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SUMMARY

Predictive models are frequently used to define
the most suitable areas for species protection or
reintroduction. Land-cover variables can be used
in different ways for distribution modelling. The
surface area of a set of land-cover classes is
often used, each land-cover presence/absence or the
distance to them from any point of the study
area can be preferred; multiple types of land-
cover variables may be combined to produce a
single model. This paper assesses whether different
approaches to using land-cover variables may lead
to different ecological conclusions when interpreted
for conservation by focusing on the distribution of
the salamader Salamandra salamandra longirostris, an
endangered amphibian subspecies in the south of the
Iberian Peninsula. Twenty-eight land-cover classes
and another 42 environmental variables were used
to construct four different models. Three models
used a unique type of land-cover variable: either the
presence of each class, the surface area of each class
or the distance to each class, with all three variable
types jointly entered in a fourth model. All models
attained acceptable scores according to some criteria
(discrimination, descriptive and predictive capacities,
classification accuracy and parsimony); however most
of the assessment parameters computed indicated a
better performance of the models using either the
surface area of land classes or the distance to them
from every sampled square, compared to the model
using class presences. The best scores were obtained
with the fourth model, which combined different types
of land-cover variables. This model suggested that oak
forest fragmentation in favour of herbaceous crops and
pastures may have negative effects on the distribution
of S. s. longirostris. This was only partially suggested by
the first three models, which considered a single type of
land-cover variable, demonstrating the importance of
considering a multi-variable analysis for conservation
planning.
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INTRODUCTION

Predictive models can have multiple applications, such as
defining the most suitable areas for species reintroduction or
protection, and understanding which environmental variables
most accurately explain species distribution (Fielding &
Haworth 1995). When investigated at landscape, local or
site spatial scales, then considering land-cover variables in
modelling is recommended (Pearson & Dawson 2003); at
broader spatial scales, land cover can help to improve the
explanatory power of bioclimatic models (Thuiller et al. 2004).
Land-cover data may be a good substitute for genetically-
based measures of determining population isolation in the
context of conservation planning (Greenwald et al. 2009a).
Land-classification variables are used in different ways: some
authors determine Euclidean distances to different classes
(Alzaga et al. 2009); some calculate the surface area of
each class (Herrmann et al. 2005; Oja et al. 2005; Egea-
Serrano et al. 2006; Acevedo et al. 2007, 2011; Delibes-Mateos
et al. 2009, 2010; Greenwald et al. 2009a, b); or combine both
criteria (Hirzel et al. 2002; Seoane et al. 2004; Acevedo &
Cassinello 2009; Baasch et al. 2010); and yet others quantify
every land class as 1 (present) or 0 (absent) (Guerry &
Hunter 2002; Svenning et al. 2009). An alternative way
of dealing with land classes in distribution modelling is to
use them as categorical variables (Phillips et al. 2006; Yost
et al. 2008). However, each one of the formats involves
different information on the relationship between species and
landscape. The presence/absence of a class could provide
information on whether a habitat is needed or avoided by a
species within its territory (for example a species could need
a water surface in its habitat), while the surface area of a land-
cover class might suggest that a species is needing a relatively
high or low cover area of a certain habitat (for example a
species could need water to cover a high proportion of its
habitat surface). In addition, the minimum distance to a land
class in a model may suggest the need for a land-class to be
accessible for a species (for example a species could simply
need the presence of a water surface nearby).

The purpose of this study was to evaluate whether using
different land classification approaches when constructing
favourability models for Salamandra salamandra longirostris
could influence the explanatory power of the models.
Such comparison has not been made before. Salamander
distribution modelling has been recurrently based on land-
cover surfaces (see Herrmann et al. 2005; Egea-Serrano
et al. 2006; Price et al. 2006; Greenwald et al. 2009a, b),
and models combining land-cover variable types (though not
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for salamander) usually select a priori which type of variable
is applied to every land-cover class (for example see Hirzel
et al. 2002; Baasch et al. 2010). S. s. longirostris is endemic
to the southern Iberian Peninsula, where major losses in
environments suitable for amphibians have been predicted
due to climate warming (Araújo et al. 2006) and observed
due to development, agriculture, reduced-habitat and other
factors (Pleguezuelos et al. 2004; Stuart et al. 2004; Cruz
et al. 2006). Amphibians are especially vulnerable to habitat
loss and fragmentation because they need relatively intact
aquatic and terrestrial habitats (Cushman 2006) that maintain
a level of homogeneity important for this species survival. The
main danger to S. salamandra in Spain is the loss (either by
aridification or by habitat destruction) of water points used
for reproduction (Pleguezuelos et al. 2004). Such a degree
of dependence on land cover may make a distribution model
for S. salamandra sensitive to the way variables describing
landscape are integrated in the model formulation.

