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Abstract: The Ross Sea is bordered by the Late Precambrian–Cambrian Ross–Delamerian Orogen of East

Antarctica and the more Pacific-ward Ordovician–Silurian Lachlan–Tuhua–Robertson Bay–Swanson

Orogen. A calcsilicate gneiss from Deep Sea Drilling Project 270 drill hole in the central Ross Sea,

Antarctica, gives a U-Pb titanite age of 437 ± 6 Ma (2s). This age of high-grade metamorphism is too

young for typical Ross Orogen. Based on this age, and on lithology, we propose a provisional correlation

with the Early Palaeozoic Lachlan–Tuhua–Robertson Bay–Swanson Orogen, and possibly the Bowers

Terrane of northern Victoria Land. A metamorphosed porphyritic rhyolite dredged from the Iselin Bank,

northern Ross Sea, gives a U-Pb zircon age of 545 ± 32 Ma (2s). The U-Pb age, petrochemistry, Ar-Ar

K-feldspar dating, and Sr and Nd isotopic ratios indicate a correlation with Late Proterozoic–Cambrian

igneous protoliths of the Ross Orogen. If the Iselin Bank rhyolite is not ice-rafted debris, then it represents a

further intriguing occurrence of Ross basement found outside the main Ross–Delamerian Orogen.
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Introduction

The Ross Sea lies between East and West Antarctica (Fig. 1).

Most of the East Antarctica-Ross Sea margin is bordered

by rocks of the Ross Orogen (Stump 1995), which comprise

Late Proterozoic siliciclastic, carbonate and minor igneous

protoliths (Wilson Terrane and Skelton Group; Laird 1991,

Cook & Craw 2002 and references therein). These rocks

underwent deformation, greenschist to (mainly) amphibolite

facies metamorphism and intrusion by granitoid plutons in

the Cambrian. Similar rocks are found along strike in the

Delamerian Orogen of Australia with which the Ross Orogen

was formerly continuous (Fig. 1). In contrast, the West

Antarctica-Ross Sea margin is bordered by a younger orogen

comprising protoliths of comparatively monotonous

greenschist facies Ordovician siliciclastic rocks (Swanson

Formation), that were intruded by granitoids of Devonian–

Carboniferous age. These West Antarctic rocks are similar to

rocks of the Robertson Bay Terrane in northern Victoria Land,

Buller Terrane of New Zealand and Lachlan Orogen of

Australia in that they are all arguably part of the same Early

Palaeozoic Gondwana orogenic belt with protoliths,

deformation and metamorphism largely younger than the

rocks of the Ross Orogen (Wade & Couch 1982, Laird

1991, Bradshaw 2007, Bradshaw et al. 2009). Figure 1

shows this interpretation. Between the Ross–Delamerian

orogens, and also occurring as fault bounded slices within

each, are Cambrian boninitic-basaltic rocks with clastic and

minor carbonate elements (e.g. Bowers Terrane & Takaka

Terrane, Fig. 1). Collectively, all the aforementioned tectonic

elements are part of the wider Terra Australis Orogen of

Cawood (2005). The youngest and most Pacific-ward orogen

in Fig. 1, which is not the subject of this paper, is the

Mesozoic Amundsen–Median Batholith–Rangitata Orogen.

A topic of ongoing interest in the Ross Sea region is

to track the interpolated and extrapolated extent of the

aforementioned orogenic belts between West Antarctica,

East Antarctica, Australia and Zealandia. When present-day

onland outcrops are restored on a Gondwanaland continental

reconstruction (Fig. 1) they are still separated by distances

of up to thousands of kilometres. The purpose of this

short paper is to report the results of geochronological,

petrochemical and tracer isotopic data from two remote

offshore localities in the Ross Sea: 1) Deep Sea Drilling

Project (DSDP) site 270, and 2) Iselin Bank, and to discuss

with which orogenic belts samples from these features

correlate.

Analytical methods are given in the table captions. Complete

sample data have also been lodged in the PETLAB database

(http://pet.gns.cri.nz, see P50869 and P78670).

