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Axisymmetric droplet impact on a hydrophilic substrate with one pore of relatively
large radius is numerically studied using diffuse-interface methods. The flows above
the substrate and in the capillary are fully resolved by a Navier–Stokes solver that
accounts for contact-angle hysteresis. Upon impact, the infiltration of the drop into
the capillary is seen to follow one or more of the three regimes identified in recent
experiments (Delbos, Lorenceau & Pitois, J. Colloid Interface Sci., vol. 341, 2010,
p. 171): complete penetration, partial penetration as a slug, and re-entry with
bubble entrapment. The agreement on experimentally measured quantities, such
as transition criteria and slug lengths, is quantitative. On this basis we reveal
previously unidentified flow phenomena, investigate flow details that are not accessible
experimentally, expand the parameter space considered previously, identify the key
asymptotic regimes in the penetration transient, generalize the results in terms of
relevant dimensionless groups, and provide a further step (using a multi-capillary
arrangement as an idealization of a porous substrate) towards the ultimate purpose
of such work, which is the understanding of inertial effects with porous substrates,
including eccentric impacts. The significant effect of impact inertia is revealed as
a spatial anchoring of a stagnation region, formed and persisting for most of the
transient. As a consequence, fluid within an upright cylinder is destined to enter the
capillary, and this is in agreement with the hypothesis of Delbos et al. in interpreting
the amounts of liquid found inside the capillary, except that the radius of the cylinder
is 30 % greater than the capillary radius. The remainder of the liquid spreads laterally
on the substrate surface, and the slug regime is a consequence of this partition.
Numerical experiments also indicate that after reaching the maximum-spread area,
the lamella on the substrate tends to refill the capillary and entrap a bubble, unless
contact-angle hysteresis hinders the radially inward motion of the lamella.

Key words: capillary flows, contact lines, drops

1. Introduction
Previous work on liquid-drop contact with porous substrates has mainly addressed

the creeping-flow regime (Re = ρVR/µ� 1), as it is found with sufficiently small
contact velocities V , sufficiently high viscosities µ, and/or sufficiently fine pore sizes R

† Email address for correspondence: hding@ustc.edu.cn
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(Clarke et al. 2002; Lembach et al. 2010). At such conditions the spreading (onto the
substrate by lubrication mechanics) and infiltration (into the substrate by Darcy flow)
processes can be formulated independently, accounting for contact-line and capillary-
pressure effects, and the solution is obtained by matching the infiltration rates and
pressures across the common boundary of their respective spatial domains (Denesuk
et al. 1993; Davis & Hocking 1999, 2000; Holman et al. 2002; Alleborn & Raszillier
2004; Hilpert & Ben-David 2009). When inertia is not negligible, these simplifications
are no longer tenable, and the kinds of experimental data, numerical simulations, and
theory needed to elucidate the key physics of this regime are not yet available. On
the other hand, recent experiments of drop impact on patterned substrates displayed
a variety of drop dynamics, for example, simultaneous spreading inside and above a
textured surface (Sivakumar et al. 2005), various deposition shapes on a wettability-
patterned surface (Lee, Chang & Kim 2010), and predominant splashing directions (Xu
2005). These findings suggest the potential of using microfabricated rough surfaces
to design drop behaviours after impact, which, however, needs systematic numerical
simulation to identify the underlying crucial physics. Besides the obvious basic interest
in bringing the drop-impact problem to completion, there is also substantial motivation
from a recent practical need to understand the fate of certain threat agents in the
environment, or on protective clothing (Defense Threat Reduction Agency, Workshop
in Integrative Approaches to Threat Agent Fate in the Environment, Santa Barbara,
April 23, 2010). An initial approach to this problem has been provided by experiments
performed with the elementary geometry of a substrate with a single capillary (Kogan,
Johnson & Schumacher 2008; Delbos, Lorenceau & Pitois 2010). In this paper we take
the next few steps with the help of direct numerical simulations based on interfacial
mechanics, modelled by the diffuse-interface method.

The principal results of the work of Delbos et al. with inertia-impact on hydrophilic
substrates (they also considered hydrophobic conditions, which are outside our present
focus) is that the volume of the liquid that enters the capillary corresponds to the
portion of the drop right over the capillary (enclosed within an upright cylinder with
the same diameter). This slug formation was found to occur above a certain critical
velocity, the magnitude of which diminished with increasing capillary radius. The
remainder of the liquid in the drop simply spread out on the surface of the substrate.
They also presented displacement histories, and thereby penetration velocities are also
available. Such penetration-rate data are also available from the work of Kogan et al.
(2008). These authors note certain ‘curiosities’: (a) slug velocities that are higher than
the impact velocities, and (b) penetration rates that required higher than stagnation
pressures at the capillary inlet to conform to the experimental data (they hypothesized
that these higher values were due to water-hammer-like shocks created by the impact).

When the impact velocity is not high enough, and when contact-angle hysteresis
is not present, the spread-out lamella can rebound back towards the capillary and
re-enter, thereby entrapping the gas already in the capillary, behind the liquid slug
(the bubble regime in the terminology of Delbos et al.). Finally, at sufficiently low
velocities (Re < 1) , there is sufficient time (relative to spreading) for all the liquid to
be absorbed into the capillary, yielding the total penetration regime.