METHODS

Study area and distribution data

The Iberian Peninsula is the most south-western territory
in Europe (see Fig. 1a). Its varied orography and
geographic position, lying between two continents (Europe
and Africa) and between two water masses (Atlantic
Ocean and Mediterranean Sea), determine a bioclimatically
heterogeneous area (López Fernández et al. 2008). The
study area is located in the southernmost part of the Iberian
Peninsula, including all small Andalusian river basins south
of the Guadalquivir River. These basins flow into the
Mediterranean Sea or the Atlantic Ocean, and include
the strongest precipitation gradient in Iberia, given that the
Serranía de Ronda (between Cadiz and Malaga, in the west) is
the rainiest region in the Iberian Peninsula, whereas Almeria
province (in the east) is the one of the driest regions in Europe.

Nine Salamandra salamandra subspecies live in the Iberian
Peninsula. We studied the southernmost subspecies, S. s.
longirostris (Los Barrios fire salamander), which is catalogued
as vulnerable to extinction (VU) according to the International
Union for the Conservation of Nature (IUCN; Pleguezuelos
et al. 2004). Recent studies have classified S. s. longirostris as
being sufficiently different to be considered a separate species
(García-París et al. 1998; Dubois & Raffaëli 2009). Our study
area involves 98.9% of the 10-km2 squares in which such
endemic subspecies occurs (Pleguezuelos et al. 2004). S. s.
longirostris is at risk because of the loss of aquatic habitats
due to habitat destruction (Pleguezuelos et al. 2004). The
distribution data of S. s. longirostris in 1-km2 grid squares was
obtained using a database created by Tejedo et al. (2003);
records were collected during surveys performed between
1980 and 2003 (with 80% having taken place after 1993) in the
whole Andalusia region, surveying sites in the areas considered
as potentially suitable for this species. Within our study area,
S. s. longirostris was present in 388 of the sampled squares
(that is all squares in which there was at least one amphibian

Figure 1 Study area and distribution data. (a) Geographical
context. Mountains, main towns and the Guadalquivir River are
shown as geographic references. (b) Sites (1-km2 squares) with
presences, absences and pseudo-absences of Salamandra salamandra
longirostris according to Tejedo et al. (2003) (see main text for
explanation of pseudo-absences); presences are shown in black,
absences in grey and pseudo-absences in white. (c) Presences and
absences in 10-km2 UTM squares according to Pleguezuelos et al.
(2004).

species, according to the database) and absent from 330 (see
Fig. 1b). Our study area involves 99.2% of the S. s. longirostris
presences recorded by Tejedo et al. (2003). The surveying
effort in some areas of Andalusia, including the most easterly
part of our study area, was low because of the scarcity of
optimum habitats for amphibians (Tejedo et al. 2003). For
modelling purposes, we generated a set of 80 pseudo-absences
by selecting random points in this area using Hawth’s tools
and ESRI ArcMap 9.2 software. The complete absence of
S. salamandra from this zone was confirmed by Pleguezuelos
et al. (2004).

Predictor variables

To determine the variables that best explain the distribution of
S. s. longirostris, we compared species’ presences and absences
(or pseudo-absences) to the distribution of 42 predictor
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Table 1 Variables used to model the determinants of the distribution of Salamandra salamandra longirostris. Sources: 1Instituto
Geográfico Nacional (1999); 2US Geological Survey (1996); 3Shuttle Radar Topography Mission (SRTM; Farr & Kobrick 2000);
4Font (1983); 5Instituto Geológico y Minero de España (1979); 6Font (2000); 7Montero de Burgos and González-Rebollar (1974);
8Junta de Andalucía (2009); 9Oak Ridge National Laboratory (2001).

Abbreviation Variable Abbreviation Variable
Spatial situation
La Latitude Lo Longitude
Topography
A Mean altitude (m)2 SE Southward exposure degree3

DAl Difference altitude (m) (calculated
from altitude)

WE Westward exposure degree3

S Slope (◦) (calculated from altitude)
Climate
Hjul Mean relative air humidity in July

at 07:00 (%)4
Dfro Mean annual number of frost days (minimum

temperature ≤ 0◦ C)6

HRan Annual relative air humidity range
(%) ( = |HuJan-HuJul|)

HJan Mean relative air humidity in January at 07:00
(%)4

TJan Mean temperature in January (◦C)4 RMP Relative maximum precipitation (= MP24 ×
Prec−1)

TJul Mean temperature in July (◦C)4 ContI Continental index6

Temp Mean annual temperature (◦C)4 PIrr Pluviometric irregularity7

Inso Mean annual insolation (h yr−1)4 ROff Mean annual runoff (mm)5

SRad Mean annual solar radiation (kWh
per m2 day−1)4

DPre Mean annual number of days with
precipitation ≥ 0.1 mm4

TRan Annual temperature range (◦C) ( =
TJul - TJan)