DSDP 270

DSDP 270 was drilled in the central Ross Sea (77.4418S,

178.5038W) in 1973. After penetrating 413 m of Cenozoic
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Fig. 1. Location map of the two sample

sites: DSDP 270 and RV S.P. Lee

dredge site 17 on the edge of the Iselin

Bank. East and West Antarctica are

shown in present-day co-ordinates with

Zealandia and Australian restored to

their approximate pre-Gondwana

breakup locations. Palaeogeography

and geology are adapted from Challis

et al. (1982), Pankhurst et al. (1998),

Fioretti et al. (2005a, 2005b), Glen

(2005), Adams (2007) and Bradshaw

(2007). Geographic features and

sample sites: STR 5 South Tasman

Rise, SGI 5 Surgeon Island,

TAM 5 Transantarctic Mountains,

NVL 5 northern Victoria Land,

SVL 5 southern Victoria Land,

IB 5 Iselin Bank, CAP 5 Campbell

Plateau, CAI 5 Campbell Island,

FDL 5 Fiordland, MBL 5 Marie Byrd

Land, XC 5 Executive Committee

Range, MM 5 Mount Murphy,

EWM 5 Ellsworth Mountains.

Geological units: do 5 Delamerian

Orogen, lo 5 Lachlan Orogen,

w 5 Wilson Terrane, b 5 Bowers

Terrane, r 5 Robertson Bay Terrane,

bu 5 Buller Terrane, tk 5 Takaka

Terrane, mb 5 Median Batholith,

ep 5 Eastern Province, wars 5 West

Antarctic Rift System, mg 5 Mulock

Granite, lg 5 Liv Group, rp 5 Ross

province (Pankhurst et al. 1998; not to

be confused with Ross Orogen),

ap 5 Amundsen province.
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Table I. U-Th-Pb isotope data for ten titanite grains from sample P78670, DSDP 270 calcsilicate gneiss.

Spot Pb* U Atomic Measured isotope ratios and 1s (%) internal errors Common-Pb corrected ages and 1s 6*/38-7*/35 % Common Spot Selected common-Pb

absolute internal errors (Ma) agreement 206Pb MSWD correlated age and

no. (ppm) (ppm) Th/U 206Pb/238U 207Pb/235U 207Pb/206Pb 208Pb/232Th 206Pb*/238U 207Pb*/235U 207Pb*/206Pb* (%) 1s absolute

external error (Ma)

01 9.31 106 1.01 0.07274 ± 0.7 0.8460 ± 2.3 0.0844 ± 2.2 0.02691 ± 1.3 438.4 ± 3.5 449.3 ± 22.7 505.1 ± 24.7 99 3.3 2.90 438.4 8.2

02 7.00 64 0.58 0.09341 ± 0.8 3.0927 ± 1.6 0.2401 ± 1.4 0.10954 ± 3.0 445.1 ± 4.1 351.4 ± 49.1 rd 129 23.5 2.83 445.1 8.6

03-r 29.65 366 0.56 0.07372 ± 0.6 0.8587 ± 1.4 0.0845 ± 1.3 0.03425 ± 1.1 438.9 ± 2.4 385.1 ± 13.5 74.6 ± 3.0 115 4.4 2.78 438.9 7.8

03-c 29.70 289 0.57 0.09029 ± 0.8 1.9438 ± 2.4 0.1561 ± 2.2 0.06955 ± 1.6 485.3 ± 4.1 384.5 ± 38.6 rd 128 13.4 3.03 rd

04 7.61 94 0.26 0.07840 ± 0.7 1.2006 ± 1.8 0.1111 ± 1.6 0.06769 ± 1.2 453.1 ± 3.3 424.5 ± 17.0 272.2 ± 11.6 107 7.1 2.23 453.1 8.3

05 9.49 113 0.27 0.07969 ± 0.8 1.4672 ± 2.1 0.1335 ± 1.9 0.08349 ± 1.7 446.7 ± 3.6 410.6 ± 23.5 212.7 ± 13.3 110 9.9 2.34 446.7 8.4

06 17.83 237 0.27 0.07329 ± 0.6 0.9373 ± 1.3 0.0928 ± 1.1 0.04891 ± 1.2 434.8 ± 2.4 418.0 ± 10.2 326.5 ± 8.2 105 4.8 3.01 434.8 7.7