In this paper we demonstrate the feasibility and efficacy of predicting the above
experimental findings by fully resolved solutions of the Navier–Stokes equations.
Moreover, having validated our method we employ the simulations to reveal
previously unidentified flow phenomena, investigate flow details that are not accessible
experimentally, expand the parameter space considered in the experiments, identify the
key asymptotic regimes in the penetration transient, generalize the results in terms
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of relevant dimensionless groups, and provide a further step (using a multi-capillary
arrangement as an idealization of a porous substrate) towards the ultimate purpose
of such work, which is the understanding of inertial effects with porous substrates,
including eccentric impacts.

We use a diffuse-interface method (Jacqmin 1999; Ding, Spelt & Shu 2007).
The flows, both above the substrate and in the capillary, are resolved by solving
the Navier–Stokes equations (Ding et al. 2007). The evolution of the fluid–fluid
interface is governed by the convective Cahn–Hilliard equation (Jacqmin 1999). The
stress singularity at moving contact lines is relieved using a diffuse-interface model
(Seppecher 1996; Jacqmin 2000) and a geometric formulation of the wetting condition
is implemented (Ding & Spelt 2007b). The chemical inhomogeneities and roughness
are assumed to be uniform on the solid substrate and modelled by a window of
contact-angle hysteresis (Ding & Spelt 2008).

The paper is organized as follows. The problem statement and the details of
numerical methods are presented in § 2. In § 3 we first numerically reproduce the three
penetration regimes with similar flow parameters to the experiments, and therefore
validate our methods; then we present the penetration regime map in the expanded
parameter space and discuss the flow phenomena, droplet ejection, and related fluid
mechanisms. After that we analyse the phenomena of penetration associated with the
significance of inertia in § 4, revealing a spatial anchoring of a stagnation region,
formed and persisting for most of the transient. We analyse the regime transitions
in § 5, and in particular, find that contact-angle hysteresis hinders the radially inward
motion of the lamella, and effectively prevents the refilling of the capillary. In § 6
we investigate the infiltration dynamics through a scaling argument. A further step,
i.e. using an embedded annular capillary arrangement as an idealization of a porous
substrate, is attempted in § 7.

2. Problem statement and numerical methods
2.1. Problem statement

We consider here a spherical liquid drop of radius a impacting on a solid substrate
with an open-ended hole of radius Rt(= rta) (figure 1). The drop is placed slightly
above the solid substrate, and allowed to fall with an initial speed U. The viscosity
and density of the drop are µ and ρ, respectively, and the ratio of viscosity
(density) of the surrounding fluid to that of the drop is denoted by λµ (λρ). The
two fluids involved here are liquid and air, and the typical value of λµ(λρ) is 0.05
(0.001). The surface tension coefficient σ is assumed to be constant. The equations
of motion are the Navier–Stokes equations with the divergence-free constraint. We
render the equations of motion dimensionless by choosing a, U and τ(= a/U) as the
characteristic length, velocity and time scales, respectively:

ρ̄

(
∂u
∂t
+ u ·∇u

)
=−∇p+ 1

Re
∇ · [µ̄(∇u+∇uT)] + fs

We
− ρ̄

Fr
j, (2.1)

∇ ·u= 0, (2.2)

where the dimensionless viscosity and density are µ̄ = C + (1 − C)λµ and ρ̄ = C +
(1 − C)λρ , respectively, and C is the volume fraction of one of the fluids (0 6 C 6 1).
The dimensionless groups are the Reynolds number Re = ρUa/µ, Weber number
We= ρU2a/σ , and Froude number Fr = U2/(ga), where g is gravitational acceleration.
We shall also refer to the Ohnesorge number Oh = √We/Re = µ/√ρσa, and the
capillary number Ca = We/Re = µU/σ . The symbol fs denotes the dimensionless
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Geometric definition of
the problem and related nomenclature. Rs(= rsa) is the radius of the limiting streamline that
separates flow entering the capillary from flow spreading outwards.

surface tension force and j denotes the vertical unit vector. The dimensionless numbers
on the capillary length scale are Rer(= rtRe) and Wer(= rtWe).

All calculations reported here are carried out in the (r, z) plane. Because of
axisymmetry only half of the flow domain in figure 1 is considered in computation.
The domain consists of a upper subdomain of 5 × 3 and a lower subdomain of rt × 8,
wherein the heights and widths of the subdomains are chosen in such a manner that
the effect of the domain size is negligible, which has been confirmed by numerical
experiments. A uniform mesh size h of 0.01 is used if not stated otherwise. The
boundary conditions for the velocity components (ur, uz), where the subscripts r and
z denote the respective directions, are imposed as follows: no-slip at the solid walls;
ur = 0 and ∂uz/∂r = 0 at the axis of axisymmetry; ∂u/∂z = 0 at the top and bottom
boundaries; ∂u/∂r = 0 at the right boundary of the upper subdomain. The pressure
at the lower open end of the capillary is set equal to the value at the far field, p0,
which is approximated by the pressure at the right upper corner of the domain (see
figure 1); ∂p/∂n= 0 at the other boundaries, where n is normal to and pointing to the
corresponding boundary. The initial velocity field inside the drop is set to −1, whereas
outside the drop it is set to zero.