DStrS Mean annual number of storm in summer6

MP24 Maximum precipitation in 24 h
(mm)4

Win Mean annual number of route of winter
(km h−1)6

Perm Soil permeability5 DOvc Mean annual number of overcast days6

HumI Humidity index6 DClear Mean annual number of clear days6

Prec Mean annual precipitation (mm)4 DFog Mean annual number of fog days6

AET Mean annual actual
evapotranspiration (mm) ( =
min [Prec, PET])

DFogW Mean annual number of fog days in winter6

PET Mean annual potential
evapotranspiration (mm)4

DFogS Mean annual number of fog days in summer6

DHail Mean annual number of hail days6 DStor Mean annual number of storm days6

DSno Mean annual number of snow
days6

Land cover
Natural vegetation
PAST Pasture8 DSWC Dense scrub with conifers8

OAKW Oak wood8 SSWC Sparse scrub with conifers8

PWO Pasture with oak8 SSWD Sparse scrub with diverse trees8

PWC Pasture with conifers8 DSWD Dense scrub with diverse trees8

DSWO Dense scrub with oak8 CW Conifer wood8

SS Sparse scrub8 DS Dense scrub8

SSWO Sparse scrub with oak8

Crops
IHER Irrigated herbaceous crops8 DWC Dry wood crops8

IWC Irrigated wood crops8 MCNV Mosaic of crops and natural vegetation8

DHER Dry herbaceous crops8 HCWO Herbaceous crops with oak8

DHET Dry heterogeneous crops8 BARL Bare land8

IHET Irrigated heterogeneous crops8 BUL Built-up land8

variables associated with spatial situation (longitude and
latitude), topography, climate and human activity, and to
28 land-cover classes extracted from the land-cover maps of
Andalusia for 2003 according to Junta de Andalucía (2009)

(see Table 1). These land classes were used to build three sets
of predictor variables in all 1-km2 squares within the study
area: presence-absence of every class; surface area covered by
every class; and minimum Euclidean distance to every class.
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Table 1 continued

Abbreviation Variable Abbreviation Variable
Water surfaces
COW Canals of water 8 RV Rivers8

WR Water reservoirs8 OW Other wetlands8

LK Lakes8

Other human activities
Dhi Distance to the nearest highway

(km)1
U500 Distance to the nearest urban centre with

more than 500 000 inhabitants (km)1

U100 Distance to the nearest urban
centre with more than 100 000
inhabitants (km)1

HPd Human population density in 2000 (number of
inhabitants per km2)9

These types of variables were preferred to categorical variables
because they allow every 1-km square to be associated with
more than one land-cover class. Land-cover classes, initially
in polygon shape-file format, were processed using the ESRI
ArcMap 9.2 software. Polygons were converted to a 100×100-
m resolution raster, and Euclidean distances to each polygon
class were then computed using the ‘distance’ spatial-analyst
tool. Finally, values of every presence, surface and distance
variable in 1-km2 squares were extracted using the ‘zonal
statistics as table’ spatial-analyst tool.

Model building

The dependent variable used to build the models was the
presence/absence of S. s. longirostris with n = 798 1-km2 grid
squares; the species was present in 48.6% of the squares and
absent or pseudo-absent in 51.4%.

We constructed the models using forward-backward
stepwise logistic regression of the presence/absence (or
pseudo-absence) data for all predictor variables. We built
four different models. Every spatial, orographic, climatic and
human variable (Table 1) was considered in all models, but
a different set of land-cover variables was also proposed to
the variable selection procedure in each model: (1) presence-
absence of every land-cover class; (2) surface area covered
by every class; (3) minimum Euclidean distance to every
class; and (4) these three variable sets together. Finally, we
applied the favourability function (Real et al. 2006), which
reflects the degree (between 0 and 1) to which the probability
values obtained in each model differ from that expected
according to the species’ prevalence (null model), being 0.5
the favourability value suggesting no difference between both
probability values. Thus, favourability F for the presence of S.
s. longirostris in each square was obtained by using the formula:

F = [p/(1 − p)]/[(n1/n0) + (p/[1 − p])]

where p is the probability value obtained according to each
model, and n1 and n0 are the number of squares with presences
or absences (or pseudo-absences), respectively.

To minimize type I errors due to the number of variables
used in the analyses, we controlled the false discovery rate

(FDR), that is, we avoided the false rejecting of the null
hypothesis, which predicts that the distribution of S. s.
longirostris cannot be modelled with the variable set (Table 1).
The procedure outlined in Benjamini and Hochberg (1995)
was used to control the FDR. This involves ordering the tested
variables according to decreasing significance (increasing p-
value), and only accepting variables up to the highest rank
whose p -value is lower than i×q/V, where i is the rank of each
variable in the ordered list, q is the critical FDR value, and
V is the total number of tested variables. We took a critical
value of q = 0.05, which implies that the selected variables
were significant controlling for a FDR of q < 0.05.