07 11.80 115 1.73 0.07333 ± 0.7 0.9913 ± 3.1 0.0981 ± 3.0 0.02712 ± 1.2 427.2 ± 3.5 345.5 ± 39.5 rd 126 6.6 1.54 427.2 8.1

08 9.05 124 0.31 0.07129 ± 0.6 0.7553 ± 2.6 0.0768 ± 2.5 0.03665 ± 1.8 430.7 ± 2.8 403.6 ± 14.9 251.1 ± 9.9 107 3.1 1.52 430.7 7.7

09 7.68 89 0.25 0.08035 ± 1.0 1.8795 ± 3.6 0.1697 ± 3.5 0.11910 ± 4.1 428.2 ± 5.4 382.0 ± 66.6 111.5 ± 22.0 113 14.5 1.68 428.2 9.1

10 11.60 163 0.15 0.07181 ± 0.5 0.8879 ± 2.3 0.0897 ± 2.3 0.06482 ± 2.2 427.8 ± 2.3 410.1 ± 16.6 312.3 ± 13.1 105 4.5 1.50 427.8 7.5

weighted mean of selected common-Pb corrected ages (n 5 10 of 11, MSWD 5 1.2, 1s absolute external error) 437 3

Analyses perfomed at Australian National University using a pulsed LambdaPhysik LPX 120I UV ArF excimer laser. Analytical methods described by Scott et al. (2009) and references therein. All errors

are 1s, * 5 radiogenic component only, d 5 discordant, rd 5 reversely discordant, r 5 rim, c 5 core. Spot-MSWD calculated on basis of scatter of observed data with increasing depth during individual spot

measurement.
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main minerals (in descending order of abundance) are

calcite, quartz, chlorite (probably after biotite), feldspar,

clinozoisite, titanite and diopside (Fig. 2a). The rock shows

a gneissic texture and is visibly altered and retrograded.

The heavy fractions of the mineral separate contained no

zircon, but yielded good, large titanite grains.

U-Pb titanite data

Ten grains of titanite from P78670 were analysed for

U-Th-Pb isotopes by LA-ICP-MS (Table I). The data for all

grains are discordant on a Tera-Wasserburg plot (Fig. 3)

and one core analysis, spot 03-c, fell away from the rest

of the group. A number of different ways of calculating

a U-Pb titanite age give essentially the same result. The

weighted mean of ten out of eleven analyses is 437 ± 6 Ma

(2s), the same as the lower intercept age of ten out of

eleven analyses projected from common Pb. Linear

regression of all 11 analyses, not projected from a common

Pb point, is 432 ± 18 Ma (2s). Thus the estimated age is not

sensitive to the choice of common Pb isotopic composition

and no resolvable age variation within grains is indicated by

the scatter of the observed data. We interpret calcsilicate

gneiss P78670 to record an age of amphibolite facies

metamorphism of 437 ± 6 Ma (early Silurian).

Iselin Bank

The Iselin Bank lies at the edge of the Ross Sea continental

shelf at water depths , 2000 m (Fig. 1). In 1984, during

cruise L2-84-AN of the RV S.P. Lee, rocks were dredged

from two locations on the Iselin Bank (Wong et al. 1987).

The dredges were dominated by glacially-transported

debris, but one rhyolitic sample, sample 17-3b-10, had a

freshly broken surface and was the only rock thought to be

possibly in situ. The dredge-on-bottom co-ordinates of RV

Fig. 3. Tera-Wasserburg plot of uncorrected U-Pb analyses of

titanite from P78670. Intercept line is projected from common

Pb at 207Pb/206Pb 5 0.81 ± 0.05.

Table II. Whole rock geochemical and isotopic data for P50869

meta-rhyolite.