2.2. The diffuse-interface method and wetting conditions
We use volume fraction C to describe the interface and its evolution in the framework
of a diffuse-interface model (Ding et al. 2007): a sharp interface separating the two
fluids is replaced by an interfacial region of finite thickness such that the jumps in
density and viscosity, as well as the pressure field, are smoothed to a certain degree
across the interface. The time evolution of the C field is governed by the convective
Cahn–Hilliard equation

∂C

∂t
+∇ · (uC)=M∇2ψ, (2.3)

where M is the mobility, and ψ(= φ′(C) − ε2∇2C) is the chemical potential;
ε represents a dimensionless measure of the thickness of diffuse interface, and
φ = C2 (1− C)2 /4 is the bulk energy density. Then, the surface tension force fs
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(a) (c)

(d )(b)

FIGURE 2. Numerical simulation of Center for Risk Studies and Safety experiment (V.
Mitkin, private communication) at We = 164,Re = 457, θA = 46◦ and θR = 13◦, at times
t = 0.33, 0.55, 1.32, and 3.95 (a–d). The images represent experimental results, and the lines
on the images represent numerical results.

in the momentum equation (2.1) can be written as fs = 6
√

2ψ∇C/ε. For accuracy
it is required that ε � 1 and we use ε = 0.55h = 0.0055. The model allows for
moving contact lines, and by the use of diffusive fluxes it alleviates the related
non-integrable stress singularity (Jacqmin 2000). The capillary is assumed to have the
same wettability as the solid substrate, which is prescribed by an advancing contact
angle θA. In some simulations, a moderate contact-angle hysteresis 1θ(= θA − θR) is
used to account for the effect of surface roughness and inhomogeneities of the solid
substrate. A geometric formulation is used for a prescribed contact angle θ (Ding &
Spelt 2007b), leading to boundary conditions for C at the solid walls:

n ·∇C =− tan
(
π

2
− θ

)
|∇C − (n ·∇C)n|. (2.4)

For substrates with contact-angle hysteresis, we first estimate the local contact angle
θ0 from the distribution of C at each time step, and then update the value of C
at respective ghost cells (located inside the substrate) by (2.4) if θ0 is outside the
hysteresis window, i.e. θ = θA if θ0 > θA and θ = θR if θ0 < θR; otherwise we keep the
value of C at the ghost cell unchanged (Ding & Spelt 2008). At the sharp edge of the
capillary, the value of C at the corresponding ghost cell could be determined both by
the wetting conditions of the substrate and the capillary; therefore an averaged value of
C is used to avoid this situation.

2.3. Code validation
The methods and numerical tools employed in this work have been previously
validated in the context of drop-spreading on impermeable substrates (Ding & Spelt
2007a). The focus was the inertia regime found with capillarity-induced, fast-spreading
sessile drops. As an initial step in the present study we extended this experience
for impacts on impermeable smooth substrates as illustrated in figure 2. A further
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FIGURE 3. A typical case of the regime of re-entry with bubble entrapment. Re = 311,
We= 155, rt = 0.2, θA = θR = 30◦. Snapshots at t = 0, 0.11, 0.65, 1.62, 3.78, 4.91, 17.8, 20.2,
25.6 (a–i).

extension is made in the present work in the still more complex problem regimes
found experimentally for drop impacts on capillary-bearing substrates.

3. The regimes of penetration
The flows can be classified according to the interaction between the spreading on

the solid substrate and the penetration in the capillary. Figure 3 shows a typical
example characterized by two penetration phenomena in the capillary: the formation
of a cylindrical liquid column (or ‘slug’) and the re-entry with a bubble entrapped at
a later time. This regime has been identified in experiments by Delbos et al. (2010)
and is referred to here as ‘re-entry with bubble entrapment’. The three periods of
infiltration can be seen from the transitions in penetration distance and velocity (dp and
Vp respectively) in figure 4. They are inertial penetration (figure 3a–e), slug motion
(figure 3e–h) and bubble entrapment (figure 3h–i), respectively. The other two regimes
observed in the experiments are complete penetration and partial penetration as a slug,
which are also found in our simulations. In the regime of partial penetration as a slug,
the flow reversal on the substrate and re-entry are missing. In the regime of complete
penetration, the whole drop is infiltrated into the capillary in the absence of fluid
rupture at the edge of the capillary inlet.
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FIGURE 4. Detailed results from the simulation of figure 3. The notations I, II and
III represent the periods of forced impregnation, slug motion and bubble entrapment,
respectively. The solid line represents the results for the infiltration velocity (VP) and the
dashed line shows the depth of penetration (dP).
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FIGURE 5. (Colour online) Penetration regime map, for rt = 0.2, θA = 40◦ and θR = 20◦.
The circles represent the cases in the complete penetration regime, the squares show partial
penetration as a slug, and the triangles show re-entry with bubble entrapment. Filled symbols
represent the cases accompanied by drop pinch-off: black inside the capillary, grey (blue)
above the capillary. The thick straight lines represent the approximate boundaries that
delineate the three regimes.
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1

1

(a)

(b)

FIGURE 6. Droplet ejection inside the capillary, for rt = 0.2, θA = 40◦, θR = 20◦. (a)
We = 100, Rer = 40 and t = 0.54, 1.14, 2.34, 5.94. (b) We = 156, Rer = 50 and t = 0.84,
2.94, 4.74, 16.14. Both (a) and (b) are in the complete penetration regime.