The AIC of each model was compared to the AIC of
the null model (we obtained this model from the 0-step
of the stepwise procedure, before any variable has entered
in the model). We also avoided excessive multicollinearity
by checking the variable inflation factor (VIF) and pair-
wise variable correlations (Appendix 1, Table S1, see
supplementary material at Journals.cambridge.org/ENC).
The VIF is considered acceptable up to 10, according to
Montgomery and Peck (1992).

The relative weight of variables in each model was estimated
using the Wald parameter. We also took into account the
relative role of land-cover and other variables, and different
groups of land-cover classes in the description of favourability.
Thus, a variation partitioning procedure was performed to
specify how much of the variation in favourability explained
by the model was accounted for by the pure effect of each
variable group (that is not affected by covariation with other
variable groups in the model), and which proportion was
clearly attributable to more than one group (shared effect)
(Legendre 1993; Legendre & Legendre 1998; for details of
the procedure followed for variation partitioning, see Muñoz
et al. 2005).

Comparative assessment

Several indices were used to compare the performance of
the four models. The area under the curve (AUC) of the
receiver operating characteristic, which is independent of
any favourability threshold (Hosmer & Lemeshow 2000), is a
measure of the degree to which a species is restricted to part
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of the variation range of the modelled predictors, but is not a
reliable measure of accuracy of the model’s results (Lobo et al.
2008). However, a higher discrimination capacity could imply
greater precision in describing the distribution of a species
when two models of the same species in the same study area
are compared. The Akaike information criterion (AIC) was
employed as a measure of the degree of parsimony among
models in a comparative set (Akaike 1973). A set of widely
recognized measures of classification accuracy based on the
0.5-favourability threshold (as favourability is independent of
prevalence, 0.5 is close to the favourability value at which
both sensitivity and specificity are equal). These measures
are as follows: correct classification rate (CCR), sensitivity,
specificity, omission and commission errors, and Cohen’s
Kappa (which is described as the proportion of specific
agreement; Fielding & Bell 1997). Each model’s capacity to
provide descriptions or inferences, that is, the per cent of
presences in areas described as favourable, and of absences in
areas described as unfavourable by the model, was assessed.
To this end, squares whose favourability value was 0.8 or
higher were considered favourable, whereas those with values
equal to 0.2 or lower were considered unfavourable. This is
equivalent to defining a prediction with odds higher than 4:1
as favourable, and lower than 1:4 as unfavourable (Rojas et al.
2001; Muñoz & Real 2006). Significant differences between
models were assessed using the arcsine test of equality of
percentages (Sokal & Rohlf 1979, p. 663). Each model’s
capacity to describe or infer was also evaluated by comparing
how high the favourability values were, according to each
model, in squares where presences have been observed, and
how low these values were in squares from which the species
was absent. The Wilcoxon test was used for these comparisons.

Each model’s predictive capacity was defined in the same
way as each model’s descriptive capacity, but taking into
account presences and absences obtained from an independent
(not used for the model training) database (Fig. 1b). The data
source was the Atlas and Red Book of Amphibians and Reptiles
of Spain (Pleguezuelos et al. 2004), where presence/absence
data are recorded in 10-km2 UTM (Universal Transverse
Mercator) squares. The following steps were used to test each
model’s predictive capacity: (1) we projected the favourability
values predicted by the model to each of the 21 880 1-
km2 squares of the study area; (2) every 10-km2 UTM
square was given the maximum favourability value observed
in the 1-km2 squares located inside them; (3) using these
10-km2 resolution favourability values, and the information
on presences/absences taken from the Atlas (Fig. 1b), we
followed the same procedure used when evaluating each
model’s descriptive capacity.

RESULTS

The models

Using the four models (hereafter ‘Pres-Model’ for model
using the presence or absence of every land-cover class, ‘Surf-

Figure 2 Models of Salamandra salamandra longirostris using the
presence or absence of every land-cover class (Pres-Model), the
surface area covered by every class (Surf-Model), the minimum
Euclidean distance to every class (Dist-Model), and the three
variable sets together (All-Model). Favourability values have been
projected to every 1-km2 square throughout the study area.
Favourable areas are shown in black (favourability value ≥ 0.8),
unfavourable areas are in light grey (favourability value ≤ 0.2), and
those with intermediate favourability are in dark grey (0.2 <

favourability value < 0.8).

Model’ for that using the surface area covered by every class,
‘Dist-Model’ for that using the minimum Euclidean distance
to every class, and ‘All-Model’ for that combining all three
variable sets) when favourability values were projected to
every 1-km2 square in the study area, between 9.52% and
10.72% of the study area was classified as favourable and
between 56.94% and 59.43% was classified as unfavourable
for S. s. longirostris (Fig. 2). Regardless of the model, there is
a central core of favourability in the western half of the study
area. This nucleus corresponds to the main population of the
Iberian endemic subspecies.