SiO2 (XRF wt%) 75.83

TiO2 0.16

Al2O3 12.81

Fe2O3T 1.75

MnO , 0.01

MgO 0.21

CaO 0.42

Na2O 2.47

K2O 4.68

P2O5 0.03

LOl 1.32

Total 99.66

Ba (ICP-MS ppm) 359

Ce 92.9

Co 71.1

Cr 1.23

Cs 6.32

Cu 1.97

Dy 8.02

Er 4.30

Eu 0.35

Ga 19.1

Gd 8.61

Hf 3.80

Ho 1.55

La 43.7

Li 12.8

Mo 0.169

Nb 5.98

Nd 41.3

Ni 0.842

Pb 27.3

Pr 11.3

Rb 233

Sb 0.315

Sc 4.88

Sm 8.68

Sn 9.87

Sr 58.1

Ta 0.574

Tb 1.33

Th 21.0

Tl 1.24

Tm 0.633

U 3.95

V 3.82

Y 45.4

Yb 4.12

Zn 52.8

Zr 103

87Sr/86Sr (TIMS) 0.791007 ± 5
143Nd/144Nd 0.511987 ± 2
206Pb/204Pb 18.418 ± 1
207Pb/204Pb 15.636 ± 1
208Pb/204Pb 38.123 ± 1

87Sr/86Sr @ 545Ma 0.700129

eNd @ 545Ma -7.9

Methods: XRF 5 X-ray fluorescence (Kennedy et al. 1983), ICP-MS 5

inductively coupled plasma mass spectrometry (Garbe-Schönberg 1993),

TIMS 5 thermal ionization mass spectrometry (Hoernle et al. 2004).
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S.P. Lee dredge 17 were 73840.8'S, 176825.1'W, water

depth 2250 m. A photograph of sample 17-3b-10 (Wong

et al. 1987, fig. 7A) shows a subangular slab, c. 40 x 20 x 5 cm

in size. A 5 x 5 x 3 cm trimmed piece of this rock was lodged

in the New Zealand Geological Survey (later GNS Science)

Petrology Collection at the time, and numbered P50869. From

this sample we made a thin section, powder for whole rock

analysis, and some mineral separates.

Wong et al. (1987, fig. 7B) described sample 17-3b-10 as a

‘‘meta rhyolite/tuff’’, an opinion with which we basically agree.

Phenocrysts of quartz, oligoclase and microcline microperthite

up to 1 mm in size are set in a microcrystalline matrix of quartz,

feldspar, sericitic muscovite, titanite and biotite. The K-feldspar

is turbid and consists of patchy intergrowths of simply twinned

sanidine and cross-hatched microcline (Fig. 2b). One or

two small pelitic xenoliths are present in the thin section.

We cannot be sure if the original rock was a lava, tuff or

shallow intrusion as there is a weak but distinct metamorphic

foliation that anastomoses around the phenocrysts (technically

porphyroclasts) and, of course, field relations are absent.

The scattered fine-grained biotite in the matrix is clearly

metamorphic but no other metamorphic index minerals are

present. The fine grain size of the matrix and relict phenocrysts

indicate to us that the porphyritic rhyolite probably underwent

no more than greenschist facies recrystallization.

Petrochemical data

The chemical analysis (Table II) reveals the rock to be a

subalkaline high-K rhyolite. Given the analysis of a small

and metamorphosed sample, we are reluctant to interpret its

geochemistry too much. The analysis is fairly typical

for a rhyolite and, on the Y1Nb vs Rb granite tectonic

discrimination diagram of Whalen et al. (1987) (not shown),

plots very close to the mutual boundary of syncollisional,

volcanic arc and within plate granites, i.e. the chemistry of

this single sample is not especially distinctive. The chemistry

is I-type to marginal A-type as it has low CaO/FeO* and Mg

number, slightly high Ga/Al and rare earth elements and a

large negative Eu anomaly. In these respects it is somewhat

similar to two suites of siliceous igneous rocks in the

Transantarctic Mountains: the 546 Ma Mulock Granite

(Cottle & Cooper 2006), and rhyolite porphyries of the

516–525 Ma Liv Group (Wareham et al. 2001) (Fig. 1).

U-Pb zircon data

Due to the small available sample size, P50869 yielded very

few zircon grains, most of which were themselves too small

(, 30 mm wide) to analyse. Eight grains were analysed by

LA-ICP-MS methods (Table III) and most of the analysed

spots can be considered core or composite core-rim analyses

(Fig. 4a). All grains plot as discordant on a Tera-Wasserburg

plot (Fig. 4b). Discordance of the four oldest grains appears

to be due to common Pb contamination and the threeT
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youngest grains scatter to lower 238U/206Pb ratios indicative

of possible Pb loss. Correction of the analyses using the 208Pb

procedure of Compston et al. (1984) resulted in four analyses

shifting to the concordia (Fig. 4c). The mean weighted age of

these four zircons is 545 ± 32 Ma (2s error) which we

interpret as the age of crystallization of the rhyolite magma.

