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Synchronization of low Reynolds number plane
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We demonstrate that in plane Couette turbulence a separation of the velocity field in large
and small scales according to a streamwise Fourier decomposition allows us to identify
an active subspace comprising a small number of the gravest streamwise components
of the flow that can synchronize all the remaining streamwise flow components. The
critical streamwise wavelength, �xc, that separates the active from the synchronized
passive subspace is identified as the streamwise wavelength at which perturbations to
the time-dependent turbulent flow with streamwise wavelengths �x < �xc have negative
characteristic Lyapunov exponents. The critical wavelength is found to be approximately
130 wall units and obeys viscous scaling at these Reynolds numbers.
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1. Introduction

The dynamics governing turbulent flows is associated with a large number of degrees
of freedom required to describe the flow in a given domain. In the framework
of Kolmogorov’s famous K41 theory for isotropic homogeneous turbulence (IHT)
(Kolmogorov 1941), we can obtain an estimate for the required number of the degrees
of freedom from the ratio of the sizes between the largest and smallest length scales of the
flow. This ratio is equal to the large-scale turbulent Reynolds number, R = v�/ν, raised
to a power of 9/4 (v is the large-scale velocity, � the large-scale length scale and ν is the
kinematic viscosity). Even though the degrees of freedom grow rapidly as R increases, the
accuracy of this number relies upon assumptions in K41 that are generally not satisfied in
inhomogeneous settings, such as e.g. wall-bounded flows.

A dynamical-systems approach, on the other hand, associates the degrees of freedom
with the dimension of the attractor underlying the turbulent state. Foias & Prodi (1967)
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and Ladyzhenskaya (1975) have shown that the dynamics of the Navier–Stokes equations
asymptotically lie on finite-dimensional global attractors. The estimates of the dimension
of the attractor, assuming the smoothness and global existence of the solutions of
three-dimensional Navier–Stokes equations, obtained by this approach are in agreement
with the estimate obtained from the K41 phenomenology (Doering & Gibbon 1995; Foias
et al. 2001; Robinson 2001).

The idea that not all degrees of freedom are equally important is certainly not a new
concept. It is believed that turbulent flows are primarily driven by the large-scale coherent
motions that are actively participating in the energy extraction from external energy inputs,
whereas the small scales are responsible for dissipation of energy that is transferred to them
from the larger scales through a series of nonlinear interactions. Additionally, the effect
of the large-scale motions was shown to be imprinted on the small-scale statistics, as for
example in turbulent wakes (Thiesset, Danaila & Antonia 2014; Alves Portela, Papadakis
& Vassilicos 2020) and the formation of intense vorticity structures (‘worms’) within the
dissipative scale of isotropic turbulence (Vela-Martín 2021), raising questions about the
universality of the Kolmogorov cascade.

A striking example of influence of the large scales on the smaller scales investigated
in this paper is exhibited in the time series of the energy density of the streamwise
Fourier components of wall-bounded turbulence in streamwise periodic channels. Figure 1
shows an example from a simulation of plane Couette turbulence at R = 1500. It is
evident that the higher-order streamwise components vary in unison. Figure 2 confirms
that higher streamwise components vary in unison by plotting the normalized time-lag
cross-correlation of the time series of the energy between the last streamwise component
retained in the simulation with the other streamwise components. This synchronous
behaviour suggests that the large scales (associated here with the gravest streamwise
components) exert considerable influence on the structure and colour of the nonlinear
interactions that transfer energy to the smaller scales. The above-mentioned results
suggest also that the higher-order streamwise components may form a passive subspace
of the dynamics that is synchronized by an active subspace spanned by the lower-order
streamwise components of the turbulent flow.

Synchronization of chaotic systems (Pecora & Carroll 1990) in general is commonly
associated with collapsing subspaces that may exist in the dynamics, which have the
property to attract all nearby trajectories onto a single solution lying on that subspace. The
proof of the finiteness of the dimension of the attractor of the Navier–Stokes equations
in periodic domains by Foias & Prodi (1967) and Ladyzhenskaya (1975) was based on
the existence of such a globally synchronizable subspace. Specifically, Foias & Prodi
(1967) and Ladyzhenskaya (1975) have shown that any solution of the Navier–Stokes
equations can be recovered from its projection to a space of dimension n consisting of
the n gravest eigenmodes of the Stokes operator. The size of the subspace depends on the
degree of dissipation and increases with the Reynolds number R as predicted by the K41
phenomenology. The mechanism of synchronization described in the theory of Foias &
Prodi (1967) and Ladyzhenskaya (1975) is essentially dissipative.

Turbulence synchronization of the small-scale motions by large-scale motions was
investigated in two-dimensional and three-dimensional IHT by Yström & Kreiss (1998)
and Henshaw, Kreiss & Yström (2003) who demonstrated that synchronization of the
small scales can be achieved but the slaved subspace is larger than that predicted by
the bounds of Foias & Prodi (1967) and Ladyzhenskaya (1975). More recent studies
confirm and establish these results. Lalescu, Meneveau & Eyink (2013) demonstrated
that three-dimensional IHT flow fields with scales below approximately 20 Kolmogorov
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Figure 1. Time series of the energy density of the 39 streamwise varying components in a simulation of
Couette turbulence at R = 1500 (see table 1). Here Ekx indicates the energy density of the Fourier component
with streamwise wavenumber kx = nα where α = 2π/Lx is the smallest non-zero wavenumber allowed in the
channel and n = 1, . . . , 39; Ekx monotonically decreases with increasing wavenumber. Note how the higher
harmonics (n � 6) vary in unison.
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Figure 2. The normalized time-lag cross-correlation coefficient, 〈E39(t + τ)Ekx (t)〉, of the energy, E39, of
the last streamwise Fourier component retained in the simulation of figure 1 (with streamwise wavenumber
39α) with the energy of the nth streamwise component as a function of the time lag expressed in wall units
(uτ = 0.0621Uw). The correlation with streamwise harmonics n = 1, 2, 3 is indicated with a different colour.
The lag autocorrelation 〈E39(t + τ)E39(t)〉 is indicated with the thick dash line. The energies of streamwise
harmonics Ekx with n � 4 are strongly correlated with E39.

dissipation lengths can be slaved by the larger-scale motions. Similar estimates were
obtained by Yoshida, Yamaguchi & Kaneda (2005) and Clark Di Leoni, Mazzino &
Biferale (2020) in their investigations of data assimilation of small scales from knowledge
of the large scales in IHT. Henshaw et al. (2003) also conjectured that the disparity found
in the size of the synchronizable subspaces should be attributed to the enhanced dissipation
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that occurs in the strong deformation regions forming in the flow, which is not captured in
the analysis of Foias & Prodi (1967) and Ladyzhenskaya (1975).

