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Abstract. This paper explores relational syllogistic logics, a family of logical systems related
to reasoning about relations in extensions of the classical syllogistic. These are all decidable
logical systems. We prove completeness theorems and complexity results for a natural subfamily
of relational syllogistic logics, parametrized by constructors for terms and for sentences.

§1. Introduction. This paper explores several fragments of relational syllogistic
logic and aims to provide completeness and complexity results for them. These are
among the simplest of all logical systems. To set notation and terminology by example,
let us consider the absolutely simplest logical system A, the one for sentences “all
p are q” introduced in [3]. The syntax begins with a set N, called the nouns. Then
the sentences of A are simply the expressions (all p q), where p and q are nouns.
The semantics is equally straightforward. A model M is a set M together with an
interpretation function giving a subset [[p]] ⊆M for each noun p. We then define:

M |= all p q iff [[p]] ⊆ [[q]]. (1)

We employ standard model-theoretic notation and terminology. We say thatM satisfies
a sentence ϕ, or that M is a model of ϕ, when M |= ϕ. A theory is a set of sentences.
Given a theory Γ, we write M |= Γ to mean that M satisfies every sentence in Γ;
naturally we say that M satisfies Γ, or that M is a model of Γ. We then have the usual
notion of logical consequence: given a theory Γ and a sentence ϕ, we write Γ |= ϕ if
every model of Γ satisfies ϕ.

We match the semantics with a proof system. Our system has two rules of inference,
shown below:

all x x
ax

all x y all y z

all x z
barbara.

In these rules, the material above the line is the set of premises, and the sentence below
is the conclusion. So (ax) has no premises, and (barbara) has two. A substitution
instance of a rule is obtained by substituting nouns in N for the variables x, y, and z.
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RELATIONAL SYLLOGISTIC LOGICS 729

We can then define the provability relation Γ � ϕ: this means that there is a tree whose
root is ϕ, and every node in the tree is either a leaf and belongs to Γ, or else it is
the conclusion, and its children are the premises, of a substitution instance of one of
our rules. The soundness/completeness theorem for this system states that Γ |= ϕ iff
Γ � ϕ. For the proof, see [3].

1.1. Syntax and semantics of the logics in this paper. We are concerned not with
A but rather with a family of extensions of it. We start with a set N of nouns (just as
above), and also a set V, the verbs. Then we define terms and sentences via the syntax
below, where p is any noun in N, r is any verb in V, and x and y are any terms:

terms p | r all x | r some x | x
sentences all x y | some x y.

(2)

Note that we have recursion here, so terms can be nested, e.g. (r all (s some p)).
For the semantics, we start with a model in our previous sense (to interpret the

nouns), and add interpretations of the verbs as binary relations: [[r]] ⊆M ×M for all
r ∈ V. Then we interpret our terms in a given model by recursion as follows:

[[r all x]] = {m ∈M : for all n ∈ [[x]], m[[r]]n}
[[r some x]] = {m ∈M : there is n ∈ [[x]] such that m[[r]]n}

[[x]] =M \ [[x]].

Thus, the interpretation of every term is a subset of M. We define the truth-relation
for sentences and models by generalizing (1) above:

M |= all x y iff [[x]] ⊆ [[y]]

M |= some x y iff [[x]] ∩ [[y]] �= ∅.

The basic languages in this paper are all sublanguages of the language just presented,
which we call L5.5. And they are all extensions of the language we call L1, which only
has the sentence former (all x y) and the term former (r all x). There are three features
in L5.5 which are absent from L1: the sentence former (some x y), the term former (r
some x), and term complementation. We thus explore 23 = 8 logical systems, obtained
by all possible combinations of these features. Those languages are listed in the chart
in Figure 1. We organize matters by studying Ln and Ln.5 in Section n. Note that L1

and L2 are related in the same was as Ln and Ln.5 for n > 2, namely by adding the
sentence former (some x y).

We are interested in complete proof systems and the complexity of the consequence
relation for each of these languages. By this we mean the computational complexity
of the following decision problem: given a finite theory Γ and a sentence ϕ, output
“yes” if Γ |= ϕ and “no” otherwise. Our results, which are summarized in the last two
columns of Figure 1, will be explained in more detail in §1.5 below.

1.2. Related work. This paper is similar in spirit to [10], which also considered
completeness and complexity results for decidable languages extending the basic
syllogistic logic A. In fact, the largest language of this paper, L5.5, is essentially
equivalent to the largest language considered in [10], called R∗† there (see Propositions
5.1 and 5.2 below). But there are several differences between the other languages in
[10] and in this paper. First, [10] allowed for complemented verbs, contrary to what we
do here. Second, [10] also explored logical systems where the two terms in sentences
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language term sentence additions to complexity of the

former(s) former(s) syllogistic logic consequence relation

1 r all x all x y none PTime

2 r all x all x y, some x y (cases), or (chains), PTime

or extra syntax

3 r all x, r some x all x y (cases ) & (cases2) Co-NPTime complete

3.5 r all x, r some x all x y, some x y (cases) & (cases2) Co-NPTime complete

4 r all x, x all x y extra syntax & Co-NPTime hard

schematic rules

4.5 r all x, x all x y, some x y extra syntax & (raa) ExpTime

& schematic rules

5 r all x, r some x, x all x y ExpTime complete

5.5 r all x, r some x, x all x y, some x y individual variables ExpTime complete

Fig. 1. Languages in this paper, given by section.

like (all x y) were not treated the same. For example, in two systems there, the subject
noun phrase x was required to be (negated) atomic. Third, we allow nested terms,
which are not part of the syntax in [10]. The upshot is that there is no overlap in the
technical results from [10] and this paper, except for the result on L5.5 which we quote
in §5.

In [2], McAllester and Givan considered a language which is a slight extension
of our language L3.5. In §3, we essentially provide a new proof of their result that
the consequence relation for this language is Co-NPTime complete. Our version of
this result is slightly sharper, since we prove that the weaker language L3 is already
Co-NPTime hard, and we also provide complete (though nonsyllogistic) proof systems
for L3 and L3.5.

We began this paper with A, which was introduced in [3]. But the smallest language
in Figure 1 is L1, which is the extension of A by the term former (r all x). As a proof
system for L1, we take the rules (ax) and (barbara) above (but we allow terms, not
just nouns, to be substituted for the variables x, y, and z), together with a new rule:

all x y

all (r all y) (r all x)
anti.

It is easy to see that this proof system is sound (if Γ � ϕ, then Γ |= ϕ). Completeness
was shown in [8], which also contains completeness and complexity results for a number
of related languages. The completeness proof originated in [7], where it is also shown
that the consequence relation for L1 is in PTime. We reprove these results in §1.4 below,
but using a more general framework described in §1.3. This framework unifies the
PTime results for L1 and L2 in §2.5, and allows us to obtain more precise negative
results for the other languages in the paper, as we shall see.

1.3. Syllogistic proof systems and bounded completeness. At this point, we wish to
formally state what we mean by a syllogistic proof system. To state rules, we employ
a language with noun variables p, q, ... , verb variables r, s, ... , term variables x, y, ... ,
and sentence variables ϕ,�, ... . (In practice, none of our rules will make use of noun
variables, and very few will make use of sentence variables.)

A term template is defined as in (2), but using noun and verb variables in place of
nouns and verbs, and with an additional base case: a term variable is a term template.
A sentence template is defined as in (2), but using term templates in place of terms,
and with an addition option: a sentence variable is a sentence template.
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A syllogistic rule � consists of finitely many (possibly none) sentence templates as
premises, and a single sentence template as a conclusion. A syllogistic proof system is
a finite set of syllogistic rules.

We use � to denote a syllogistic proof system. Given a syllogistic proof system,
we also use the symbol � for the (standard) provability relation, defined shortly. A
substitution instance of a rule � is obtained by substituting nouns, verbs, terms, and
sentences for all noun variables, verb variables, term variables, and sentence variables,
respectively. A proof tree over a theory Γ is a tree labeled by sentences, such that each
node is either a leaf and belongs to Γ, or else it is the conclusion, and its children are
the premises, of a substitution instance of one of the rules. We write Γ � ϕ if there is a
proof tree over Γ whose root is ϕ.

We should mention that a syllogistic proof system is subject to some important
limitations. First, the system cannot include rules which allow for the withdrawal of
assumptions, as in reductio ad absurdum, or proof by cases. (On the other hand, ex
falso quodlibet is a syllogistic rule; see [3].) Second, the premises of each rule must be a
fixed finite set of sentence templates; the set of premises cannot be listed as a schema.

Later in this paper, we shall see proof systems that are not syllogistic in our sense:
To obtain completeness theorems for various logics, we need to add the rule (cases)
and its variants (cases2), (cases

′), and (cases
′
2) in §§2.3 and 3, the rule (raa) in §4, and

the schema (chains) in §2.4.
Next, we introduce a strengthening of the notion of syllogistic proof system, which

ensures that the consequence relation Γ |= ϕ is efficiently decidable, for any finite
theory Γ and any sentence ϕ.

Definition 1.1. Let L be a language, equipped with a syllogistic proof system �,
and let A be any set of sentences in L. We write Γ �A ϕ if Γ � ϕ via a proof tree T with
the property that all sentences in T belong to A.

Example 1.2. This example is based on the observation that

{all x y, all y z} � all (r all z) (r all x). (3)

For example, here is a proof tree:

all y z

all (r all z) (r all y)
anti

all x y

all (r all y) (r all x)
anti

all (r all z) (r all x)
barbara.

Let A be the set of all sentences � such that every subterm of � is in the set
{x, y, z, r all x, r all z} (this is the set of subterms of the sentences appearing in (3)).

Our tree above does not show that

{all x y, all y z} �A all (r all z) (r all x). (4)

The problem is that the term (r all y) is not in A. But the tree below does show (4):

all x y all y z

all x z
barbara

all (r all z) (r all x)
anti.
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Definition 1.3. A boundedly complete syllogistic proof system for L is a syllogistic
proof system� forLwhich is sound, and such that that there exists a PTime-computable
f : P fin(L) → P fin(L) such that whenever Γ |= ϕ, then Γ �f(Γ∪{ϕ}) ϕ.

Example 1.4. Suppose we are working with the language L1. For any finite set
of sentences Δ, let f(Δ) be the set of all sentences ϕ such that every subterm of ϕ
is a subterm of a sentence in Δ. Note that f is computable in polynomial time by
enumerating the subterms of sentences in Δ, and then forming all sentences (all u v)
such that u and v are on the list. In connection with Example 1.2, the set A there is
exactlyf({all x y, all y z, all (r all z) (r all x)}). In Proposition 1.6 below, we are going
to show that the proof system with rules (ax), (barbara), and (anti) is boundedly
complete for L1. The function f could serve as a witness. But in order to simplify the
proof, we use a slightly different function g.

Theorem 1.5. Fix a language L. Let � be a boundedly complete syllogistic proof
system for a language L. Then � is complete, and for any finite theory Γ and any sentence
ϕ, the problem of deciding whether Γ |= ϕ is in PTime.

Proof. This is essentially Appendix A of McAllester [1]. Here is a sketch, based on
this, and also on a parallel result in [10] which was proved in the easier setting of
syllogistic logics without complex terms.

Let f : P fin(L) → P fin(L) be a PTime-computable function such that Γ �f(Γ∪{ϕ}) ϕ
whenever Γ |= ϕ. In particular, Γ |= ϕ implies that Γ � ϕ. So the proof system is
complete.

For the PTime decidability, first compute f(Γ ∪ {ϕ}). Call this set A. Let X0 =
Γ ∩ A. We compute an increasing sequence of subsets of A by induction. Given Xn,
take each of the finitely many rules � of the logic, and do the following: compute the set
of all substitution instances of � whose premises are all inXn; for each such substitution
instance, if the conclusion � belongs to A, then add � to Xn+1. Continue until the first
n∗ such thatXn∗+1 = Xn∗ . Since all theXn are subsets of A, we have n∗ ≤ 1 + |A|. And
Γ �A ϕ iff ϕ ∈ Xn∗ . We take it as standard that all of this can be done in PTime. �

1.4. Example: Completeness and PTime decidability for L1. We illustrate the
application of Theorem 1.5 to L1 with the syllogistic proof system consisting of the
rules (ax), (barbara), and (anti).

For any set of sentences Δ, let T (Δ) be the set of subterms of sentences in Δ. Let
T+(Δ) be T (Δ) together with the terms (r allw) wherew ∈ T (Δ) and where r is a verb
which appears in Δ.

Let g(Δ) be the set of all sentences (all u v), where u ∈ T (Δ) and v ∈ T+(Δ). Note
that when Δ is finite, g is computable in PTime.

