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We study fluid-particle motion in the velocity field induced by a quasi-stationary point
vortex structure consisting of one upper-layer vortex and two identical vortices in the
bottom layer of a rotating two-layer fluid. The regular regimes are investigated, and
the possibility of chaotic regimes (chaotic advection) under the effect of quite small
non-stationary disturbances of stationary configurations has been shown. Examples of
different scenarios are given for the origin and development of chaos. We analyse
the role played by the stochastic layer in the processes of mixing and in the capture
of fluid particles within a vortex area. We also study the influence of stratification
on these effects. It is shown that regular and chaotic advection situations exhibit
significant differences in the two layers.
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1. Introduction
The motion of fluid particles (advection) in a vortex field is of serious interest both

for studying mixing processes and for investigating different aspects of turbulence. The
problem of advection of fluid particles in the velocity field induced by barotropic
vortex structures has attracted the attention of researchers for more than 30 years.
The papers by Aref & Pomphrey (1980), Aref (1983), Neu (1984), Aref (1986),
Eckhardt & Aref (1988), Aref et al. (1989), Polvani & Wisdom (1990), Oliva (1991),
Polvani & Plumb (1992), Meleshko et al. (1992), Meleshko & Konstantinov (1993),
Velasco Fuentes (1994), Velasco Fuentes, van Heijst & Cremers (1995), Péntek, Tél
& Toroczkai (1995), Kuznetsov & Zaslavsky (1998, 2000), Boatto & Pierrehumbert
(1999), Leoncini, Kuznetsov & Zaslavsky (2000, 2001), Leoncini & Zaslavsky (2002)
and Koshel & Prants (2006) provide a representative sample.

† Email address for correspondence: kvkoshel@poi.dvo.ru
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In natural geophysical media and in particular in the ocean, vertical stratification
plays a very important role and obviously affects advective processes. Here, as a first
step in the investigation of this effect, we consider the specific features of fluid-particle
motion around the perturbed steady states of vortex structures in a two-layer rotating
fluid obtained by Gryanik (1988), Sokolovskiy & Verron (2000, 2002a,b, 2004, 2006),
Gryanik, Sokolovskiy & Verron (2006), Kizner (2006) and Jamaloodeen & Newton
(2007).

In the present work, we show that the two-layer quasi-stationary vortex structures
obtained in an accompanying paper (Sokolovskiy, Koshel & Verron 2013, hereinafter
referred to as SKV) can trap and transport considerable volumes of fluid in both
layers. Following Thomson (1867), we will refer to the volume of the trapped fluid
as the vortex atmosphere. In addition to estimating the volume of fluid captured and
transported by vortex structures, which is of interest per se in the context of analysis
of oceanic or atmospheric processes, this study will serve as a basis for establishing
the conditions under which chaotic motion of fluid particles can appear, resulting in
mixing and mass exchange between the vortex atmosphere and adjacent domains.

There are numerous works where some methods of analysis of the two-dimensional
chaotic movements have been used for explaining natural phenomena. We will next
cite some of them of particular relevance.

The problem of kinematic barriers, which are identified with KAM-tori of the
respective dynamic systems, has been discussed by Cox et al. (1990), Yang
(1993, 1996b, 1998), Ngan & Shepherd (1997), Koshel & Prants (2006) and
Budyansky et al. (2009) in the context of the interaction between a jet stream and
a Rossby wave, and in studies by Yang & Liu (1994, 1997), Yang (1996a) and Perrot
& Carton (2009) applied to the contact zone between two large oceanic vortices.

Abraham & Bowen (2002), using the maximum cross-correlation method, performed
an analysis of the surface velocity field in a region of the East Australian Current
(between latitudes 36 ◦S and 41 ◦S and longitudes 150 ◦E and 156 ◦E) which allowed
them to explain the peculiarities of satellite imagery of sea-surface temperature and
chlorophyll distributions in this ocean area.

Neufeld et al. (2002) note that stirring imposes a filamentary structure of
phytoplankton bloom arising due to the irregular chaotic motion of fluid elements,
known as chaotic advection introduced by Aref (1984).

Our analysis of the likelihood of chaotic regime formation is based on the methods
explained in particular by Izrailsky, Koshel & Stepanov (2006, 2008) and Koshel,
Sokolovskiy & Davies (2008) (applied in this paper to a two-layer rotating fluid) and
requires studying the spatial distributions of the turnover frequency of fluid particles in
the vortex atmosphere.

We believe that the model proposed in this work may be useful for understanding
mixing in the Earth’s stratified oceans, atmosphere and magma, and for explaining
meandering of jet currents and deep convection. Analysis methods of advective
processes, proposed in this article, may be particularly useful when studying
regular and chaotic motion of ARGOS drift buoys (Rogachev & Carmack 2002)
or thermohaline transitions in the vicinity of quasi-vortex structures in the ocean
(Rogachev 2000).

The structure of the paper is as follows. In § 2, we discuss the regular advection in
the vicinity of a stationary two-layer configuration of a three-point-vortex roundabout,
find the role of geometric parameters (§ 2.1) and of the intensity µ of the upper-layer
vortex (§ 2.2); in § 2.3, a particular case of a triton (µ = −2) is studied in detail.
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FIGURE 1. Scheme of the initial collinear layout of vortices for the case B > R. The triangle
marks the position of the top-layer vortex and the circle and square mark the positions of the
bottom-layer vortices; Xc is the position of the centre of rotation given by (3.4) in SKV. The
size of each symbol is proportional to the absolute value of the intensity of the vortex. The arc
arrows show the cyclonic or anticyclonic directions of vortices.

Section 3 is devoted to the investigation of the characteristics of chaotic advection in
the vicinity of a perturbed triton. In § 4, we present our main results.