A representative regime map is shown in figure 5. The values of Oh are also
indicated to delineate the inviscid conditions 0.003 6 Oh 6 0.007 addressed by
Delbos et al. (2010) and the extension to viscous conditions obtained by numerical
simulations.

We can see that the whole map is anchored at the point (We ∼ 1,Rer ∼ 25). For
We < 1, the critical condition that separates complete penetration from isolated slug
is at Rer,c ∼ 25. For We > 1, the complete penetration region expands with increasing
Rer, logWec ∼ (Rer − 25)/14, and the slug is followed by bubble entrapment. A
second-order structure is also evident: for We < 1, droplet pinch-off can occur above
the capillary, while for We > 1 such pinch-off may be found at the nose of the
slug within the capillary. Remarkably, increasing viscosity (Oh) proves increasingly
resistant to slug separation.

Typical examples of droplet pinch-off within the capillary are shown in figures 6
and 7 and above the capillary in figure 8. Impact inertia greatly bends the slug front
near the contact line and causes the middle of the interface to protrude; as a result
the slug front develops into a liquid ligament, which is pinched off from the slug and
forms an ejected droplet. More impact inertia can result in a longer liquid ligament
with a larger volume before rupture. Thus the droplet that develops from the pinched
ligament has a larger diameter than the capillary, and would then wet the capillary and
entrap a bubble simultaneously (figure 6b). With sufficiently large inertia the scenario
is even more dramatic. A very elongated liquid thread may form, which then pinches
off from the slug, and breaks up further into a row of small droplets at a later time
due to Rayleigh instability (figure 7). With reference to figure 8(a), the rapid spreading
on the substrate stretches the drop horizontally, leading initially to a column-like shape
and eventually to a pinching neck at the bottom of the column. This series of events
is dominated by strong travelling capillary waves, which are induced by wetting rather
than by the impact. This phenomenon has also been seen in experiments, e.g. figure
1(d) in Delbos et al. (2010), as well as in drop impact on impermeable substrates
(Roux & Cooper-White 2004; Rioboo et al. 2006) and partial coalescence of a drop at
a liquid–liquid interface (Blanchette & Bigioni 2006; Zhang, Li & Thoroddsen 2009).
The size of the daughter droplet was not reported by Delbos et al. (2010); however,
our simulations predict that it is about 51 % of the original drop in radius, close to
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(d ) (e)

1(a) (b) (c)

FIGURE 7. Droplet ejection inside the capillary with multiple pinch-offs, for We= 625,
Rer = 100, rt = 0.2, θA = 40◦, θR = 20◦ and t = 2.04, 4.74, 7.14, 20.04, 33.54 (a–e).

experimental observations by Ding et al. (2011), as well as in the partial coalescence
of liquid drops (Blanchette & Bigioni 2006; Zhang et al. 2009). Figure 8(b) shows
that the droplet ejection may be accompanied by the occurrence of flow rupture at
the capillary inlet. The subsequent coalescence of the droplet with the lamella on the
substrate entraps a bubble in the capillary, clearly by a different process from the
regime of re-entry with bubble entrapment, which, though, happens at a later time and
entraps the second bubble in the capillary.

Inertia plays an important role in the processes of the two drop pinch-offs. However,
the underlying mechanisms in the two droplet pinch-offs are so different that it is
impossible to have both of them simultaneously. In the droplet pinch-off above the
capillary, inertia of fast spreading arises mainly from the conversion of surface energy
into kinetic energy (Biance, Clanet & Quéré 2004), rather than the impact inertia,
which has an adverse effect on the pinch-off, as shown in the experiments by Roux
& Cooper-White (2004); as a result drop pinch-off above the substrate mainly occurs
for We < 1. Besides this, the pinch-off is related to the propagation and reflection
of strong surface waves that start from the moving contact line, which suggests that
inertial and surface tension forces must be dominant over viscous force, i.e. occurring
at relatively low Oh. Comparatively, it requires much more impact inertia to eject
a droplet inside a capillary (We ∼ 100, at least in figure 5). The elongation of the
front of the liquid column starts from the interface bending down near the contact
line, where essentially the shear stress balances the surface tension force, and the
process is characterized by the capillary number. In the case shown in figure 6(a),
Ca = 0.5, which appears to be sufficiently large for the shear to deform the slug front.
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1

1
(a)

(b)

FIGURE 8. Droplet pinch-off above the substrate, for rt = 0.2, θA = 40◦ and θR = 20◦. (a) The
complete penetration regime: Rer = 6.9, We = 0.076 and t = 0.03, 0.26, 0.37, 0.48 and 0.57.
(b) The bubble entrapment regime: Rer = 50, We = 0.56 and t = 0.54, 0.69, 1.14, 1.44 and
4.44.