We acknowledge that our pooled age for P50869 is based on

few grains and is low precision, but believe it is adequate for

the purposes of this study. The alternative hypothesis, that the

Proterozoic–Cambrian zircons were inherited by a Mesozoic

rhyolite, is less likely because: 1) the three youngest zircons

have very high U concentrations and would have experienced

lattice damage from a high time-integrated alpha dose,

consistent with their observed major Pb loss and their higher

spot MSWD values as compared to the five oldest zircons

(Table III), 2) the observed xenoliths in P50869 are pelitic and

would not have contributed 30–100 mm zircon grains to the

rhyolite, and 3) the K-feldspar Ar-Ar data and the Sr and Nd

isotope data also support a Proterozoic–Cambrian age (see

below).

Ar-Ar K-feldspar data

The K-feldspar step heating results for P50869 are shown in

Table IV and the argon release spectrum is plotted in Fig. 4d.

Low temperature steps (about half the total gas) give ages

from 270–300 Ma, after which the steps rise monotonically to

a maximum of 540 Ma at high temperatures. No plateau is

present and it is not possible to make a diffusion model

of the spectrum to get a temperature-time history. The ages of

the high temperature steps of the K-feldspar support the

Precambrian–Cambrian age interpretation of the zircons. The

lowering of argon age steps is consistent with the greenschist

facies metamorphism of P50869. Greenschist facies

metamorphic temperatures are sufficient to lower the ages

of all except the most retentive domains of K-feldspars, and

this age spectrum pattern is typical of argon loss induced by

such thermal histories. Final closure to argon loss occurred in

the Late Palaeozoic–Mesozoic, a feature also seen in Ar-Ar

K-feldspar ages from plutonic rocks of southern Victoria Land

(Calvert & Mortimer 2003).

Sr, Nd and Pb isotope data

The Precambrian–Cambrian age of the meta-rhyolite is further

supported by Sr and Nd isotopic ratio calculations (Table II)

which indicate time of closure of the isotopic systems. Using

Fig. 4. Geochronology of P50869. a. Line drawings of zoned

zircon grains based on cathodoluminescence images

(circles are analysed spots, no image for grains 5 or 6).

b. Tera–Wasserburg plot of eight uncorrected U-Pb zircon

analyses. c. Tera-Wasserburg plot of four common Pb

corrected zircon analyses used for age determination.

d. Ar-Ar step heating spectrum of K-feldspar; U-Pb zircon

age of the sample is also shown.
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a model age of 513 Ma (the lower 2s limit of the zircon

age) gives 87Sr/86Sri 5 0.7055 and eNdi 5 -8.2. Although

these values appear decoupled (Sr is far less radiogenic than

Nd on typical crustal arrays (not shown), possibly because of

sensitivity to Rb/Sr ratio, e.g. by alteration or small sample

size bias) they are not unreasonable for Precambrian–

Cambrian Ross Orogen siliceous igneous rocks (Cox

et al. 2000, Wareham et al. 2001). In contrast, a model age

of 100 Ma gives unreasonably high radiogenic isotopic ratios

of 87Sr/86Sr 5 0.7744 and eNdi 5 -11.8 for siliceous igneous

rocks that have I- and A-type characteristics. The Pb isotope

ratios of P50869 resemble those reported for the DV1b suite

of Cox et al. (2000) from the Transantarctic Mountains.