Another mechanism of synchronization is revealed in the restricted nonlinear (RNL)
or quasilinear (QL) approximations of the dynamics of wall-bounded turbulent flows
in streamwise periodic channels. In this approximation, the flow is separated in its
streamwise-mean component u0 and streamwise-varying component ũ, the streamwise
mean evolves with the Navier–Stokes equations without any approximation while the
dynamics of the streamwise-varying components is restricted to QL interaction with
the streamwise mean and dissipation. In this approximation the nonlinear interactions
among the streamwise-varying components are neglected in the dynamics of the
streamwise-varying components but are included in the streamwise-mean equations. It
has been shown that this approximation self-sustains a realistic state of turbulence in
wall-bounded flows (Farrell & Ioannou 2012; Bretheim, Meneveau & Gayme 2015;
Farrell et al. 2016; Farrell, Gayme & Ioannou 2017). The RNL turbulent state sustains
a few streamwise Fourier components of the flow and has the property that all the
streamwise-varying components, both those that are sustained at finite energy and those
that decay to zero, can be synchronized by the time-varying streamwise-mean flow
component u0 (Farrell & Ioannou 2017). The synchronization in this case occurs because
of the interaction with the mean: the streamwise components that are sustained by the
time-varying mean flow have been adjusted to neutral parametric stability, while the others
parametrically decay. The components that are sustained by the parametric interaction with
the mean are the neutral modes of the time-varying state (the neutral Lyapunov vectors)
and we will be referring to them as ‘parametrically active’ or ‘RNL active’; the subspace
that decays will be referred to as ‘parametrically passive’ or ‘RNL passive’. Of course
in Navier–Stokes turbulence, energy transfers to the streamwise-varying components by
nonlinear interactions among them are also present, and the question arises to what degree
these can be dominated by transfers from the parametrically active scales thus rendering
the parametrically passive subspace synchronizable. In this paper we investigate whether
such synchronization occurs in parallel Couette turbulence in streamwise and spanwise
periodic channels.

The paper is organized as follows. We first formulate the synchronization problem (§ 2)
and determine the components of the flow that can be synchronized using linear theory
(§ 3). We then show that the predictions of linear theory lead to global synchronization
(§ 4.1) and we investigate the relation of the synchronization subspaces to the active and
passive subspaces of the corresponding RNL turbulence (§ 4.2). Finally we discuss the
energetics and determine that the scales that synchronize have streamwise length smaller
than 130 wall units (§ 5).

2. Formulation

We consider incompressible parallel Couette flows in channels that are periodic in the
streamwise x and spanwise z directions, with the channel plane walls at y = ±h. In order
to examine whether the smaller streamwise scales can be slaved to the larger streamwise
scales or, equivalently, whether the smaller streamwise scales can be synchronized by the
larger ones, we split the flow field u into streamwise Fourier components containing the
longer streamwise scales,

u<=
∑

0�n�N−1

ûn( y, z, t)einαx, (2.1)
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where kx = nα, with α = 2π/Lx, is the wavenumber of the nth streamwise harmonic in
the periodic channel with streamwise length Lx, and the smaller scales,

u> =
∑
n�N

ûn( y, z, t)einαx, (2.2)

with u = u< + u>.
The equations governing these flow fields are obtained by projecting the incompressible

Navier–Stokes equation on the corresponding Fourier subspaces (Frisch 1995). The large
scales are governed by the Navier–Stokes,

∂tu<= − P<

(
(u<+u>) · ∇(u<+u>) − R−1�u<

)
, (2.3)

where P< is the Leray projection on the space spanned by streamwise harmonics
0, . . . , N − 1, coupled to the Navier–Stokes for the smaller scales,

∂tu>= − P>

(
(u<+u>) · ∇(u<+u>) − R−1�u>

)
, (2.4)

with P> the Leray projection on the space spanned by the n � N streamwise harmonics.
The above equations are non-dimensional with lengths non-dimensionalized by the
half-channel width h, velocities by the streamwise velocity Uw at the walls and time by
h/Uw. The Reynolds number is defined as R = Uwh/ν, with ν the kinematic viscosity.
The flow velocity satisfies the no-slip boundary condition u = ±x̂ at the channel walls
y = ±1 (x̂ is the unit vector in the streamwise direction).

Synchronization of the smaller scales to the larger scales is achieved when an arbitrary
smaller-scale flow field, v>, governed by the Navier–Stokes equations

∂tv>= − P>

(
(u<+v>) · ∇(u<+v>) − R−1�v>

)
, (2.5)

in the smaller Fourier scale subspace with prescribed large-scale field u< satisfying (2.3)
and (2.4), converges to u>, i.e. synchronization with the direct numerical simulation
(DNS) realization is achieved when limt→∞ ||v>(t) − u>(t)|| = 0. We choose as metric
|| · ||, the square root of the kinetic energy density of the flow.

Synchronization in the linear limit is guaranteed when the top Lyapunov exponent of
smaller-scale perturbations to (2.4) linearized about a solution u< and u> of the NS (2.3)
and (2.4) is negative. In that case, any flow v> adequately close to u> is guaranteed to
synchronize. However, this criterion does not guarantee synchronization of states v> that
are not in the neighbourhood of u>.