2. Regular advection in the vicinity of stationary configurations
We focus now on the advection of fluid particles in a velocity field induced by the

stationary vortex structures in the framework of the inviscid, quasi-geostrophic, two-
layer, f -plane model described in the accompanying paper SKV. These co-propagating
or co-rotating stationary structures consist of two identical point vortices in the bottom
layer and one point vortex in the top layer. Here, as in SKV, we will use the notation(
α

i

)
for the point vortex with dimensionless circulation καi and coordinates (xαi , yαi )

where the lower index corresponds to number of the layer (i = 1, 2) and the upper
index corresponds to number of the vortex (α = 1, 2, . . . ,Ai). As in SKV, we suppose
now A1 = 1,A2 = 2, κ1

1 = µ, κ1
2 = κ2

2 = 1.
Let us also consider that the initial layout of the vortices is the collinear one as

shown in figure 1.
In a steady case, the trajectories of motion of material particles coincide with the

streamlines of horizontal motion, and the simplest method of studying the motion
of particles is to introduce point vortices with zero intensity. By analogy with the
above reasoning, we will pay special attention to studying the behaviour of the
turnover frequency Ω of fluid particles in the vortex flow (Ω = 2π/T , where T
is the rotation period of a particle about an elliptic point of a phase space), an
important characteristic of the chaotic properties of advection processes (Izrailsky et al.
2006, 2008; Koshel et al. 2008). Numerical experiments for studying the motion of
fluid particles were carried out using the standard Bulirsch–Stoer method of fourth-
order accuracy.

2.1. Dependence on B and R on µ=−2.5

We will start our analysis from the case B = R = R(r)0 (see the notation in figure 1),
i.e. a symmetrical roundabout. Recall that R(r)0 denotes the distance between the central
vortex of the upper layer and the peripheral vortices of the bottom layer when ω = 0 is
the solution of equation (3.1) in SKV.

Figure 2 shows phase portraits for the top and bottom layers with µ = −2.5.
The lateral cyclonic formations in the top layer are obviously induced by peripheral
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FIGURE 2. (a) Isolines of the stream-function in a co-rotated coordinate system with
µ=−2.5 and B= R= R(r)0 = 0.7609 in the top (i) and bottom (ii) layers. The separatrices are
shown by thick lines. The isolines are drawn with a velocity step of 0.005 for the top layer
and 0.01 for the bottom layer. The cross marks the rotation centre, coinciding with the central
vortex of the top layer. The closed dashed line is the trajectory of the bottom-layer particle
with minimum turnover frequency. (b) Dependences of turnover frequency Ω(x0) (solid lines)
and azimuthal velocities v(x0) (short-dash lines) of fluid particles originating from the x-axis,
as functions of the distance x0 from the origin of coordinates. Insets with extended vertical
coordinates demonstrate the behaviour of curves in critical domains. Long-dash straight lines
show asymptotes corresponding to solid-body rotation with an angular velocity given by (3.1)
in SKV.

bottom-layer vortices. The separatrix in the top layer has a heteroclinic structure. A
heteroclinic separatrix, embracing the point vortices, forms in the bottom layer. The
dashed streamline in the bottom layer corresponds to a minimum of the turnover
frequency. The dependence on the initial position taken on the axis y = 0 for
turnover frequency Ω and on the azimuthal velocity v of fluid particles are also
given here. Because of symmetry, only the right part of the figure is given (for
positive abscissa). Within the separatrix, in the vicinity of point vortices, we have
indefinitely growing turnover frequency and azimuthal velocity, which corresponds
to the singularity in point vortices. The situation beyond the separatrix is also of
great interest. The turnover frequency has a maximum near the separatrix and a
minimum at a considerable distance from it (the inset in the bottom figure), while the
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FIGURE 3. The same as in figure 2, but with B= 0.3712, R= 0.8200. The isolines are drawn
with a step of 0.010 for the top layer and 0.025 for the bottom layer.

velocity of particles has only a minimum, which is somewhat closer to the centre than
the frequency minimum. The behaviour of the velocity and turnover frequency with
distance from the centre corresponds to a solid-body rotation of the roundabout (the
fluid is motionless at infinity in the absolute coordinate system).

Figure 3(a) gives phase portraits for both layers for the (R = 0.8200, B = 0.3712)
situation, which appreciably differs from symmetry. The left loop of the outer
separatrix in the top layer has increased due to the effect of rotation of the vortex
system as a whole, and the turnover frequency of particles along the trajectory in
this loop has dramatically decreased. In the bottom layer, the separatrix embracing
the point vortices is now asymmetric (its left loop has decreased), and an additional
external asymmetric heteroclinic separatrix, containing the internal separatrix in its
large right loop, has formed. In the external domain, the fluid is still asymptotically
motionless.

The patterns of streamlines for the case R = 1.5 for small distance between the
vortices

( 1
1

)
and

( 1
2

)
are given in figure 4 where B = 0.0246. In this case, domains of

closed motion of fluid particles (induced vortices), separated from the separatrix by a
domain of another closed current, form in the bottom layer above and below the main
separatrix. The vorticity centre now lies at a greater distance from the vortex structure
and outside the internal separatrix. Now the external separatrix can be interpreted as
a homoclinic structure with connected ‘whiskers’, and in phase portraits, the vicinity
of the roundabout can be isolated in both layers, moving along separatrix whiskers
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FIGURE 4. The same as in figure 2, but with B= 0.0246, R= 1.5000. Only the bottom layer
is shown. Isolines are drawn with a step of 0.001.

which encompass the rotation centre. The situation in the top layer shows almost no
qualitative changes.

In frequency relationships, the boundary of the closed flow can be clearly seen in
figure 4(b) in insets near the values x0 = −9 and x0 = 11. Note that a closed flow,
separating the internal and external separatrices still persists in this case. This flow is
also identified based on the frequency relationship, and, as can be clearly seen in the
inset, these two flows are separated by the external separatrix.