Proposition 1.6 [7]. If Γ |= ϕ, then Γ �g(Γ∪{ϕ}) ϕ. Hence the consequence relation
for L1 is in PTime.

Proof. Fix a finite theory Γ and a sentence ϕ. We are going to save on some notation
in this proof by writing T forT (Γ ∪ {ϕ}),T+ forT+(Γ ∪ {ϕ}), and A for g(Γ ∪ {ϕ}).

We make a model M as follows. The domain M of the model is T. The structure of
the model is given by

t ∈ [[p]] iff Γ �A all t p

t[[r]]u iff Γ �A all t (r all u)
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(Recall that the set A is fixed as g(Γ ∪ {ϕ}). When we write Γ �A � in this proof, we
are not changing the meaning of A to g(Γ ∪ {�}).)

Claim 1.7 (Truth Lemma). For all a ∈ T ,

t ∈ [[a]] iff Γ �A all t a. (5)

Proof. The proof is by induction on a. When a is a noun, the assertion in (5) is
part of the definition of the model. Assume (5) for a, and consider (r all a). Since
(r all a) ∈ T , then a ∈ T =M as well. Note also that the sentence (all a a) belongs to
A, and so Γ �A all a a by (ax). By induction, a ∈ [[a]].

Let t ∈ [[r all a]]. Since a ∈ [[a]], we have t[[r]]a, and hence Γ �A all t (r all a) by
definition of [[r]].

Conversely, assume that Γ �A all t (r all a). Then t ∈ T =M . We show that
t ∈ [[r all a]]. For this, let b ∈ [[a]], so by induction, Γ �A all b a. We must show that
t[[r]]b, equivalently Γ �A all t (r all b). Note that b ∈M = T , so (r all b) ∈ T+. The
key point is that the sentence all (r all a) (r all b) belongs to A, since (r all a) ∈ T and
(r all b) ∈ T+. Using (anti) and Γ �A all b a, we see that Γ �A all (r all a) (r all b).
Then by (barbara), Γ �A all t (r all b). �

We continue by showing that M |= Γ. For this, take any sentence (all u v) in Γ.
Let t ∈ [[u]]. By (5), Γ �A all t u. Now t, u, and v are in T, so the sentences (all u v)
and (all t v) are in A. By (barbara), Γ �A all t v. By (5) again, t ∈ [[v]]. Since t was
arbitrary, we have shown that [[u]] ⊆ [[v]], and M |= all u v.

Since M |= Γ and Γ |= ϕ, the sentence ϕ holds in M. Let us write ϕ as (all a b).
Then a ∈ T =M and the sentence (all a a) belongs to A, and so Γ �A all a a by
(ax). Thus, a ∈ [[a]] by (5). So a ∈ [[b]]. By (5) again, Γ �A all a b. This concludes the
proof. �

1.5. Results. Our two main themes are trade-offs between expressive power and
computational complexity, and also the variety of devices that one can add on top of
pure syllogistic logic in order to obtain sound and complete proof systems. Our results
are summarized in Figure 1.

We begin with a negative result: L2 has no sound and complete syllogistic proof
system. The argument for this is combinatorial, and in outline it is based on a
similar result in [10] for R. Nevertheless, there are proof systems which capture the
consequence relation of L2. Most of §2 is devoted to several such logics, each of which
extends syllogistic logic in a different way. One way is to add a rule (cases) which
enables proof by cases, another uses a schema of rules called (chains) (thus there are
infinitely many rules, but the set of rules is an easily-defined set), and the last is to
extend the syntax in such a way that the extension, called L+

2 , does have a sound and
complete syllogistic proof system. In fact, this system is boundedly complete, and by
Theorem 1.5, the consequence relation of L+

2 , and hence of its sublanguage L2, is in
PTime.

Notice that what we will show is that L2 has no sound and complete syllogistic proof
system, but the larger language L+

2 does have such a proof system. The first example
of this phenomenon is in [9].

The lower bounds on complexity established in the rest of the paper show that
(assuming P �= NP) none of the other languages admit boundedly complete syllogistic
proof systems.

https://doi.org/10.1017/S1755020320000386 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020320000386


734 ALEX KRUCKMAN AND LAWRENCE S. MOSS

The languages L3 and L3.5 extend L1 and L2 with the term former (r some x). We
show that the smaller language L3 has a consequence relation which is Co-NPTime

hard, via a reduction from the one-in-three positive 3-SAT problem. On the other
hand, a finite countermodel construction shows that the consequence relation of the
larger language L3.5 is in Co-NPTime. It follows that the consequence relation for both
languages are Co-NPTime complete. We give sound and complete proof systems for
these logics which are not syllogistic: they use variants of the rule (cases).

The languages L4 and L4.5 extend L1 and L2 with term complementation. As with
L3, we show that the consequence relation for L4 is Co-NPTime hard, via a reduction
from 3-SAT. But this time we leave open the question of Co-NPTime completeness;
the upper bound of ExpTime comes from the known complexity of the larger language
L5.5. We also leave open the problem of formulating proof systems for L4 and L4.5 in
their original syntax. Instead, we present a completeness result for an extension L+

4.5 of
L4.5. The proof system and the completeness result are comparatively simple, though
the proof system is decidedly nonsyllogistic: it includes a form of reductio ad absurdum
(raa), as well as several rule schemas, and the syntax is not even finitary, since there is
an infinite family of sentence formers. This proof system restricts, by dropping (raa),
to a sound and complete proof system for the corresponding extension L+

4 of L4.
The largest languages in this paper are L5 and L5.5. We have the least to say about

them, mostly because L5.5 has been studied (in a different but equivalent formulation,
calledR∗†) in [10], and the complexity result for it from [10] also holds forL5, as we shall
see. The sound and complete proof system for R∗† from [10] (which is nonsyllogistic
due to its use of individual variables) can be adapted to a similar proof system for L5.5,
but we do not make that explicit here. We leave open the problem of formulating a
proof system for L5.

One might guess that when we explore a partial order of logics, stronger logics are
harder to work with and to prove completeness for. But this is not always the case. One
reason: as the logics get stronger, they include more and more features of first-order
logic and are thus easier to analyze, due to our experience with first-order logic. A
second reason: sometimes adding to the syntax of a logic restores harmony in some
way, thereby making it easier for us to work with. The examples of L+

2 , L+
4 , and L+

4.5
emphasize the fact that there is not a monotone relationship between the strength
of logical systems and their elegance, or between their strength and the difficulty
of proving completeness. It is an open problem to develop a general theory which
could explain this phenomenon. For example, why it is that some logical systems have
(boundedly complete) syllogistic proof systems (L+

2 ), while others do not (L2)? What
we have at present are some ad hoc results, and much remains to be done.

§2. L2: Adding the sentence former (some x y) to L1. The main results on L2 are
(1) it has no finite sound and complete syllogistic proof system; (2) nevertheless there
are several nonsyllogistic devices which allow us to obtain sound and complete proof
systems; (3) alternatively, we can extend the syntax of L2 to a larger language L+

2 in
such a way that L+

2 has a boundedly complete syllogistic proof system; and (4) as a
result of this last point, the consequence relation Γ |= ϕ for L+

2 (and hence L2) is in
PTime.

2.1. The base system �0. We begin with a proof system in Figure 2 that will be used
in this section and beyond.
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all x x
AX

all x y all y z
all x z

BARBARA
all x y

all (r all y) (r all x)
ANTI

some x y
some x x SOME1

some x y
some y x SOME2

some x y all y z
some x z DARII

Fig. 2. The proof rules of �0.

It is easy to check that the rules in Figure 2 are sound. Theorem 2.3 below shows
that they are also complete for conclusions of the form (all x y). Since the rules (ax),
(barbara), and (anti) are complete for L1, this result can be interpreted as saying that
L2 is a conservative extension of L1. It is also possible to give a direct model-theoretic
proof of this conservativity result.

In many places in this paper, we will work with a set T of terms. We will always
assume that such a set T is closed under subterms. We could usually take T to be the
set of all terms in the language under study. But when we use T to build a model (as
we do just below), that model will be infinite when T is infinite. Working with a finite
set T allows us to build finite models in many situations.

We write Γ �0 ϕ if there is a proof of the sentence ϕ from the theory Γ using the
rules in Figure 2. We also write

x ≤ y
to mean that Γ �0 all x y. We use this notation because ≤ is a preorder, due to (ax)
and (barbara). Please note that Γ is left off of this notation.

The first canonical model of a theory Γ. Let Γ be a theory, let T be a set of terms
(closed under subterms as usual), and let M be the set of unordered pairs {t, u} of
terms from T. This includes singletons {t} = {t, t}. We define a model M(Γ,T) with
domain M by setting

{t, u} ∈ [[p]] iff t ≤ p or u ≤ p
{t, u}[[r]]{v,w} iff for some a ∈ {t, u} and b ∈ {v,w}, a ≤ r all b.

(6)

Lemma 2.1 (Truth Lemma). In M(Γ,T), for all terms x ∈ T,

[[x]] = {{t, u} ∈M : t ≤ x or u ≤ x}.
Proof. By induction on x. For a noun p ∈ N, this is by definition of the model. For

a term of the form (r all x) ∈ T, note that x ∈ T, since T is closed under subterms.
Suppose that {t, u} ∈ [[r all x]]. Sincex ≤ x by (ax), the induction hypothesis implies

{x} ∈ [[x]]. So {t, u}[[r]]{x}. By the definition of [[r]], either t ≤ r all x, or else u ≤
r all x.

Conversely, fix {t, u} ∈M , and suppose that (without loss of generality) t ≤ r all x.
Let {v,w} ∈M be an element of [[x]]. By the induction hypothesis, we have (without
loss of generality) v ≤ x. By (anti), r all x ≤ r all v. By (barbara), t ≤ r all v. So
{t, u}[[r]]{v,w}, and hence {t, u} ∈ [[r all x]]. �

Lemma 2.2. If (all x y) ∈ Γ, then M(Γ,T) |= all x y. If x and y are any terms in T,
we have M(Γ,T) |= some x y. As a consequence, if T contains all subterms of sentences
in Γ, then M(Γ,T) |= Γ.
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Proof. Suppose (all x y) ∈ Γ. If {t, u} ∈ [[x]] in M(Γ,T), then by Lemma 2.1
(without loss of generality), t ≤ x. But then t ≤ y by (barbara), so {t, u} ∈ [[y]]
by Lemma 2.1, and M(Γ,T) |= all x y.

Now suppose x, y ∈ T. Since x ≤ x and y ≤ y, we have {x, y} ∈ [[x]] ∩ [[y]] by
Lemma 2.1, so M(Γ,T) |= some x y.

If T contains all subterms of sentences in Γ, then M(Γ,T) |= all x y whenever
(all x y) ∈ Γ by the first assertion, andM(Γ,T) |= some x y whenever (some x y) ∈ Γ
by the second assertion. �

Theorem 2.3. If Γ |= all x y, then Γ �0 all x y. Moreover, the proof only uses the rules
(ax), (barbara), and (anti).

Proof. Choose T so that it contains x, y, and all terms in Γ. If Γ |= all x y, then
M(Γ,T) |= all x y by Lemma 2.2. Then {x} ∈ [[x]] ⊆ [[y]] by (ax) and Lemma 2.1. By
Lemma 2.1 again, Γ �0 all x y.

To see that the proof uses only the rules (ax), (barbara), and (anti), we just need
to examine the rules in the proof system and note that no rule which produces a
conclusion of the form (all x y) has a premise of the form (some a b). �

The proof of Theorem 2.3 shows that if Γ ��0 all x y, then there is a countermodel of
sizeO(n2), where n is the complexity of Γ ∪ {all x y}. However, as noted in Lemma 2.2,
M(Γ,T) satisfies every sentence (some x y) with x, y ∈ T. To obtain a countermodel
for sentences of this form, we will look at a submodel of M(Γ,T).

The second canonical model of a theory Γ. Let M ′ be the set of unordered pairs
{t, u} of terms in T such that Γ �0 some t u. Note that we allow t = u. Define a model
M′(Γ,T) with domainM ′ just as in (6).

The proof system �0 is not complete for sentences of the form (some x y), but we
can prove a partial completeness result under the following additional hypothesis on
Γ, a form of which was first introduced by McAllester and Givan [2].

Definition 2.4. We say that Γ determines existentials for T if, for all verbs r ∈ V and
all terms x, y ∈ T, either Γ �0 some x x or Γ �0 all y (r all x).

The intuition behind this definition is that in any model M, for any term x, either
M |= some x x, or [[x]] = ∅, in which case [[r all x]] =M for any verb r, and M |=
all y (r all x) for any term y.