In contrast, the values of Ca in the cases shown in figures 3 and 8 are almost two
orders smaller, and thus the shape of the slug front has little deformation and is always
well maintained as a meniscus by the surface tension force. In addition to the interface
deformation near the contact line, sufficient slug inertia is also needed to elongate the
ligament. The minimum value of Rer for the occurrence of drop pinch-off inside a
capillary is about 20 (figure 5). Droplet pinch-off is not observed inside the capillary
at Oh = 0.003 and 0.007 for the present range of Rer, because of the small value of
Ca (the maximum value of Ca is 0.027, with Rer = 110 and We= 15). It may occur at
high We and Rer, which is beyond the scope of this study, however.

4. Inertial penetration: stagnation circle and penetration length
Flow fields at the early and late periods of inertial penetration are shown in figure 9.

Here the penetration of the drop into the capillary is characterized by the presence
of a high pressure zone on the solid substrate close to the capillary inlet. We find
respectively a stagnation circle as a limiting streamline that separates the flow entering
the capillary from that spreading outwards on the substrate (figure 9a). It is interesting
to see that the instantaneous penetration flow rate can be significantly higher than unity
(figure 4). The cause is not water-hammer, as suggested by Kogan et al. (2008), but
straightforward incompressible hydrodynamics.

The radius of the stagnation circle is shown as a function of time in figure 10. With
sufficient impact inertia (e.g. We > 10), the stagnation circle is more or less fixed
on the solid substrate during most of the penetration period (t < 2.5). It turns out
that when rt < 0.2, the stagnation circle has a radius that remains constant for most
of the transient at a value of twice the capillary radius. At the very late period of
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FIGURE 9. Stationary stagnation circle: flow fields at Rer = 62, We = 6.2, rt = 0.2,
θA = θR = 30◦. (a) t = 0.65, (b) t = 1.62. The grey scales represent the pressure contours,
the thick black lines outline the drop shapes and the black dots on the substrate denote the
stagnation circle.
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FIGURE 10. Radius of stagnation circle as a function of time. (a) Re= 2810, We= 81,
θA = 35◦ and θR = 15◦. (b) Oh= 0.008 and rt = 0.2, θA = θR = 30◦.

the penetration when the top of the drop is lowered down to a height comparable to
the thickness of the lamella (t ∼ 3), the stagnation circle moves noticeably inwards.
Variation of the stagnation circle is also seen when the impact velocity is small (such
as We� 1) (figure 10b). The corresponding instantaneous flow fields of this case are
shown in figure 11; further evidence is that the pressure drop induced by capillary
waves can be larger than the impact pressure.

With sufficient impact inertia (Rer > 80), the slug length changes slightly with rt,
and ranges from 3a to 3.4a (as shown in figure 12). A close inspection of reported
experimental data (e.g. figure 1e of Delbos et al. 2010) shows that the corresponding
slug length may also fall in this range (about 3a). To gain insight into the origin of
the slug and also for visualization of the penetration process, we initiate in the drop
two sets of particles at the very beginning of the computation, and then track them
in time. The two sets of particles are separated at r = 1.3rt, which is estimated based
on the volume of a slug of 3.4a in length. The evolutions of particle positions with
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FIGURE 11. Unsteady stagnation circle: flow fields for Rer = 6.9, We = 0.076, rt = 0.2,
θA = θR = 30◦. (a) t = 0.48, (b) t = 0.65. The grey scales represent the pressure contours, and
the thick black lines show the drop shapes. Panel (b) is at the moment just before pinch-off.
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FIGURE 12. Slug length lS(=LS/a) for Oh= 0.007 and (a) rt = 0.2 and varied wettability,
(b) θA = 40◦, θR = 20◦ and varied rt. The definition of LS can be found in figure 3(g).

time for the three cases considered are shown in figure 13. At the early period of
penetration, e.g. t < 3, the particles inside the capillary originate from the cylindrical
column r < 1.3rt in all cases. When the height of the drop becomes comparable to
the thickness of the lamella, a small quantity of black particles remains above the
substrate and eventually resides within the lamella. This is due to the shifting of the
stagnation circle towards the capillary edge. Overall we can conclude that most of
the fluid penetrating into the capillary during the inertial penetration period originates
from an upright cylindrical part of the drop above the capillary that is approximately
1.3rt in radius.
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FIGURE 13. Slug formation for different capillary radii, at Re= 684, We= 23, θA = 40◦ and
θR = 20◦. The columns from left to right represent numerical results for rt = 0.16, 0.2 and
0.3, respectively. The rows from top to bottom represent the results at times t = 0, 1.44, 3,
4.44 and 5.46, respectively. Black dots denote the particles initially located inside the drop at
r < 1.3rt, while grey dots denote those located at r > 1.3rt.
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0 1 42 3

FIGURE 14. (Colour online) Snapshots at the moment just before slug formation, at
Oh = 0.004 with different impacting velocity: rt = 0.2, θA = 50◦ and θR = 30◦. The grey
long-dashed line denotes results at Rer = 22 and We= 0.19 (just beyond the onset of rupture),
the solid (blue) line shows Rer = 44 and We= 0.77, the dashed (red) line shows Rer = 88 and
We= 3.1, and the black dot-dot-dashed line shows Rer = 131 and We= 6.9.

