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Finite-amplitude wave groups with multiple near-resonances are investigated to extend
the existing results due to Liu et al. (J. Fluid Mech., vol. 835, 2018, pp. 624–653)
from steady-state wave groups in deep water to steady-state wave groups in finite
water depth. The slow convergence rate of the series solution in the homotopy analysis
method and extra unpredictable high-frequency components in finite water depth
make it hard to obtain finite-amplitude wave groups accurately. To overcome these
difficulties, a solution procedure that combines the homotopy analysis method-based
analytical approach and Galerkin method-based numerical approaches has been used.
For weakly nonlinear wave groups, the continuum of steady-state resonance from deep
water to finite water depth is established. As nonlinearity increases, the frequency
bands broaden and more steady-state wave groups are obtained. Finite-amplitude
wave groups with steepness no less than 0.20 are obtained and the resonant sets
configuration of steady-state wave groups are analysed in different water depths. For
waves in deep water, the majority of non-trivial components appear around the primary
ones due to four-wave, six-wave, eight-wave or even ten-wave resonant interactions.
The dominant role of four-wave resonant interactions for steady-state wave groups
in deep water is demonstrated. For waves in finite water depth, additional non-trivial
high-frequency components appear in the spectra due to three-wave, four-wave,
five-wave or even six-wave resonant interactions with the components around the
primary ones. The amplitude of these high-frequency components increases further
as the water depth decreases. Resonances composed by components only around the
primary ones are suppressed while resonances composed by components around the
primary ones and from the high-frequency domain are enhanced. The spectrum of
steady-state resonant wave groups changes with the water depth and the significant
role of three-wave resonant interactions in finite water depth is demonstrated.
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1. Introduction
Inspired by the energy transfer due to nonlinear interactions between random

components in a field of turbulence, Phillips (1960) examined the interaction among
two gravity wave trains by a perturbation method to see whether and under what
conditions they would transfer energy to build up a third component (Phillips 1981).
Phillips (1960) found that if the condition

2k1 − k2 = k0, 2ω1 −ω2 =ω0, (1.1a,b)

was satisfied by three components with ωi =
√

gki, then a steady-state solution did
not exist. The amplitude of the third wave, a3, if initially zero, would grow linearly
in time. Hasselmann (1962, 1963a,b) studied the transfer of energy among different
wave components in a continuous spectrum at sea. Benney (1962) established the
equations governing the time dependence of the resonant modes to demonstrate
the energy-sharing mechanism more clearly. And experiments were conducted by
Longuet-Higgins & Smith (1966) and McGoldrick et al. (1966) to confirm that
resonant interactions indeed existed and the growth rates were correctly predicted.
Nowadays, it is believed that four-wave resonant interactions play an important role in
the evolution of the spectrum of surface gravity waves in deep water (Janssen 2003).
As the waves travel into shallow areas, three-wave resonant interactions become
the main nonlinear mechanism of energy transfer (Freilich, Guza & Elgar 1990;
Hammack & Henderson 1993; Onorato et al. 2009).

Compared with the huge literature concerning wave spectrum evolution due to
resonant interactions in deep or shallow water, the investigation of wave evolution
in finite depth is considerably less developed, owing to its complexity. Following
Fenton (1979) and Francius & Kharif (2006), we define waves in finite water depth
as π/4< kd<π. Taking the main existing model to study the evolution of sea states,
the Zakharov equation (Zakharov 1968; Zakharov & Kharitonov 1970; Lavrova 1983),
as our example, the kernel function T(ka, kb, kc, kd) contains singular terms and is
non-unique in finite water depth when kc = ka and kd = kb (Stiassnie & Shemer
1984; Zakharov 1999). This non-unique limit has only been discussed recently by
Janssen & Onorato (2007) for the special case of T(ka, ka, ka, ka) and by Stiassnie &
Gramstad (2009) for T(ka, kb, ka, kb). Gramstad (2014) derived an alternative form of
the Zakharov equation with a more simple kernel function in the Hamiltonian system.

Recently, Onorato et al. (2009) found that the nonlinear transfer in shallow water
is not so different from the deep-water one: in both cases it is ruled by a four-wave
resonant interaction. Onorato et al. (2009) suggested that the four-wave resonant
interactions are naturally part of the shallow-water wave dynamics. These interactions
are responsible for a constant flux of energy in the wave spectrum, i.e. an energy
cascade towards high wavenumbers. Besides, Katsardi & Swan (2011) found that
the nature of large unidirectional waves varies depending on the relative water depth.
As the water depth reduces, both the bound and resonant interactions become more
significant. However, the third-order resonant terms (four-wave resonant interactions)
are able to alter both the amplitude and the phase of the freely propagating wave
components and have the most profound influence. Meanwhile, Toffoli et al. (2009)
confirmed the strong deviation from Gaussian statistics of long-crested, deep-water
waves caused by the third-order nonlinearity (four-wave resonant interactions). As the
water depth decreases, however, the deviation from Gaussian statistics was gradually
reduced. Up to now, the role that four-wave resonant interactions play in the nonlinear
energy transfer of wave groups in finite water depth is not clear. Besides, to the best
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of our knowledge, little work has been done concerning the effect of three-wave
resonant interactions on the spectrum evolution in finite water depth. The dominate
resonant mechanism for the long-time evolution of the wave spectrum in finite water
depths needs further investigation.

The dynamic spread of wave energy among multiple components is analytically
intractable over time, so Alam, Liu & Yue (2010) concluded that such a scenario is
suited to direct simulations such as the high-order spectrum method (Dommermuth &
Yue 1987; Pan & Yue 2014, 2015; Miao & Liu 2015; Qi et al. 2018a,b). Steady-state
waves provide the basic information about water waves and the simplest spectrum
dates back to one-and-a-half centuries ago when Stokes (1847) studied progressive
periodic waves. When the resonance condition is satisfied, steady-state resonant waves
with time-independent spectrum, i.e. all the amplitudes, frequencies and wavenumbers
of the wave system are constant, have also been considered. Hui & Hamilton (1979)
found that permanent wave groups of elliptic functions can be obtained from the
Davey–Stewartson equation (Davey & Stewartson 1974) in deep water. Besides,
the shallow-water Davey–Stewartson equation is known to be integrable and, as a
consequence, it does not admit a net flux of energy or wave action across the wave
spectrum (Onorato et al. 2009).

Based on the homotopy analysis method (HAM) (Liao 1992, 2003, 2012; Zhong &
Liao 2018a,b), Liao (2011) resolved the singularity caused by a single exact resonance
and found that steady-state resonant waves in infinite depth can be obtained from
the fully nonlinear water wave equations. Xu et al. (2012) studied single exact
resonance in finite water depth and Liu & Liao (2014) extended the work of Liao
(2011) from a single quartet to coupled quartets and studied the coupled interactions
among one exactly resonant set and six nearly resonant ones. The existence of
such a kind of steady-state resonant waves was investigated experimentally in a
basin at the State Key Laboratory of Ocean Engineering in Shanghai (Liu et al.
2015). For more general near-resonance, Liao, Xu & Stiassnie (2016) proposed a
solution procedure in HAM to resolve the single small divisor associated with the
nearly resonant component. Liu, Xu & Liao (2018) further developed the solution
procedure to resolve the small divisors associated with nearly resonant components,
and finite-amplitude steady-state wave groups with multiple near-resonances have been
obtained in deep water. As nonlinearity increases, Liu, Xu & Liao (2017) found that
the bichromatic waves changed into steady-state resonant waves and the additional
nearly resonant components influence the wave field distribution significantly. Yang,
Dias & Liao (2018) considered the steady-state interaction of acoustic-gravity waves
in an ocean of uniform depth.