Lemma 2.5. Suppose Γ determines existentials for T. Then:

(1) In M′(Γ,T), for all terms x ∈ T, [[x]] = {{t, u} ∈M ′ : t ≤ x or u ≤ x}.
(2) If (all x y) ∈ Γ, then M′(Γ,T) |= all x y.
(3) If x, y ∈ T and (some x y) ∈ Γ, then M′(Γ,T) |= some x y.

As a consequence, if Γ is any theory, T contains all subterms of sentences in Γ, and
Γ∗ ⊇ Γ is a theory which determines existentials for T, then M′(Γ∗,T) |= Γ.

Proof. The proof of (1) is exactly like the proof of Lemma 2.1, with the following
adjustment: If {t, u} ∈ [[r all x]] and {x} ∈M ′, the proof in Lemma 2.1 goes through
as written. But if {x} /∈M ′, then Γ ��0 some x x, so t ≤ r all x (and also u ≤ r all x),
since Γ determines existentials for T.

The proof of (2) is exactly as in the proof of Lemma 2.2.
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The proof of (3) is also exactly as in the proof of Lemma 2.2, with the following
adjustment: We need to use the fact that (some x y) ∈ Γ to see that {x, y} ∈M ′.

Putting this together, suppose Γ is any theory,T contains all subterms of sentences in
Γ, and Γ∗ ⊇ Γ determines existentials for T. If (all x y) ∈ Γ ⊆ Γ∗, then M′(Γ∗,T) |=
all x y. And if (some x y) ∈ Γ ⊆ Γ∗, then since x, y ∈ T, M′(Γ∗,T) |= some x y. �

Theorem 2.6. Suppose that T contains x, y, and all subterms of sentences in Γ,
and Γ∗ ⊇ Γ is a theory which determines existentials for T. If Γ |= some x y, then
Γ∗ �0 some x y.

Proof. Since Γ ⊆ Γ∗, M′(Γ∗,T) |= Γ by Lemma 2.5, so M′(Γ∗,T) |= some x y.
Suppose {t, u} ∈ [[x]] ∩ [[y]]. Since {t, u} ∈M ′, Γ∗ �0 some t u. And by Lemma 2.5,
Γ∗ �0 all v x and Γ∗ �0 all w y for some v,w ∈ {t, u}. By analyzing the four cases and
using (some1), (some2), and (darii), we see that Γ∗ �0 some x y. �

Corollary 2.7. If T contains all subterms of sentences in Γ ∪ {ϕ} and Γ determines
existentials for T, then Γ |= ϕ if and only if Γ �0 ϕ.

Proof. The implication Γ�0 ϕ implies Γ |= ϕ is just soundness of the rules in �0. The
converse follows immediately from Theorems 2.3 and 2.6, taking Γ∗ = Γ in Theorem
2.6. �

We conclude this section with two proof-theoretic observations about the system �0.
If �r = r1, ... , rn is a sequence of verbs and x is a term, we use the notation (�r all x) for
the term (r1 all (r2 all (... (rn all x)))). When �r is the empty sequence, (�r all x) = x.

If � = all u v, we define

Anti(�r, �) =

{
all (�r all u) (�r all v) if the length of �r is even
all (�r all v) (�r all u) if the length of �r is odd.

Note that {�} �0 Anti(�r, �) by repeated applications of (anti).

Definition 2.8. Let Γ be a theory. A Γ-sequence is a finite sequence of terms t1, ... , tn,
such that for all 1 ≤ i < n there is a sentence� = (all a b) ∈ Γ and a sequence of verbs
�r such that (all ti ti+1) = Anti(�r, �i).

Lemma 2.9. Γ �0 all x y if and only if there is a Γ-sequence of terms t1, ... , tn such
that x = t1 and y = tn.

Proof. Suppose x = t1, ... , tn = y is a Γ-sequence. If n = 1, then x = y, and
Γ �0 all x y by (ax). If n > 1, then for all 1 ≤ i < n, Γ �0 all ti ti+1 by repeated
applications of (anti). And by repeated applications of (barbara), Γ �0 all x y.

We prove the converse by induction on the height of the proof tree. In the base case,
(all x y) ∈ Γ, and x, y is a Γ-sequence as desired.

Case 1: If the root of the proof tree is

all x x
ax

then x is a Γ-sequence from x to x.
Case 2: If the root of the proof tree is

all x y all y z

all x z
barbara
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then by induction we have Γ-sequences t1, ... , tn and t′1, ... , t
′
m with x = t1, y = tn = t′1,

and z = t′m. Then t1, ... , tn–1, t
′
1, ... , t

′
m is a Γ-sequence from x to z.

Case 3: If the root of the proof tree is

all x y

all (r all y) (r all x)
anti

then by induction we have a Γ-sequence t1, ... , tn with x = t1 and y = tn. Then
(r all tn), ... , (r all t1) is a Γ-sequence from (r all y) to (r all x). �

Lemma 2.10. Γ �0 some x y if and only if there is a sentence (some t1 t2) ∈ Γ such
that Γ �0 all ti x and Γ �0 all tj y, for some i, j ∈ {1, 2}.

Proof. Suppose there is a sentence (some t1 t2) ∈ Γ such that Γ �0 all ti x and
Γ �0 all tj y, for some i, j ∈ {1, 2}. Then applying (some1) or (some2) if necessary,
Γ �0 some ti tj some ti tj . By two applications of (darii) and (some2), Γ �0 some x y.

We prove the converse by induction on the height of the proof tree. In the base case,
when (some x y) ∈ Γ, we have Γ �0 all x x and Γ �0 all y y by (ax).

Case 1: If the root of the proof tree is

some x y
some x x some1

then by induction there is a sentence (some t1 t2) ∈ Γ such that Γ �0 all ti x for some
i ∈ {1, 2}.

Case 2: If the root of the proof tree is

some x y
some y x some2

then by induction there is a sentence (some t1 t2) ∈ Γ such that Γ �0 all ti y and
Γ �0 all tj x, for some i, j ∈ {1, 2}.

Case 3: If the root of the proof tree is

some x y all y z
some x z darii

then by induction there is a sentence (some t1 t2) ∈ Γ such that Γ �0 all ti x and
Γ �0 all tj y, for some i, j ∈ {1, 2}. But also Γ �0 all y z, so Γ �0 all tj z by
(barbara). �

2.2. No sound and complete syllogistic proof system forL2. In this section, we prove
that there is no sound and complete syllogistic proof system for L2. This suggests that
we need nonsyllogistic devices like those which we shall see in coming sections of this
paper. But this talk of rules being “needed” is not precise, and at the end of the day, it
is not quite what we shall prove. At the same time, what we do prove is in a real way
stronger than the statement above. So we need to make all of this precise.

We return to our discussion of syllogistic rules in §1.3. Every syllogistic proof system
defines a provability relation between theories and sentences. In this section, we write
this relation as Γ �∗ϕ. To be sound, we require that if Γ �∗ϕ, then Γ |= ϕ. To be
complete, we require that if Γ |= ϕ, then also Γ �∗ϕ.

The degree k consequence relation |=k is the relation between sets Γ and sentences ϕ
defined as follows: Γ |=k ϕ if there is a finite tree with nodes labeled by sentences, such
that each node is either a leaf and in Γ, or else is a sentence ϕ with children �1, ..., �j
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for some j ≤ k, and such that {�1, ... , �j} |= ϕ. If we have a sound syllogistic proof
system �∗, then since it has only finitely many rules, each with finitely many premises,
there is a number k (the maximum number of premises in any rule in �∗) such that
whenever Γ �∗ϕ, we also have Γ |=k ϕ.

Theorem 2.11. For all n, there is a theory Γn+1 and a sentence ϕ such that Γn+1 |= ϕ,
and Γn+1 �|=n ϕ. As a consequence, there is no sound and complete syllogistic proof system
for L2.

Note that the first statement does not refer to proof systems in any way. It is
completely semantic. But it immediately implies the negative result about proof systems.

The setsΓn. For all n, let N = {a, b}, let V = {r1, ... , rn}, and let Γn be the following
theory:

α = some (r1 all (r1 all a)) (r1 all (r1 all a))

ϕ1 = all (r1 all b) (r2 all (r2 all a))

ϕ2 = all (r2 all b) (r3 all (r3 all a))
...

ϕi = all (ri all b) (ri+1 all (ri+1 all a))
...

ϕn–1 = all (rn–1 all b) (rn all (rn all a))

� = all (rn all b) a.

We will use Γn as a recurring example in the forthcoming sections, to demonstrate
proof systems.

If r is a verb, then an r-king in a model M is an element x ∈M such that for all
y ∈M , x[[r]]y.

Lemma 2.12. Γn |= some a a.

Proof. Let M |= Γn. If [[a]] �= ∅, we are done. So we shall assume that [[a]] = ∅.
Then for any verb r, [[r all a]] =M . By α, M contains an r1-king x. Then ϕ1

implies that x is also an r2-king. Continuing by induction, ϕi implies that x
is an ri+1-king. Finally, x is an rn-king, and � implies that x ∈ [[a]], which is
a contradiction. �

Lemma 2.13. If Γn |= all u v, then either u = v, or (all u v) = Anti(�r, �), for some
sequence �r and some sentence � ∈ Γn.

Proof. By Theorem 2.3, Γn �0 all u v, and by Lemma 2.9, there is a Γn-sequence
u = t1, ... , tm = v of length m. If m = 1, then u = v and we are done. If m = 2, then
(all u v) = Anti(�r, �) for some sequence �r and some � ∈ Γn; we are again done.

It remains to prove a contradiction fromm ≥ 3. Suppose that we have�, � ∈ Γn and
sequences of verbs �r and �s such that (all t1 t2) = Anti(�r, �) and (all t2 t3) = Anti(�s, �).
Notice that t2 must contain either a or b. Assume that t2 contains a. The argument
when t2 contains b is similar. Let m be the number of verbs in t2, the second term of
Anti(�r, �). Since it is a rather than b which occurs in the second term of Anti(�r, �), m
is even. We see this by examining the sentences in Γn. And let n be the number of verbs
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in t2, the first term of Anti(�s, �). This time, we see that n is odd. But m = n, since the
second term of Anti(�r, �) is the first term of Anti(�s, �). This is a contradiction. �

The sets Δn,i . For all n and all 1 ≤ i ≤ n, let the theory Δn,i be given by

Δn,i =
{

(Γn \ {ϕi}) if 1 ≤ i < n
(Γn \ �) if i = n.

Lemma 2.14. Suppose that for some 1 ≤ i ≤ n and some terms u and v,

Δn,i |= some u v.

Then u = v = (r1 all (r1 all a)), so that (some u v) = α.

Proof. It suffices to show that for every term t �= (r1 all (r1 all a)), there is a model
of Δn,i in which [[t]] = ∅. Indeed, then Δn,i �|= some u v when u = t or v = t.

We proceed by cases. In every case except t = a, we actually obtain a model of
Γn in which [[t]] = ∅. Since the models M4 of Γn constructed in Case 4 have M4 �|=
some a (r1 all (r1 all a)), this implies the additional result that if Γn |= some u v, then
u = v = (r1 all (r1 all a)) or u = v = a.

Case 1: t = (�s all b) or t = (�s all a), where the length of �s is odd. LetM1 = {∗}, and
define the model M1 with domain M1 by [[a]] = [[b]] = {∗}, and [[ri ]] = ∅ for all i. In
M1, we have

[[�s all a]] = [[�s all b]] =

{
{∗} if the length of �s is even
∅ if the length of �s is odd,

so M1 |= Γn.
Case 2: t = (�s all b), where the length of �s is even. Define M2 in the same way as

M1, but with [[b]] = ∅. This time, we have

[[�s all a]] =

{
{∗} if the length of �s is even
∅ if the length of �s is odd

[[�s all b]] =

{
∅ if the length of �s is even
{∗} if the length of �s is odd,

so again M2 |= Γn.
Case 3: t = a. Fix 1 ≤ i ≤ n, letM3 = {∗}, and define the modelM3(i) with domain

M3 by [[a]] = ∅, [[b]] = {∗}, and

[[rj ]] =

{
{(∗, ∗)} for j ≤ i
∅ for j > i

In M3(i), we have

[[rj all a]] = [[b]] = {∗}

[[rj all (rj all a)]] = [[rj all b]] =

{
{∗} if j ≤ i
∅ if j > i,

so M3(i) |= Δn,i .
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Case 4: t = (�s all a), where �s = (s1, ... , sk), k is even and nonzero, and �s �= (r1, r1).
Let M4 = {w, x, y, z}, and define a model M4 with domain M4 by [[a]] = {w} and
[[b]] = {w, x, y, z}. To define the verb interpretations [[ri ]], we break into subcases.