The leading Lyapunov exponent is obtained by calculating the asymptotic exponential
growth rate of the amplitude of the difference field u′

> = v> − u>, governed by the
linearized equation (2.5) about the DNS solution u< + u>:

∂tu′
> = −P>

(
(u<+u>) · ∇u′

> + u′
> · ∇(u<+u>) − R−1�u′

>

)
. (2.6)

The linearized equations (2.6), which are referred to as the variational equations, determine
the asymptotic stability of the time-dependent flow u< + u> of the DNS to perturbations
u′

> with streamwise wavenumbers kx � Nα. The top Lyapunov exponent of (2.6), λN , for
truncation at N is defined as

λN = lim
t′→∞

1
t′

log
( ||u′

>(t + t′)||
||u′

>(t)||
)

. (2.7)

Previous studies presented results on the Lyapunov exponent(s) for N = 0, in our notation
for the λ0, cf. Keefe, Moin & Kim (1992) and Nikitin (2008, 2018). The N = 0
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Lyapunov exponent determines the sensitivity of the whole turbulent flow trajectory u
to perturbations that have power in all the streamwise Fourier components.

A negative Lyapunov exponent, λN < 0, implies exponential decay of the perturbation
field u′

> in the linear approximation. However, in the channel flows considered, we find
that all u′, of any amplitude, decay to zero, at the rate of the Lyapunov exponent λN of the
decomposition, indicating that the u> flow is globally attracting. This should be probably
anticipated from the related theorems of Foias & Prodi (1967) and Ladyzhenskaya (1975)
that show, based on projections on the eigenfunctions of the Stokes operator, that the
attractor of the Navier–Stokes equations (assuming regularity of the solutions in the case of
three dimensions) is finite dimensional and that the small scales of the flow are eventually
necessarily globally synchronizable (cf. also the recent studies of Foias et al. (2001),
Robinson (2001) and Lalescu et al. (2013)). Exponential approach to synchronization and
variation of this exponential rate with the scale of the slaved subspace has been also found
in IHT by Yström & Kreiss (1998), Hayashi, Ishihara & Kaneda (2003), Yoshida et al.
(2005) and Lalescu et al. (2013). We show here that synchronization can be achieved very
efficiently if the projection is based on the streamwise Fourier components of the flow.

3. Lyapunov exponents of the turbulent flow to streamwise-restricted perturbations

We consider DNS solutions of turbulent Couette flow at the three Reynolds numbers:
(i) R = 600 that sustains turbulence with Rτ = 45; (ii) R = 1500 with Rτ = 93; and
(iii) R = 2250 with Rτ = 134 and calculate the top Lyapunov exponents λN of (2.6)
for various truncations N. The simulations are performed with an in-house developed
DNS code with graphics processing unit acceleration written in MATLAB that solves
the Navier–Stokes equations in wall-normal velocity/vorticity formulation (Kim, Moin
& Moser 1987). The code employs Chebyshev discretization on the wall-normal
direction and a finite difference grid on the streamwise and spanwise directions
which are treated pseudospectrally and are dealiased following the 2/3 rule. Time
stepping is accomplished with a Crank–Nicolson and a third-order Runge–Kutta scheme
for the viscous and advective terms, respectively. Parameters of the simulations are
summarized in table 1. The mean velocity profile, U( y) = ∫ T

0

∫ Lz
0 x̂ · u0 dz dt/(TLz)

where u0 = ∫ Lx
0 u dx/Lx is the streamwise-mean velocity; the r.m.s. profile of the

fluctuations averaged over the streamwise and spanwise directions, (u′2
rms, v

′2
rms, w′2

rms) =∫ T
0

∫ Lz
0

∫ Lx
0 (u′2, v′2, w′2) dx dz dt/(TLzLx), with (u′, v′, w′) = u − U( y)x̂; and the mean

tangential Reynolds stress profile 〈u′v′〉 = ∫ T
0

∫ Lz
0

∫ Lx
0 u′v′ dx dz dt/(TLzLx) averaged over

the streamwise and spanwise directions and their comparison with the literature are plotted
in figures 3 and 4.

The numerical integration of (2.6) for the determination of the top Lyapunov exponent
is initialized from a randomly generated, divergence-free initial condition that lies on the
specified subspace, which is kept infinitesimal by normalization at the end of each time
step. The fields u< and u> appearing in (2.6) are determined simultaneously by the DNS
of (2.3) and (2.4). An instantaneous growth rate, λ(t), is then calculated from the ratio of
||u′

>|| at time t and at the adjacent time step t + �t before normalization,

λ(t) = 1
�t

log
( ||u′

>(t + �t)||
||u′

>(t)||
)

. (3.1)

The λ(t) are highly variable in time, but in the long-term their average value converges
to the Lyapunov exponent λN , for each choice of N. The flow states associated with the
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Abbreviation [L+
x , L+

z , L+
y ] Nx × Nz × Ny Rτ R �x+ �z+

R600 [245, 168, 89] 35 × 35 × 55 44.5 600 7.07 4.84
R1500 [512, 351, 186] 79 × 79 × 75 93.1 1500 6.47 4.44
R2250 [736, 504, 268] 87 × 91 × 83 133.8 2250 8.33 5.46

Table 1. Simulation parameters. The channel size in the streamwise, wall-normal and spanwise directions
is [Lx, Ly, Lz]/h = [1.75π, 2, 1.2π], where h is the half-width. Lengths in wall units are indicated by
[L+

x , L+
y , L+

z ]. Here Nx, Nz are the number of Fourier components after dealiasing and Ny is the number of
Chebyshev components. Here Rτ = huτ /ν is the Reynolds number of the simulation based on the friction
velocity uτ and R = hUw/ν the bulk velocity Reynolds number according to the velocity at the wall Uw, the
viscosity ν and the channel half-width h. �x+ and �z+ denote the time average streamwise and spanwise grid
spacing in wall units.

2

100

y +

R600

R1500

R2250

U +

10–1 10–2

4
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8

10

12

14

16

18

Figure 3. Streamwise, spanwise and time average of the streamwise velocity component U( y) in viscous wall
units for simulations in table 1. The dashed line indicates the mean velocity profile obtained by Pirozzoli,
Bernardini & Orlandi (2014) for a larger channel at Rτ = 171.

Lyapunov exponents have non-negligible spectral coefficients in all included streamwise
wavenumbers (i.e. kx � Nα).