Consider an important particular case corresponding to a reconnection of the
separatrix of induced vortices with the external separatrix of a roundabout. This
situation is shown in figure 5. The two separatrices have merged here and the domain
of the external closed flow has disappeared. In such situations, under a perturbation
of a stationary configuration, it is very likely that a wide chaotic domain will
appear in the vicinity of such a merged separatrix (Koshel et al. 2008; Sokolovskiy,
Koshel & Carton 2010). Unlike the situation in figure 4(b), there is no domain
of external closed flow for frequency relationships, which we do not give here. No
significant changes are observed in the top layer either; therefore, we simply show the
separatrices of the top layer, superimposed on the phase portrait of the bottom layer.
The comparison of separatrix configurations gives an idea of the shape of the fluid
column captured by the roundabout, and allows us to conclude that when R is large
enough, this column is localized in the rectangular box drawn in figure 5.

2.2. Dependence on µ
To analyse the effect of parameter µ on the character of phase portraits of an eccentric
roundabout, we consider a series of dispersion curves (the solutions to (3.2) and (3.6)
in SKV) with different µ (figure 6). They are qualitatively similar to one another with
the limiting value R(r)0 increasing from zero at µ = −∞ to infinity at µ = −1, when
B= R. Curves Xc are also plotted here, displaced by the value of B for all given values
µ except µ=−2 (triton) when |Xc| =∞.

Calculations show that the topological properties of phase portraits, shown in
figures 2–5 for the case µ = −2.5, may also appear at other values of parameter
µ. However, because of the special role of the value µ=−2, the crossing of this level
is accompanied by changes in the phase picture which are illustrated in figure 7 by
two examples with µ <−2 and µ >−2. Thus, when µ=−4 (figure 7a), the structure
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FIGURE 5. Isolines of the stream-function in a co-rotated coordinate system with B= 0.0119,
R = 1.7418 and µ = −2.5. Streamlines with a step of 0.005 are given only for the bottom
layer. The grey lines show top-layer separatrices. The structure of the boxed domain will be
described in the text.
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FIGURE 6. Dispersion curves B(R) (within the angle between the straight lines B = 0 and
B = 2R) and dependence [Xc + B](R) for an eccentric roundabout with: 1, µ = −7.5 (dark
blue); 2, µ = −4.0 (light blue); 3, µ = −3.0 (yellow); 4, µ = −2.5 (green); 5, µ = −1.5
(red); 6, µ=−1.2 (magenta). The curve corresponding to the triton at µ=−2.0 is marked by
a black line. The inclined dashed line B = R is the axis of symmetry of curves given by (3.2)
and (3.6) in SKV, while the line B= 2R and the axis R are their asymptotics at R� 1.
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FIGURE 7. Separatrices of the stream-function field in the bottom layer in a coordinate
system rotating with the angular velocity (3.2) in SKV: (a) R = 1.1, µ = −4.0; and (b)
R= 2.5, µ=−1.5 . In (b), for comparison, the grey line is the separatrix in the top layer.

of separatrices in the bottom layer is the same as with µ = −2.5 (figure 2), and the
only difference is that now the rotation centre is localized outside the left loop of the
inner separatrix. However, when µ = −1.5 (figure 7b), the rotation centre moves to
the right half-plane, the motion of the vortex structure changes its direction, and the
vortex atmosphere, surrounding the point vortices, appears within the loop composed
of separatrix whiskers, embracing the rotation centre.

2.3. Triton case

The further analysis of bifurcations of phase portraits will be based on the case of
a triton (µ = −2). There is no large difference in the most important part of the
phase portraits, as will be shown below. Only the limiting case B= R= R(r)0 has some
difference due to the infinite character of triton motion.

As before, we begin with the limiting symmetrical state B = R = R(r)0 = 0.8602,
which in this case is static. Figure 8(a) gives phase portraits and figure 8(b) gives
frequency characteristics of fluid-particle motion. The latter, by virtue of symmetry, are
given only for positive values of the initial positions along the axis x or y. In particular,
the top panel and the inset in figure 8(2b) shows the dependence of the turnover
frequency on the coordinate y0 in the vicinity of the top elliptic point located above
the branch of the quasi-separatrix for the bottom layer (this branch runs to infinity),
where such frequencies are much lower than in the top layer.

It is significant that the turnover frequencies outside the separatrices embracing point
vortices are much lower than inside these separatrices. In induced vortices (separated
from point vortices by two separatrices), the frequencies are also much less, a fact that
will play a significant role in the analysis of possible chaotic regimes after perturbation
of steady solutions. In the same figure, dashed lines show the behaviour of azimuthal
velocities of fluid particles that have started from appropriate coordinate axes.

As before, we will consider pairs of values B and R, referring to the lower branch
of the curve in figure 5 in SKV. Here, B 6 R, the triton’s velocity is negative, and the
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FIGURE 8. (a) Isolines of the stream-function in a fixed coordinate system with B = R =
R(r)0 = 0.8602 (static position) in the top (i) and bottom (ii) layers. Separatrices are shown by
thick lines. Isolines are drawn with a step of 0.005 for the top layer and 0.01 for the bottom.
(b) Turnover frequencies Ω (solid lines) and azimuthal velocities v (short-dash lines) of fluid
particles that have started from the x- or y-axes as functions of distance x0 or y0 to the origin
of coordinates. Insets with extended vertical coordinates elucidate the behaviour of curves in
critical domains.

vortex structure in the figure moves downward. In the coordinate system moving with
the triton, the slip flow is directed upward.