Subcase 4a: sk �= r1. Set x[[r1]]w, y[[r1]]x, z[[sk]]w, and no other instances of verbs:

z
sk �� w x

r1�� y
r1��

Subcase 4b: sk = r1 and sk–1 �= r1. Set x[[r1]]w, y[[r1]]x, and no other instances of
verbs.

z w x
r1�� y

r1��

Subcase 4c: sk = r1, sk–1 = r1, and k > 2. Set x[[r1]]w, y[[r1]]x, z[[sk–2]]y, and no
other instances of verbs.

w x
r1�� y

r1�� z
sk–2��

In all three subcases, [[r1 all a]] = {x} and [[r1 all (r1 all a)]] = {y}, so M4 |= α. And
for all 1 ≤ i ≤ n, [[ri all b]] = ∅, so M4 |= Γn. It remains to show that [[�s all a]] = ∅. We
introduce some notation: write �s≥j for the sequence (sj, ... , sk).

In subcase 4a, [[sk all a]] = {z}, and [[s≥k–1 all a]] = ∅. Since k is even we have

[[�s≥j all a]] =

{
∅ if j is odd
M4 if j is even,

and [[�s all a]] = [[�s≥1 all a]] = ∅.
In subcase 4b, [[sk all a]] = {x}, and [[s≥k–1 all a]] = ∅. As in subcase 4a, [[�s all a]] = ∅.
In subcase 4c, [[�s≥k–2 all a]] = {z}. So [[�s≥k–3 all a]] = ∅. And then since k is even and

k ≥ 4, [[�s≥1 all a]] = ∅ by the same argument which we have seen above.
This completes the proof. �
Lemma 2.15. For any natural number k, and any n ≥ k + 1, if Γn |=k some u v, then

u = v = (r1 all (r1 all a)), so that (some u v) = α.

Proof. By induction on the depth of the tree witnessing Γn |=k some u v. In the base
case, (some u v) is a leaf in Γn. Since α is the only sentence of the form (some u v) in
Γn, we are done.

Now suppose the root of the tree is (some u v) with children {�1, ... , �j}, where
j ≤ k, Γn |=k �i for all 1 ≤ i ≤ j, and {�1, ... , �j} |= some u v.

We claim that for all �i , there is a single sentence �i ∈ Γn such that {�i} |= �i . By
induction, if �i has the form (some x y), then �i = α, and we can take �i = α. On
the other hand, if �i has the form (all x y), then since Γn |= �i , by Lemma 2.13 either
�i = (all x x) and we can take �i to be any sentence in Γn, or �i = Anti(�ri , �i) for
some �i ∈ Γn, and {�i} |= �i .

By the claim, {�k : k ≤ j} |= some u v. And since j ≤ k ≤ n – 1, there is some
1 ≤ i∗ ≤ n such that {�k : k ≤ j} ⊆ Δn,i∗ . For this i∗, we see that Δn,i∗ |= �k for all
k ≤ j, so Δn,i∗ |= some u v. Our result follows from Lemma 2.14. �

Proof of Theorem 2.11. By Lemma 2.12, Γn+1 |= some a a. And by Lemma 2.15,
Γn+1 �|=n some a a.
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Suppose that �∗ is a sound and complete syllogistic proof system for L2. Let n be
the maximum number of premises in any rule in �∗. Then since Γn+1 |= some a a, we
have Γn+1 �∗ some a a by completeness, and Γn+1 |=n some a a by soundness. This is
a contradiction. �

We have shown that the full semantic entailment relation |= for L2 is not |=n for any
n. This contrasts with logics like the one for L1; for that, |= coincides with |=2, since
there is a sound and complete syllogistic proof system in which every rule has at most
two premises.

Remark. Our work in this section used the fact that our set V of verbs can be
arbitrarily large. It is open whether the negative result holds when V is a fixed finite set.

2.3. Completeness using the (cases) rule. We have just seen that L2 has no logical
system which is syllogistic, sound, and complete. The rest of this section rectifies this,
in three different ways.

In this section, we add a single rule. It is called (cases), and while it is not syllogistic
as we defined the term in §1.3, it is simple and natural. Here is a statement of it.

����������some x x....
ϕ

������������all y (r all x)....
ϕ

ϕ cases (7)

The nonsyllogistic feature is that premises are withdrawn in derivations.1 Let us explain
how the (cases) rule is used. To prove ϕ from a set Γ, it is sufficient to take a term x,
prove ϕ from Γ ∪ {some x x}, and also prove ϕ from Γ ∪ {all y (r all x)}. Here y can
be any term and r can be any verb.

In the logic itself, we take two derivations of ϕ, and then in one we withdraw
a sentence (some x x), while in the other we withdraw a sentence of the form
(all y (r all x)) (for this same term x). We may withdraw zero occurrences or more
than one. The overall conclusion is ϕ.

In this subsection, we write � for provability in the �0 system from Figure 2.1,
together with (cases).

Lemma 2.16 (Soundness). If Γ � ϕ, then Γ |= ϕ.

Proof. By induction on the number n of uses of (cases) in derivations. For n = 0,
this is just soundness of �0. Assume our result for n, and let Γ � ϕ via a derivation with
n + 1 uses of (cases). We may assume that the last use of (cases) is at the root of the
proof tree. So we have

(1) Γ ∪ {some x x} � ϕ
(2) Γ ∪ {all y (r all x)} � ϕ,

where both derivations have at most n uses of (cases). By our induction hypotheses,
(1) and (2) hold when � is replaced by |=. Let M |= Γ. Then we have two cases. If

1 The reader might wonder why we are indicating withdrawal of premises using a large “X”
rather than the standard notation of square brackets. The reason is that later in the paper we
use square brackets in our syntax, and we will thus need a different notation later to indicate
withdrawals.
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[[x]] �= ∅, then M |= some x x, so M |= ϕ. And when [[x]] = ∅, we have [[r all x]] =M .
So M |= all y (r all x), and thus M |= ϕ. �

Example 2.17. Here is a sample derivation.

{some c d, all a x, all a y, all (r all a) x, all (r all a) y} � some x y.

Let Γ be the theory on the left. We show that

1. Γ ∪ {some a a} � some x y.
2. Γ ∪ {all c (r all a)} � some x y.

The first is easy from (all a x) and (all a y). The second comes from

some c d
some c c

some1
all c (r all a) all (r all a) x

all c x
barb

some c x darii

some x c
some2

all c (r all a) all (r all a) y
all c y

barb

some x y darii

(Here (barb) abbreviates (barbara).) Note that the premise (all c (r all a)) was used
twice.

Example 2.18. We show that Γn � some a a, where Γn is the theory in §2.2.
First, note that Δ ∪ {some a a} � some a a for any theory Δ. So by n applications

of (cases), to show that Γn � some a a, it suffices to show that Γn ∪ {all b (ri all a) :
1 ≤ i ≤ n} � some a a. Let Γ∗

n be the theory on the left.
Let �i = all (ri all (ri all a)) (ri all b). By (anti), Γ∗

n � �i for all 1 ≤ i ≤ n.
Repeatedly applying (barbara) to the sequence �1, ϕ1, �2, ϕ2, ... , �n, �, we find that
Γ∗
n � all (r1 all (r1 all a)) a. So by α, (darii), and (some2), Γ∗

n � some a a.

Theorem 2.19 (Completeness). If Γ |= ϕ, then Γ � ϕ.
Proof. By Theorem 2.3, if Γ |= all x y, then already Γ �0 all x y. So we may assume

that ϕ has the form (some x y). We prove the contrapositive, so assume Γ �� ϕ. Let
T be a set of terms, closed under subterms, which contains x, y, and all subterms
of sentences in Γ. By Zorn’s Lemma2, let Γ∗ ⊇ Γ be a maximal extension, such that
Γ∗ �� ϕ. The sentences in Γ∗ may contain any terms in the language.

Assume for contradiction that Γ∗ does not determine existentials for T. Then there
are terms x, y ∈ T and a verb r ∈ V such that Γ∗ ��0 some x x and Γ∗ ��0 all y (r all x).
In particular, Γ∗ does not contain either of these sentences. By maximality, we have
Γ∗ ∪ {some x x} � ϕ and Γ∗ ∪ {all y (r all x)} � ϕ. By (cases), Γ∗ � ϕ, contradiction.
Thus Γ∗ determines existentials for T.

Now since Γ∗ �� ϕ, we clearly have Γ∗ ��0 ϕ. So by Theorem 2.6, Γ �|= ϕ. This is what
was to be shown. �

The proofs of Theorem 2.3 and Theorem 2.6 show that if Γ �� ϕ, then eitherM(Γ,T)
or M′(Γ∗,T) are countermodels, depending on the form of ϕ. Both of these models
have size O(n2), where n is the complexity of Γ ∪ {ϕ}.

Remark. Since �0 is already complete for sentences of the form (all a b), we only
need to use (cases) in proofs of sentences of the form (some a b). Using Lemma 2.10,

2 Of course, we do not actually need the Axiom of Choice when the set of all sentences in the
language is countable.
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it is possible to show that (cases) is equivalent over �0 to the following rule:

all x a all x b

������������all y (r all x)....
some a b

some a b
cases

∗

So the system with rules (ax), (barbara), (anti), (some1), (some2), (darii), and
(cases

∗) is also sound and complete for L2. We chose to emphasize (cases) rather
than (cases

∗) because it made the completeness proof quicker, and because we will use
(cases) again in §3.2.

2.4. Completeness using the (chains) schema. In Theorem 2.11, we proved that
there are no syllogistic proof systems for L2 which are sound and complete. We have
just seen thatL2 has a sound and complete proof system, but one which is not syllogistic
in our sense. In this section, we give another proof system, which this time makes use
of a schema of rules with arbitrarily long (but finite) premise sets.

Definition 2.20. Let a and b be nouns. A chain linking a to b is a sequence C of
sentences

C = (all a u1, all v1 u2, ... , all vi ui+1, ... , all vm b),

such that for all 1 ≤ i ≤ m, either

1. ui = (�r all zi) and vi = (�r all (r all ti)), where �r is a sequence of even length, or
2. ui = (�r all (r all ti)) and vi = (�r all zi), where �r is a sequence of odd length.

We say that this chain has length (m + 1), and the terms t1, ... , tm are the missing link
terms in C.

Note that a chain of length 1 linking a to b is just the single sentence (all a b) and
has no missing link terms. Here are two chains of length 2 linking a to b:

(all a z, all (r all t) b)

(all a (s all (r all t)), all (s all z) b).

In both of these chains, t is the missing link term.
Returning to the definition, we emphasize that the terms denoted z1, ... , zm may be

arbitrary (they need not be nouns) and are not missing link terms. The sequence �r is
also arbitrary.

Lemma 2.21. Suppose C = (all a u1, all v1 u2, ... , all vm b) is a chain linking a to b,
M |= C , and [[t]] = ∅ for every missing link term t in C. Then [[a]] ⊆ [[b]].

Proof. Since M satisfies all the sentences in C, [[a]] ⊆ [[u1]], [[vm]] ⊆ [[b]], and [[vi ]] ⊆
[[ui+1]] for all i. So it suffices to show that [[ui ]] ⊆ [[vi ]] for all i.

Let ti be the missing link term for ui and vi . Since [[ti ]] = ∅, [[r all ti ]] = M. So
[[zi ]] ⊆ [[r all ti ]] for any term zi . This is the desired inclusion when �r is the empty
sequence. The result then follows by induction on the length of �r, using the fact that if
[[x]] ⊆ [[y]], then [[r all y]] ⊆ [[r all x]]. �

Definition 2.22. Let x and y be terms. An (x, y) chain system is a sequence of chains
C1, ... , Cl such that for every missing link term t in every chainCn, there existm,m′ < n
such that Cm links t to x and Cm′ links t to y. When x = y, we may take m = m′.
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If chains Cm and Cm′ link t to x and y, respectively, we can think of these chains as
witnessing that we are allowed to use t as a missing link term later in the (x, y) chain
system. Of course, the first chain in an (x, y) chain system must have length 1, since
there are no available missing link terms from previous chains.

Lemma 2.23. Let C1, ... , Cl be an (x, y) chain system. Suppose M |= Ci for all i, and
suppose that [[x]] ∩ [[y]] = ∅ in M. Then [[a]] ⊆ [[b]] whenever some Ci links a to b.

Proof. By induction on l. When l = 0, there are no chains, so the conclusion is
vacuously satisfied. Now suppose C1, ... , Cl+1 is an (x, y) chain system. By induction,
the conclusion holds for the (x, y) chain system C1, ... , Cl . So suppose Cl+1 links a to
b. For any missing link term t in Cl+1, there are chains Ci and Cj with i, j ≤ l , linking
t to x and t to y. So [[t]] ⊆ [[x]] ∩ [[y]] = ∅. By Lemma 2.21, [[a]] ⊆ [[b]], as desired. �

We introduce the new rule schema

some a b C1 ... Cl
some x y chains,

where C1, ... , Cl is an (x, y) chain system, some Cm links a to x, and some Cn links
b to y.