The resulting top Lyapunov exponents are plotted in figure 5 as a function of the order
of truncation N. The top Lyapunov exponents for N = 0, associated with the sensitivity of
the full turbulent trajectory, collapse to the value λ+0 ≈ 0.023 for R = 1500 and R = 2250
when scaled in wall units. This agrees with the constant Lyapunov exponent λ+0 = 0.021
obtained by Nikitin (2008) in plane channel and pipe flows with Rτ in the range from 140 to
320. The smaller value λ+0 = 0.01 obtained at R = 600 is expected as the sensitivity of the
flow is diminished as the size of the channel approaches the minimal channel dimensions
(Inubushi, Takehiro & Yamada 2015; Nikitin 2018). As N increases the top Lyapunov
exponent monotonically decreases and eventually becomes negative at Nc, indicating that
subspaces with N � Nc are synchronizable in the linear limit. The critical truncation Nc
is different for each Reynolds number. However, when we scale the wavelengths and
growth rates with the corresponding friction velocities, the predicted threshold streamwise
wavelength at which λN becomes negative collapses to the value �+

x = 130. We observe
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Figure 4. One-point statistics for the simulations R600 (green), R1500 (blue) and R2250 (red) in table 1.
(a–c) Root mean square (r.m.s.) profiles for the velocity fluctuation components (u′, v′, w′) = u − U( y)x̂ in
viscous units. Here U is the streamwise, spanwise and time average of the streamwise velocity component.
(d) Streamwise, spanwise and time average profile of tangential Reynolds stress 〈u′v′〉 in viscous units. The
dashed line in each graph indicates the same statistics obtained by Pirozzoli et al. (2014) at Rτ = 171.

that the λ+N for R = 1500 and R = 2250 collapse to an asymptotic curve with increasing
Reynolds number, showing that the wall-unit scaling remains valid across the top N
subspaces, indicating that the buffer-layer dynamics associated with the self-sustaining
process is in control at these Reynolds numbers.

4. Synchronization experiments

4.1. Determination of the active subspace in Couette turbulence
To perform the synchronization experiment, we couple two DNSs, one solving for the total
velocity and a second one where the components of the u< subspace obtained from the
first simulation are imposed to the second, while solving (2.5) for the v> flow field which
is now initialized from an arbitrary state and not necessarily close to u>. According to
linear theory, any v> field close to u> will synchronize to u> for truncations N � Nc for
which λN < 0. However, we find that all v> in all cases of table 1 will synchronize to u>

if N � Nc, irrespective of the initial magnitude of the deviation of the v> from u>. We
also verify that even v> states that are initially zero synchronize at the rate predicted by
λN . This property of exponential decay of the v> field to u> is referred to as the strong
squeezing property which may indicate that the attractor basin of u< covers the whole
space and the subspace u> is uniquely determined by the subspace u<, since it attracts
any initial condition v>, forming an inertial manifold (Foias et al. 2001; Robinson 2001).
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0 0.02 0.04 0.06

2π N / Lx
+

λN
+

0.08 0.1 0.12 0.14
–0.08
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–0.04

–0.02

0

0.02
R = 600, R τ = 44.5

R = 1500, R τ = 93.1

R = 2250, R τ = 133.8

Figure 5. The top Lyapunov exponents, λ+N , of the perturbation equations (2.6) as a function of the
wavenumber 2πN/L+

x of the streamwise component N. Here N is the gravest Fourier component of the
perturbation u′

>. The Lyapunov exponent is expressed in wall units u2
τ /ν. For R = 600 we plot λ+N for

N = 0, . . . , 5 (blue circles), for R = 1500 we plot N = 0, . . . , 7 (red diamonds) and N = 0, 1, 2, 5, 6, 7, 9, 11
for R = 2250 (black squares). This figure indicates that at R = 600 the critical streamwise harmonic is Nc = 2,
i.e. the u< with streamwise harmonics n = 0, 1 synchronizes u> in the linear limit. It is verified in § 4.1 that
nonlinear simulations synchronize at the rate predicted by the Lyapunov exponents of this figure. At R = 1500
synchronization in the linear limit occurs for Nc = 5 when the u< field includes streamwise harmonics
n = 0, 1, 2, 3, 4. At R = 2250, Nc = 6 and the u< field comprised of n = 0, 1, 2, 3, 4, 5 synchronizes the u>

flow.

The critical truncation is predicted from the calculation of the Lyapunov exponents to be
Nc = 2 for R600, Nc = 5 for R1500 and Nc = 6 for R2250. Examples of synchronization
are shown in figure 6 for R600 and in figure 7(a) for R2250. The exponential convergence
of v> to u> at the rate of the predicted λN is verified in figure 8, which shows asymptotic
exponential decay of the difference ||v> − u>|| to numerical precision. This asymptotic
decay was confirmed in all the experiments we performed with large initial perturbations
to the u> state. Note that all streamwise components of v> converge to u> at the same
rate, indicating that the Lyapunov vector corresponding to λN has power at all retained
streamwise wavenumbers. A case where synchronization is not possible is shown in
figure 7(b) for R2250 and N = 5. An initially infinitesimal difference ||v> − u>|| grows
exponentially (the red line shown in figure 8) at the rate of λ5 and the v> subspace diverges
from the u> subspace.

The minimal u< field that leads to synchronization is referred to as the active or
determining subspace and the u> as the passive or slave subspace. For the chosen channel
the active subspace was determined to have Nc = 2 components at R = 600, Nc = 5 at
R = 1500 and Nc = 6 at R = 2250. It is informative to see the structure of the active and
passive components of the flow in an experiment of synchronization. Indicative active u<

and passive u> velocity fields and the passive field v> before and after synchronization
for R2250 with N = 6 are shown in figures 9 and 10 at the initial time UwT/h = 5000
when an arbitrary v> is imposed and at UwT/h = 5050 when v> has been synchronized
to u>. The cross-flow and spanwise (y–z) plane cross-section (figure 9) shows that the
amplitude of the active u> component is substantial, it reaches a velocity of 0.15Uw and
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n = 4
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n = 2n = 1