It should be noted that Xu et al. (2012) only obtained weakly nonlinear steady-
state resonant waves with water depth kd decreasing from +∞ to 1.88. Multiple
solutions for steady-state waves were found, while the energy distribution within each
group changed slightly with the water depth. No steady-state resonant waves have
ever been reported as the water depth decreases further, even for weakly nonlinear
waves. Besides, a system that admits one resonant set of waves often admits many
resonant sets simultaneously (Hammack & Henderson 1993). That is, waves often
interact in coupled sets so that multiple resonances need to be considered. Up till
now, finite-amplitude wave groups with multiple resonances have only been considered
in infinite depth (Liu et al. 2018). The existence of steady-state resonant waves in
finite water depth was confirmed (Xu et al. 2012), while the effect of water depth on
the spectrum of steady-state wave groups, especially for finite-amplitude ones, is still
unknown.
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The objective of this paper is to investigate the finite-amplitude steady-state wave
groups with multiple near-resonances in finite water depth. It mainly extends the work
of Liu et al. (2018) from steady-state wave groups in deep water to steady-state wave
groups in finite water depth, and also extends the work of Xu et al. (2012) from the
weakly nonlinear quartet to finite-amplitude wave groups with multiple resonant sets.
The extension from deep water to finite water depth is theoretically straightforward
but practically difficult. The singularities or small divisors associated with exact or
near-resonances are very challenging to resolve, as the perturbation theory breaks
down due to singularities in the transfer functions when the resonance condition is
satisfied (Madsen & Fuhrman 2012). The HAM does not depend on small physical
parameters and provides freedom to choose the initial guess and auxiliary linear
operator so that the small divisors caused by multiple nearly resonant components
can be removed successfully. However, the solution procedure that Liu et al. (2018)
developed for finite-amplitude steady-state wave groups with multiple near-resonances
in deep water does not work for finite-amplitude wave groups in finite water depth
due to the following two difficulties. One difficulty is caused by the convergence rate
of the series solution obtained from HAM being reduced with the shallower water
depth. As the water depth decreases, convergent solutions are hard to obtain even for
weakly nonlinear steady-state resonant waves. The other difficulty is associated with
the additional nearly resonant components with non-small divisor (angular frequency
mismatch) in finite water depth. These non-trivial components are hard to predict
beforehand so that the solution procedure in HAM cannot change accordingly, which
further reduces the convergence rate of the series solution in finite water depth. The
slow convergence rate of series solutions obtained from HAM in finite water depth
makes it impossible to consider steady-state resonant waves as the water depth further
decreases beyond the domain that Xu et al. (2012) considered.

Numerical methods, such as the collocation method (Okamura 1996; Ioualalen
et al. 2006) and Galerkin method (Okamura 2003, 2010), could resolve the two
above-mentioned difficulties. In the collocation method, the number of components in
the truncated series is fixed equal to the number of discrete points on the free surface.
While in the Galerkin method, the number of components required for a sufficient
accuracy is less than the number of discrete points (Zhang & Melville 1987). The
main advantage of the Galerkin method is the generality allowed in the spectral
representation of the free surface (Ioualalen & Kharif 1994). Thus, the Galerkin
method is more efficient than the collocation method, especially for finite-amplitude
wave groups with multiple resonant components. In this work, we use a combined
solution procedure to search for finite-amplitude steady-state resonant wave groups
in finite water depth. The HAM-based analytical approach is used to search for all
possible steady-state solutions in finite water depth, and a Galerkin method-based
numerical approach is used to obtain accurate steady-state solutions as the water
depth decreases or nonlinearity increases.

The paper is organized as follows. In § 2.1, we describe the governing equation and
the resonance criteria. Then the solution procedure of the analytical and numerical
approach is introduced in §§ 2.2 and 2.3, respectively. The fully nonlinear water
wave equations are solved when the resonance conditions are nearly satisfied and
finite-amplitude steady-state wave groups with multiple and coupled resonances are
obtained in different water depths. In § 3.1, we analyse the weakly nonlinear wave
groups in finite water depth. Multiple solutions of the wave groups with increased
nonlinearity are shown in § 3.2. Then § 3.3 shows the finite-amplitude wave groups
together with the detailed spectrum and resonant sets configuration analysis to
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investigate the effect of water depth on the spectrum of steady-state wave groups,
especially the main resonant mechanism in different water depths. Conclusions and
discussion are given in § 4.

2. Mathematical formulas
2.1. Governing equation

We assume that the fluid is inviscid and incompressible, the flow is irrotational and
the surface tension is neglected. Let (x, y, z) represent the usual Cartesian coordinate
system, with (x, y) located at the mean water level and z measured vertically upwards.
Consider a wave system that consists of two primary progressive waves with ki
denoting the wavenumber and σi the actual angular frequency. After introducing the
transformation

ξi = ki · (x i+ y j)− σit, i= 1, 2, (2.1)

the governing equation for water waves in finite depth d reads

2∑
i=1

2∑
j=1

ki · kj
∂2ϕ

∂ξi∂ξj
+
∂2ϕ

∂z2
= 0, −d< z<η(ξ1, ξ2), (2.2)

subject to the two boundary conditions on the unknown free surface z= η(ξ1, ξ2),

N1[ϕ] =

2∑
i=1

2∑
j=1

σiσj
∂2ϕ

∂ξi∂ξj
+ g

∂ϕ

∂z
− 2

2∑
i=1

σi
∂f
∂ξi
+

2∑
i=1

2∑
j=1

ki · kj
∂ϕ

∂ξi

∂f
∂ξj

+
∂ϕ

∂z
∂f
∂z
= 0, (2.3)

N2[η, ϕ] = η−
1
g

(
2∑

i=1

σi
∂ϕ

∂ξi
− f

)
= 0, (2.4)

and also the bottom condition,

∂ϕ

∂z
= 0, at z=−d, (2.5)

where ϕ denotes the velocity potential, η is the free-surface elevation, N1 and N2 are
the nonlinear differential operators and

f =
1
2

[
2∑

i=1

2∑
j=1

ki · kj
∂ϕ

∂ξi

∂ϕ

∂ξj
+

(
∂ϕ

∂z

)2
]
. (2.6)

The wave elevation η and velocity potential ϕ can be expressed in the form

η(ξ1, ξ2)=

+∞∑
i=−∞

+∞∑
j=−∞

Cη
i,j cos(iξ1 + jξ2), (2.7)

ϕ(ξ1, ξ2, z)=
+∞∑

i=−∞

+∞∑
j=−∞

Cϕ
i,jΨi,j(ξ1, ξ2, z), (2.8)
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with the definition

Ψi,j(ξ1, ξ2, z)= sin(iξ1 + jξ2)
cosh[|ik1 + jk2|(z+ d)]

cosh[|ik1 + jk2|d]
, (2.9)

where Cη
i,j and Cϕ

i,j are constants to be determined. Consider a wave system with l
nearly resonant components (k0,1, k0,2, . . . , k0,l) that are generated by the two primary
ones (k1 and k2). It satisfies the near-resonance criteria

m∗ι k1 + n∗ι k2 = k0,ι, m∗ιω1 + n∗ιω2 =ω0,ι + dωι, ι= 1, 2, . . . , l, (2.10a,b)

where ω0,ι denotes the linear angular frequency of the ιth resonant component and dωι
is a small real number that represents the angular frequency mismatch.

