hypo z. Find a sequence (tn, αn) ∈ Q such that
(tn, αn) → (s, α) as n → ∞. Then (tn, αn) ∈ hypo z and, thus, z(tn) ≥ αn for all n.
Moreover, tn → s and αn → α as n → ∞. It follows that y(s) ≥ α. Since this is true for all
α < z(s), we find y(s) ≥ z(s).

We prove the last statement. Let x ∈ USC(D) and suppose that x(t) ≥ z(t) for all t ∈ Qz.
The function x is equal to its own USC hull, i.e.

x(s) = inf
ε>0

sup
t∈D : d(s,t)≤ε

x(t), s ∈ D.

Combine this formula together with (C.1) to see that x(s) ≥ z(s) for all s ∈ D. �

Lemma C.3. If ξ is a USC process then infs∈F ξ(s) is a random variable for any closed set
F ⊂ D.

Proof. Let Q be a countable, dense subset of F . Since every ξ(s) is a random variable, it
suffices to show that infs∈F ξ(s) = infs∈Q ξ(s). The inequality ‘≤’ is trivial. To see the other
inequality, suppose that x is such that ξ(s) ≥ x for all s ∈ Q. Then (s, x) ∈ hypo ξ for all
s ∈ Q, and, thus, (s, x) ∈ hypo ξ for all s ∈ F , since hypo ξ is closed. It follows that ξ(s) ≥ x

for all s ∈ F . �

Appendix D. Continuity of the GEV parameter

Recall the GEV distributions from Subsection 5.1.

Lemma D.1. Let Fn = F(·, θn), n ≥ 0, be GEV distribution functions with associated GEV
parameters θn = (μn, σn, γn). If (Fn)n converges weakly to F0 then also limn→∞ θn = θ0 in
R × R × (0, ∞).

Proof. By the continuity of the GEV distribution, weak convergence is the same as pointwise
convergence, and, thus, limn→∞ Fn(x) = F0(x) for all x ∈ R.
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Recall the expression (5.2) of the quantile function Q(·; θ). Pointwise convergence of
monotone functions implies pointwise convergence of their inverses at continuity points of the
limit [11, Chapter 0]. Setting p = e−1, we obtain

μn = Q(e−1; θn) → Q(e−1; θ0) = μ0, n → ∞.

As a consequence, for p ∈ (0, 1),

Q(p; γn, 0, σn) = Q(p; θn)−μn → Q(p; θ0)−μ0 = Q(p; γ0, 0, σ0), n → ∞. (D.1)

This implies that, for x, y > 0 such that y 	= 1,

lim
n→∞

xγn − 1

yγn − 1
= xγ0 − 1

yγ0 − 1
.

For γn = 0, the above expressions are to be understood as log(x)/ log(y). A subsequence
argument then yields that (γn)n must be bounded, and a second subsequence argument confirms
that γn → γ0 as n → ∞. Combine this convergence relation with (D.1) and use the identity
Qn(p; γn, 0, σn) = σnQ(p; γn, 0, 1) to conclude that σn → σ0 as n → ∞. �
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