Figure 6. Time series of the energy density Ekx of the first four streamwise-varying components in the R = 600
simulation (solid lines). The critical truncation that achieves synchronization in this channel is Nc = 2. In this
experiment the u< truncated with N = 2 (shown with solid black line is the n = 1 component) succeeds in
synchronizing v> (dotted red lines) to the u> (solid blue lines) of the DNS (shown are components n = 2, 3, 4).
The exponential rate of convergence towards synchronization is λ = −0.01Uw/h (λ+ = −0.0027) consistent
with the decay estimated from the Lyapunov exponent λ2 of figure 5.

is more prominent in the region surrounding the buffer-layer streaks. These plots also
show the streaky large-scale inhomogeneous structure of the u< active subspace. Note
that the passive u> subspace has substantial velocity amplitudes. The small-scale field
u> is located in the regions of large scale strain, shown in figure 11(a), and the error
field at the intermediate time UwT/h = 5018 is predominantly in the regions of low strain
as shown in figure 11(b) (cf. also supplementary movie 1 available at https://doi.org/
10.1017/jfm.2021.1054). This is expected because deformation regions induce enhanced
perturbation growth and also accelerate viscous decay (cf. Craik & Criminale 1986; Farrell
& Ioannou 1993). The concentration of the u> field in regions of high strain supports the
conjecture of Henshaw et al. (2003) who proposed that the reason the initial estimates of
the size of the synchronizable subspace were too conservative was because they did not
account for the enhanced dissipation that occurs in the deformation regions. Also when
N � 5 and synchronization fails the instabilities are seen to arise in the strain regions (cf.
supplementary movie 2). This is consistent with the findings of Nikitin (2018) who noted
that the N = 0 Lyapunov vectors are located in the shear regions of the streak.

4.2. Synchronization of single streamwise harmonics and their relation to the
components sustained in RNL

In the RNL or QL approximation of the dynamics of wall-bounded flows, the
streamwise-mean flow u0( y, z, t) = ∫ Lx

0 u dx/Lx evolves under the full Navier–Stokes
dynamics without any approximation, while the dynamics of the streamwise-varying flow,
ũ(x, y, z, t) = u − u0, is restricted to QL interaction with u0, neglecting altogether the
nonlinear interactions between the ũ. The equations governing the RNL dynamics are

∂tu0 = P0

(
−u0 · ∇u0 − ũ · ∇ũ + R−1�u0

)
, (4.1)

∂tũ = (I − P0)
(
−u0 · ∇ũ − ũ · ∇u0 + R−1�ũ

)
, (4.2)
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Figure 7. Time series of the energy density Ekx of the first eight streamwise-varying components of the DNS
of plane Couette turbulence at R = 2250 (Rτ = 134). The critical truncation that achieves synchronization in
this channel is Nc = 6. (a) Here u< truncated with N = 6 (shown with solid black lines are the n = 1, 2, 3, 4, 5
components) succeeds in synchronizing v> (dotted red lines) to the u> (solid blue lines) of the DNS (shown
are components n = 6, 7, 8). The exponential rate of synchronization is λ = −0.012Uw/h (λ+ = −0.0015) in
agreement with the Lyapunov exponent λ6 of figure 5; (b) u< truncated with N = 5 (shown with solid black
lines are the n = 1, 2, 3, 4 components) fails to synchronize v> (dotted red lines) to the u> (solid blue lines)
of the DNS (shown are the n = 5, 6, 7, 8 components) and diverges at the rate of the Lyapunov exponent
λ5 = 0.030Uw/h (λ+5 = 0.0037, cf. figure 5). These experiments show that truncations with N < Nc do not
lead to synchronization while those with N � Nc do.

with P0 the Leray projection on the n = 0 streamwise-mean Fourier component, and
I − P0 the Leray projection on the streamwise-varying Fourier components (Farrell et al.
2017). These equations self-sustain a realistic state of turbulence in channel flows with the
property that only very few streamwise harmonics are supported (Farrell & Ioannou 2012;
Thomas et al. 2014; Bretheim et al. 2015; Farrell et al. 2016). More general QL models
have been examined in which the ‘mean’ that evolves with full-dynamics includes also
certain streamwise-varying components, while the dynamics of the remaining components
is restricted to QL interaction with the assumed ‘mean’ – see Bakas & Ioannou (2013),
Constantinou, Farrell & Ioannou (2016) and Marston, Chini & Tobias (2016).

The supported space of RNL is determined by starting an RNL simulation from an
initial DNS state that has energy in all the streamwise components. The Na streamwise
components that survive define the active RNL subspace, S, whereas the decaying
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Figure 8. The approach (blue lines) towards and the deviation (red line) from synchronization of the v>

subspace, measured by the state error norm, ||v> − u>||, as a function of time expressed in wall units is
shown to be asymptotically exponential at the rate of the Lyapunov exponent λ+N (dashed), cf. figure 5.
Shown are the synchronization of the N = 2 subspace at R = 600 (cf. figure 6), of the N = 5 subspace at
R = 1500 and of the N = 6 subspace at R = 2250 (cf. figure 7a). In the last example the initial perturbation
had ||v>(0) − u>(0)||/||u>(0)|| = 1.6. This example demonstrates that even large perturbations to the u>

state synchronize if the truncation is performed at the component Nc predicted from linear theory. Conversely,
small perturbations to the u> state deviate at truncations with N < Nc at the predicted rate of the Lyapunov
exponent, as shown for the N = 5 subspace at R = 2250 (cf. figure 7b).
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Figure 9. Contours in a y–z plane cross-section of two snapshots of the streamwise velocity component of
the u<, u> and v> flow fields in DNS at R = 2250 and N = 6. The u< includes streamwise harmonics
n = 0, . . . , 5. Panels (a,c,e) show the initial state of the synchronization experiment at UwT/h = 5000. Initially
||v> − u>|| = 0.067 while at UwT/h = 5050 the state has been almost synchronized with ||v> − u>|| =
0.012.
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Figure 10. Contours in a x–z plane cross-section at y/h = −0.77 of the snapshots in figure 9 of the streamwise
velocity component of the u<,u> and v> flow fields in DNS at R = 2250. The u< includes streamwise
harmonics n = 0, . . . , 5.
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Figure 11. Contours (in colour) of the maximum eigenvalue of the rate of strain tensor (∂iuj,< + ∂jui,<)/2
of the large-scale u< flow on a z–x plane at y/h = −0.77, at the intermediate time UwT/h = 5018 of the
synchronization experiment shown in figure 7(a). Solid black lines indicate contours of the amplitude of:
(a) the small-scale u> flow and (b) of the error v> − u>, at levels between 0.22 and 1.1 of the maximum
of |u>| at this plane. This figure shows that the u> field is concentrated in regions of high strain, whereas
the error field v> − u> in these regions decays rapidly and is predominantly located in regions of smaller
large-scale strain.
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Figure 12. Time evolution of the energy of the streamwise components in an RNL simulation initialized from
a DNS state. This figure shows that the RNL turbulent state sustains only a few streamwise components. (a) The
RNL simulation at R = 600 sustains only the n = 0 (not shown) and the n = 1 component (black). All other
streamwise components decay exponentially to zero (blue). (b) The RNL simulation at R = 2250 sustains only
the n = 0 (not shown) and the n = 1, 2, 3 component (black), while all n � 4 streamwise components (blue)
exponentially decay. The active RNL subspace includes n = 0, 1 at R = 600 and the passive RNL subspace is
all streamwise components n � 2, and Na = 2. The active RNL turbulence at R = 2250 has Na = 4.