2.2. Analytic solution approach
In the HAM-based approach, the solutions for wave elevation η and velocity potential
ϕ are approximated by the two series

η(ξ1, ξ2)=

+∞∑
m=1

ηm(ξ1, ξ2), (2.11)

ϕ(ξ1, ξ2, z)= ϕ0(ξ1, ξ2, z)+
+∞∑
m=1

ϕm(ξ1, ξ2, z), (2.12)

which are governed by the high-order deformation equations

ηm(ξ1, ξ2)= c0∆
η

m−1(ξ1, ξ2)+ χmηm−1(ξ1, ξ2), (2.13)

L[ϕm(ξ1, ξ2, z)] = c0∆
ϕ
m−1(ξ1, ξ2)− S̄m(ξ1, ξ2)+ χmSm−1(ξ1, ξ2), (2.14)

with the definition χ1=0 and χm=1 for m>1, where L is an auxiliary linear operator
and c0 is a convergence control parameter. For detailed expressions of L, ∆η

m−1, ∆ϕ
m−1,

S̄m and Sm−1, please refer to Liao (2011) and Liu et al. (2018). The initial guess for
the velocity potential ϕ0 reads

ϕ0(ξ1, ξ2, z)= A0,1Ψ1,0 + A0,2Ψ0,1 +

l∑
ι=1

A0,2+ιΨm∗ι ,n∗ι , (2.15)

where the coefficient A0,i is determined by avoiding the secular terms or small
divisors in the first-order approximation ϕ1(ξ1, ξ2, z). As shown in § 3.2, the number
of components considered in the initial guess (2.15) increases with the nonlinearity.

2.3. Numerical solution approach
In the numerical solution approach, we express the wave elevation η and velocity
potential ϕ with truncated series as

η(ξ1, ξ2)=

+N∑
i=1

+N∑
j=−N

Cη
i,j cos(iξ1 + jξ2)+

+N∑
j=0

Cη

0,j cos( jξ2), (2.16)

ϕ(ξ1, ξ2, z)=
+N∑
i=1

+N∑
j=−N

Cϕ
i,jΨi,j(ξ1, ξ2, z)+

+N∑
j=1

Cϕ
0,jΨ0,j(ξ1, ξ2, z). (2.17)
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The total number of unknowns (Cη
i,j and Cϕ

i,j) is 4N(N + 1)+ 1. Following Okamura
(2010), we use Galerkin’s method to obtain the same number of independent relations
as unknowns. Substituting (2.17) into (2.4), we numerically obtain the discrete free-
surface profile

z= η(ξ1, ξ2)= η

(
2π(i− 1)

M
,

2π( j− 1)
M

)
, i, j= 1, 2, . . . ,M, (2.18)

by Newton’s method, where M is the number of discrete points. Substituting (2.18)
into (2.3), we obtain the independent relations

Pr,s =

∫ 2π

0

∫ 2π

0
N1[ϕ(ξ1, ξ2, z)] sin(rξ1 + sξ2) dξ1 dξ2 = 0, z= η(ξ1, ξ2), (2.19)

which are evaluated with an M-point Fourier transform. Set M > 2N + 1 to evaluate
the integral (2.19) accurately in obtaining finite-amplitude steady-state resonant waves.
Therefore, we can obtain N(2N + 2) independent relations from (2.19) for 1 6 r 6 N,
−N 6 s 6 N and 1 6 s 6 N with r = 0. The number of unknowns in the velocity
potential, N(2N + 2), equals the number of independent relations in (2.19). So we
obtain Cϕ

i,j by Newton’s method for various values of dimensionless frequency ε =

σ1/ω1 = σ2/ω2 and wavevectors k1 and k2. Substituting again (2.17) into (2.4), we
obtain the independent relations

Qr,s =

∫ 2π

0

∫ 2π

0
N2[η(ξ1, ξ2), ϕ(ξ1, ξ2, z)] cos(rξ1 + sξ2) dξ1 dξ2 = 0, z= η(ξ1, ξ2),

(2.20)

which are evaluated with an M-point Fourier transform. Since M > 2N + 1, we can
obtain N(2N + 2) + 1 independent relations from (2.20) for 1 6 r 6 N, −N 6 s 6 N
and 0 6 s 6 N with r = 0. The number of unknowns in wave elevation, N(2N +
2) + 1, equals the number of independent relations in (2.20). So we obtain Cη

i,j by
Newton’s method. The convergent series solution obtained by HAM is used as the
initial solution of the iteration in the numerical approach. We stop the iteration if
the maximum difference between the unknowns before an iteration and that after the
iteration is smaller than 10−7. Detailed expressions of the Jacobian matrices, which
are necessary for Newton’s method, are shown in appendix A.

Following Liu et al. (2018), we define the wave steepness

Hs,j = kj
max[η(ξ1, ξ2)] −min[η(ξ1, ξ2)]

2
, ξi ∈ [0, 2π], (2.21)

for nonlinear wave groups. Table 1 shows the amplitude of component Cη

1,0 and
steepness Hs,1 for various values of N and M in group 1 in the case of k1 = (1, 0),
k2 = (0.9, 0.726615), d = 0.9 and ε = 1.035. For different truncation number N, the
values of Cη

1,0 and Hs,1 remain unchanged after M > 171. Besides, the values of Cη

1,0
and Hs,1 converge as N increases from 31 to 61. So, N = 61 and M = 171 are used
for the maximum wave steepness case in this work. Four significant figures for the
unknown Cη

i,j and Cϕ
i,j can be obtained.
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N\M 81 111 141 171

31 (0.084889, 0.22681) (0.084788, 0.22682) (0.084788, 0.22682) (0.084788, 0.22682)
41 — (0.084722, 0.22786) (0.084722, 0.22786) (0.084722, 0.22786)
51 — (0.083821, 0.22849) (0.084717, 0.22810) (0.084717, 0.22810)
61 — — (0.084641, 0.22813) (0.084717, 0.22817)

TABLE 1. The amplitudes of component Cη

1,0 and steepness Hs,1 for various values of N
and M in group 1. Specification: k1= (1, 0), k2= (0.9, 0.726615), water depth d= 0.9 and
dimensionless frequency ε = 1.035. A dash means no convergent solutions obtained.

3. Results and analysis
3.1. Weakly nonlinear wave groups

Consider the special resonant quartet

2k1 − k2 = k0, 2ω1 −ω2 =ω0 (3.1a,b)

in the weakly nonlinear case

k1 = (1, 0), k2 = (0.9, k2,y), ε = σi/ωi = 1.0003, (3.2a−c)

where k2,y is determined so that the resonance condition (3.1) is exactly satisfied
as the water depth d changes. To overcome the slow convergence rate of the series
solution obtained from HAM and search for weakly nonlinear steady-state resonant
waves as the water depth further decreases, we use a combined solution procedure.
The HAM is first used to find all possible steady-state solutions in deep water
(k1d= 4.5). Two primary components and a resonant one are considered in the initial
guess (2.15). Three groups of convergent high-order series solutions are obtained.
Then, as the water depth decreases, we use Galerkin’s method to obtain convergent
steady-state solutions in finite water depth.

Figure 1 shows the wave energy distribution in quartet (3.1) and (3.2) with various
water depths k1d. Compared with the steady-state resonant waves obtained by Xu et al.
(2012), the solution domain obtained here is enlarged as the water depth decreases.
The majority of the total wave energy Π =

∑
+∞

m=0

∑
+∞

n=−∞(C
η
m,n)

2, more than 97 %, is
contained by three components in the quartet (3.1). For each component, the energy
changes continuously with the water depth k1d. The continuum of weakly nonlinear
steady-state resonant waves from deep water to finite water depth is established.
Besides, as the water depth k1d decreases, the energy distribution changes slightly at
first. After k1d reaches 1.0, the energy distribution begins to change rapidly as the
water depth further decreases. Specifically, in groups 1 and 2 one component loses its
energy and leaves the resonance with only two components, so we get bichromatic
waves at k1d = 0.81 and 0.63, respectively. In group 3, a bifurcation is found as
the solution converges with another group of solutions near k1d = 0.83. Water depth
affects the energy distribution of weakly nonlinear waves significantly before the
steady-state resonant waves disappear.