Discussion

DSDP 270 correlation

The closest onland occurrence of calcsilicate gneisses and

marble to DSDP 270 is in the Skelton Group of southern

Victoria Land and this is what influenced Ford & Barrett

(1975) to correlate the DSDP 270 basement with the Ross

Orogen. However, it is problematic that carbonates and

calcsilicates are so rare in all the peri-Ross Sea orogenic

belts and yet this rock type constitutes all ten metres of

sampled DSDP 270 basement. We agree, that on the basis

of abundance of marble and calcsilicate, and in the absence

of any geochronological data, a Ross Orogen correlation

was probably the best choice. However, calcareous rocks

do occur within the Bowers Terrane (Bradshaw et al. 1985

and references therein) and scattered calcsilicate nodules,

sometimes with quartz–calcite–pyroxene–garnet assemblages

have been reported from the Swanson Formation and from the

Lachlan Orogen (Bradshaw et al. 1983, Adams 1986, Morand

1994). Rare marbles have also been reported from Robertson

Bay Group and Swanson Formation (Wade & Couch 1982),

and scattered, rare limestones are present in the Lachlan

Orogen. Because calcareous rocks are present in small

amounts in both the orogenic belts under consideration, the

age and grade of metamorphism becomes relevant when

making a correlation.

Based on a (representative but non-exhaustive) compilation

of metamorphic ages from the relevant orogens (Fig. 5), the

437 ± 6 Ma age of amphibolite facies metamorphism seems

too young to be typical Ross Orogen as the youngest argon

ages (which represent cooling in the greenschist facies) in the

Ross Orogen are 460 Ma or older. In contrast, deformation

was continuing and/or active in the Silurian in the more

Pacific-ward Lachlan–Tuhua–Robertson Bay–Swanson Orogen

and in the Bowers Terrane between the two orogens (Adams

2006). On this basis, we provisionally interpret the DSDP 270

metamorphic basement as probable Lachlan–Tuhua–Robertson

Bay–Swanson Orogen, with an even more speculative

correlation to the Bowers Terrane.

Table IV. 40Ar/39Ar step heating data for K-feldspar from sample P50869 Iselin Bank meta-rhyolite.

Temp

(8C)

Time

(min) 40Ar/39Ar 36Ar/39Ar x 100 37Ar/39Ar x 1000

39Ar

(E-14 mol) Ca/K % cum. 39Ar % 40Ar* 40Ar*/39ArK

Calculated age

(Ma) ± 1s

450 15 427.0 24.25 8.639 0.168 0.0164 0.1 83.2 355.3 1669.0 ± 5.3

450 35 114.1 18.30 32.82 0.170 0.0624 0.2 52.6 60.09 413.3 ± 6.8

550 15 213.7 8.090 8.862 1.257 0.0168 0.8 88.8 189.9 1074.0 ± 4.7

550 35 23.81 1.899 15.85 1.575 0.0301 1.7 76.3 18.17 135.3 ± 0.7

650 15 40.24 0.6898 38.19 7.828 0.0726 5.8 94.9 38.18 273.3 ± 0.8

650 35 24.47 0.2003 69.51 6.566 0.1320 9.2 97.5 23.87 175.6 ± 0.7

750 15 40.98 0.2528 84.52 11.89 0.1610 15.4 98.1 40.21 286.8 ± 1.2

750 35 37.81 0.2053 17.89 6.503 0.0340 18.8 98.3 37.19 266.7 ± 0.9

850 15 45.79 0.4744 8.726 8.124 0.0166 23.1 96.9 44.36 313.9 ± 1.2

950 15 44.24 0.2364 7.402 17.82 0.0141 32.4 98.4 43.52 308.4 ± 1.0

1000 15 43.00 0.3823 5.996 12.49 0.0114 38.9 97.3 41.83 297.4 ± 0.9

1050 15 47.09 0.4581 11.54 14.55 0.0219 46.5 97.1 45.72 322.7 ± 1.4

1100 15 55.23 0.4279 11.40 19.70 0.0217 56.8 97.7 53.92 375.0 ± 1.5

1150 15 71.46 0.4560 12.84 21.13 0.0244 67.9 98.1 70.08 473.7 ± 1.7

1190 15 79.00 0.2007 2.366 33.19 0.0045 85.2 99.2 78.38 522.4 ± 2.3

1220 15 81.85 0.2749 0.063 25.18 0.0001 98.4 99.0 81.03 537.6 ± 1.1

1250 15 89.93 3.172 0.000 1.996 0.0000 99.4 89.5 80.54 534.8 ± 5.8

1300 15 106.7 9.469 8.362 0.981 0.0159 99.9 73.8 78.78 524.7 ± 14

1370 15 414.1 118.5 128.5 0.119 0.2440 99.9 15.4 63.86 436.3 ± 188

1450 30 10985 3699 2241 0.008 4.2700 100.0 0.5 54.16 376.4 ± 62632

Total 58.91 406.0 ± 4.1

Methods follow McLaren et al. 2002. Sample weight 23.30 mg, Irradiation ANU 119, J 5 0.0042844 ± 0.4%. Data corrected for mass spectrometer