components form the passive RNL subspace (cf. figure 12). Note that it is possible to
also sustain RNL turbulence by constraining the RNL interactions to the streamwise-mean
u0 with a selected single component of ũ that may or may not belong to S (Bretheim et al.
2015). These simulations can even produce turbulence statistics that are closer to those
of DNS from those obtained when no constraint is imposed on the RNL components,
as shown in Bretheim et al. (2015). However, when the constraint is removed and the
other streamwise wavenumbers are allowed to freely evolve under the RNL dynamics, the
supported space reverts to the active components S, defined above, and in that sense the
active subspace of RNL is stable and unique.

By performing simulations of the cases listed in table 1 we find that the RNL active
subspace of R600 has Na = 2 streamwise components, as RNL sustains only streamwise
components n = 0, 1. The RNL active subspace of R1500 and R2250 has Na = 4, as only
streamwise components n = 0, 1, 2, 3 are generically sustained in RNL. This is illustrated
in figure 12 where we plot the time evolution of the energy of the streamwise components
of ũ in an RNL simulation that has been initialized by a DNS state. The energy of all
streamwise components with n � 2 at R600 and n � 4 at R2250 exponentially decay and
the turbulent state sustains a streamwise varying flow ũ with streamwise component n = 1
at R600 and n = 1, 2, 3 at R2250.

Substantial overlap between the active subspaces of the DNS experiments and the
corresponding active subspaces of RNL would suggest that the RNL dynamics govern
the size of the active subspace and substantially controls the dynamics of synchronization.
And indeed there is substantial overlap: the two active subspaces coincide at R = 600
as Na = 2 and Nc = 2, while at R = 1500 the active subspace of DNS has Nc = 5 and
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that of RNL has Na = 4, and at R = 2250 DNS has Nc = 6 while RNL sustains Na = 4
streamwise Fourier components.

Interestingly though, those additional components of the active synchronization
subspace of the DNS that are not sustained in RNL have the potential of synchronization,
albeit within a stricter formulation of the synchronization problem. In this formulation
we examine whether the selected nth streamwise Fourier component of the flow vn
synchronizes to the nth streamwise Fourier component of the DNS un, when coupled to
all the other components of the DNS flow un′ = u − un. Here u, as elsewhere, is the flow
obtained in DNS, and n′ denotes cumulatively the indices of all the streamwise Fourier
components included in the DNS except the index n. The dynamics of the component vn,
which is starting from arbitrary initial conditions, is governed by the equation

∂tvn = −Pn

(
(un′ + vn) · ∇(un′ + vn) − R−1�vn

)
, (4.3)

with Pn the Leray projection to the nth streamwise Fourier component of the flow. The
single streamwise-varying component vn is then synchronizable if as time evolves it
approaches the streamwise-varying component un of the DNS.

We performed experiments to examine the synchronizability of components n = 3 and
n = 4 at R = 1500 and R = 2250. The component n = 3 is selected because it belongs
to the active DNS subspaces at both Reynolds numbers and it is also the last member of
the active RNL subspace at both Reynolds numbers. The component n = 4 is selected
because it is also a member of the active DNS subspace at both Reynolds numbers but it
is not a member of the corresponding RNL active subspaces. It is in both cases the first
member of their RNL passive subspace. We find that vn with n = 3 is not synchronizable
at both Reynolds numbers (red dotted lines in figure 13a,b), while the vn with n = 4, which
is passive in RNL but active in DNS, is synchronizable (red dotted line in figure 13c,d)
under this new protocol. The significance of this result lies in the identification of the
RNL active subspace as the source of chaotic dynamics, since only the trajectories of the
active RNL components are inherently divergent. The association of this subspace with
the energy extraction mechanism suggests that it is sustaining turbulence, and that it is
exporting energy and pacing the other scales through nonlinear interactions.

5. Energy balances of the streamwise flow components

Energy transfers originating from the coherent large scales have been shown to influence
the statistics of the turbulence that operates in the small scales of inhomogeneous
flows (Thiesset et al. 2014; Alves Portela et al. 2020). This is amply demonstrated in
wall-bounded turbulence in the RNL approximation, where the mean flow exercises
control over the whole flow (Farrell & Ioannou 2017). Here, we use the streamwise mean
decomposition of the flow u = u0 + ũ, used in RNL with u0 the instantaneous streamwise
mean flow that has spanwise dependence, to study the energetics of the streamwise
components of the active and passive subspaces of synchronization in the DNS examples.
We examine the relative strength of the energy transfers to a given streamwise component
from u0 (representing the transfer from this mean) and from other components of ũ
(representing the transfer from nonlinear interactions).