Figure 9 shows the near-limiting case of R = 0.8602. Even with the deviation from
the symmetrical position of vortices as small as that, considerable deformation takes
place in the phase portrait. The separatrices of induced vortices take the classical
homoclinic form. In the top layer, the left induced vortex detaches from the main
separatrix, while the two vortex domains on the right are joined by a common
separatrix. Three isolated vortex domains form in the lower layer. An interesting
feature is the appearance of two narrow zones of flow-through currents in the bottom
layer and one such zone in the top layer, where the separatrices of induced vortices
closely approach the main separatrices. Though the velocities of fluid particles are not
large here, they are still far in excess of the velocity of the triton itself. These zones
can be associated with the jet flows generated by the triton.
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FIGURE 9. (a) The same as in figure 8, but in a coordinate system moving translationally
with a velocity given by (3.7) in SKV at µ = −2, R = 0.8602, B = 0.8565. The isolines are
drawn with a step of 0.002 for the top layer, (i), and with a step of 0.01 for the bottom, (ii). (b)
Dependences (on the distance x0 to the origin of coordinates) of turnover frequencies Ω (solid
lines) and azimuthal velocities v (short-dash lines) of fluid particles that have started from the
x-axis.

With a further increase in R, the induced vortex domains, not associated with point
vortices, degrade and then disappear completely, this process finishing earlier in the
top layer than in the bottom. This effect is illustrated by figure 10(a,b), showing
examples of phase portraits for the top and bottom layers, respectively, with those
(different!) values of R and B, for which the left domain of closed circulation
disappears in the top layer and the two vortex domains disappear in the bottom
layer. The appropriate separatrix, clearly, also disappears. It is obvious that the jet flow
domains are also not pronounced here.

The subsequent increase in the asymmetry of a triton caused by an increase in
parameter R within a wide interval does not cause qualitative changes in phase
portraits, though, as can be seen from figure 11, evolutionary changes in the picture
take place. With this set of external parameters, the effect of vortex structure on the
background flow is more significant in the left part of the domain in the top layer and
in its right part in the bottom layer. The frequency dependences for this configuration
will be analysed in the following section.
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FIGURE 10. Isolines of the stream-function in a fixed coordinate system with µ=−2 and
(a) R= 0.86023, B= 0.8458 (top layer) and (b) R= 0.86050, B= 0.8234 (bottom layer).
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FIGURE 11. Isolines of the stream-function at µ=−2 and R= 0.90, B= 0.4923 with a step
of 0.005 in the top layer (a) and 0.01 in the bottom layer (b).

As R grows further, the structure of the stream-function field in the top layer shows
practically no changes, so we will consider a number of phase portraits only for the
bottom layer (figure 12), demonstrating a series of new bifurcations.

In figure 12(a,b), we essentially observe the process of revival of the separatrix that
had disappeared before and the formation of new finite domains of motion of fluid
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FIGURE 12. Isolines of the stream-function in the bottom layer at µ = −2 and the
following another parameter values: (a) R= 1.546, B= 0.03523, V =−0.01750; (b) R= 2.0,
B = 0.009255, V = −0.01699; (c) R = 2.1881, B = 0.005516, V = −0.01628; (d) R = 2.4,
B = 0.003131, V = −0.01539; (e) R = 2.470, B = 0.002608, V = −0.01412; (f ) R = 2.70,
B= 0.001438, V =−0.01200. Here, V is the triton velocity (formula (3.7) in SKV).

particles, tending to a two-layer, practically vertical, vortex structure, consisting of an
anticyclone in the top layer and a left-hand cyclone in the bottom layer. The new
separatrix in figure 12(b) to a considerable extent embraces the external separatrix of
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the entire vortex structure, while in figure 12(c), we observe their reconnection, at
which they completely merge and acquire heteroclinic character. Next (figure 12d),
these separatrices split at the left hyperbolic point, and the green line now becomes a
boundary of a two-cell domain of closed motions of particles. The next reconnection
phenomenon can be seen in figure 12(e). Here, the blue heteroclinic structure merges
with the external (red) separatrix, while the right loop disappears and the left one
becomes a homoclinic structure. Fluid exchange between the left, tripolar, and the
right, monopolar, domains ceases. Next, in figure 12(f ), we again see the splitting of
separatrices, after which the blue separatrix, remaining homoclinic, separates from the
red one, while its whiskers close on the green separatrix. In this figure, two domains
of closed regular flows in the domains separated by separatrices in the left loop are
shown by grey shading with different intensities.

The volume of the atmosphere of the vortex structure associated with the red
separatrix steadily increases with an increase in parameter R (from figure 12a to
12f ). In general, a characteristic feature of the baroclinic model is the non-monotonic
dependence of the size of the vortex atmosphere of the triton on parameter R, as well
as its translational velocity. We think it is impossible to exactly evaluate the mean
radius of the atmosphere, but calculations show its minimal size to lie nearly in the
same interval of R values where the triton’s velocity is maximal.

Note that the picture of advection in the vicinities of the triton and the roundabout
are similar: compare, for example, figure 12(c) and the domain enclosed by the
square in figure 5. Moreover, the bifurcation features of the phase portraits also
have appropriate analogues in these two cases. This also points to the non-monotonic
character of behaviour of the mean radius of the atmosphere surrounding it. The main
distinction is that the whiskers running to infinity in the triton are closed in the
roundabout.

No new bifurcations are observed during the subsequent increase in R, and it is only
in the limit R→∞ that a reconnection of the green and blue separatrices takes place,
accompanied by their degeneration with a tendency to acquire a generally circular
shape. These effects are demonstrated by figure 13, where R= 10. It is evident that the
size of the vortex atmosphere here has increased appreciably.