5. The mechanics of regime transitions
Figure 14 shows the snapshots of liquid rupture occurring at the edge of the

capillary inlet, with a variety of different impact velocities. Again, inertia plays
a crucial role here. Obviously, an increase in impact inertia encourages both the
spreading out of the lamella and the penetration of liquid column, and thus promotes
the occurrence of rupture. When the impact inertia is insignificant (We < 1), the
occurrence of rupture coincides with a rapid collapse of the centre of the drop, which
results from the convergence of capillary surface waves at the axis and effectively
pumps the liquid into the capillary. Such collapses were observed in the fast spreading
of drops at low Oh (Ding & Spelt 2007a), where inertia from conversion of surface
energy is the dominant factor. Besides a small value of Oh, a small liquid viscosity is
also required for the rupture to occur for We < 1, such that the liquid column in the
capillary has sufficient inertia (Rer ∼ 20 at least here). At relatively high Oh (> 0.01),
the inertial effect of curvature-driven flows becomes less significant compared to the
viscous effect, and it is then reasonable to expect the impact inertia to take a more
active role in the onset of occurrence of rupture, as seen in figure 5. It is also
interesting to note that although the value of θA(= 50◦) in figure 14 is different from
that (= 40◦) in figure 5, the critical condition for onset of rupture (We = 0.19 and
Rer = 22 for Oh = 0.004) is rather similar to the results in the latter, showing little
influence of θA on the rupture.

In our model we do not take account of van der Waals forces, which are normally
considered as the cause of rupture of a sufficiently thin liquid film on a solid substrate.
For a millimetre-sized drop the mesh used in the simulation is only able to resolve
a liquid film of thickness about 30 µm, far greater than the length scale (∼10 nm) at
which van der Waals forces become important. Instead, when the local thickness of
the liquid film is smaller than that of the diffuse interface, the effect of van der Waals
forces is approximated by the diffusive fluxes of the diffuse-interface model and a
rupture then occurs.

After reaching the maximum-spread area, the lamella recoils on the substrate and
its radial motion can be modelled based on a balance of the force components in
the cross-section (figure 15a). Since inertia is negligible, the forces are the viscous
force (µVL/hL(rR − rA)), the surface tension forces at the interface (hLσ/rA) and at the
contact line (σ(cos θR − cos θA)), where VL is the radial velocity of the lamella and is
assumed to be uniform. Then, the motion of the recoiling lamella yields

CaL(rR − rA)/hL + cos θR − cos θA ∼ hL/rA, (5.1)
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FIGURE 15. (a) A sketch of a receding lamella, (b) justifying equation (5.1) by examining a
recoiling lamella for We = 50, Oh = 0.01, rt = 0.2 and θA = θR = 30◦. CaL = µVL/σ , where
the lamella velocity VL is approximated by (ucl,A + ucl,R)/2.

where CaL = µVL/σ . Equation (5.1) is justified by examining a recoiling lamella
without contact-angle hysteresis in figure 15(b), in which CaL appears to be
proportional to h2

L/((rR − rA)rA) at different times of recoiling motion.
The wetted area (characterized by rR) is found to increase with We for drop impact

on an impermeable substrate, while the thickness hL decreases with We (Clanet et al.
2004). Equation (5.1) suggests that the recoiling speed of the lamella would decrease
with the increase in We. On the other hand, contact-angle hysteresis, arising from the
chemical inhomogeneity or roughness of the solid substrate, hinders the motion of the
lamella. In our simulations of drops at Oh = 0.007, re-entry with bubble entrapment
occurs at 20 < Rer < 230 without contact-angle hysteresis (i.e. for a perfectly smooth
and clean substrate), but only at 35 < Rer < 55 with a hysteresis of 1θ = 20◦.
The quick change of normal direction to the substrate at the edge of the capillary
inlet further complicates the refilling process. Although the wetting conditions of the
substrate and the capillary are identical, such a transition is equivalent to modifying
the advancing contact angle, roughly from θA to θA + 45◦ (as shown in figure 16). This
consequently leads to an effective contact-angle hysteresis at the capillary inlet, even
for cases with θA = θR. As a result, lamellae with sufficient recoiling inertia, e.g. for
drops with low Oh and We, could refill the capillary. Otherwise the contact line is then
pinned at the sharp edge of the capillary inlet. This also explains why the penetration
regime transits from the re-entry with bubble entrapment to the partial penetration with
a slug with increasing impact speed (see figure 5), rather than the other way around.

Figure 17 shows the snapshot at a time before a bubble is entrapped. The refilling
leads to the occurrence of a neck near the capillary inlet, and the neck will keep
shrinking and eventually coalesce to minimize the surface energy. During this process
a little amount of gas is squeezed out of the bubble and generates a vortex ring above
the neck. The size of the bubble is roughly the distance that the slug moves in the
capillary before the refilling event, and is mainly a function of Rer; detailed analysis is
provided in § 6.