To derive the energetics equation of the streamwise component, un, with wavelength
kx = nα and n � 1, we form the inner product of the equation governing nth streamwise
component of ũ, as follows:

∂tun = −Pn

(
u · ∇u − R−1�u

)
, (5.1)
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Figure 13. Time series of the energy of the top streamwise harmonics in DNS (solid black lines denote the
active RNL subspace and solid blue line denote the first passive streamwise components of the RNL subspace)
at (a,c) R1500 and at (b,d) R2250. In (a,b) it is shown that vn (red dots) with n = 3 does not synchronize to un.
In (c,d) it is shown that vn (red dots) with n = 4 does synchronize to un. In these experiments the vn component
is initially set to zero. The n = 3 component is selected because it is a part of the active subspace of the DNS
and the last component in the active RNL subspace at both Reynolds numbers, while n = 4 is in the active
subspace of the DNS but is the first component of the passive RNL subspace.

with un to obtain the equation for the energetics,

∂tEkx = Π0 + Πkx − εkx . (5.2)

Above, Ekx = 〈un, un〉/2 is the energy density of the nth streamwise component of the
flow, with angle brackets denoting the inner product integration over the flow domain;

Π0 = −〈un, Pn (u0 · ∇ũ + ũ · ∇u0)〉, (5.3)

is the rate of energy transfer from u0 to streamwise component n;

Πkx = −〈un, Pn (ũ · ∇ũ)〉, (5.4)

is the rate of energy transfer from the other scales to n;

εkx = −
〈
un, R−1�un

〉
, (5.5)

is the rate of dissipation.
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Figure 14. Comparison of the ratio of the linear Π0 and nonlinear Πkx transfer terms to dissipation, εkx,
as a function of the wavenumber k+

x = 2πn/L+
x of the nth streamwise Fourier component in wall units, for

simulations at R = 600, R = 1500 and R = 2250. All curves collapse to a single line with this scaling. The
streamwise scale that renders u> slave, k+

xc, occurs on the vicinity of the negative Lyapunov exponent subspaces
(the threshold between positive and negative values is denoted by the black dashed line at k+

x = 0.05) and is
indicated with black markers (square for R = 600, cross for R = 1500 and circle for R = 2250).

The terms of (5.2) are evaluated for every streamwise component, and the ratios of the
time-averaged quantities, Π0/εkx and Πkx/εkx , are plotted as functions of the streamwise
wavenumber scaled in viscous wall units, k+

x = nα/Rτ , in figure 14. The scaling shows
that the wavenumber k+

xc that demarcates the active and passive subspaces that can be
synchronized (and is determined from the negative Lyapunov exponents in figure 5)
collapses to a single wavenumber, corresponding to the critical wavelength �+

xc = 130. It
is evident that the components that are sustained in RNL (with k+

x much smaller than k+
xc)

constitute the main sources of energy transfer from the mean flow. The gravest streamwise
components of the passive subspace u>, which are kx = 2α for R600, kx = 5α for R1500
and kx = 6α for R2250, are located in a region of the spectrum where the linear production
Π0 has been reduced significantly and has been just overtaken by the Πkx fluxes as the
primary source of energy input. A similar switch between the nonlinear and viscous
contributions to the energy flux that characterized the synchronizable scales was found
by Clark Di Leoni et al. (2020), which marked the passing from the inertial subrange to
the dissipative scales.

Time series of the three terms in (5.2) are plotted in figure 15 for n = 6 and n = 32 for
an R = 2250 simulation. It is remarkable that scales as large as 130 wall units that receive
energy both from the mean flow and from nonlinear interaction, like the n = 6 component
shown in figure 15(a), are slave to the larger-scale flow. An increase in k+

x shifts the balance
of the components in the passive subspace to an equilibrium between Πkx and εkx at every
time instance (cf. the black and blue lines shown in figure 15b), indicating that dissipative
dynamics eventually fully govern this part of the spectrum.
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Figure 15. Time series of the energetic terms in (5.2) of an R2250 simulation for (a) kx = 6α and (b) kx = 32α.
Shown are the energy transfer to kx from the mean flow Π0 (red), the energy dissipation rate −εkx (blue) and
the total energy transfer by the nonlinear interactions, Πkx (black).

The resulting negative Lyapunov exponents that indicate that the subspace u> is
synchronizable, coincide with the increased nonlinear flux terms, which exert control
from the energy extracting scales to the small scales, and the components with higher
streamwise wavenumbers, which are more dissipative. This implies that the larger-scale
flow organizes the nonlinear transfers to the smaller scales and that nonlinear interaction
from the smaller to the larger scales within the passive subspace is not able to dictate the
evolution.

6. Discussion

We have performed a series of synchronization experiments in wall-bounded turbulent
Couette flows, where we employ a streamwise Fourier decomposition to split the flow
into an active subspace u< and a passive subspace u> according to a critical harmonic
Nc. We can determine Nc by calculating the Lyapunov exponent of perturbations u′> to
the time-dependent flow u> + u< and by requiring that Nc is the first component with
λNc < 0. Our results show that the components u< that lead to a complete reconstruction
of the dynamical state of the flow are comprised of a small number of streamwise
Fourier components. This finding confines the attractor on u< and, therefore, defines the
projection of the equations which are dynamically significant in each flow. Interestingly,
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the fundamentally chaotic behaviour of this attractor appears to be associated with the
components that are maintained in the parametrically active RNL subspace, which is
primarily driven by the energy extraction from the streamwise-mean component.

We chose the streamwise Fourier decomposition because in this decomposition the basis
functions have dynamical significance. They reflect the dynamics of the self-sustaining
process in the buffer layer. This is demonstrated with clarity in RNL (or QL) turbulence
in which the interaction of the streamwise-mean with a few streamwise-varying Fourier
components supports a realistic state of wall-bounded turbulence (Farrell & Ioannou
2012; Bretheim et al. 2015; Farrell & Ioannou 2017; Farrell et al. 2017). A decomposition
based on the eigenfunctions of the Stokes operator (cf. Ladyzhenskaya 1975) or on the
three-dimensional Fourier basis (cf. Yoshida et al. 2005; Lalescu et al. 2013; Clark Di
Leoni et al. 2020) does not have such dynamical significance at the anisotropic energy
bearing scales in wall-bounded flows.