3.2. Wave groups with increased nonlinearity
The simulations conducted by Annenkov & Shrira (2006) demonstrated the key
importance of near-resonant interactions for the nonlinear evolution of statistical
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FIGURE 1. (Colour online) Wave energy distribution in weakly nonlinear quartet (3.1) and
(3.2) with various water depths k1d. Curves: solid blue line, |Cη

1,0|
2/Π ; dash-dotted red

line, |Cη

0,1|
2/Π ; dashed orange line, |Cη

2,−1|
2/Π . The black line with diamonds denotes

the wave energy contained by three components in special quartet (3.1). The dotted
lines denote another group of solutions that converges with group 3 near k1d = 0.83.
Specification: k1 = (1, 0), k2 = (0.9, k2,y); k2,y is determined so that the component Ψ2,−1
corresponds to an exactly resonant one in different water depths.

characteristics of wave fields. Taking k1d = 1.5, k1 = (1, 0) and k2 = (0.9, 0.893854)
as example, we consider the steady-state resonant wave systems (2.10) with increased
nonlinearity in finite water depth. The value k2,y = 0.893854 is chosen so that the
component Ψ2,−1 corresponds to an exactly resonant one. Other non-trivial components,
if they appear in the spectrum of steady-state resonant waves, are called nearly
resonant ones.

For steady-state resonant waves in deep water, Liu et al. (2018) found that more
components appear in wave spectra as the nonlinearity increases. Following Liu et al.
(2018), we consider more nearly resonant components with small angular frequency
mismatch log10(|dωi|/ω1) in the solution procedure of HAM to search for possible
steady-state solutions. Different combinations of exactly resonant component Ψ2,−1

and three nearly resonant ones Ψ3,−2, Ψ4,−3 and Ψ−1,2 are considered as non-trivial
components in the initial guess (2.15) and the dimensionless frequency ε increases
from 1.0003 to 1.01. As shown in table 2, the number of resonant components l
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Resonant components in initial guess (2.15)
ε l= 1 l= 2 l= 3

Ψ2,−1 Ψ2,−1 Ψ2,−1 Ψ2,−1 Ψ2,−1

Ψ3,−2 Ψ1,−2 Ψ3,−2 Ψ3,−2

Ψ−1,2 Ψ4,−3

1.0003 3 3 3 3 3
1.0006 3 3 3 3 3
1.001 3 3 3 3 3
1.003 3 8 3 7 4
1.006 3 8 6 12 12
1.01 3 10 9 23 23

TABLE 2. Number of real solutions for initial guess coefficients A0,i in (2.15) when
dimensionless frequency ε increases from 1.0003 to 1.01. Specification: k1 = (1, 0), k2 =

(0.9, 0.893854) and water depth k1d= 1.5.

Resonant components in initial guess (2.15) Sum
ε l= 1 l= 2 l= 3

Ψ2,−1 Ψ2,−1 Ψ2,−1 Ψ2,−1 Ψ2,−1

Ψ3,−2 Ψ1,−2 Ψ3,−2 Ψ3,−2

Ψ−1,2 Ψ4,−3

1.0003 3 3 3 3 3 3
1.0006 3 3 3 3 3 3
1.001 3 3 3 3 3 3
1.003 3 3 3 3 2 3
1.006 0 4 1 7 2 7
1.01 0 5 3 17 7 20

TABLE 3. Number of convergent solutions for resonant wave systems (2.10) when
dimensionless frequency ε increases from 1.0003 to 1.01. Specification: k1 = (1, 0), k2 =

(0.9, 0.893854) and water depth k1d= 1.5.

increases step by step from one to three and the number of real solutions for initial
guess coefficients A0,i in (2.15) increases with ε. At the same ε, the number of real
solutions increases when more components are considered in the initial guess (2.15).
The increased number of algebraic solutions for larger value of ε indicates that more
steady-state resonant waves may exist when the nonlinearity increases.

Table 3 shows the number of convergent solutions based on the initial guesses
listed in table 2. For each choice of initial guess, the number of convergent solutions
may increase or decrease with ε, while in general it tends to increase when more
components are considered in the initial guess (2.15). Note that, at ε = 1.01, no
convergent solution has been obtained for l = 1 (corresponding to one resonant
component) and the number of solutions increases for l= 2, 3 (corresponding to two
and three resonant ones). The last column in table 3 shows that the total number of
convergent solutions increases from 3 at ε= 1.0003 to 20 at ε= 1.01, i.e. the number
of steady-state wave groups increases with respect to the nonlinearity. This indicates
that the probability of existence of steady-state resonant waves in finite water depth
increases with the nonlinearity. Steady-state waves with multiple near-resonances are
obtained in finite water depth.
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FIGURE 2. (Colour online) Amplitude spectrum |Cη
i,jki,j| of wave groups (2.10) in the case

of dimensionless frequency ε = 1.006, k1 = (1, 0), k2 = (0.9, 0.893854) and water depth
k1d= 1.5; fi,j denotes the dominant frequency.

Figures 2 and 3 show the amplitude spectra of steady-state wave groups for
dimensionless frequency ε = 1.006 and 1.01, respectively. The wave spectra are
ordered based on the maximum dimensionless amplitude |Cη

i,jki,j|, from smallest to
largest. Within each spectrum, the dominant frequency fi,j, i.e. the frequency of
the largest component cos(iξ1 + jξ2) that is surrounded by other smaller peaks, is
indicated. The spectrum shape, especially frequency fi,j and amplitude |Cη

i,jki,j| of the
dominant component, changes among different groups. For most groups the energy is
mainly contained by three or more components. The evidence of multiple resonances
in steady-state waves is clearly shown. Compared with the spectra at ε = 1.006, two
extra dominant frequencies f1,−2 and f4,−3 appear in the spectra at ε = 1.01. Besides,
the maximum amplitude |Cη

i,jki,j| increases and 13 more time-independent spectra are
obtained at ε = 1.01. Spectral analysis confirms that both the number of components
comprising the resonance and the number of steady-state waves in finite water depth
increase with the nonlinearity.

3.3. Finite-amplitude wave groups
In this subsection, the nonlinearity of steady-state resonant waves in finite water depth
is further increased to obtain finite-amplitude wave groups. Without loss of generality,
we consider the case k1 = (1, 0), k2 = (0.9, k2,y) with increased dimensionless
frequency ε. The value k2,y is determined so that the component Ψ2,−1 corresponds
to an exactly resonant one in different water depths. We use the Galerkin’s method
to obtain the convergent steady-state solutions and three water depths k1d = 4.5, 1.5
and 0.9 are considered. For each wave group, the values of N and M increase with
the dimensionless frequency ε so that four significant figures can be obtained for the
unknown constants Cη

m,n and Cϕ
m,n in (2.7) and (2.8).
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FIGURE 3. (Colour online) Amplitude spectrum |Cη
i,jki,j| of wave groups (2.10) in the case

of dimensionless frequency ε = 1.01, k1 = (1, 0), k2 = (0.9, 0.893854) and water depth
k1d= 1.5; fi,j denotes the dominant frequency.

We define kd as the wavenumber of the dominant component in the dimensionless
amplitude spectrum. For two wavenumbers k1 and kd, we get two steepness values Hs,1

and Hs,d from (2.21). Table 4 shows the maximum steepness of steady-state resonant
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Group 1 Group 2 Group 3
k1d ε Hs,1 Hs,d ε Hs,1 Hs,d ε Hs,1 Hs,d

4.5 1.015 0.213 0.328 1.018 0.198 0.305 1.017 0.195 0.301
1.5 1.026 0.244 0.352 1.023 0.239 0.317 1.024 0.235 0.311
0.9 1.035 0.228 0.228 1.037 0.235 0.284 1.045 0.237 0.287

TABLE 4. Maximum steepness of steady-state resonant wave groups (2.10) in three
different water depths. Specification: k1 = (1, 0), k2 = (0.9, k2,y); k2,y is determined so that
the component Ψ2,−1 corresponds to an exactly resonant one in water of different depths.

wave groups in three different water depths. For all cases considered, Hs,1 > 0.20 and
Hs,d > 0.23. Therefore, it is reasonable to conclude that finite-amplitude steady-state
resonant wave groups are obtained in finite water depth.