An important point is the localized character of singularities. In the majority
of vortex domains adjacent to the external separatrix, the azimuthal velocity and
frequency are relatively small (see figure 13). Because of this, we can expect that
sufficiently pronounced chaos-inducing effects will appear for small perturbations of
the stationary construction. On the other hand, the domains with a small derivative
of the frequency with respect to x0, i.e. with a small nonlinearity parameter, can
serve as barriers for chaotic advection, i.e. separate the well-mixed domain around the
centres of singular vortices from the domain of chaotic transport in the vicinity of the
separatrix. In the following section, we consider some mechanisms of origination of
chaos in the context of this problem.

3. Examples of the behaviour of fluid particles in the velocity field of a
perturbed triton: chaotic advection

In previous sections and SKV, we considered the motion of a system of vortices in
both stationary and non-stationary cases and evaluated the characteristic frequencies of
perturbed motion. The perturbed stationary configurations were shown either to move
translationally with a constant mean velocity or to rotate about a centre of rotation
with a constant mean angular velocity. Thus, passing to a coordinate system moving
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FIGURE 13. (a) Phase portraits and (b) turnover frequencies Ω (solid lines) and azimuthal
velocities v (short-dash lines) of fluid particles at R = 10.00 and B = 0.0000000046. The
isolines are drawn with a step of 0.01 for both layers: (i) the top layer, (ii) the bottom layer.
Notation is the same as in figure 8.

with appropriate translational or angular velocity, we can study the non-stationary
motion of a system of vortices in the vicinity of some averaged stationary state. Under
small perturbations, the motion of fluid particles will be close to the motion in a
velocity field induced by a stationary mean state of the vortex system (such motion
was considered in the previous section). In the perturbed case, the induced velocity
field will be non-stationary but periodic, with a period of relative motion. In this
situation, the so-called separatrix chaos can appear in the stochastic layer (a narrow
domain in the vicinity of the separatrix of an induced velocity field). With larger
perturbations and appropriate choice of perturbation frequencies, the separatrix chaos
can transform into global chaos or, in other words, into a stochastic sea (Zaslavsky
2007).

As shown above for a non-perturbed case, a considerable number of fluid particles
have characteristic turnover frequencies comparable with the frequency of relative
motions (the frequency of non-stationary perturbation). In this case, it is very likely
that chaotic motion will appear in domains remote from separatrices because nonlinear
resonance domains overlap (Zaslavsky 2007; Koshel et al. 2008). Barriers consisting
of regular trajectories (KAM-tori) may exist between the domains of separatrix chaos
and the domains of overlapping of large-scale nonlinear resonances. These barriers
can be destroyed without an increase in perturbation amplitude only because of a
successful choice of the frequency at which reconnection of separatrices takes place.
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FIGURE 14. Dependences of turnover frequencies Ω (solid lines) and azimuthal velocities v
(short-dash lines) of fluid particles on their initial position on the x-axis for the top (a) and
bottom (b) layers. The long-dash horizontal line is triton velocity. The solid horizontal lines in
(a) and (b) show the frequency ω̃ of perturbed motion. The solid horizontal lines in the inset
show ω̃/8 and ω̃/7 of the perturbed motion frequency. The curves correspond to the phase
portrait of figure 11 where µ=−2 and R= 0.90, B= 0.4923.

Below, we will consider three examples of perturbed configurations, illustrating the
global separatrix chaos and the destruction of a regular barrier for chaotic transport
through reconnection of separatrices. We will limit our consideration to the case of
a perturbed triton, since the formation of chaotic regions in the case of an eccentric
roundabout is analogous.

For simplification, we will consider perturbations preserving the zero component of
the impulse Py. We can consider the class of initial configurations with symmetric
displacement of the peripheral vortices in the bottom layer, i.e. replace R by R + 1R
and B by B+1R.

Let us return to figure 11, exemplifying streamlines for the motion of fluid particles
in a velocity field induced by a triton, at R = 0.90, B = 0.4923. As shown in the
studies by Izrailsky et al. (2006, 2008) and Koshel et al. (2008), to reach maximal
degree of chaotic behaviour of trajectories in the vortex domain requires that the
turnover frequencies of non-perturbed trajectories and the frequencies of non-stationary
perturbation are of the same order.

In the case under consideration, the perturbation frequency can be estimated by
formula (4.24) in SKV, yielding ω̃ ≈ 0.0385. To construct a possible scenario of
transition to chaos of trajectories we need to know the turnover frequencies of
fluid particles in the vortex domain in the absence of perturbation. The appropriate
dependences on the initial position x0 of a particle on the x-axis are given in figure 14.
The solid horizontal line shows the frequency of the perturbed motion. We can see that
the perturbation frequency and the turnover frequencies in the top and bottom layers
are of the same order of magnitude in a considerable portion of the vortex domain.

The intersection of the horizontal line in figure 14, indicating the perturbed motion
frequency, with the plot of turnover frequency of fluid particles shows the trajectory on
which the 1:1 nonlinear resonance takes place. As a rule, this is the largest resonance
in the system. Maximal chaotic area can be expected to occur in the vicinity of such a
trajectory.