Figure 18(a) shows the spreading dynamics of the drop on the solid substrate in
terms of contact-line position as a function of time. The radius of the wetted area
approximately yields a power-law relation R ∼ t1/2, indicating the inertia-dominant
spreading process and being in agreement with theoretical analysis and experimental
observations. For example, with very slow impact speed the R ∼ t1/2 relation was
seen for Oh < 0.01 (Biance et al. 2004; Ding & Spelt 2007a), while with high
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–2 0 2

45°

0 0.5

FIGURE 16. (Colour online) Settled slug and lamella in the slug regime, with θA = 40 and
θR = 20◦. The black dot-dashed line represents the results at We = 2.1 and Rer = 41 (nearly
at the onset of re-entry with bubble entrapment), the solid (red) line shows We = 3.7 and
Rer = 55, and the dashed (blue) line shows We= 15 and Rer = 109. The black dot-dot-dashed
line in the zoomed view represents the tangent plane to the edge of capillary inlet.
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FIGURE 17. (Colour online) Onset of bubble entrapment at rt = 0.2, θA = θR = 30◦,
Rer = 109 and We = 15. The grey scales represent the pressure distribution and the thick
grey (blue) line represents the interface.

impact velocity this relation holds in the so-called kinematic period regardless of the
physical properties of the drop and the wettability (Rioboo, Marengo & Tropea 2002).
Figure 18(b) shows the maximum radius of wetted area Rmax as a function of Re. Their
correlation can be approximated by Rmax ∼ Re0.18, agreeing with the prediction of a
viscous dissipation model (Clanet et al. 2004) (Rmax ∼ Re1/5) for drop impact on an
impermeable substrate. Overall it appears that the presence of the capillary has almost
no effect on the contact-line dynamics of the drop spreading on the solid substrate,
primarily because only a limited amount of the drop (less than 10 % for rt 6 0.2) is
lost into the capillary during the impact process.
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FIGURE 18. (Colour online) Spreading of the drop on the solid substrate: (a) contact-line
position Rcl as a function of time with rt = 0.2, θA = θR = 30◦, and (b) maximum radius of the
wetted area Rmax as a function of Re. In (a), the dot-dashed (red) line represents the case at
Rer = 6.9 and We = 0.076 and the dashed (blue) line represents the the case at Rer = 62 and
We = 6.2. In (b), the squares represent numerical results and the solid line represents a fitting
of Rmax ∼ Re0.18.

6. Discussion
The dynamics of the liquid column in the capillary is analysed based on a scaling

argument of the forces exerted on the liquid column. We consider a liquid column
of length LRt moving in the capillary with a velocity of Poiseuille flow profile, of
which the average value is VpU; here a positive Vp suggests a downward motion of
the liquid column. The forces exerted by the surrounding fluids and the capillary on
the liquid column are as follows: the impact pressure p(t)πR2

t ρU2 where the coefficient
p(t) damps gradually with time, the viscous shear stress from the capillary wall
8VpLπµURt, the effect of gravity LρπgR3

t , the capillary forces associated with the
wettability 2πRtσ cos θ where θ is the contact angle (we do not consider contact-angle
hysteresis here, so θ = θA = θR). Then the equation of motion for the liquid column
yields

L
dVp

dt
= p(t)+ 2

Wer
cos θ − 8

Rer
LVp + L

Fr r
. (6.1)

A similar scaling argument has been successfully used by Zhmud, Tiberg &
Hallstensson (2000) in the analysis of the dynamics of capillary rise. We use this
model to quantify the penetration of the drop in the three periods as shown in figure 4,
and it can be further simplified according to the specific dominant forces in the
respective period.

In the penetration period, the infiltration rate Vp can be approximated by the time
derivative of the liquid column length, L̇. At very early times, the effect of the impact
pressure is expected to be dominant, but reduces with time. For example, Eggers et al.
(2010) found that the impact pressure of drop impact on a solid wall damps as a power
law of time such that p(t) ∼ t−0.5. This fact complicates the analysis of the dynamics
of the liquid column at early penetration. At later times, when the effect of the impact
pressure is weak and surface tension and viscous force become important, the variation
of the liquid column length yields

2
Wer

cos θ ∼ 8
Rer

LL̇. (6.2)
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FIGURE 19. Three periods in penetration dynamics: Rer = 62, We= 6.2, rt = 0.2, θA = θR =
30◦. The notations I, II and III represent the periods of inertial penetration (a), moving slug
(b) and bubble entrapment (c), respectively. The solid lines represent numerical results and
the dashed lines represent results from the scaling arguments by (6.1); tos and tob represent the
time at the onset of slug formation and bubble formation, respectively. The thick spot in (a)
denotes the transition to slug formation. This is the same case as in figure 4.

Thus, the growth rate of the liquid column satisfies L̇ ∼ √((Rer cos θ)/(8Wer))t−0.5.
The infiltration rate from numerical results is plotted as a function of time in
figure 19(a), in which the results of Vp are well fitted by a straight line of slope
−0.5 in logarithmic scales when t > 1 and before the onset of slug formation, in good
agreement with the scaling argument in (6.2).

When the liquid column in the capillary becomes a moving slug (as seen in
figure 3e), the driving forces are inertia, viscous force and gravitational force. In
particular, the first two are the dominant forces for relatively large Vp, and thus the
slug motion is governed by

L
dVp

dt
∼− 8

Rer
LVp. (6.3)

This suggests Vp ∼ e−8t/Rer . For very slow slug motion, the gravitational force is
balanced by the viscous force, and the velocity at equilibrium Veqm would be
Veqm = Rer/(8Fr r), which is about 0.019 for the case in figure 19. Figure 19(b)
shows the dimensionless Vp versus t∗ for the moving slug period from the numerical
simulations, where t∗ = t − tos and tos denotes the time at the onset of slug formation.
Note that Vp is obtained by numerically differentiating the position of the slug front
in a regular time interval, and the numerical error in this post-processing results in the
oscillations in Vp (particularly when Vp is very small), which has nothing to do with
the accuracy of the solution. Clearly the slug velocity is damped exponentially at early
times after the slug is formed, and then asymptotically transits to a constant value, as
expected by the scaling argument. Numerical simulations show an exponent of 0.84
for the damping and Vp = 0.012 at late times, compared to 0.65 and 0.019 from the
theoretical analysis, respectively.