In this section, we write � for the proof system �0 augmented by the rule schema
(chains).

Theorem 2.24. The (chains) schema is sound.

Proof. Let (some a b), C1, ... , Cl be the premises of an instance of (chains), and
suppose that M satisfies these premises. Suppose towards a contradiction that [[x]] ∩
[[y]] = ∅, so Lemma 2.23 applies. Since some Cm links a to x and some Cn links b to
y, we use Lemma 2.23 to see that [[a]] ∩ [[b]] ⊆ [[x]] ∩ [[y]] = ∅. But this contradicts the
assumption that M |= some a b. �

Example 2.25. We show that Γn � some a a, where Γn is the theory in §2.2. We will
find an (a, a) chain system which contains a chain linking (r1 all (r1 all a)) to a.
C1 = (all a a) is a chain of length 1 linking a to a. This allows a to be used as a

missing link term in C2. Let 	 be the sentence

all (r1 all (r1 all a)) (r1 all (r1 all a)).

Then

C2 = (	, ϕ1, ... , ϕn–1, �)

is a chain linking (r1 all (r1 all a)) to a, in which the only missing link term is a.
Let’s check that C2 is a chain. First, u1 = (r1 all (r1 all a)) and v1 = (r1 all c), so this

is alternative 2 in Definition 2.20, with t = a, z = c, r = r1, and �r = r1. All of the rest
of the links from ui to vi are justified in the same way.

Then we have a derivation:

α C1 C2
some a a chains.

This shows that Γn � some a a, because α ∈ Γn, and each sentence in C1, C2 is either
	 , which is an instance of (ax), or an element of Γn.

Theorem 2.26 (Completeness). If Γ |= ϕ, then Γ � ϕ.
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Proof. By Theorem 2.3, if Γ |= all x y, then already Γ �0 all x y. So we may assume
that ϕ has the form (some x y). Let T be a set of terms, closed under subterms, which
contains x, y, and all subterms of sentences in Γ.

For any term t ∈ T, let Δt = {all z (r all t) : z ∈ T, r ∈ V}. In order to extend Γ
to a theory which determines existentials for T, we define an increasing sequence of
theories by induction. Set Γ0 = Γ, and given Γn, define

Γn+1 = Γn ∪ {all z (r all t) : t, z ∈ T, r ∈ V, and Γn ∪ {some t t} �0 ϕ}.

So Γn+1 includes Δt for all terms t ∈ T such that Γn ∪ {some t t} �0 ϕ. Let Γ� =⋃
n∈� Γn, and let

Γ∗ = Γ� ∪ {some t t : t ∈ T and Δt �⊆ Γ�}.

Claim 2.27. There is some n such that Γn �0 ϕ. �
Proof. Γ∗ determines existentials for T, and by Theorem 2.6, Γ∗ �0 ϕ. By Lemma

2.10, there is a sentence (some a1 a2) ∈ Γ∗ such that Γ∗ �0 all ai x and Γ∗ �0 all aj y
for some i, j ∈ {1, 2}. Since �0-proofs of all-sentences are finite and never contain
some-sentences, there is already some n such that Γn �0 all ai x and Γn �0 all aj y, and
we have Γn ∪ {some a1 a2} �0 ϕ.

It remains to show that the sentence (some a1 a2) belongs to Γ ⊆ Γn, since then
Γn �0 ϕ. Suppose not. Then (some a1 a2) is not in Γ� , since the sets Γn only add
sentences of the form (all z (r all t)) to Γ. So (some a1 a2) is a sentence (some t t)
such that Δt �⊆ Γ� . But then Γn ∪ {some t t} �0 ϕ, so Δt ⊆ Γn+1 ⊆ Γ� , which is a
contradiction. �

Claim 2.28. If there is some n such that Γn �0 ϕ, then Γ � ϕ.

Proof. Assume Γ �� ϕ. Then we will prove the following two claims for all n, by
induction:

(1)n For every k ≥ 1 and every Γn-sequence of terms t1, ... , tk , there is an (x, y)
chain system C1, ... , C
 , such that C
 links t1 to tk , and such that for all
1 ≤ i ≤ 
 and all � ∈ Ci , Γ � �.

(2)n Γn ��0 ϕ.

So assume (1)m and (2)m hold for all m < n. We will first prove (1)n by induction
on k.

In the base case, when k = 1, we have t1 = tk , and Γ � all t1 tk by (ax). The chain
(all t1 tk) has no missing link terms and links t1 to tk . So we have the required (x, y)
chain system, consisting of just this one chain.

Now suppose k > 1, and fix a Γn-sequence t1, ... , tk . Let C1, ... , C
 be the (x, y)
chain system obtained by induction for the Γn-sequence t1, ... , tk–1. Then C
 links t1
to tk–1, so the last sentence in Cl is (all c tk–1) for some term c. By the definition of
Γn-sequence, there is a sentence (all d e) ∈ Γn and a sequence of verbs �r such that
(all tk–1 tk) = Anti(�r, (all d e)).

If (all d e) ∈ Γ, then by repeated applications of (anti), Γ � all tk–1 tk . Since also
Γ � all c tk–1 by induction, we have Γ � all c tk by (barbara). Replacing the last
sentence of C
 with (all c tk), we are done.

If (all d e) /∈ Γ, then (all d e) ∈ Γm+1 \ Γm for some 0 ≤ m < n. It follows that
e = (r all t) for some term t such that Γm ∪ {some t t} �0 ϕ. By Lemma 2.10, there
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is a sentence (some p q) in Γm ∪ {some t t} such that for all w ∈ {x, y} there is some
v ∈ {p, q} such that Γm �0 all v w. If (some p q) ∈ Γm, then Γm �0 ϕ, contradicting
(2)m. Otherwise, the sentence (some p q) must be (some t t). That is, p = q = t, so
Γm �0 all t x and Γm �0 all t y.

By Lemma 2.9, there are Γm-sequences linking t to x and t to y. By (1)m, there are
(x, y) chain systems C ′

1, ... , C
′

′ and C ′′

1 , ... , C
′′

′′ such that C ′


′ links t to x, C ′′

′′ links t

to y, and for every sentence � in every chain, Γ � �. Let C ∗

 be the chain C
 with the

sentence (all tk tk) appended. ThenC ∗

 links t1 to tk . We either have tk–1 = (�r all d ) and

tk = (�r all (r all t)) where �r has even length, or tk–1 = (�r all (r all t)) and tk = (�r all d )
where �r has odd length, so the missing link terms in C ∗


 are those in C
 , together with
t. Also Γ � � for every sentence � in C ∗


 , by our assumption about C
 and (ax). So
C ′

1, ... , C
′

′ , C

′′
1 , ... , C

′′

′′ , C1, ... , C
–1, C

∗

 is our desired (x, y) chain system.

Having established (1)n, we prove (2)n. Assume for contradiction that Γn �0 ϕ.
By Lemma 2.10, there is a sentence (some a1 a2) in Γn such that Γn �0 all ai x and
Γn �0 all aj y for some i, j ∈ {1, 2}. By Lemma 2.10, we thus have Γn-sequences from
ai to x and from aj to y. Apply (1)n to these sequences to obtain (x, y) chain systems
C1, ... , C
 and C ′

1, ... , C
′

′ such that Cl links ai to x and C ′


′ links aj to y, and all
sentences in all chains are �-provable from Γ. Then we have an instance of chains

some ai aj C1 ... C
 C
′
1 ... C ′




some x y chains.

The sentence (some a1 a2) belongs to Γn, hence to Γ. Applying (some1) or (some2) as
needed, Γ � some ai aj . So this deduction is the root of a proof tree proving (some x y)
from Γ. �

Claims 2.27 and 2.28 complete the proof of Theorem 2.26.

2.5. Completeness and PTime decidability for the extended language L+
2 . We have

seen that L2 has no sound and complete syllogistic proof system. And we have seen
proof systems which go beyond the “purely syllogistic” in earlier sections. But this
section goes in a different direction. We show that if we enhance the syntax of L2 in a
certain way, then we are able to find a boundedly complete syllogistic proof system for
the larger language.

We add to L2 a new four-place sentence former

(all a b) ∨ (some x y)

with the evident semantics

M |= (all a b) ∨ (some x y) iff [[a]] ⊆ [[b]] or [[x]] ∩ [[y]] �= ∅.

We call the larger language L+
2 . Note that we do not allow the disjunction of arbitrary

sentences. Rather, there is a new kind of sentence, which is the disjunction of exactly
one sentence (all a b) and one sentence (some x y). For a proof system, we take the
rules in Figure 3, and we write � for provability in this system.

Lemma 2.29. The proof system is sound.

Proof. We argue soundness for (empty1), (empty2), and (dd), since soundness of
the other rules is clear from the meaning of disjunction. Fix a model M.

For (empty1), either [[a]] �= ∅, or ∅ = [[a]] ⊆ [[b]]. In either case, M |= (all a b) ∨
(some a a).
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(all a b) (some a a)
EMPTY1

(all a b) (some x y)
(all a b) (some x x)

SOME1
all a b

(all a b) (some x y)
WL

(all b (r all a)) (some a a)
EMPTY2

(all a b) (some x y)
(all a b) (some y x)

SOME2
some x y

(all a b) (some x y)
WR

(all a b) (some x y) (all b c) (some x y)
(all a c) (some x y) BARB

(all a b) (some x y)
(all (r all b) (r all a)) (some x y) ANTI

some t u (all t x) (some x y) (all u y) (some x y)
some x y DD

(all a b) (some t u) (all t x) (some x y) (all u y) (some x y)
(all a b) (some x y) DD

Fig. 3. Rules in §2.5. These rules are added on top of the rules in Figure 2.

For (empty2), either [[a]] �= ∅, or [[a]] = ∅. In the latter case, [[b]] ⊆ [[r all a]] =M . In
either case, M |= (all b (r all a)) ∨ (some a a).

For (dd), suppose that M satisfies the premises of the rule, and assume for
contradiction that [[x]] ∩ [[y]] = ∅. Then M |= all t x and M |= all u y. So [[t]] ∩ [[u]] ⊆
[[x]] ∩ [[y]] = ∅, contradicting M |= some t u. �

Example 2.30. The rules (dd) and its companion (dd
′) stand for “double darii”. To

see the connection between these rules and (darii), we note that (darii) is redundant
in this system:

some x y
all x x

ax

(all x x) ∨ (some x z)
wl

all y z

(all y z) ∨ (some x z)
wl

some x z dd

Note also that (dd) is the only new rule in our proof system which produces a conclusion
in the original syntax of L2. It is responsible, together with (empty2), for the reasoning
captured by (cases) and (chains) in the previous two sections.

Example 2.31. We show that Γn � some a a, where once again Γn is from §2.2. For
each 1 ≤ i < n, we have the derivation:

(all b (ri all a)) ∨ (some a a)
empty2

(all (r2i all a) (ri all b)) ∨ (some a a)
anti

′ ϕi

(all (ri all b) (r2i+1 all a)) ∨ (some a a)
wl

(all (r2i all a) (r2i+1 all a)) ∨ (some a a)
barb

′

and similarly, we have:

(all b (rn all a)) ∨ (some a a)
empty2

(all (r2n all a) (rn all b)) ∨ (some a a)
anti

′ �

(all (rn all b) a) ∨ (some a a)
wl

(all (r2n all a) a) ∨ (some a a)
barb

′

https://doi.org/10.1017/S1755020320000386 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020320000386


RELATIONAL SYLLOGISTIC LOGICS 749

By n applications of (barb
′), we obtain (all (r21 all a) a) ∨ (some a a). And then we

conclude:

α (all (r21 all a) a) ∨ (some a a)
some a a dd.

Completeness and PTime-decidability. At this point, we turn to the completeness
and PTime-decidability of the logic. We are going to apply Theorem 1.5. For any set
Δ, let T (Δ) be the set of subterms of sentences in Δ. Let T+(Δ) be T (Δ) together with
the terms (r all w) where w ∈ T (Δ) and where r occurs in Δ.

Let g(Δ) be the set consisting of

(i) All sentences (all x y), where x ∈ T (Δ) and y ∈ T+(Δ).
(ii) All sentences (some u v), where u, v ∈ T (Δ).
(iii) All sentences (all x y) ∨ (some u v), where x, u, v ∈ T (Δ) and y ∈ T+(Δ).

Note that g is computable in PTime.