Figure 15 gives the corresponding Poincaré sections. To begin, we consider the top
layer (figure 15a). In the vortex domain containing the central vortex, the intersection
takes place at the initial coordinates of x0 ≈ −2.0 and x0 ≈ 1.5. The Poincaré sections
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FIGURE 15. Poincaré sections for a perturbed triton at µ = −2, B = 0.4923, R = 0.9 and
1R = 0.05 for the top (a) and bottom (b) layers. The phase portrait for a non-perturbed case
is shown in figure 11.

in this example correspond to the external problem in the terminology of Kozlov &
Koshel (2001) and have been calculated in the following manner: 11 markers were
placed within the segment [−2.0 < x0 < 4.0, y0 = −6] and 11 more markers were
placed in a small segment in the vicinity of the separatrix at y0 = −6; the positions
of these markers were output once during each period of perturbation. The behaviour
of markers that were initially located far from the separatrix is of regular character:
they move around the vortex domain in almost the same manner as unperturbed
trajectories. The markers that were placed near the separatrix can penetrate into the
vortex domain, demonstrating features of fractal behaviour: some penetrate into the
vortex domain, while others do not. The markers that have penetrated into the vortex
domain demonstrate chaotic behaviour within the separatrix, and a boundary of the
chaotic domain can be clearly seen in the left part of the vortex domain. This
boundary corresponds to the position of the 1:1 resonance, i.e. x0 ≈ −2.0, which
corresponds to a hyperbolic point of nonlinear resonance, and x0 ≈ 1.5, which is
smaller than the position of the non-perturbed resonance trajectory by the width of the
resonance domain. The situation is somewhat more complicated in the right part of the
vortex domain, which is subject to the effect of the right vortex of the bottom layer.
In the frequency dependence for this domain, we see that 1:1 resonance cannot take
place.

The inset in figure 14 shows the levels corresponding to frequencies ω̃/7 and ω̃/8.
The largest feasible resonance has the ratio of 1:7 and consists of seven islands;
i.e. there are seven elliptic and seven hyperbolic points. The domains of resonances
1:7 and 1:8 have a smaller width than the 1:1 resonance; therefore, the boundary
of the chaotic zone lies further from the elliptic point of the right vortex domain.
The analysis of the shape of this boundary shows it to lie between the domains of
resonances 1:7 and 1:8, i.e. we see partial overlapping of these resonances.

The situation in the bottom layer is radically different (figure 15b). First, because
of the singularity and the point vortices belonging to this layer, the turnover frequency
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of fluid particles very rapidly decreases in the vicinity of the internal separatrix,
embracing the point vortices. The second significant distinction is that the external
vortex domain has no elliptic point and is located between two separatrices. Since the
turnover frequency vanishes on separatrices, there exists a trajectory between them,
corresponding to a maximum of turnover frequency.

The two intersections of the curve of turnover frequency and the horizontal line
corresponding to the perturbation frequency lie on two different trajectories. Note
that the two symmetric domains with turnover frequency maxima with negative and
positive x0 correspond to the same trajectories; therefore, it is sufficient to consider
only one of these domains. The problem in which closed streamlines lie between
separatrices and the frequency dependence has a single maximum has been considered
in detail in Koshel et al. (2008), where one of the separatrices was at infinity. Such
a situation admits the existence of two sets of nonlinear resonances with the same
multiplicity and, accordingly, reconnections of separatrices of these resonances are
possible. Without going into detail, we note that the model demonstrates all effects
revealed in the above-cited paper.

Thus, in the lower layer, the curve of turnover frequency intersects with the level of
perturbation frequency very close to the separatrix, in both the internal and external
vortex domains; hence, we have a very narrow separatrix stochastic layer. One more
non-trivial intersection takes place in the external vortex domain on the trajectory
passing through points (x0 ≈−1.55, y0 = 0) and (x0 ≈ 2.75, y0 = 0).

As a result, we have an island of regular behaviour corresponding to the 1:1
resonance at x0 ≈ 2.75, and the boundary of the stochastic sea passes through points
(x0 ≈ −1.52, y0 = 0) and (x0 ≈ 2.55, y0 = 0), i.e. it is separated from the position of
the resonance trajectory by the width of the resonance domain. Moreover, we see
a partially destroyed 1:2 resonance consisting of two islands of regular behaviour,
therefore these two largest nonlinear resonances in this case also partially overlap.

The degree of chaos in the external domain will be appreciable, the perturbation of
the triton being relatively small; in other words, the perturbation is not large for the
triton, but sufficiently large from the viewpoint of the approaching nonlinear resonance.
The stochastic layer in the vicinity of the internal separatrix is very narrow, since,
because of singularity, the derivative of frequency with respect to the initial position of
the trajectory is very large in this domain and hence, the thickness of the stochastic
layer is very small here. Because of the singularity, vicinities of point vortices should
be regular (Ryzhov & Koshel 2010). Thus, the internal separatrix and the external
chaotic domain are separated by a barrier hampering the transport of fluid particles
from the central part of the vortex atmosphere to its periphery.

An important point is the capture and release of part of its mass by the vortex
atmosphere. The capture of fluid from the incoming flow is possible only within a
very narrow domain near the separatrix. The release of fluid particles also takes place
in a narrow domain near the separatrix on the opposite side of the vortex atmosphere.
Tentative estimates show that, on the one hand, this is a very slow process, but, on the
other hand, all the fluid in the external chaotic domain will be, sooner or later, carried
out from the vortex atmosphere.

Figure 16 gives an example where the degree of chaotization is relatively small in
the bottom layer and considerable in the top one. These differences were obtained
by the choice of a sufficiently small perturbation amplitude, corresponding to high-
frequency perturbed oscillations.
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FIGURE 16. Poincaré sections at µ = −2, B = 0.003131, R = 2.4 and 1R = 0.1 for the top
(a) and bottom (b) layers. The figures correspond to perturbed behaviour of the triton, whose
non-disturbed phase portrait is given in figure 12(d), and separately, the separatrix shown in
figure 19(a).

However, the effect is largely governed by the dependence type of the turnover
frequency of fluid particles in the velocity field induced by a stationary configuration.
In studies by Izrailsky et al. (2006, 2008), Koshel et al. (2008) and Ryzhov &
Koshel (2010), it is shown that when perturbations are not too small, the formation
of chaotic regions in phase portrait domains not adjacent to separatrices can be
characterized by the overlapping degree of nonlinear resonances, which, in its turn,
is largely determined by the width of the resonance domains and the distance between
neighbouring resonance domains. These parameters are determined by the derivative of
the turnover frequency with respect to action, which is proportional to the derivative of
the frequency with respect to coordinate.