Associated with the critical truncation at streamwise component Nc that leads to
synchronization is the critical length scale which is approximately equal to �+

x = 130
wall units for the three different Reynolds numbers studied here. The scaling with wall
units suggests that the active subspaces involve states that emerge near the wall. This
conjecture implies that the wavelength cutoff of u> could also characterize the medium
Rτ experiments of Nikitin (2018), since the Lyapunov exponent of the total flow exhibits
a form of universality as it collapses to a single value when scaled with wall units. The
cutoff length scale coincides also with the peaks found by Nikitin (2018) in the spectra of
the vertical velocity v and spanwise velocity w at y+ = 14 for the Lyapunov vector of the
total flow at Rτ = 391. Interestingly, once we restrict the streamwise length scale of the
subspaces below this peak, the subspaces are stabilized.

A comparison of �+
xc can be made with the length scales attributed to the Kolmogorov

dissipation range. Translating �+
xc = 130 into Kolmogorov lengths, defined as η =

(ν3/ε̄)(1/4) (for R2250 the time-averaged dissipation per unit of mass, ε̄, equals
0.0035U3

w/h), we find that the critical �+
x ≈ 77η is above the assumed dissipation subrange

cutoff of � ≈ 60η. This implies, if these estimates obtained from our low Reynolds number
simulations are also relevant at higher Reynolds numbers, that a small portion of the
motions that belong to the inertial subrange of the spectrum can be synchronized by
the larger scales. The synchronization experiments in IHT (Yoshida et al. 2005; Lalescu
et al. 2013; Clark Di Leoni et al. 2020; Vela-Martín 2021) have recovered a cutoff
wavenumber for synchronization between kη = 0.15–0.2 (�c between 30η and 40η. These
values correspond to the critical values quoted by Yoshida et al. (2005) and Lalescu et al.
(2013) as these authors define the critical wavenumber as k = π/�c instead of k = 2π/�c.
When we scale the growth rates and wavenumbers in the same units, we find that the length
scale of the synchronization threshold in our channel flows occurs at kxη ≈ 0.082, at length
scales that are twice as large. Comparisons between IHT and rotating three-dimensional
turbulence have shown that the presence of large-scale structure in rotating turbulence
reduces significantly the amount of necessary input to achieve synchronization (Clark Di
Leoni et al. 2020). Such large-scale structures are also prevalent in the wall-bounded flows
studied in this work, which we consider the main cause for the difference found on the
length scale of the synchronizable scales.

The critical streamwise length scale for synchronization is also in broad agreement
with the streamwise resolution estimates that Wang & Zaki (2021) obtained in order to
accurately reconstruct the flow state in plane Poiseuille turbulence from observations.
This is to be expected, because successful assimilation of the full flow requires that the
unobserved small scales be synchronizable. This work also suggests that the time scale
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of the assimilation is set by the Lyapunov exponent λN , with the N corresponding to
the threshold scale. Apart from flow reconstruction applications, considerable effort has
been devoted to developing modelling approaches that rely on machine learning techniques
(Ling & Templeton 2015; Tracey, Duraisamy & Alonso 2015; Gamahara & Hattori 2017;
Lozano-Durán & Bae 2020). Although data-driven turbulence modelling has succeeded in
reproducing certain features of the turbulent dynamics (e.g. Yang et al. 2019; Inubushi &
Goto 2020), challenges of building reliable data-driven models have proved significant and
it is believed that physical knowledge of the flow dynamics, such as the dependence of the
streamwise small scales from the large ones obtained in this work, could prove beneficial in
the future development of machine learning modelling (cf. Duraisamy, Iaccarino & Xiao
2019).

Synchronization is not restricted to IHT and wall-bounded turbulence. In the works
of Alves Portela et al. (2020) and Thiesset et al. (2014), the small-scale component that
is hypothesized to describe the stochastic turbulence was found to be influenced by the
time-dependent large-scale coherent structures of the flow. Alves Portela et al. (2020) also
identified a range of length scales where the components of the energetics are maintained
in an equilibrium between dissipation and the nonlinear fluxes. We can, therefore, assume
that the passive subspace u> that we defined in this work is related to the stochastic
component and the highly influenced statistics found in those studies are a consequence
of the synchronization imposed to u> from the coherent motions of the active subspace,
identified here with u<.

7. Conclusions

Synchronization in wall-bounded turbulent Couette flows occurs when an active subspace
u< of the solution is sufficient to reconstruct a passive subspace u>. Similar arguments
are used in uniqueness theorems of solutions to define a finite-dimensional global attractor
of the Navier–Stokes equations. As such, we argue that the equations governing u<

fully determine the dynamics on the turbulent attractor. Using a streamwise Fourier
decomposition, we demonstrated that in plane Couette turbulence at low Reynolds
numbers the synchronizable subspaces u> are comprised by all the Fourier components
with streamwise wavelengths shorter than �+

x = 130.
The existence of this threshold was verified in a series of experiments at low Reynolds

numbers and its connection with the top Lyapunov vector implies that the critical
wavelength scaling holds for flows where this vector is concentrated in the buffer layer
region (which has been shown by Nikitin (2018) to apply for the top Lyapunov vector
in flows up to Rτ = 586), where the large-scale structure is comprised of rolls and
streaks. Evidence pointing to synchronization phenomena has also been found in other
inhomogeneous flow configurations, where the statistics and structure functions of the
small-scale fluctuations are strongly influenced by the large-scale coherent component
of the flow (Thiesset et al. 2014; Alves Portela et al. 2020). The state estimation
results of Wang & Zaki (2021) for plane Poiseuille turbulence can also be attributed to
synchronization.

The active subspace u< spans only a fraction of the streamwise spectrum but the energy
contained in these components is a significant portion of the total kinetic energy, as was
shown to be the case in IHT (Henshaw et al. 2003; Yoshida et al. 2005; Clark Di Leoni
et al. 2020). The components of u< are mainly responsible for the energy extraction
from the mean flow. We also show that stricter synchronization experiments detect the
modes that comprise the active RNL subspace of the flow, suggesting that the active RNL
subspace captures the source of chaotic dynamics in turbulent flows.
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Although the passive subspace u> of the solution is unique, it cannot be neglected from
numerical calculations, as truncating the streamwise harmonics to an Nc wavenumber are
severe and are known to reduce the accuracy of numerical solutions. Instead, since u>

is a function of u<, it is possible that aiming to implement this information into current
modelling efforts could provide significantly accurate models for the small scales of the
flow.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.1054.
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