Theorem 2.32. If Γ |= ϕ, then Γ �g(Γ∪{ϕ}) ϕ. Hence the consequence relation for L+
2

is in PTime.

Proof. As in §1.4, we are going to save on some notation below by writing T for
T (Γ ∪ {ϕ}), T+ for T+(Γ ∪ {ϕ}), and A for g(Γ ∪ {ϕ}).

We are going to do this entire proof in two parts. The first part handles the case that
ϕ is either (all a b) ∨ (some x y) or else (some x y). After that, we handle the relatively
simpler case that ϕ is (all a b).

So until further notice, we are in the first part of this theorem. Please note that x, y,
a, and b are fixed throughout the rest of this proof.

LetM =Mxy be the set of unordered pairs {t, u} of terms from T such that there
is some z ∈ {x, y} such that for all v ∈ {t, u}, Γ ��A (all v z) ∨ (some x y).

We allow t = u, and it follows that whenever M contains {t, u}, then it also contains
{t} = {t, t}. The point of the definition of M will become clearer after we see the Truth
Lemma and Claim 2.35 below: we are building a model which is guaranteed to have
[[x]] ∩ [[y]] = ∅.

We define a model M with domain M by setting

{t, u} ∈ [[p]] iff either Γ �A (all t p) ∨ (some x y), or Γ �A (all u p) ∨ (some x y)

{t, u}[[r]]{v,w} iff for some c ∈ {t, u} and d ∈ {v,w},
Γ �A (all c (r all d )) ∨ (some x y).

Claim 2.33 (Truth Lemma). In M,we have the following for all terms z ∈ T ,

[[z]] = {{t, u} ∈M : Γ �A (all t z) ∨ (some x y) or Γ �A (all u z) ∨ (some x y)}. �
Proof. By induction on z. For a noun in N, this is by definition of the model. So we

assume our statement for z and prove it for (r all z) ∈ T . Note that z ∈ T , since T is
closed under subterms.

Fix {t, u} ∈M , and suppose (without loss of generality) Γ �A (all t (r all z)) ∨
(somex y). We show that {t, u} ∈ [[r all z]]. Let {v,w} ∈M be an element of [[z]]. By the
induction hypothesis, we have (without loss of generality) Γ �A (all v z) ∨ (some x y).
Then by (anti

′), Γ �A (all (r all z) (r all v)) ∨ (some x y). Note that the sentence
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(all (r all z) (r all v)) ∨ (some x y) belongs to A because (r all z), x, and y belong to T
and r all v toT+. Moreover, (all t (r all v)) ∨ (somex y) again belongs to A. By (barb

′),
Γ �A (all t (r all v)) ∨ (some x y), and hence {t, u}[[r]]{v,w}. So {t, u} ∈ [[r all z]].

Conversely, suppose {t, u} ∈ [[r all z]].
Case 1: {z} ∈M . Notice that Γ �A (all z z) ∨ (some x y) by (ax) and (wl). By

induction, {z} ∈ [[z]]. Hence {t, u}[[r]]{z}. So by the definition of the model, we have
either Γ �A (all t (r all z)) ∨ (some x y) or Γ �A (all u (r all z)) ∨ (some x y), as desired.

Case 2: {z} /∈M . Then Γ �A (all z x) ∨ (some x y) and Γ �A (all z y) ∨ (some x y).
So we have a proof from Γ:

(all t (r all z)) ∨ (some z z)
empty2

....
(all z x) ∨ (some x y)

....
(all z y) ∨ (some x y)

(all t (r all z)) ∨ (some x y)
dd

′

As before, all sentences shown belong to A. We are done. Incidentally, the same
argument shows that also Γ �A (all u (r all z)) ∨ (some x y). �

We conclude the first part of our proof of Theorem 2.32 with two claims. Together
with the assumption that Γ |= ϕ, they show that Γ �A ϕ, where ϕ is the sentence
in the statement of our theorem. In this part of the proof, recall that ϕ is either
(all a b) ∨ (some x y) or (some x y).

Claim 2.34. Either Γ �A ϕ, or M |= Γ.

Proof. Let � be a sentence in Γ. We check that either Γ �A ϕ, or M |= �.
Case 1: � is (all c d ). By (wl), Γ �A (all c d ) ∨ (some x y). For any {t, u} ∈ [[c]], by

the Truth Lemma (without loss of generality) Γ �A (all t c) ∨ (some x y). By (barb
′),

Γ �A (all t d ) ∨ (some x y). So {t, u} ∈ [[d ]] by the Truth Lemma again. So in this case,
we have M |= �.

Case 2: � is (some c d ). There are two subcases, depending on whether or not
{c, d} belongs to M. If it does, then {c, d} ∈ [[c]] ∩ [[d ]], so M |= �. So we assume that
{c, d} /∈M . Then there are e, f ∈ {c, d} such that Γ �A (all e x) ∨ (some x y) and
Γ �A (all f y) ∨ (some x y). Applying (some1) and (some2) as needed, Γ �A some e f.
Then by (dd), Γ �A some x y. If ϕ is (some x y), then we are immediately done. And
if ϕ is (all a b) ∨ (some x y), then we are done after applying (wr).

Case 3: � is (all s t) ∨ (some c d ). This is a combination of the two previous
arguments.

Again there are two subcases, depending on whether or not {c, d} belongs to M. If it
does, then {c, d} ∈ [[c]] ∩ [[d ]], so M |= �. So we assume that {c, d} /∈M . Then there
are e, f ∈ {c, d} such that Γ �A (all e x) ∨ (some x y) and Γ �A (all f y) ∨ (some x y).
Applying (some

′
1) and (some

′
2) as needed, Γ �A (all s t) ∨ (some e f). Then by (dd

′),
Γ �A (all s t) ∨ (some x y). For any {u, v} ∈ [[s]], by the Truth Lemma (without loss
of generality) Γ �A (all u s) ∨ (some x y). By (barb

′), Γ �A (all u t) ∨ (some x y). So
{u, v} ∈ [[t]] by the Truth Lemma again. So we have M |= all s t, and M |= �. �

Claim 2.35. If M |= ϕ, then Γ �A ϕ.

Proof. Case 1: ϕ is (some x y). In this case, we claim that M �|= ϕ. The reason is
that by the Truth Lemma and the definition of M,

{t, u} ∈M iff {t, u} /∈ [[x]] ∩ [[y]].
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Case 2: ϕ is (all a b) ∨ (some x y). By Case 1, we assume that M |= all a b. Consider
{a}. If {a} /∈M , then Γ �A (all a x) ∨ (some x y) and Γ �A (all a y) ∨ (some x y).
Then we have the following proof of ϕ from Γ:

(all a b) ∨ (some a a)
empty1

....
(all a x) ∨ (some x y)

....
(all a y) ∨ (some x y)

(all a b) ∨ (some x y)
dd

′
.

All sentences shown belong to A. So we have the desired conclusion Γ �A ϕ. On the
other hand, if {a} ∈M , then since {a} ∈ [[a]] and M |= all a b, we have {a} ∈ [[b]].
By the Truth Lemma, we again have Γ �A (all a b) ∨ (some x y). �

This concludes the first part of the proof of Theorem 2.32. The second part is when
ϕ is a sentence (all c d ). In this part, we repeat the construction and proof above, with
the following adjustments:

1. We let M be the set of all unordered pairs of terms from T, with no restriction.
2. We drop the disjunct ∨(some x y) from all sentences which appear in the proof,

including the definition of M and the statement of the Truth Lemma.
3. In the proof of the Truth Lemma, Case 2 does not occur, since {z} ∈M .
4. In the proof of Claim 2.34, the subcases where {c, d} /∈M do not occur.
5. We replace the proof of Claim 2.35 with the following argument. Recall that ϕ

is (all c d ). We assume that [[c]] ⊆ [[d ]], and we need to show that Γ �A all c d .
By the Truth Lemma, {c} ∈ [[c]]. Thus, {c} ∈ [[d ]]. By the Truth Lemma again,
Γ �A all c d .

§3. L3 and L3.5: Adding the term former (r some x) to L1 and L2. In this section,
we studyL3, the language with term formers (r all x) and (r some x), and with sentence
former (all x y). We also study the larger language L3.5 which adds the sentence former
(some x y).

The language L3.5 has essentially already been studied by McAllester and Givan
in [2], but that paper is primarily concerned with complexity results rather than
completeness results. What McAllester and Givan would call a quantifier-free atomic
formula without constants is exactly what we call a sentence of L3.5. What they would
call a quantifier-free literal without constants is either an L3.5 sentence ϕ or its negation
¬ϕ. They show that the satisfiability problem for sets Γ of literals which determine
existentials is in PTime. And from this, they derive that the satisfiability problem for
sets Γ of literals (which perhaps do not determine existentials) of literals is in NPTime.
Thus, their result implies that the consequence relation for L3.5 is in Co-NPTime. They
prove a matching hardness result as well, and so the consequence relation for L3.5 is
Co-NPTime complete.

We show that the consequence relation for L3 is Co-NPTime hard. Our proof is
based on the one in [2], and the result here is a slight improvement on [2] because
L3 is a little weaker than their language. As a corollary, if P �= NP, then there is no
boundedly complete syllogistic proof system for L3 or any language larger than it.

In §§3.3 and 3.2 we formulate proof systems and obtain completeness results for L3

and L3.5. We also reprove the Co-NPTime decidability of L3.5 by a polynomial-size
countermodel construction.
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3.1. Co-NPTime hardness of the consequence relation of L3.

Theorem 3.1. The problem of deciding whether Γ �|= ϕ, for Γ ∪ {ϕ} a finite set of
L3-sentences, is NPTime hard.

Proof. We use a reduction from the one-in-three positive 3-SAT problem first studied
by Schaefer [11]. This problem is defined as follows. We are given a set S of clauses
of the form U ∨ V ∨W , where U, V, and W are distinct. (Note that negation is
not used.) The problem is to find a truth assignment f to the variables making
exactly one variable in each clause T and the other two variables F. We call this
a 1-valued assignment for S. This problem was shown to be NPTime complete in
Schaefer [11].

We define a set Γ = Γ(S) below, in two steps. We use nouns which correspond to the
variables of S, writing u for the noun corresponding with U, etc. Γ also uses a number
of other nouns and verbs. It is defined as follows:

(1) For each clause c ∈ S, say c = U ∨ V ∨W , put the following sentences in Γ:

all start (r1c all u) all (r1c some u) yc
all yc (r2c all v) all (r2c some v) zc
all zc (r3c all w) all (r3c some w) finish.

Here start and finish are new nouns (not varying with the clause), yc and zc
are also new nouns (these do vary with c), and r12 , r2c , and r3c are new verbs.

(2) Let P and Q be any two distinct variables which occur together in some clause
c. Then add to Γ the sentence ϕp,q :

all (rp,q all p) (r′p,q some q).

Here rp,q and r′p,q are new verbs. (By symmetry, we also add ϕq,p.)

So if S has k clauses, then the first point will add 2 + 2k new nouns and 3k new verbs.
The second clause will add at most 2 ·

(3k
2

)
< 18k2 new verbs.

Claim 3.2. S has a 1-valued assignment iff Γ �|= all start finish. �
Proof. In one direction, assume that M |= Γ and M �|= all start finish. Define a

truth assignment f by f(U ) = F iff [[u]] �= ∅. Consider a clause c = U ∨ V ∨W of
S. If f(U ) = f(V ) = f(W ) = F, then [[u]], [[v]], and [[w]] are all nonempty. By the
sentences in (1),

[[start]] ⊆ [[yc ]] ⊆ [[zc ]] ⊆ [[finish]].

But this contradicts that M �|= all start finish. Thus we know that at least one variable
in c is assigned the value T by f. We claim that only one variable can be T. For
suppose towards a contradiction that (for example) U �= V but f(U ) = f(V ) = T.
Then [[u]] = [[v]] = ∅. So [[rp,q all u]] =M and [[r′p,q somev]] = ∅. By the sentence ϕp,q
in point (2), M is empty. But this is impossible, since M �|= all start finish.

Conversely, suppose f is 1-valued on S. We must find a model M |= Γ where M �|=
all start finish. Let M be the set of variables U such that f(U ) = F, together with start
and finish. For a variable X, define [[x]] = ∅ if f(X ) = T, and [[x]] = {x} if f(X ) = F.
We also take [[start]] = {start}, and [[finish]] = {finish}.
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all x y
all (r some x) (r some y)

MONO
some x y

all (r all x) (r some y)
SA

some x (r some y)
some y y SS

some x x all y (r all x)

CASES

some x x all x y....
CASES2

Fig. 4. The logic of §3.2. We also use the rules in Figure 2.