Figure 4 shows the amplitude spectra of group 1 with increased dimensionless
frequency ε. For all water depths, the frequency bands broaden with respect to
increased ε as more components appear in the spectra due to the resonant interactions
among different wave components. Besides, the amplitude of some high-frequency
components (σ/σ1 > 1.9) increases as the water depth decreases. It should be noted
that the angular frequency mismatches of these high-frequency nearly resonant
components in finite water depth are not small. Since detailed high-frequency
components cannot be predicted beforehand based on the magnitude of the angular
frequency mismatch, convergent series solutions can hardly be obtained in HAM by
the solution procedure that Liu et al. (2018) developed for multiple near-resonances
in deep water. So, instead, a numerical approach based on the Galerkin method has
been used as the nonlinearity increases further. For waves in deep water (k1d = 4.5),
most non-trivial components appear around the primary ones (σ/σ1≈ 1) in the spectra.
The tail of the spectra decreases rapidly so that the high-frequency components can
almost be neglected. As the water depth decreases, some non-trivial components start
to appear in the high-frequency domain. Additional sub-peaks appear in the tail of
the spectra in finite water depth (k1d = 1.5, 0.9). These high-frequency components
cannot be neglected and become increasingly important as the water depth decreases.
Therefore, the spectra of steady-state resonant waves change as the water depth
decreases and the significant role of high-frequency components in finite water depth
is demonstrated.

Figures 5 and 6 show the amplitude spectra of groups 2 and 3, respectively, with
increased dimensionless frequency ε. For all water depths, the frequency bands
broaden with respect to the dimensionless frequency ε. For waves in deep water
(k1d = 4.5), all non-trivial components appear around the primary ones (σ/σ1 ≈ 1)
in the spectra. For waves in finite water depth (k1d = 1.5, 0.9), high-frequency
components start to appear in the spectra and the amplitude of these components
increases further as the water depth decreases. The spectra of steady-state resonant
waves indeed change with the water depth and the significant role of high-frequency
components in finite water depth is confirmed.

The spectra of steady-state wave groups with the same steepness are further
analysed in different water depths. All three groups are considered and in each
case the dimensionless frequency ε is determined so that steepness Hs,1 = 0.20.
Taking group 1 as an example, figure 7 shows the amplitude spectrum |Cη

i,jki,j| with
Hs,1= 0.20. (Detailed frequency and amplitude values of the 15 largest components in
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FIGURE 4. (Colour online) Dimensionless amplitude spectra |Cη
i,jki,j| of group 1 in the case

of k1= (1, 0), k2= (0.9, k2,y) with increased dimensionless frequency ε; k2,y is determined
so that the component Ψ2,−1 corresponds to an exactly resonant one in different water
depths k1d.

the three groups are shown in tables 6–8 in appendix B.) As water depth decreases
from 4.5 to 0.9, it can be found that the dominant frequency σ/σ1 shifts towards the
lower-frequency domain from 1.25 to 1.00 and the corresponding amplitude increases
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FIGURE 5. (Colour online) Dimensionless amplitude spectra |Cη
i,jki,j| of group 2 in the case

of k1= (1, 0), k2= (0.9, k2,y) with increased dimensionless frequency ε; k2,y is determined
so that the component Ψ2,−1 corresponds to an exactly resonant one in different water
depths k1d.

from 0.068 to 0.083. Besides, the number of components around the dominant ones
(σ/σ1 ∈ (0.5, 1.9)) decreases from 12 to 6 while the number of high-frequency
components (σ/σ1 > 1.9) increases from 3 to 9. Moreover, the amplitude of the
largest high-frequency component also increases from 0.015 to 0.045. The same
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FIGURE 6. (Colour online) Dimensionless amplitude spectra |Cη
i,jki,j| of group 3 in the case

of k1= (1, 0), k2= (0.9, k2,y) with increased dimensionless frequency ε; k2,y is determined
so that the component Ψ2,−1 corresponds to an exactly resonant one in different water
depths k1d.

effect can also be found for groups 2 and 3. For steady-state resonant waves of
the same steepness, the total energy is decentralized towards the two sides of the
spectrum as water depth decreases.
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FIGURE 7. (Colour online) Amplitude spectrum |Cη
i,jki,j| of group 1 with steepness

Hs,1 = 0.20. Specification: k1 = (1, 0), k2 = (0.9, k2,y); k2,y is determined so that the
component Ψ2,−1 corresponds to an exactly resonant one in different water depths k1d.

It should be noted that the non-trivial components in steady-state resonant waves
actually join the resonant sets. Table 5 divides the 15 largest components in three
groups with Hs,1= 0.20 into four domains according to their frequency distribution in
the spectra. Components in the same domain would only join the resonant sets through
the quartet, sextet, octet or decuplet

l/2∑
ι=1

kSi
iι,jι =

l∑
ι=l/2+1

kSi
iι,jι,

l/2∑
ι=1

σ Si
iι,jι =

l∑
ι=l/2+1

σ Si
iι,jι, l= 4, 6, 8, 10. (3.3a,b)

Here kSi
i,j and σ Si

i,j denote the wavenumber and actual angular frequency of component
cos(iξ1 + jξ2) in domain Si. In other words, only four-wave, six-wave, eight-wave or
ten-wave resonant interactions would happen among different components within the
same domain. Taking domain S1 of group 1 in water depth k1d= 4.5 as an example,
the resonance conditions for quartet, sextet, octet and decuplet (3.3) could be satisfied
by the following combinations of components:

(cS1
−2,3, cS1

−1,2, cS1
2,−1, cS1

3,−2), (3.4)

(cS1
2,−1, cS1

2,−1, cS1
3,−2, cS1

3,−2, cS1
3,−2, cS1

5,−4), (3.5)

(cS1
2,−1, cS1

3,−2, cS1
5,−4, cS1

6,−5, cS1
10,−9, cS1

11,−10, cS1
13,−12, cS1

14,−13), (3.6)

(cS1
2,−1, cS1

2,−1, cS1
2,−1, cS1

2,−1, cS1
3,−2, cS1

3,−2, cS1
3,−2, cS1

3,−2, cS1
3,−2, cS1

7,−6), (3.7)

where cSi
i,j denotes component cos(iξ1 + jξ2) in domain Si. Besides, components in

different domains would join the resonant sets through the trio, quartet, quintet or
sextet:

kSi
i1,j1 + kSj

i2,j2 = kSi+j
i3,j3 , σ Si

i1,j1 + σ
Sj
i2,j2 = σ

Si+j
i3,j3 , (3.8a,b)
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Group 1
k1d Domain Components

4.5 S1 c−2,3, c−1,2, c2,−1, c3,−2, c4,−3, c5,−4, c6,−5, c7,−6, c10,−9, c11,−10, c13,−12, c14,−13

S2 c8,−6, c9,−7, c16,−14

1.5 S1 c−2,3, c0,1, c1,0, c2,−1, c4,−3, c5,−4, c6,−5, c7,−6, c8,−7, c9,−8

S2 c5,−3, c6,−4, c7,−5, c9,−7, c10,−8

0.9 S1 c−2,3, c−1,2, c0,1, c1,0, c3,−2, c4,−3

S2 c1,1, c2,0, c3,−1, c4,−2, c6,−4, c7,−5

S3 c4,−1, c5,−2, c7,−4

Group 2
k1d Domain Components
4.5 S1 c−3,4, c2,−1, c4,−3, c5,−4, c6,−5, c7,−6, c8,−7, c10,−9, c13,−12, c14,−13, c15,−14