Consider figures 16 and 18 from this viewpoint. Figure 18 shows the frequency
levels ω̃/n corresponding to a series of largest resonances. Here we see all four types
of frequency dependence, introduced in Ryzhov & Koshel (2010). The first one is a
phase portrait with a singular point and a small distance to the separatrix; two such
areas are realized in the lower layer. As shown in this work, in the vicinity of the
singular point, the trajectories regularize even for very large perturbations; so, in the
lower layer the chaotic area is pressed against the separatrix. The second type is an
area with a regular elliptic singular point only a short distance from the separatrix.
This type is realized in small areas of induced recirculation. In this case, it is possible
that the vortex area becomes completely chaotic, if the perturbation frequency is
comparable to the turnover frequency in the vicinity of the elliptic point. Figure 18
shows the maximum turnover frequency of the induced vortex areas to be far less
than the perturbation frequency in this case, and accordingly, we have here a narrow
stochastic layer along the separatrices, since the Chirikov criterion starts to apply near
the separatrix (Chirikov 1979; Zaslavsky 2007; Koshel et al. 2008) for the high-order
resonances.

The next type of phase portrait corresponds to the singular critical point and large
distance from it to the separatrix. Between the area of regularization near the singular
point and the separatrix there exists an area with an action derivative of the frequency
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FIGURE 17. Three-colour illustration of the trap effect of the red marker in the top layer
(figure 16a). Here, red markers correspond to the first 40 000 perturbation periods, blue
markers to the next 20 000 periods, and green markers to the next 20 000 periods. See details
in the text.

of the order of unity, and the frequency of the perturbation is comparable to the
turnover frequency in this area. In this case, we have a stochastic sea from the
boundary of the regularization area (x0 = 1.7, y0 = 0) to the separatrix. In addition, in
the vicinity of the trajectories with initial positions near (x0 = 2.0, y0 = 0), we can see
in figure 16(a) a semipermeable barrier (a cantor), because the nonlinearity parameter
is minimal in this narrow region. This leads to the fact that markers (shown in blue)
remain for a long time in the vicinity of the boundary of the regularization area, and
markers from the vicinity of the separatrix (green and red) penetrate very slowly into
this area.

The last type represents a domain with a regular elliptic point and a large distance
from it to the separatrix. This type of phase portrait occurs in the induced (right)
vortex area of the upper layer. Here, however, the maximum turnover frequency in
the vicinity of an elliptic point is very large, and the amplitude of a non-stationary
perturbation, as seen in figure 16(a), is insufficient to meet the Chirikov criterion
(resonance overlapping). Thereby, in this area, we see a wide stochastic layer near the
separatrix or the initial stage of the transition to the stochastic sea. The distinction of
this area from the left singular one consists in the fact that there is no regularization
in the vicinity of an elliptic point. So, if the perturbation amplitude is increasing, the
stochastic sea may extend up to the elliptic point. This becomes evident due to the
beginning of the partial destruction of the nonlinear resonance separatrices in this area,
indicated by black markers. The degree of overlap of nonlinear resonances increases
with the approach to the separatrix. Therefore we have semipermeable barriers near the
boundary of the stochastic layer, similar to the barrier in the left panel.

The effect of traps is more vividly illustrated by figure 17, which shows the
behaviour of the particle marked by red in figure 16, though three colours are
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FIGURE 18. Dependences of turnover frequencies Ω (solid lines) and azimuthal velocities v
(short-dash lines) of fluid particles versus their initial position on the x-axis in a steady case
(triton) with B = 0.003131 and R = 2.4, for the top (a) and bottom (b) layers. The horizontal
lines show the values of frequency ω̃/n (n varies from 1 to 7) for the case of figure 5.

used here, alternating depending on the time spent by the particle in the respective
domains. The red colour corresponds to the most closed trap, where this particle was
located initially and remained during almost 40 000 perturbation periods. The positions
of the particle after leaving this domain are shown in blue; it spends about 20 000
perturbation periods in this state, though most of this time is spent in the vicinity of
the red trap. Thus, the domain of maximal density of the blue marker can be referred
to as a semi-open trap, which the particle leaves from time to time to visit the left
loop in the vicinity of the external separatrix. However, at some moment, the particle
is captured by the left external trap, where it spends the following 20 000 perturbation
periods. The positions of this marker are shown in green.

Returning to the main figure 16(a), we add that the green colour in it corresponds to
the marker that started from beyond the atmosphere (external problem). It is captured
by the vortex domain, passes through a considerable part of the stochastic sea, which
is much larger than that in the bottom layer, and then re-enters the external flow.

Now we consider another interesting example of formation of chaotic regions.
The above-described variant of reconnection in the vicinity of a turnover frequency
maximum between two separatrices has been much studied, e.g. in Koshel et al.
(2008); however, it is difficult to realize in the system under consideration, though it is
not only reconnections of separatrices of nonlinear resonances induced by perturbation
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FIGURE 19. Separatrices at: (a) B = 0.003131, R = 2.4; (b) B = 0.002607, R = 2.469630
(reconnection); and (c) B = 0.002408, R = 2.5. Grey shading shows the domain separating
the internal and external separatrices.
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FIGURE 20. Dependences of the turnover frequencies Ω (solid lines) and azimuthal
velocities v (short-dash lines) on the initial position of a fluid particle of the bottom layer
on the x-axis: (a) B = 0.003131, R = 2.4; (b) B = 0.002408, R = 2.5. These correspond to
separatrices in figure 19(a,c), respectively. The horizontal lines show the values of frequency
ω̃/2, ω̃/4 and ω̃/5.

that are possible, but also reconnections of unperturbed separatrices during changes in
the sizes of configurations (Sokolovskiy et al. 2010). Examples of such reconnection
for the bottom layer are given in figures 12(e) and 19(b) (only separatrices are given
in the latter case). The comparison of panels (a)–(c) in figure 19 clearly shows the
process of disappearance of a domain separating the internal and external separatrices
during reconnection.