We still need to define [[yc ]], [[zc ]], [[r1c ]], [[r2c ]], [[r2c ]] for all clauses c, and also [[rp,q]] and
[[r′p,q]] when P and Q are distinct variables in the same clause.

Suppose that P and Q are distinct variables which happen to belong to the same
clause. We must arrange that M |= ϕp,q . Set [[rp,q]] = ∅ and [[r′p,q]] =M ×M . We
know that either f(P) = F or f(Q) = F (or both). In the first case, [[rp,q all p]] = ∅, so
M |= ϕp,q . In the second case, [[r′p,q some q]] =M so again M |= ϕp,q .

Finally, we consider the sentences in (1). There are three cases.
If f(U ) = T, f(V ) = F, and f(W ) = F, then we have [[u]] = ∅, [[v]] = {v}, and

[[w]] = {w}. We set [[yc ]] = ∅, [[zc ]] = ∅, [[r1c ]] =M ×M , [[r2c ]] = ∅, and [[r3c ]] = ∅.
If f(U ) = F, f(V ) = T, and f(W ) = F, we have [[u]] = {u}, [[v]] = ∅, and [[w]] =

{w}. We set [[yc ]] =M , [[zc ]] = ∅, [[r1c ]] =M ×M , [[r2c ]] = ∅, and [[r3c ]] = ∅.
Iff(U ) = F,f(V ) = F, andf(W ) = T, we have [[u]] = {u}, [[v]] = {v}, and [[w]] =

∅. We set [[yc ]] =M , [[zc ]] =M , [[r1c ]] =M ×M , [[r2c ]] =M ×M , and [[r3c ]] = ∅.
In all cases, the resulting model M satisfies all sentences in (1), hence all sentences

in Γ. And in all cases, M �|= all start finish. �
The claim concludes the proof Theorem 3.1.

3.2. Completeness and Co-NPTime decidability for L3.5. We first present a sound
and complete proof system for L3.5, because it is actually a bit simpler than L3, and
mirrors more closely our work from §2. The rules are in Figure 4. We return to L3 in
§3.3 below.

Since the consequence relations forL3 andL3.5 are Co-NPTime hard, by Theorem 1.5
we cannot hope for a boundedly complete syllogistic proof system for these languages
(unless P =NP). We regard it as unlikely that they admit any sound and complete
syllogistic proof system. Instead, we settle for a proof system with (cases) from §2.3,
as well as a variant, (cases2). Figure 4 gives proof rules for this logic.

In this section, we write � for provability in the system with rules (ax), (barbara),
(anti), (some1), (some2), (darii), (mono), (sa), (ss), (cases), and (cases2). Given a
theory Γ, we write x ≤ y when Γ � all x y. We say that Γ determines existentials
for a set of terms T if for every x ∈ T, either Γ � some x x, or else Γ � all x y and
Γ � all y (r all x) for all terms y ∈ T and all verbs r.

The canonical model. Let Γ be a theory, and let T be a set of terms, closed under
subterms as usual. Define

M = {〈x, y,Q〉 ∈ T× T× {∀,∃} : Γ � some x y}.
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We define a model M(Γ,T) with domain M by setting

〈x, y,Q〉 ∈ [[p]] iff x ≤ p or y ≤ p
〈x1, y1, Q1〉[[r]]〈x2, y2, Q2〉 iff for some z1 ∈ {x1, y1} and z2 ∈ {x2, y2}, either

(a) z1 ≤ (r all z2), or

(b) Q2 = ∃, x2 = y2, and z1 ≤ (r some z2).

Lemma 3.3 (Truth Lemma). If Γ determines existentials for T, then in M′(Γ,T), for
all t ∈ T,

[[t]] = {〈x, y,Q〉 ∈M : x ≤ p or y ≤ p}. (8)

Proof. The proof is by induction on t. For a noun p, this is by definition of the
model.

The induction step for (r all t). Since T is closed under subterms, t ∈ T.
Take some 〈c1, c2, Q〉 such that ci ≤ (r all t) for some i ∈ {1, 2}. We show that
〈c1, c2, Q〉 ∈ [[r all t]]. For this, suppose 〈d1, d2, Q

′〉 ∈ [[t]]. By induction hypothesis,
dj ≤ t for some j ∈ {1, 2}. Using (anti), (r all t) ≤ (r all dj), so ci ≤ (r all dj).
Thus, 〈c1, c2, Q〉[[r]]〈d1, d2, Q

′〉. Since 〈d1, d2, Q
′〉 was arbitrary, we have shown that

〈c1, c2, Q〉 ∈ [[r all t]], as desired.
In the other direction, suppose that 〈c1, c2, Q〉 ∈ [[r all t]]. If Γ � some t t, then

〈t, t,∀〉 ∈M . By induction, since t ≤ t, 〈t, t,∀〉 ∈ [[t]], so 〈c1, c2, Q〉[[r]]〈t, t,∀〉. Since
the last component in 〈t, t,∀〉 is ∀ rather than ∃, case (a) in the definition of [[r]] holds,
and ci ≤ (r all t) for some i ∈ {1, 2}.

It remains to consider the case when Γ � � some t t. But since Γ determines
existentials, Γ � all y (r all t) for all terms y, and in particular c1 ≤ (r all t).

The induction step for (r some t). Again, since T is closed under subterms, t ∈ T.
Take some 〈c1, c2, Q〉 such that ci ≤ (r some t). The fact that 〈c1, c2, Q〉 ∈M
implies that Γ �some c1 c2. By (some2) and (some1), Γ � some ci ci , and by (darii),
Γ � some ci (r some t). But then by (ss), Γ � some t t, and hence 〈t, t,∃〉 ∈M . By
case (b) in the definition of [[r]], 〈c1, c2, Q〉[[r]]〈t, t,∃〉. By induction 〈t, t,∃〉 ∈ [[t]], so
〈c1, c2, Q〉 ∈ [[r some t]].

In the other direction, suppose that 〈c1, c2, Q〉 ∈ [[r some t]]. Then we have
〈c1, c2, Q〉[[r]]〈d1, d2, Q

′〉 for some 〈d1, d2, Q
′〉 ∈ [[t]]. Since 〈d1, d2, Q

′〉 ∈M , Γ � some
d1 d2. And also dk ≤ t for some k ∈ {1, 2}, by induction.

We first consider case (a) in the definition of [[r]]: there are i and j so that ci ≤ (r alldj).
From Γ � some d1 d2 and dk ≤ t, using (darii), (some1), and (some2), Γ � some dj t.
By (sa), (r all dj) ≤ (r some t), so by (barbara), ci ≤ (r some t).

In case (b), Q′ = ∃, d1 = d2, and for some i, ci ≤ (r some d1). By (mono),
(r some d1) ≤ (r some t), so ci ≤ (r some t). �

Lemma 3.4. Suppose that T contains all subterms of sentences in Γ and Γ∗ ⊇ Γ is a
theory which determines existentials for T. Then M(Γ∗,T) |= Γ.

Proof. For a sentence (all x y) ∈ Γ, we have Γ∗ � all x y. We are going to apply
Lemma 3.3 to M(Γ∗,T) (that is, the ≤ symbol here is for provability in Γ∗). If
〈c1, c2, Q〉 ∈ [[x]] in M(Γ∗,T), then ci ≤ x for some i ∈ {1, 2}. But then also ci ≤ y,
so 〈c1, c2, Q〉 ∈ [[y]].

For a sentence (some x y) ∈ Γ, we have Γ∗ � some x y, so 〈x, y,∀〉 ∈M . And
〈x, y,∀〉 ∈ [[x]] ∩ [[y]] in M(Γ∗,T). �
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all x y
all (r some x) (r some y)

MONO
all (r all y) (r some y) all y (r some x)

all (s all x) (s some x)
MIX

all (r all x) (r some x) all y (s all x)

CASES

all (r all x) (r some x)....

all x y....
CASES2

Fig. 5. The logic of §3.3. We also use (ax), (barbara), (anti) from Figure 2.

Theorem 3.5. Γ |= ϕ iff Γ �ϕ.

Proof. The soundness is easy, with soundness of (cases2) following just as in the
proof of Lemma 2.16.

The argument for completeness is the same as we saw in the proof of Theorem 2.19.
Let T be the set of all subterms of sentences in Γ ∪ {ϕ}. We assume that Γ � �ϕ and
show that Γ �|= ϕ. We may pass to a maximal extension Γ∗ ⊇ Γ with the property that
Γ∗ � � ϕ. It follows from (cases) and (cases2) that Γ∗ determines existentials for T, just
as in the proof of Theorem 2.19. By Lemma 3.4, M(Γ∗,T) |= Γ. We claim that ϕ is
false in this model.

Case 1:ϕ is (all x y). Since Γ∗ determines existentials forT and Γ∗ � � all x y, we have
Γ∗� some x x. So 〈x, x,∀〉 ∈M . By Lemma 3.4, 〈x, x,∀〉 ∈ [[x]] \ [[y]], since x ≤ x but
x �≤ y.

Case 2: ϕ is (some x y). Suppose towards a contradiction that M(Γ∗,T) |=
ϕ. Specifically, let 〈d1, d2, Q〉 ∈ [[x]] ∩ [[y]]. Then Γ∗ � some d1 d2, and also there
are i and j such that di ≤ x and dj ≤ y. Using (some1), (some2), and (darii), Γ∗ �
some x y. �

The proof shows that if Γ � � ϕ, then there is a countermodel of size O(n2), where
n is the complexity of Γ ∪ {ϕ}. Since M |= Γ and M �|= ϕ can be checked in time
polynomial in the size of M and the complexity of Γ ∪ {ϕ}, this shows that the
consequence relation for L3.5 is in Co-NPTime.

3.3. Completeness for L3. In L3, we do not have the sentence former (some x y),
which was used in the previous section to formulate the condition that Γ determines
existentials. Nevertheless, we are able to follow the same strategy as for L3.5 to prove a
completeness theorem. The key observation is that for a term x and a nonempty model
M, [[x]] �= ∅ in M if and only if M |= all (r all x) (r some x) for every verb r. We use
the collection of all sentences of this form as a replacement for (some x x).

Figure 5 gives our proof system for this logic. The soundness of (mono) is immediate.
For (mix), note that if N |= all (r all y) (r some y), then either N = ∅, or [[y]] �= ∅. If
N = ∅, the conclusion of the rule holds. And if [[y]] �= ∅ and N |= all y (r some x), then
[[x]] �= ∅ also. Again, the conclusion of the rule follows. The soundness of the (cases)
variants follow as in Lemma 2.16, using the above observation about sentences of the
form all (r all y) (r some y).

Note that in (mix), the verb s appearing in the conclusion may be different than
the verb r appearing in the premises. And in cases

′, the withdrawn premises are
(all (r all x) (r some x)) and (all y (s all x)), where the verbs r and s may be different.
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As usual, we write � for provability in this system, and given a theory Γ, we write
x ≤ y when Γ � all x y.

Definition 3.6. Let Γ be a theory and T a set of terms. A term x ∈ T is effectively
nonempty ( for Γ) if for all verbs r, Γ � all (r all x) (r some x). And x is effectively empty
( for Γ) if for all y ∈ T, Γ � all x y and Γ � all y (r all x) for all verbs r.

Γ effectively determines existentials for T if every x ∈ T is either effectively empty or
effectively nonempty for Γ.

The canonical model. Let Γ be a theory, and let T be a set of terms. Define

M = {〈x,Q〉 ∈ T× {∀,∃} : x is effectively nonempty for Γ}.

We define a model M(Γ,T) with domain M by setting

〈x,Q〉 ∈ [[p]] iff x ≤ p
〈x,Q〉[[r]]〈y,Q′〉 iff either (a) x ≤ (r all y),

or (b) Q′ = ∃, and x ≤ (r some y).

Lemma 3.7 (Truth Lemma). Assume that Γ effectively determines existentials for T.
Then for all x ∈ T,

[[x]] = {〈y,Q〉 ∈M : y ≤ x}.

Proof. By induction on x. When x is a noun, this follows immediately from the
definition.

Here is the induction step for (r all x). Suppose that 〈y,Q〉 ∈ [[r all x]]. If x is
effectively empty, then y ≤ (r all x), and so we are done. If x is effectively nonempty,
then 〈x,∀〉 ∈M . Since x ≤ x, by induction 〈x,∀〉 ∈ [[X ]], and 〈y,Q〉[[r]]〈x,∀〉. Then
case (a) holds and again y ≤ (r all x).

In the other direction, suppose that y ≤ (r all x). We show that for any 〈y,Q〉 ∈M ,
〈y,Q〉[[r]]〈z,Q′〉 for all 〈z,Q′〉 ∈ [[x]]. By induction, z ≤ x. Using (anti), (r all x) ≤
(r all z). Thus, y ≤ (r all z), and so indeed 〈y,Q〉[[r]]〈z,Q′〉.