discrimination, line blanks, and for the decay of 37Ar and 39Ar during and after irradiation. 40Ar* is radiogenic 40Ar, and 39ArK is potassium-derived 39Ar.

Corrections for interfering isotopes have only been applied to 40Ar*/39ArK. Amounts of 39Ar are derived from the measured sensitivity of the mass

spectrometer. Relative isotope amounts are precise, but absolute amounts may have uncertainties of c. 10%. Totals are the %39Ar weighted means of the

analyses. Flux monitor: Australian National University GA1550 Biotite (98.5 Ma, J determined by interpolation). l 5 5.543 3 10-10 a-1 . Correction factors

were derived from analysis of CaF2 and synthetic K-glass: (40/39)K 5 0.027, (36/37) Ca 5 0.00035, (39/37) Ca 5 0.000786.
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Iselin Bank correlation

Although the 545 ± 32 Ma age for the Iselin Bank meta-

rhyolite is not especially precise, the U-Pb, Ar-Ar and tracer

isotope data are all consistent with a latest Neoproterozoic to

earliest Cambrian eruptive/intrusive age. Most siliceous

igneous rocks of this age around the Ross Sea area are

plutonic (e.g. Granite Harbour Intrusives and constituent

suites) (Stump 1995, Allibone & Wysoczanski 2002),

although eruptive equivalents such as the Liv Group are

also known (Stump 1995, Wareham et al. 2001). The Ross

Orogen appears to be the only feasible Antarctic source as

Late Proterozoic–Cambrian siliceous igneous rocks are

unknown from Bowers Terrane and/or the Lachlan–Tuhua–

Robertson Bay–Swanson Orogen (Fig. 5).

The complex zircon systematics (variable inheritance

and variable Pb loss) of P50869 are typical of 500–550 Ma

pre- and syn-kinematic Ross granitoids (e.g. Cox et al.

2000, Allibone & Wysoczanski 2002, Cottle & Cooper

2006). Ross zircons contrast with those from the Admiralty

Intrusives that intrude Robertson Bay Terrane and the Ford

Granodiorite that intrudes Swanson Formation, both of

which are Devonian–Carboniferous (340–380 Ma) and

have well-clustered zircon spectra with very little

inheritance or Pb loss (Pankhurst et al. 1998).

We interpret the Iselin Bank meta-rhyolite P50869 to

correlate with similar igneous rocks in the Ross Orogen. As

previously mentioned, Wong et al. (1987) regarded the

meta-rhyolite as the only dredge sample from the Iselin

Bank that could have been in situ. A till provenance study

by Licht et al. (2005) showed ice stream directions from the

southern Transantarctic Mountains towards the Iselin Bank

during the last glacial maximum. We acknowledge the

possibility remains open that P50869 could have been

glacially transported. The remaining discussion in this

paper assumes that the Iselin Bank meta-rhyolite is in situ.

Definition and extent of the Ross-Delamerian Orogen

Bradshaw (2007) noted that many papers treat the Robertson

Bay Terrane (RBT) of northern Victoria Land as part of the

Ross Orogen, but that: 1) the RBT lacks a demonstrable

Fig. 5. Time space plot comparing new

geochronological data from DSDP 270

and Iselin Bank with other data from

the Ross–Delamerian, and

Lachlan–Robertson Bay–Swanson

orogens. Reference data from Morand

(1990), Dallmeyer & Wright (1992),

Ghiribelli et al. (2002), Goodge (2002),

Calvert & Mortimer (2003),

Wysoczanski & Allibone (2004),

Adams (2004, 2006), Glen (2005) and

Cooper et al. (2010).
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Early Cambrian deformation, and 2) the Ordovician–Silurian

penetrative deformation of the RBT cannot be shown to

extend into the Wilson Terrane. Figure 1 follows Bradshaw

(2007) in defining three major orogenic belts in the

Transantarctic Mountains–Ross Sea–Marie Byrd Land area.