The dependence of turnover frequencies in the vicinity of a reconnection is given
in figure 20, where full horizontal lines are drawn at levels of ω̃/2, ω̃/4, and ω̃/5.
It is worth mentioning that the perturbation frequency is relatively large in this case
and the domains of the main nonlinear resonances (1:1, 1:2, 1:3) form too close to
the singular point, a fact which facilitates their rapid narrowing (Ryzhov & Koshel
2010, 2011). Thus, the boundary of the chaotic domain is determined by the position
of 1:4 resonance. The second feature of the frequency dependence consists of the
presence of a plateau near the separatrix in the domain of the right bottom vortex. In
this case, we can expect the formation of a regular barrier preventing fluid particles
from penetrating from the near-separatrix stochastic layer into the internal chaotic
region. With an appropriately chosen perturbation amplitude, we indeed observe such a
barrier and its destruction taking place because separatrices reconnect. Such a scenario
of chaotic mixing is illustrated in figure 21.

The results of calculations are given for situations before reconnection and at the
moment of reconnection for the internal (markers are initially located in the vortex
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FIGURE 21. Poincaré sections at 1R = 0.185 for the bottom layer, corresponding to the
undisturbed triton behaviour in the vicinity of a reconnection of separatrices (figure 19). The
sections are given for values (a) B = 0.003048, R = 2.41, (b) B = 0.002817, R = 2.44, (c)
B = 0.002645, R = 2.46. The blue markers are for the internal problem, and the black ones
are for the external problem.

domain of the internal separatrix surrounding singular domains) and external (markers
are initially located outside the vortex domain in the vicinity of the separatrix)
problems. These figures clearly show the barrier of regular behaviour which makes
it very difficult for external markers to penetrate into the right vortex domain where
mixing of internal markers takes place because of the overlapping of low-order
nonlinear resonances. The existence of this barrier is due to the small size of the
domain of quasi-linear behaviour of the dependence of turnover frequency.

Now, we will mainly focus on the external problem. Recall that the width of the
separatrix stochastic layer reaches a maximum in the vicinity of the hyperbolic point
(Gledzer 1999; Zaslavsky 2007).

Thus, at R = 2.41 (figure 21a), the internal separatrix and the internal part of the
external separatrix (along which the external markers penetrate into the vortex domain)
are separated by a thin layer with closed trajectories. Exchange of markers takes
place within this layer, i.e. the stochastic layers of these separatrices merge together.
However, the hyperbolic points are distant in space, and the width of the stochastic
layer on the side of the right vortex domain of the internal separatrix is the same as in
the absence of the external separatrix.

At the moment of reconnection, which is somewhat shifted because of perturbation
and falls to R ≈ 2.44, the separatrices merge together and hyperbolic points are
now located on the same trajectory, resulting in an increase in the thickness of the
stochastic layer.

In the Poincaré section corresponding to the value R= 2.44 (figure 21b), we see that
the external markers penetrate into the right vortex domain, but also easily leave it,
spending more time in the vicinity of the barrier.

With a further increase in R, a domain separating the separatrices appears again;
each stochastic layer becomes thinner (at the same time, they merge within the
separation domain), and the barrier again becomes weakly permeable, as can be seen
in sections in figure 21(c) at R= 2.46; the figure also shows internal markers.

Note that the examples of formation of chaotic regions in the vortex atmosphere
of the perturbed triton considered here are quite characteristic. The barrier considered
here should increase because of extension of the turnover frequency dependence and
an increase in the plateau of this dependence, and reconnections of separatrices are
observed at several values of parameters. For example, when R≈ 2.188, the separatrix
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of induced vortices located above or below the x-axis penetrates into the external
separatrix.

4. Summary and concluding remarks
Steady solutions in the form of an eccentric roundabout and a triton were found

to be very informative objects for use as a background for studying fluid-particle
advection. Because of the large number of parameters (geometric characteristics and
stratification), even regular advection of fluid particles in the vicinity of these steady
vortex structures is very diverse and allows the existence of induced motions of finite
and infinite structures, including transport corridors and transport barriers.

The paper also presents analysis of perturbed motions and demonstrates the
possibility of formation of chaotic regimes (chaotic advection) at sufficiently large
perturbations of stationary configurations. Examples are given of different scenarios of
origination and development of chaos. In addition to studying the role of the stochastic
layer in the processes of mixing, capture and release of fluid particles by a chaotic
domain, conventional for this class of investigations, the role of stratification on these
processes was also examined. It was shown that both regular (figures 8–13), and
chaotic (figures 15–17, 19 and 21) advection in the top and bottom layer proceed
differently. This is of particular importance in applied problems of oceanography, such
as mixing of different water masses (in intermediate oceanic layers) or formation of
patchy structure in the distribution of plankton or oil pollution (in surface layers).
While surface phenomena in the ocean can be monitored with the help of various
modern measurement methods (neutral-buoyancy floats, radiometers in satellites), the
construction of sound theoretical models for deep-water phenomena are perhaps the
only means of study.

This model can also be of use in studying the specific features of jet current
meandering (Samelson & Wiggins 2006), detection of barriers to cross-jet Lagrangian
transport in the ocean (Budyansky et al. 2009), effects of deep convection in the ocean
(Marshall & Schott 1999), chaotic stirring and mixing (Abraham & Bowen 2002;
Koshel & Prants 2006) and blocking in the atmosphere/ocean (Trenberth & Mo 1985;
Duan & Wiggins 1996).
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