S2 c11,−9, c12,−10, c13,−11, c20,−18

1.5 S1 c−2,3, c−1,2, c0,1, c2,−1, c3,−2, c4,−3, c5,−4, c7,−6, c8,−7, c9,−8

S2 c5,−3, c6,−4, c7,−5, c8,−6, c11,−9

0.9 S1 c−2,3, c−1,2, c1,0, c2,−1, c3,−2, c4,−3

S2 c1,1, c3,−1, c4,−2, c5,−3, c6,−4

S3 c6,−3, c7,−4, c8,−5

S4 c9,−5

Group 3
k1d Domain Components
4.5 S1 c−3,4, c−2,3, c1,0, c3,−2, c4,−3, c5,−4, c6,−5, c7,−6, c9,−8, c11,−10, c13,−12, c14,−13

S2 c11,−9, c12,−10, c19,−17

1.5 S1 c−2,3, c−1,2, c1,0, c2,−1, c3,−2, c4,−3, c6,−5, c8,−7, c10,−9

S2 c6,−4, c7,−5, c8,−6, c9,−7, c11,−9

S3 c10,−7

0.9 S1 c−2,3, c−1,2, c0,1, c2,−1, c3,−2, c5,−4

S2 c1,1, c3,−1, c4,−2, c5,−3, c6,−4, c7,−5

S3 c7,−4, c8,−5

S4 c10,−6

TABLE 5. Distribution of the 15 largest components in groups 1, 2 and 3 with Hs,1 =

0.20. Domains S1, S2, S3 and S4 represent the frequency intervals (0.5, 1.9), (1.9, 3.0),
(3.0, 4.0) and (4.0, 5.0); ci,j represents the component cos(iξ1 + jξ2). Specification: k1 =

(1, 0), k2 = (0.9, k2,y); k2,y is determined so that the component Ψ2,−1 corresponds to an
exactly resonant one in different water depths k1d.

kSi
i1,j1 ± kSj

i2,j2 ± kSk
i3,j3 = kSi±j±k

i4,j4 , σ Si
i1,j1 ± σ

Sj
i2,j2 ± σ

Sk
i3,j3 = σ

Si±j±k
i4,j4 , (3.9a,b)

kSi
i1,j1 ± kSj

i2,j2 ± kSk
i3,j3 ± kSl

i4,j4 = kSi±j±k±l
i5,j5 ,

σ Si
i1,j1 ± σ

Sj
i2,j2 ± σ

Sk
i3,j3 ± σ

Sl
i4,j4 = σ

Si±j±k±l
i5,j5 ,

}
(3.10)

kSi
i1,j1 ± kSj

i2,j2 ± kSk
i3,j3 ± kSl

i4,j4 ± kSm
i5,j5 = kSi±j±k±l±m

i6,j6 ,

σ Si
i1,j1 ± σ

Sj
i2,j2 ± σ

Sk
i3,j3 ± σ

Sl
i4,j4 ± σ

Sm
i5,j5 = σ

Si±j±k±l±m
i6,j6 .

}
(3.11)

In other words, three-wave, four-wave, five-wave or six-wave resonant interactions
would happen among components from different domains. Taking the four domains
of group 3 in water depth k1d = 0.9 as an example, the resonance condition for
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trio, quartet, quintet and sextet (3.8)–(3.11) could be satisfied by the following
combinations of components:

(cS1
−1,2, cS1

2,−1, cS2
1,1), (3.12)

(cS2
3,−1, cS2

4,−2, cS3
7,−4, cS3

8,−5), (3.13)

(cS1
0,1, cS1

2,−1, cS1
3,−2, cS1

5,−4, cS4
10,−6), (3.14)

(cS1
−1,2, cS1

0,1, cS1
2,−1, cS1

3,−2, cS2
1,1, cS2

3,−1). (3.15)

Distribution of the 15 largest components in groups 1, 2 and 3 with Hs,1 = 0.20
is shown in table 5. It can be found that for waves in deep water (k1d = 4.5) the
majority of non-trivial components appear around the primary ones in domain S1, with
only a few in domain S2. Besides, the amplitude of the largest component in domain
S2 is much smaller compared with that in domain S1. So only the four-wave, six-
wave, eight-wave or ten-wave resonant interactions among components within domain
S1 would affect the wave groups significantly in deep water. Note that components
cS1

5,−4, cS1
6,−5 and cS1

7,−6 are a few of the largest ones in all three groups and they join
the resonant sets by a special quartet:

kS1
5,−4 + kS1

7,−6 = 2kS1
6,−5, σ S1

5,−4 + σ
S1
7,−6 = 2σ S1

6,−5. (3.16a,b)

Besides, other large components in group 1, i.e. cS1
3,−2, cS1

2,−1, cS1
−2,3 and cS1

−1,2, could also
join the resonant set by quartet

kS1
3,−2 + kS1

−2,3 = kS1
2,−1 + kS1

−1,2, σ S1
3,−2 + σ

S1
−2,3 = σ

S1
2,−1 + σ

S1
−1,2. (3.17a,b)

It is generally assumed that the lowest-order resonant interactions that occur will
dominate wave field evolution (Hammack & Henderson 1993), so we conclude that
four-wave resonant interactions plays a dominant role in steady-state resonant wave
groups in deep water.

As the water depth decreases, the number of non-trivial components in domain
S1 decreases while the number of non-trivial components in the other three
high-frequency domains S2, S3 and S4 increases. Besides, the amplitude of these
high-frequency components increases, too. So in finite water depths both the
four-wave, six-wave, eight-wave or ten-wave resonant interactions among components
within the same domains and the three-wave, four-wave, five-wave or six-wave
resonant interactions among components from different domains would affect the
wave groups significantly. Note that, at k1d = 0.9, the largest components in three
groups with Hs,1 = 0.20 join the resonant sets by two quartets

kS1
1,0 + kS1

0,1 = kS1
3,−2 + kS1

−2,3, σ S1
1,0 + σ

S1
0,1 = σ

S1
3,−2 + σ

S1
−2,3, (3.18a,b)

kS1
1,0 + kS1

3,−2 = 2kS1
2,−1, σ S1

1,0 + σ
S1
3,−2 = 2σ S1

2,−1, (3.19a,b)

and a trio
kS1

2,−1 + kS1
3,−2 = kS2

5,−3, σ S1
2,−1 + σ

S1
3,−2 = σ

S2
5,−3. (3.20a,b)

Besides, component cS2
4,−2, the fourth largest one in groups 1 and 2, could also join

the resonant sets by a trio

kS1
1,0 + kS1

3,−2 = kS2
4,−2, σ S1

1,0 + σ
S1
3,−2 = σ

S2
4,−2, (3.21a,b)
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with two larger components cS1
1,0 and cS1

3,−2. Therefore, in finite water depth, the
resonant interactions in steady-state wave groups is more complex. Both components
around the primary ones and components from the high-frequency domain join the
resonance sets. As water depth decreases, resonant interactions among components
from different domains, especially the three-wave resonant interactions, becomes
increasingly important in steady-state resonant wave groups. The significant role of
three-wave resonant interactions for steady-state resonant wave groups in finite water
depth is demonstrated.

In this subsection, finite-amplitude steady-state wave groups with multiple
resonances are obtained in finite water depth. Wave spectra are compared and resonant
sets configuration are analysed for wave groups with the same steepness in different
water depths.