The AIC of the four models was always lower than
750 (Table 2, which was considerably lower than the
null model AIC (1102.31). Conversely, multicollinearity
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Table 2 Comparative assessment
of four models of the distribution
of Salamandra salamandra
longirostris according to
classification, discrimination and
parsimony criteria. CCR = correct
classification rate; AUC = area
under the ROC (receiving
operating characteristic) curve;
AIC = Akaike information
criterion (for model names see
Fig. 2).

Assessment criteria Model

Pres-Model Surf-Model Dist-Model All-Model
Kappa 0.543 0.568 0.533 0.581
Sensitivity 0.802 0.825 0.814 0.838
Specificity 0.742 0.744 0.720 0.744
Omission 0.198 0.175 0.186 0.162
Commission 0.258 0.255 0.280 0.255
CCR 0.771 0.784 0.766 0.790
AUC 0.885 0.889 0.889 0.898
AIC 742.173 742.247 727.550 711.939

Table 3 Predictor variables included in each favourability model (for abbreviations see Table 1). Signs in brackets show the positive or
negative relationship between favourability and the variables in the models. The Wald parameter indicates the relative weight of every variable
in the model (for model names see Fig. 2).

Environmental factor Pres-Model Surf-Model Dist-Model All-Model

Variables Wald Variables Wald Variables Wald Variables Wald
Land cover Presence DHER (−) 15.2 DHER (−) 8.5

OAKW (+) 9.7
Surface
area %

PAST (−) 12.6 PAST (−) 13.3

DHER (−) 13.7
Distance IHER (+) 34.2 IHER (+) 22.0

OAKW (−) 12.1 SSWO (−) 8.3
COW (−) 7.6 COW (−) 6.2
DSWD (+) 4.6

Non-land-cover variables HumI (+) 3.8 HumI (+) 6.01 HumI (+) 55.6 HumI (+) 60.0
Lo (−) 37.4 Lo (−) 37.5 Lo (−) 34.0 Lo (−) 30.4
U500 (−) 3.4 U500 (−) 10.0 U500 (−) 19.7 U500 (−) 13.7
S (+) 14.4 S (+) 11.6 S (+) 13.3 S (+) 6.1
DStor (+) 20.3 DStor (+) 12.3
DSno (−) 19.1 DSno (−) 11.3

DPre (+) 5.3

seemed to be acceptable in all cases: no variable whose
correlation was higher than 0.70 were included in the same
model (Appendix 1, Table S2, see supplementary material
at Journals.cambridge.org/ENC), and the inflation factor
was never higher than 5.5 (Appendix 1, Table S1, see
supplementary material).

The four models included land-cover variables, spatial
situation, human activity, climate and topography (Table 3).
In terms of non-land-cover variables, there were strong
similarities among the four models: they shared all the
climatic, topographic, spatial and human variables of
importance according to their relative weight (see Wald
parameter in Table 3), though the Pres- and Surf-Models
also included variables associated with the number of days
with precipitation (either rainfall, snow or storms; see
Table 3). In both Pres- and Surf-Models, more than 95%
of the explained variation in favourability was accounted for
purely by non-land-cover variables; in both Dist- and All-
Models this percentage was only around 50%, although the
explained variation in favourability accounted for by both the
pure effect of non-land-cover variables and the intersection

between land-cover and non-land-cover variables was more
than 90% (Fig. 3a).

In contrast, there were noticeable differences between
the models according to which land-cover variables were
included. In both Pres- and Surf-Models the pure effect of
land cover only accounted for about 3% of the explained
variation in favourability (and even less when the intersection
between landscape and other factors was also considered),
whereas in Dist-Model and in All-Model the pure effect of
land cover accounted for 7% to 8%. This percentage, together
with that of the intersection between land cover and other
factors, ranged between 43% and 54% (see Fig. 3a). The
four models provided different interpretations of which land-
cover classes are important for S. s. longirostris: both Pres- and
Dist-Models included oak woods (positively associated with
favourability) and herbaceous crops (negatively associated
with favourability), whereas Surf-Model included pastures
and herbaceous crops (both negatively associated with
favourability). Conversely, All-Model included a combination
of the three types of land-cover variables (presence, surface
area and Euclidean distance), and classes with oaks (short
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Figure 3 Variation partitioning diagrams to specify: (a) how much
of the variation in favourability for Salamandra salamandra
longirostris explained by the models was accounted for purely by
land-cover and by non-land-cover variables, and which proportion
was attributable to their shared effects (intersections), and (b) how
much of the variation in favourability was accounted for purely by
forested areas with oak, pastures, herbaceous crops and other
land-cover classes, and their shared effects (intersections). Values
shown are the percentages of variation explained (see Fig. 2 for
explanation of model names).

distance to them), pastures (low surface area) and herbaceous
crops (poor presence and long distance to them) were accepted
for entry in the model along the stepwise procedure (see
Table 3 and Fig. 3b).