The refilling, as seen in figure 3(g,h), results in an imbalance of the capillary
pressures between the front of the liquid column and the capillary inlet, and
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consequently exerts an impulsive force pulling the liquid into the capillary. If the
variation of length of the liquid column L is neglected, the motion of the liquid
column yields

dVp

dt∗
= 2

LWer
cos θ − 8

Rer
Vp, (6.4)

which is an ordinary differential equation with boundary conditions Vp,0 = 0.012 at
t = 0 and Vp,∞ = ((2/LWer) cos θ)/(8/Rer) at t→∞; t∗ = t − tob and tob represents
the time at the onset of bubble formation. The solution of (6.4) can be obtained
analytically:

Vp = Vp,∞ − (Vp,∞ − Vp,0)e−8t∗/Rer . (6.5)

If we approximate the viscous force by setting 8/Rer = 0.84 (which is obtained
by fitting exponential damping in the moving slug period), then Vp,∞ = 0.251,
in agreement with the numerical results (Vp,∞ = 0.255). Figure 19(c) shows the
comparison between numerical simulations and theoretical analysis for the bubble
entrapment period.

7. Drop impact on embedded annular capillaries
We consider here drop impact on a substrate with embedded annular capillaries,

which serves as a model of a porous substrate. Figure 20 shows a typical example,
in which impact inertia is rather significant. The effective permeability of the
embedded annular capillaries is about 0.45, much larger than that of a single capillary
(approximately 0.01 to 0.02 for rt = 0.2 to 0.3). As a result the infiltration in the
embedded annular capillaries significantly affects the drop spreading on the porous
substrate. It is shown in figure 20 that the maximum radius of the lamella is just
slightly bigger than that of the original drop, and there is almost no recoiling. Clearly,
inertia plays a dominant role in the infiltration process, and leads to rapid penetrations:
the drop is absorbed by the substrate within a time of approximately 2 (as shown in
the figure 20), which is equivalent to the time for the drop to fall freely by distance
equal to a drop diameter. In particular, in the three annular capillaries close to the axis,
the slug lengths are roughly proportional to the lengths of annular liquid columns of
the initial drop above the respective capillaries. This suggests that the porous surface
is probably divided into two infiltration regions: the impact-dominated one (r < a) and
the spreading-dominated one (r > a). Particle tracking (not shown here) reveals that at
early times of penetration (up to figure 20c), geometrically a cylindrical column of the
initial drop (r < 1.3rt) infiltrates into the centre capillary, which is similar to the drop
impact on a single capillary; then a small portion diverts to the neighbouring annular
capillary at the same time as the shifting of the related stagnation circle. At the end of
the penetration period (t ∼ 4), it is interesting to notice that most of the drop has been
absorbed by the capillaries; remaining on the porous substrate are a few annular liquid
threads, which could further break up into a necklace, but this is outside our present
focus.

8. Conclusions
The dynamics of infiltration and spreading after a drop impacting onto a hydrophilic

substrate with single capillary has been investigated numerically by a diffuse-interface
method. The penetration regimes observed in experiments (Delbos et al. 2010) have
been reproduced and generalized by mapping numerical results in the We − Rer plane.
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FIGURE 20. Drop impact on embedded annular capillaries. Re = 1094,We = 59 and
θA = θR = 30◦. The size of the gaps are uniform, i.e. 0.2, except the centre capillary, of which
the radius is 0.2. Snapshots at t = 0, 0.64, 1.28, 1.92, 2.56, 3.2, 4.16 and 6.4, respectively.

Interesting phenomena – droplet ejections – have been observed not only above the
substrate, but also inside the capillary, though the related mechanisms are shown
to be very different. Inertia appears to be crucial in all these events: inertia from
the conversion of surface energy is more important in droplet ejection above the
substrate, while sufficient impact inertia is a necessity for droplet ejection inside the
capillary. The significance of impact inertia in the slug formation is reflected by a
spatial anchoring of stagnation region with time. As a result, the amounts of liquid
inside the slug are found to come from an upright cylinder above the capillary. This
is in agreement with the hypothesis of Delbos et al. (2010), but the radius of the
cylinder is 30 % greater than the capillary radius. This observation also provides a
reasonable interpretation of the previous experimental observations, e.g. the unusually
large infiltration rate (Kogan et al. 2008) and the constant slug volume at sufficiently
large Rer (Delbos et al. 2010). Inertia and contact-angle hysteresis are shown to be
the most important factors in the transition of penetration regimes; the latter has an
especially significant effect on the transition to the regime of partial penetration as a
slug. Finally an attempt is made to use embedded annular capillaries to model porous
surfaces, and two infiltration regions have been identified: the impact-dominant region
and the spreading-dominant region, distinguished by the initial drop radius.
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