For wave groups in deep water, the frequency bands broaden with respect to
increased nonlinearity. More components join the resonant sets mainly due to the
four-wave, six-wave, eight-wave or ten-wave resonant interactions among components
around the primary ones. A few high-frequency components appear in the spectrum
due to the three-wave resonant interactions. The amplitudes of these high-frequency
components are small compared with the non-trivial components around the primary
ones. In all three groups, a few of the largest components join the resonant sets
by a quartet. Therefore, steady-state resonant wave groups in deep water are mainly
controlled by four-wave resonant interactions.

For wave groups in finite water depth, the frequency bands broaden with respect
to increased nonlinearity, too. More components join the resonant sets due to the
four-wave, six-wave, eight-wave or ten-wave resonant interactions among components
around the primary ones, and also due to the three-wave, four-wave, five-wave
and six-wave resonant interactions among components around the primary ones
and from the high-frequency domain. As the water depth decreases, the number of
components around the primary ones decreases while the number of high-frequency
components increases. The amplitudes of the largest components around the primary
ones and from the high-frequency domain increase as the water depth decreases.
Resonant interactions among components around the primary ones are suppressed
while resonant interactions among components around the primary ones and from the
high-frequency domain are enhanced. In each group, a few of the largest components
join the resonance by a quartet or a trio. Therefore, steady-state resonant wave groups
in finite water depths are controlled by resonant interactions among components both
around the primary ones and from the high-frequency domain. More components
join the resonant sets by a trio as the water depth decreases. The importance of
three-wave resonant interactions for steady-state resonant wave groups in finite water
depth is demonstrated.

4. Conclusion and discussion

Fully nonlinear water wave equations are solved by analytical and numerical
approaches in finite water depth to obtain finite-amplitude wave groups with
time-independent spectrum when the resonance conditions are nearly satisfied.
The resonant sets configuration of the finite-amplitude wave groups is analysed
to investigate the main resonant mechanism from deep water to finite water depth.

In finite water depth, the convergence rate of the series solution obtained by
HAM for steady-state resonant wave groups decreases and additional high-frequency
components that cannot be predicted join the resonant sets. A solution procedure that
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combines the HAM-based analytical approach and Galerkin method-based numerical
approach has been proposed. It provides a robust and efficient way to obtain the
finite-amplitude steady-state wave groups with multiple resonances in finite water
depth.

For weakly nonlinear wave groups, the solution domain has been enlarged as the
water depth decreases. The energy distribution of weakly nonlinear wave groups
changes continuously with the water depth, so the continuum of steady-state resonant
waves from deep water to finite water depth is established. As the water depth
decreases, the energy distribution of weakly nonlinear wave groups changes rapidly
before the resonant interactions disappear.

As the nonlinearity increases, steady-state waves with multiple near-resonances are
obtained in finite water depth. More components join the resonances and more steady-
state wave groups are obtained, so the probability of existence of steady-state resonant
waves in finite water depth increases, too.

Finite-amplitude wave groups with steepness no less than 0.20 are obtained in finite
water depth. The frequency bands broaden with respect to increased nonlinearity. For
waves in deep water, the majority of the non-trivial components appear around the
primary ones due to the four-wave, six-wave, eight-wave or even ten-wave resonant
interactions. The dominant role of four-wave resonant interactions for steady-state
wave groups in deep water is demonstrated. For waves in finite water depth, additional
non-trivial high-frequency components appear in the spectra due to the three-wave,
four-wave, five-wave or even six-wave resonant interactions with the components
around the primary ones. The amplitudes of these high-frequency components increase
further as the water depth decreases. Resonant interactions among components around
the primary ones are suppressed while resonant interactions among components around
the primary ones and from the high-frequency domain are enhanced. The spectra of
steady-state resonant wave groups changes with the water depth and the significant
role of three-wave resonant interactions in finite water depth is demonstrated.

The energy distribution in each resonant set may be measured to quantitatively
analyse the effects of different interactions. However, in finite-amplitude wave groups,
wave components often interact in coupled sets so that the same component may
interact with other different components and join different resonant sets simultaneously.
In this case, it is difficult to divide the total wave energy in different resonant sets to
compare different wave interactions quantitatively. It would be interesting to search
for some specific resonant set configuration so that different interactions could be
quantitatively measured and compared. For non-steady-state resonant wave groups in
finite water depth, the role that three-wave and four-wave resonant interactions play in
the spectra would also be an interesting research topic. For real ocean waves, it is not
only resonant interactions that determine the evolution of the wave spectrum. Wind
input and dissipation due to breaking, which are also important for wave spectrum
evolution in real oceanic conditions, are not considered here.
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Appendix A. Detailed expressions of the Jacobian matrices
Here, we show the detailed expressions of the Jacobian matrices, ∂Pr,s/∂Cϕ

i,j and
∂Qr,s/∂Cη

i,j. First,

∂Pr,s

∂Cϕ
i,j
=

∫ 2π

0

∫ 2π

0

(
∂N1[ϕ]

∂Cϕ
i,j
+
∂N1[ϕ]

∂z
∂η

∂Cϕ
i,j

)
sin(rξ1 + sξ2) dξ1 dξ2. (A 1)

Since the expression for ∂η/∂Cϕ
i,j is unknown in the present formulation, we get the

relation
∂N2[η, ϕ]

∂Cϕ
i,j
+
∂N2[η, ϕ]

∂z
∂η

∂Cϕ
i,j
= 0, (A 2)

from (2.4) instead. After eliminating ∂η/∂Cϕ
i,j from (A 1) and (A 2), we get

∂Pr,s

∂Cϕ
i,j
=

∫ 2π

0

∫ 2π

0

(
∂N1[ϕ]

∂Cϕ
i,j
−
∂N1[ϕ]

∂z
∂N2[η, ϕ]/∂Cϕ

i,j

∂N2[η, ϕ]/∂z

)
sin(rξ1 + sξ2) dξ1 dξ2. (A 3)

∂Qr,s

∂Cη
i,j
=
∂Qr,s

∂z
cos(iξ1 + jξ2). (A 4)

The terms within the Jacobian matrix can be expressed as

∂N1[ϕ]

∂Cϕ
i,j
= [|ik1 + jk2|

2ϕ2
z − (iTF+ jTS)2] sin(iξ1 + jξ2)

cosh[|ik1 + jk2|(z+ d)]
cosh[|ik1 + jk2|d]

+ (g+ 2TFϕξ1z + 2TSϕξ2z + 2ϕzϕzz)|ik1 + jk2| sin(iξ1 + jξ2)

×
sinh[|ik1 + jk2|(z+ d)]

cosh[|ik1 + jk2|d]

+ 2(iTF+ jTS)ϕz|ik1 + jk2| cos(iξ1 + jξ2)
sinh[|ik1 + jk2|(z+ d)]

cosh[|ik1 + jk2|d]
+ [(2TFϕξ1ξ1 + 2TSϕξ1ξ2 + 2ϕzϕξ1z)(ik2

1 + jk1 · k2)

+ (2TSϕξ2ξ2 + 2TFϕξ1ξ2 + 2ϕzϕξ2z)( jk2
2 + ik1 · k2)] cos(iξ1 + jξ2)

×
cosh[|ik1 + jk2|(z+ d)]

cosh[|ik1 + jk2|d]
, (A 5)

∂N2[η, ϕ]

∂Cϕ
i,j

= (iTF+ jTS) cos(iξ1 + jξ2)
cosh[|ik1 + jk2|(z+ d)]

cosh[|ik1 + jk2|d]

+ϕz|ik1 + jk2| sin(iξ1 + jξ2)
sinh[|ik1 + jk2|(z+ d)]

cosh[|ik1 + jk2|d]
, (A 6)

∂N1[ϕ]