Comparative assessment

The model that combined three types of land-cover variables
(All-Model) was the most parsimonious (lowest AIC), the
best at classifying presences and absences (highest Kappa,

sensitivity, specificity and CCR, and lowest omission and
commission errors), and had the best discrimination capacity
(highest AUC) (see Table 2). This was also the best
model regarding the matches between presences and highly
favourable areas when both the presences used to train the
models and the presences of an independent data set were
considered, although comparisons with the other models did
not yield statistically significant differences in this regard
(p > 0.05, see Table 4). Considering the data from the Atlas
and Red Book of Amphibians and Reptiles of Spain (Pleguezuelos
et al. 2004), All-Model obtained significantly fewer presences
(p < 0.05) in highly unfavourable squares than Surf- and
Dist-Models, but significantly more absences (p < 0.01) in
highly favourable squares than Surf-Model (Table 4). On
the other hand, All-Model obtained the significantly highest
favourability values (p < 0.01) in the squares with presences
used to train the models (Table 5); All-Model obtained
significantly lower favourability values (p < 0.001) than both
Pres- and Surf-Models (although higher than Dist-Model) in
squares with absences, according to both the training and the
Atlas data (Table 5).

Of the models that used only one land-cover variable type,
Surf-Model was the best at classifying presences and absences
and had the best discrimination capacity; Dist-Model was
the most parsimonious (Table 2). The Surf-Model and the
Dist-Model provided fewer matches between presences and
highly favourable squares than the Pres-Model (Table 4).
Conversely, all three models did not significantly differ in
favourability values in squares where fire salamanders were
present (p > 0.05, Table 5), although Dist-Model showed
significantly lower favourability values than both Pres- and
Surf-Models in squares with absences (according to both the
training [p < 0.05] and the independent [p < 0.001] data sets;
see Table 5).

DISCUSSION

Model comparison according to the variables selected

The models obtained describe areas favourable to S. s.
longirostris as being humid mountainous lands in the east of the
study area that are far from populated cities, most favourably
among ecosystems associated with oak forests, but not with
herbaceous ground (pastures and crops). This matches the
known habitats of S. salamandra in southern Iberia (Miñano
et al. 2003; García-París et al. 2004). Our results are also
compatible with those of Hermann et al. (2005) on amphibian
distributions, in that landscape variables had less explanatory
power than other factors, including climate (see Table 3 and
Fig. 3a).

The four models are not identical to each other. In fact, only
the two models that used Euclidean distances to land-cover
classes, either alone (Dist-Model) or combined with other
land-cover variable types (All-Model), identified a substantial
role of land cover in explaining the areas favourable to S. s.
longirostris; in contrast, the models that exclusively used either
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Table 4 Percentage of presences and of absences in favourable (F ≥ 0.8) and unfavourable (F ≤ 0.2) areas. These
percentages represent the model’s capacity to describe the 1-km2 resolution distribution data of Salamandra salamandra
longirostris in Tejedo et al. (2003), namely the data set used to train the models, and to predict the 10-km2 resolution
distribution published in Pleguezuelos et al. (2004), namely an independent data set. Brackets indicate the models with
significant differences (arcsine test of equality of percentages: ∗p < 0.05; ∗∗p < 0.01). The models based on land-cover
class presence, surface, distance and on a combination of these three variable types are named as ‘Pres’, ‘Surf’, ‘Dist’
and ‘All’, respectively.

Percentage Model Training data set (1 km2) Independent data set (10 km2)

F < 0.2 F > 0.8 F < 0.2 F > 0.8
Presences Pres 2.3 42.5 0.0 (Surf∗, Dist∗) 52.6

Surf 2.6 43.0 1.1 (Pres∗, All∗) 50.5
Dist 1.8 41.8 1.1 (Pres∗, All∗) 52.6
All 2.3 45.6 0.0 (Surf∗, Dist∗) 55.8

Absences Pres 45.2 4.7 62.7 0.6 (Dist∗∗)
Surf 45.2 5.9 65.0 0.0 (Dist∗∗, All∗∗)
Dist 45.2 4.7 68.4 5.1 (Pres∗∗, Surf∗∗)
All 48.9 5.4 67.8 2.3 (Surf∗∗)

Table 5 Probability in the between-model comparison of mean favourability values in squares where Salamandra salamandra
longirostris is either present or absent from (Wilcoxon’s test). In each comparison, mean favourability is higher in the model
in rows. Significant difference when p < 0.05, ns = not significant (see Table 4 for explanation of model names).