In this context, Bradshaw (2007) drew attention to a few

outliers of Ross Orogen (or older) rocks that were outside the

generally recognized Ross–Delamerian Orogen (Fig. 1): a

512 Ma granite at Surgeon Island, a 505 Ma orthogneiss at

Mount Murphy, . 1100 Ma peridotite xenoliths from the

Executive Committee Range, and calcsilicate gneiss at DSDP

270. To this can be added some 480–510 Ma orthogneisses in

Fiordland, New Zealand (Gibson & Ireland 1996, Allibone

et al. 2010). As shown above, we do not now regard the

DSDP 270 rocks as being part of the Ross Orogen. However,

assuming it is in situ, the Iselin Bank meta-rhyolite may be

another example of an occurrence of Ross Orogen rocks

outside the main linear belt of the Ross–Delamerian Orogen.

In addition, possible Bowers Terrane equivalents on

Campbell Island, a 1119 Ma Grenville Orogen syenite

dredged from the western South Tasman Rise and a 1167 Ma

granite dredged from the edge of the Campbell Plateau (Challis

et al. 1982, Fioretti et al. 2005a, Adams 2007; Fig. 1) may also

be tectonically allochthonous pieces of older orogens but,

as with the Iselin Bank, it is far from certain that the two

dredged samples are in situ. On the basis of Hf isotope studies

of zircons, Flowerdew et al. (2006) inferred the presence of late

Mesoproterozoic crust underneath parts of the Antarctic

Peninsula. The size, mechanism and timing of dispersal of

pieces of Precambrian–Cambrian crust into younger parts of

Cawood’s (2005) Terra Australis Orogen, remains speculative.

Options include Ordovician rifting (Bradshaw 2007), strike-slip

faulting oblique to the orogen, and/or orogen-subperpendicular

low-angle extensional exhumation of Ross basement.

Conclusions

Titanite from a calcsilicate gneiss in DSDP 270 gives an

early Silurian U-Pb age, that we interpret to be the age of

amphibolite facies metamorphism. This age is too young

for typical Ross Orogen high-grade metamorphism and we

suggest a correlation with the Lachlan–Tuhua–Robertson

Bay–Swanson Orogen, possibly the Bowers Terrane.

A meta-rhyolite from the Iselin Bank, Ross Sea, Antarctica,

is of latest Neoproterozoic to earliest Cambrian age. We

correlate it with rocks of similar age and composition in the

Ross–Delamerian Orogen of the Transantarctic Mountains. If

the material is not ice-rafted debris, then the Iselin Bank

sample represents an additional occurrence of Ross Orogen

basement found outside the main Transantarctic Mountains.

Acknowledgements

We thank the International Ocean Drilling Program Gulf

Coast Repository for providing material from DSDP 270,

and John Simes and Belinda Smith Lyttle for rock crushing

and mineral separation. Earlier versions of the manuscript

were improved by comments from Andy Tulloch, Ian

Turnbull, Anna Fioretti, Michael Flowerdew, Teal Riley,

Ed Stump, Alan Vaughan and Richard Jongens. Funded by

the New Zealand Foundation for Research, Science and

Technology.

References

ADAMS, C.J. 1986. Geochronological studies of the Swanson Formation of

Marie Byrd Land, West Antarctica, and correlation with northern

Victoria Land, East Antarctica and the South Island, New Zealand. New

Zealand Journal of Geology and Geophysics, 29, 345–358.

ADAMS, C.J. 2004. Rb-Sr age and strontium isotope characteristics of the

Greenland Group, Buller Terrane, New Zealand, and correlations at the

East Gondwanaland margin. New Zealand Journal of Geology and

Geophysics, 47, 189–200.

ADAMS, C.J. 2006. Styles of uplift of Paleozoic terranes in northern

Victoria Land, Antarctica: evidence from K–Ar patterns. In FÜTTERER,
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