∂z
= TF2ϕξ1ξ1z + TS2ϕξ2ξ2z + 2TFTSϕξ1ξ2z + 2TFϕzϕξ1zz + 2TSϕzϕξ2zz

+ϕ2
z ϕzzz + 2(TFϕξ1ξ1 + TSϕξ1ξ2 + ϕzϕξ1z)TFz+ 2(TSϕξ2ξ2 + TFϕξ1ξ2

+ϕzϕξ2z)TSz+ (g+ 2TFϕξ1z + 2TSϕξ2z + 2ϕzϕzz)ϕzz, (A 7)
∂N2[η, ϕ]

∂z
= g+ TFϕξ1z + TSϕξ2z + ϕzϕzz, (A 8)

where

TF= k2
1ϕξ1 + k1 · k2ϕξ2 − σ1, TS= k2

2ϕξ2 + k1 · k2ϕξ1 − σ2, (A 9a,b)

TFz= k2
1ϕξ1z + k1 · k2ϕξ2z, TSz= k2

2ϕξ2z + k1 · k2ϕξ1z. (A 10a,b)
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k1d= 4.5 k1d= 1.5 k1d= 0.9
i j σ/σ1 |Cη

i,jki,j| i j σ/σ1 |Cη
i,jki,j| i j σ/σ1 |Cη

i,jki,j|

6 −5 1.25 0.06789 4 −3 1.19 0.06880 1 0 1.00 0.08197
3 −2 1.10 0.05699 5 −4 1.26 0.06558 3 −2 1.16 0.07488
5 −4 1.20 0.04148 2 −1 1.06 0.06187 0 1 0.92 0.05147
7 −6 1.30 0.03668 1 0 1.00 0.05280 4 −2 2.16 0.04487
2 −1 1.05 0.02907 −2 3 0.81 0.03159 3 −1 2.08 0.02750
−2 3 0.85 0.02858 8 −7 1.45 0.02778 4 −3 1.24 0.02636
4 −3 1.15 0.02623 7 −6 1.39 0.02149 6 −4 2.32 0.02456
10 −9 1.45 0.02353 6 −4 2.26 0.01992 1 1 1.92 0.02301
−1 2 0.90 0.02334 9 −7 2.45 0.01860 2 0 2.00 0.02293
13 −12 1.60 0.02117 6 −5 1.32 0.01714 −2 3 0.76 0.02235
11 −10 1.50 0.02082 10 −8 2.52 0.01410 7 −4 3.32 0.01735
14 −13 1.65 0.01856 9 −8 1.52 0.01314 4 −1 3.08 0.01543
9 −7 2.35 0.01537 0 1 0.94 0.01272 5 −2 3.16 0.01483

16 −14 2.70 0.01076 7 −5 2.32 0.01170 7 −5 2.40 0.01416
8 −6 2.30 0.01010 5 −3 2.19 0.01078 −1 2 0.84 0.01274

TABLE 6. Frequency σ/σ1 and amplitude |Cη
i,jki,j| of the 15 largest components in group

1 with steepness Hs,1 = 0.20. Specification: k1 = (1, 0), k2 = (0.9, k2,y); k2,y is determined
so that the component Ψ2,−1 corresponds to an exactly resonant one in different water
depths k1d.

k1d= 4.5 k1d= 1.5 k1d= 0.9
i j σ/σ1 |Cη

i,jki,j| i j σ/σ1 |Cη
i,jki,j| i j σ/σ1 |Cη

i,jki,j|

6 −5 1.25 0.07889 3 −2 1.13 0.08257 2 −1 1.08 0.09423
7 −6 1.30 0.06324 4 −3 1.19 0.07069 3 −2 1.16 0.06895
5 −4 1.20 0.06191 2 −1 1.06 0.04885 1 0 1.00 0.04904
8 −7 1.35 0.02709 5 −4 1.26 0.03085 4 −2 2.16 0.04713
−3 4 0.80 0.02659 −2 3 0.81 0.02486 5 −3 2.24 0.04345
14 −13 1.65 0.02448 −1 2 0.87 0.02121 −1 2 0.82 0.03263
13 −12 1.60 0.02432 7 −5 2.32 0.02045 −2 3 0.76 0.02276
4 −3 1.15 0.02399 7 −6 1.39 0.01963 3 −1 2.08 0.02207
12 −10 2.50 0.01821 0 1 0.94 0.01900 7 −4 3.32 0.02164
10 −9 1.45 0.01816 6 −4 2.26 0.01874 6 −4 2.32 0.02114
13 −11 2.55 0.01614 8 −7 1.45 0.01802 6 −3 3.24 0.01879
2 −1 1.05 0.01475 8 −6 2.39 0.01345 4 −3 1.24 0.01793

11 −9 2.45 0.01330 5 −3 2.19 0.00910 1 1 1.92 0.01651
15 −14 1.70 0.01295 11 −9 2.58 0.00894 8 −5 3.40 0.01419
20 −18 2.90 0.01209 9 −8 1.52 0.00885 9 −5 4.40 0.01045

TABLE 7. Frequency σ/σ1 and amplitude |Cη
i,jki,j| of the 15 largest components in group

2 with steepness Hs,1 = 0.20. Specification: k1 = (1, 0), k2 = (0.9, k2,y); k2,y is determined
so that the component Ψ2,−1 corresponds to an exactly resonant one in different water
depths k1d.

Appendix B. The 15 largest components in groups 1, 2 and 3 with steepness
Hs,1 = 0.20

Detailed frequency σ/σ1 and amplitude |Cη
i,jki,j| values of the 15 largest components

in groups 1, 2 and 3 with steepness Hs,1= 0.20 are shown in tables 6–8, respectively.
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k1d= 4.5 k1d= 1.5 k1d= 0.9
i j σ/σ1 |Cη

i,jki,j| i j σ/σ1 |Cη
i,jki,j| i j σ/σ1 |Cη

i,jki,j|

6 −5 1.25 0.09930 3 −2 1.13 0.11553 2 −1 1.08 0.12298
5 −4 1.20 0.08172 4 −3 1.19 0.09192 3 −2 1.16 0.09858
7 −6 1.30 0.04899 7 −5 2.32 0.03005 5 −3 2.24 0.07058
13 −12 1.60 0.02572 1 0 1.00 0.02626 4 −2 2.16 0.04146
14 −13 1.65 0.02405 6 −5 1.32 0.02410 7 −4 3.32 0.03079
12 −10 2.50 0.02135 2 −1 1.06 0.02408 −1 2 0.84 0.02532
3 −2 1.10 0.02077 −1 2 0.87 0.02332 0 1 0.92 0.02260
11 −9 2.45 0.02031 6 −4 2.26 0.02268 8 −5 3.40 0.02213
−3 4 0.80 0.01951 8 −7 1.45 0.01992 6 −4 2.32 0.02051
9 −8 1.40 0.01764 −2 3 0.81 0.01919 3 −1 2.08 0.01850

11 −10 1.50 0.01746 8 −6 2.39 0.01003 1 1 1.92 0.01459
4 −3 1.15 0.01624 10 −7 3.45 0.00866 10 −6 4.48 0.01454
−2 3 0.85 0.01274 9 −7 2.45 0.00783 −2 3 0.76 0.01449
19 −17 2.85 0.01247 11 −9 2.58 0.00774 7 −5 2.40 0.01232
1 0 1.00 0.01113 10 −9 1.58 0.00715 5 −4 1.32 0.01217

TABLE 8. Frequency σ/σ1 and amplitude |Cη
i,jki,j| of the 15 largest components in group

3 with steepness Hs,1 = 0.20. Specification: k1 = (1, 0), k2 = (0.9, k2,y); k2,y is determined
so that the component Ψ2,−1 corresponds to an exactly resonant one in different water
depths k1d.

Here k1 = (1, 0), k2 = (0.9, k2,y); and k2,y is determined so that the component Ψ2,−1

corresponds to an exactly resonant one in different water depths k1d.
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