Data set Model Squares with presences Squares with absences

Pres Surf Dist All Pres Surf Dist All
Training data set (1 km2) Pres

Surf ns ns
Dist ns ns 0.003 0.029
All 0.007 < 0.001 < 0.001 < 0.001 < 0.001 ns

Independent data set (10 km2) Pres 0.047 ns ns ns
Surf
Dist ns ns < 0.001 < 0.001 0.016
All ns < 0.001 < 0.001

the presence (Pres-Model) or the surface area (Surf-Model) of
land-cover classes gave most of the explanatory power to non-
land-cover variables: climate, topography, spatial situation
and distance to cities (see Fig. 3a). Variables related to water
availability were selected as explanatory factors only when
distances to land classes were excluded from the models.
The highest correlations between mean annual days with
precipitation and land cover involved distances to oak woods
(r2 = –0.51) and distances to sparse scrub with oak (r2 =
–0.42) (Appendix1, Table S2, see supplementary material
at Journals.cambridge.org/ENC); similarly, correlations of
these land-cover classes with mean annual storm days were
among the highest values (r2 = –0.49 and r2 = –0.51,
respectively). S. salamandra is preferably found in forests, but
also in other land-cover types on condition that water points
are available for reproduction (García-París et al. 2004). Thus,
the presence of forests in surroundings grids could favour the
presence of individuals found outside the forest itself. Water
availability in the models where distances were excluded might
indicate where conditions are most favourable to find forested
habitats with oaks in the surroundings.

Once the distance to grids containing oak trees was accepted
for entry in the models (both Dist-Model and All-Model),

the intersection between the explanatory power of land-cover
and non-land-cover variables increased above 34% (Fig. 3a),
that is, more than 34% of the variation in favourability
became indistinguishably explained by land-cover and by
non-land-cover variables. This might be attributed to the
fact that the humidity index, related to water availability
and moderately correlated to oaks (Appendix1, Table S2,
see supplementary material at Journals.cambridge.org/ENC),
was included in all model with variables related to oak
trees.

The description of the areas favourable for S. s. longirostris
was supplied in its entirety only by the model that included
land-cover variables expressed as presence, surface area and
distance together. This model comprises all the qualitative
information about favourable land-cover classes for Los
Barrios fire salamanders and that was only partially included
in each of the other three models.

Model comparison according to assessment
parameters

The four favourability models for the distribution of S. s.
longirostris obtained acceptable scores according to all the
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parameters considered to assess classification accuracy and
discrimination capacity. Thus, Cohen’s Kappa, which ranges
from 0 to 1, was always higher than 0.5, being thus acceptable,
according to Landis and Koch (1977). With values also ranging
from 0 to 1, specificity was always higher than 0.7, sensitivity
was higher than 0.8, the correct classification rate was higher
than 0.75, and the omission and commission errors were
lower than 0.2 and 0.3, respectively. Discrimination capacity
(AUC, ranging from 0.5 to 1) was always higher than 0.880,
and thus excellent, according to Hosmer and Lemeshow
(2000).

The differences between the values shown by the four
models are slight (see Table 2). However, the model that
combined the three types of land-cover variables (presence,
surface area and distance) can certainly be considered the
best. This is supported by the fact that this model repeatedly
obtained the best values according to virtually all the
parameters used in our assessment, including parsimony,
classification accuracy, discrimination, and the capacity to
describe the areas where fire salamanders occur as highly
favourable and the areas where this species is absent as
unfavourable.

In contrast, it is less obvious which of the models that used
a single land-cover variable type was the best. In any case, the
model that used the presence of land-cover classes alone was
almost never the best compared to the models that used either
the surface area or the distance to land classes. One reason for
this might be that the information provided by the presence of
a type of habitat is already provided by both the surface area of
this habitat (where presence describes where the surface area
is greater than zero) and the distance to it (presence means that
the distance is zero). However, the latter provides additional
information on the frequency and proximity of each land class
that might contribute to the model’s capacity to explain and
describe a species’ distribution.

The role of land cover in the distribution of
Salamandra salamandra longirostris: implications for
conservation

We emphasize that our models describe the environmental
needs of S. salamandra at a medium scale, but not necessarily
at a micro scale. The ecological implications of our results
regarding habitat needs should be interpreted as requirements
for the most favourable occurrence of the species in 1-km2

squares, but not necessarily for the presence of individuals
inside a given land-cover class. We are aware that salamanders
require aquatic habitats for reproduction, which are located
mainly in forests (Miñano et al. 2003; Egea Serrano et al.
2006) but also in pastures (García-París et al. 2004); however,
our results do not provide information on reproductive needs
in terms of the internal morphology and complexity of these
habitats (for example, see Manenti et al. 2009). This may be
the reason why water surfaces did not appear in the models,
with the exception of water canals, whose relative importance
was very small (see Table 3 and Fig. 3b).

Three environments stand out in the models as important
to S. s. longirostris in our study area: areas not far from
oak (either forests or partially forested scrubland); areas
either far from or lacking herbaceous crops; and areas where
pastures do not predominate. Salvador and García-París
(2001) and García-París et al. (2004) described landscapes
favourable to S. salamandra in the Iberian Peninsula as
those with moist forests with abundant dead plant substrate;
this species needs highly developed vegetation cover that
provides habitat diversity, shade, moderate temperature,
moisture and organic matter (Hermann et al. 2005). More
specifically, oak forests are cited by Bousbouras and Ioannidis
(1997) and Salvador and García-París (2001) as frequent
habitats for S. salamandra in Mediterranean landscapes. Non-
forested areas are considered favourable for fire salamanders
at high altitudes (Salvador & García-París 2001; García-
París et al. 2004), in scrublands and grasslands (Salvador
& García-París 2001), but not in deforested landscapes or
monocultures (García-París et al. 2004). Our distribution
models strongly indicate that the presence and the closeness
of herbaceous agricultural areas, and the predominance
of natural pastures, are unfavourable to the presence of
S. s. longirostris. Rittenhouse et al. (2006) and Greenwald
et al. (2009a, b) suggested that North American Ambystoma
salamanders suffer from higher mortality and reduced
mobility in open habitats (such as grasslands [Rittenhouse
et al. 2006] and agricultural landscapes [Greenwald et al.
2009a, b]) than they do in forests. Both studies suggest
that this is a consequence of population isolation due to
habitat fragmentation. A relationship between local extinction
and habitat fragmentation, mediated by interference with
dispersers, was also described by Gibbs (1998) for woodland
amphibians, including the salamander species Ambystoma
maculatum. Our results appear to indicate that oak forest
fragmentation in favour of pastures, and especially in favour
of herbaceous crops, could be having a negative effect on the
populations of the southernmost subspecies of S. salamandra
in the Iberian Peninsula. Abundance decrease in populations
as a consequence of human-caused forest loss are also reported
for other salamander species, such as Eurycea cirrigera and
Desmognathus fuscus stream salamanders in North Carolina
(Price et al. 2006).

Throughout the study area, forests have been gradually
replaced by herbaceous ecosystems during recent decades.
The land-cover maps of Andalusia for 1956 and 2003 (Junta
de Andalucía 2009) show that, in 47 years, the surface area
of sparse scrub with oaks has suffered a 2.26% decrease, oak
woods have decreased by 26.59%, whereas the surface areas of
pastures, dry herbaceous crops and irrigated herbaceous crops
have increased by 15.99%, 0.81% and 85.58%, respectively.
Habitat changes in the study area may thus place S. s.
longirostris populations in an unstable position from the point
of view of conservation. Thus, habitat management aimed
at avoiding forest fragmentation around the reproduction
sites should be encouraged to conserve this subspecies. A
deeper understanding of adult dispersion patterns, gained by
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closely monitoring S. s. longirostris, is also needed to guarantee
maintaining its current populations.

CONCLUSIONS

Our aim was to evaluate whether the explanatory power of
the models is altered when different approaches to the use of
land-cover variables are considered in the construction of a
favourability model for a case study based on the distribution
of S. s. longirostris. Our results are based on a single example
and so they cannot be unconditionally generalized. However,
some useful information can be extracted from the analyses.

Among the models that were constructed using a single
variable type for land cover, no model can be considered
particularly better than the others according to the different
approaches used for comparison. However our results do
suggest that: (1) the model using the distance to land-cover
classes alone gave a very important relative role to land cover
in describing favourability, which may not necessarily be
applicable to modelling other species in other study areas; and
(2) the model using the presence of land-cover classes alone
contributed little to what was explained by the other models.
This is probably explained by the fact that the information
provided by the presence of a given land-cover class is already
provided by both the surface area occupied by that class
and the distance to it. In qualitative terms, the three models
focused on different (though not contradictory) sets of land-
cover classes, and so every output may have driven a particular
explanation of landscape use by S. s. longirostris. The best way
to choose which type of land-cover variable should be used
for modelling is probably to analyse the available knowledge
on the biology of the species, and then to use the variable
types that could serve to test a priori hypotheses about the
relationships between species and habitat (see Greenwald
et al. 2009a).

In contrast, from both the quantitative and qualitative
points of view, we consider that the model that jointly included
various land-cover variable types robustly obtained the best
performance, and so that this result could well be applicable
to other areas and species beyond our case study. The main
potential problem that could be caused by using several types
of land-cover variables for every land class is the probability
of increasing type I errors; too many variables entered in a
model equation could lead to false results by pure chance
(Benjamini & Hochberg 1995; Hausdorf & Henning 2003).
Procedures to control the false discovery rate (FDR; see for
example Benjamini & Hochberg 1995) can be used to avoid
erroneously rejecting a true null hypothesis, as followed in the
present study. The model that combined land-cover variable
types not only obtained the best scores with almost every
parameter computed for model assessment, but also provided
the most complete information on the role of land cover to
describe favourability. In its formulation, the model included
the three environments whose importance had been partially
suggested by the other models, and selected different types

of land-cover variables for every environment. This provided
improved insight into the ecological meaning of the model.
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