Finally, we have the induction step for (r some x). Suppose that 〈y,Q〉 ∈ [[r some x]].
Then there is some 〈z,Q′〉 ∈ [[x]] such that 〈y,Q〉[[r]]〈z,Q′〉. So z is effectively nonempty,
and by induction z ≤ x.

Case 1: Q′ = ∃. Then y ≤ (r some z). By (mono), (r some z) ≤ (r some x), so also
y ≤ (r some x), as was to be shown.

Case 2: Q′ = ∀. Then y ≤ (r all x). By (anti), (r all x) ≤ (r all z), so y ≤ (r all z).
The fact that z is effectively nonempty means that (r all z) ≤ (r some z). And by
(mono), as observed above, (r some z) ≤ (r some x). So again we have y ≤ (r some x).

In the other direction, let y ∈ T be such that y ≤ (r some x). Suppose that 〈y,Q〉 ∈
M . Then y is effectively nonempty. In particular, (r all y) ≤ (r some y), and by (mix),
for every verb s, (s all x) ≤ (s some x), so x is effectively nonempty. Then 〈x,∃〉 ∈M .
By case (b), 〈y,Q〉[[r]]〈x,∃〉, and by induction 〈x,∃〉 ∈ [[x]], so 〈y,Q〉 ∈ [[r some x]]. �

Lemma 3.8. Suppose T contains all subterms of sentences in Γ and Γ∗ ⊇ Γ is a theory
which effectively determines existentials for T. Then M(Γ∗,T) |= Γ.

Proof. For a sentence (all x y) ∈ Γ, we have Γ∗ �all x y, so x ≤ y. If 〈z,Q〉 ∈ [[x]]
in M(Γ∗,T), then z ≤ x. But then also z ≤ y, so 〈z,Q〉 ∈ [[y]]. �
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Theorem 3.9. Γ |= ϕ iff Γ �ϕ.

Proof. We discussed the soundness when we introduced the rules.
For completeness, letT be the set of all subterms of sentences in Γ ∪ {ϕ}. We assume

that Γ � � ϕ and show that Γ �|= ϕ. We may pass to a maximal extension Γ∗ ⊇ Γ with
the property that Γ∗ � � ϕ. It follows from (cases

′) and (cases
′
2) that Γ∗ effectively

determines existentials for T, just as in the proof of Theorem 2.19. By Lemma 3.8,
M(Γ∗,T) |= Γ.

We claim that ϕ is false in this model. Write ϕ as (all x y). Since Γ∗ effectively
determines existentials for T and Γ∗ � � all x y, x is effectively nonempty for Γ∗. So
〈x,∀〉 ∈M . By Lemma 3.7, 〈x,∀〉 ∈ [[x]] \ [[y]], since x ≤ x but x �≤ y. �

The proof shows that if Γ � � ϕ, then there is a countermodel of size O(n), where n
is the complexity of Γ ∪ {ϕ}.

§4. L4 and L4.5: Adding term complementation to L1 and L2. This section extends
L1 and L2 by adding term complements. That is, we extend the syntax of L so that
whenever t is a term, t is a term, and we extend the semantics so that in a model M,
[[t]] = M\ [[t]]. If we add term complements to L1, we get L4, and if we add term
complements to L2, we get L4.5.

4.1. Co-NPTime hardness of the consequence relation of L4. We begin with a
negative complexity-theoretic result, reducing 3-SAT to the relation Γ �|= ϕ in L4.

Let BV = {Pi : i ∈ N} be a set of boolean variables. Suppose we have an instance
of 3-SAT, c1 ∧ ··· ∧ ck , where each clause ci has the form Ui ∨ Vi ∨Wi , where Ui , Vi
andWi are literals: variables in BV or their negations.

Then we consider the language with nouns

{p : P ∈ BV } ∪ {q} ∪ {yi , zi : 1 ≤ i ≤ k}

and verbs {ri : 1 ≤ i ≤ k}. Notice that we write p for the noun corresponding to the
variable P. We will also write u for the literal U, where if U is a variable P, then u is the
noun p, and if U is a negated variable ¬P, then u is the term p.

For each clause ci = Ui ∨ Vi ∨Wi , we define the following sentences:

�i1 = all ui (ri all yi)

�i2 = all vi (ri all yi)

�i3 = all (ri all zi) wi .

And we define

Γ = {�i1, �i2, �i3 : 1 ≤ i ≤ k}
ϕ = all q q.

Lemma 4.1. Γ �|= ϕ if and only if Γ has a nonempty model.

Proof. Suppose Γ has a model M with nonempty domain M. Let M′ be a model
with domain M and the same interpretations of all of the nouns and verbs, except for
q, which we interpret as all of M. Since the sentences in Γ do not mention q, we still
have M′ |= Γ. And for any x ∈M , we have x ∈ [[q]] =M and x /∈ [[q]] = ∅, so Γ �|= ϕ.
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Conversely, suppose every model of Γ is empty. Then in any model M of Γ, we have
[[q]] = ∅ ⊆ [[q]] = ∅, so Γ |= ϕ. �

Theorem 4.2. Γ �|= ϕ if and only if c1 ∧ ··· ∧ ck is satisfiable.

Proof. Suppose Γ �|= ϕ. By Lemma 4.1, Γ has a model M with nonempty domain
M. Let x ∈M . Define a truth assignment f for the proposition letters, by

f(P) =

{
T if x ∈ [[p]]
F if x /∈ [[p]].

The truth assignment extends to literals in the natural way: f(¬P) = T if f(P) = F,
and f(¬P) = F if f(P) = T. Note that if U is a literal with corresponding term u,
then we have x ∈ [[u]] if and only if f(U ) = T.

We check that each clause ci = Ui ∨ Vi ∨Wi is satisfied. Iff(Ui) = Torf(Vi) = T,
then ci is satisfied. So suppose thatf(Ui) = f(Vi) = F. Then, since [[zi ]] ⊆ [[yi ]] ∪ [[yi ]],

x ∈ [[ui ]] ∩ [[vi ]] ⊆ [[ri all yi ]] ∩ [[ri all yi ]] ⊆ [[ri all zi ]] ⊆ [[wi ]].

So x ∈ [[wi ]], and f(wi) = T, and ci is satisfied.
Conversely, suppose f is a truth assignment such that c1 ∧ ··· ∧ ck is satisfied. By

Lemma 4.1, it suffices to build a nonempty model of Γ. Let M = {x}, and for each
proposition letter P, set

[[p]] =

{
{x} if f(P) = T

∅ if f(P) = F.

Note that again, if U is a literal with corresponding term u, we have x ∈ [[u]] if and
only if f(U ) = T.

Consider a clause ci = Ui ∨ Vi ∨Wi . We must define the interpretations of yi , zi ,
and ri , so that �i1, �i2, and �i3 are satisfied for 1 ≤ i ≤ k.

Case 1: x ∈ [[wi ]]. Set [[ri ]] = {(x, x)}. The interpretations of yi and zi are irrelevant.
Indeed, �i1, �i2, and �i3 are satisfied, since [[ri all yi ]] = [[ri all yi ]] = [[wi ]] =M .

Case 2: x /∈ [[wi ]]. Set [[zi ]] = {x} and [[ri ]] = ∅. Then�i3 is satisfied, since [[ri all zi ]] =
[[wi ]] = ∅. Since the clause ci = Ui ∨ Vi ∨Wi is satisfied, x must be in at least one of
[[ui ]] or [[vi ]]. If it’s in both, we’re done (and the interpretation of yi is irrelevant), since
[[ui ]] = [[vi ]] = ∅. Otherwise, set

[[yi ]] =

{
∅ if x /∈ [[ui ]], x ∈ [[vi ]]
{x} if x ∈ [[ui ]], x /∈ [[vi ]].

In the first case, M |= �i1, since [[ri all yi ]] =M , and M |= �i2, since [[vi ]] = ∅. In the
second case, M |= �i2, since [[ui ]] = ∅, and M |= �i2, since [[ri all yi ]] =M . �

4.2. Completeness for the extended languages L+
4 and L+

4.5. We enlarge our syntax
of L4.5 from sentences (all x y) and (some x y) to expressions of the form [x1, ... , xn]
and 〈x1, ... , xn〉 for n ≥ 1. Note that this is a departure from the languages we have
studied previously, since here we have infinitely many sentence formers, of arbitrary
finite length. We emphasize that [x1, ... , xn] and 〈x1, ... , xn〉 are sentences, not terms.
The terms of L+

4.5 are the same as the terms of L4.5.
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[x, x]
AX

[x, y1 , . . . , yn] [x, z1 , . . . , zm]
[y1 , . . . , yn , z1 , . . . , zm]

RES
[x1 , x2 , . . . , xn 1 , xn ]

[r all x1 , r all x2 , . . . , r all xn 1 , r all xn ]
REL

[x1 , . . . , xm]
[y1 , . . . , yn]

STR
y1 , . . . , ym [y1 , . . . , ym]

[x1 , . . . , xn]
EFQ

[x1 , . . . , xn]....
y1 , . . . , ym

[x1 , . . . , xn]

[y1 , . . . , ym]
x1 , . . . , xn

RAA

Fig. 6. Rules of the logical system for L+
4.5. The side condition on the structural rule (str) is

that each xi must be identical to some yj .

The semantics of this new language L+
4.5 is:

M |= [x1, ... , xn] iff
n⋂
i=1

[[xi ]] = ∅

M |= 〈x1, ... , xn〉 iff
n⋂
i=1

[[xi ]] �= ∅.

It is clear that 〈x1, ... , xn〉 generalizes (some x y), since the latter sentence can be
translated into L+

4.5 as 〈x, y〉. To see that [x1, ... , xn] generalizes (all x y), note that⋂n
i=1[[xi ]] = ∅ if and only if for some j (equivalently, for all j),

⋂
i �=j [[xi ]] ⊆ [[xj ]]. So the

sentence (all x y) can be translated into L+
4.5 as [x, y].

Our proof rules are shown in Figure 6. (ax) is a version of the axiom rule as we
have seen it throughout the paper. (res) is named for resolution. (But please note
that the sentence [x1, ... , xn] is not interpreted disjunctively as in resolution.) The
name (rel) stands for relational, since it is the only rule of the system that mentions
relations. We name (str) after structural rules of sequent calculi. The side condition
on this rule is that each xi appears in the list y1, ... , yn. It implies the usual rules of
weakening, contraction, and exchange. (efq) and (raa) are our formulations of ex
falso quodlibet and reductio ad absurdum. In this system, [y1, ... , yn] and 〈y1, ... , yn〉
are contradictories. Given two derivations with contradictory conclusions, one may
use (efq) to put these two together and conclude any sentence of the form [x1, ... , xn].
Alternatively, one may use (raa) to withdraw all occurrences of any one assumption of
the form [x1, ... , xn], and conclude the contradictory of that assumption, 〈x1, ... , xn〉.
Note the asymmetry between [x1, ... , xn] and 〈x1, ... , xn〉; this is arranged so as to allow
an easy proof-theoretic argument (Corollary 4.12) that (ax), (res), (rel), and (str)
give a sound and complete proof system for the smaller language L+

4 , which only has
sentences of the form [x1, ... , xn].

Example 4.3. Here is how the translations of (barbara) and (some1) are derived in
this system:

[x, y]
[y, x]

str

[y, z]
[x, z]

res

〈x, y〉
������[x, x]
[x, y]

str

〈x, x〉 raa
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And here are (darii) and (anti):

〈x, y〉

������[x, z]
[z, x]

str

[y, z]
[z, y]

str

[x, y]
res

〈x, z〉 raa

[x, y]
[y, x]

str

[r all y, r all x]
rel

Lemma 4.4 (Soundness). If Γ � ϕ, then Γ |= ϕ.

Proof. The soundness of (ax) and (str) are clear. For (res), (rel), and (efq), fix a
model M.

For (res), assume that [[x]] ∩ (
⋂
i≤n [[yi ]]) = ∅ and [[x]] ∩ (

⋂
j≤m [[zj ]]) = ∅. Suppose

there is some 
 ∈ (
⋂
i≤n [[yi ]]) ∩ (

⋂
j≤m [[zj ]]). Then either 
 ∈ [[x]] or 
 ∈ [[x]], which is

a contradiction in either case.
For (rel), assume that (

⋂
i<n[[xi ]]) ∩ [[xn]] = ∅, so

⋂
i<n [[xi ]] ⊆ [[xn]]. Suppose there

is some 
 ∈ (
⋂
i<n[[r all xi ]]) ∩ [[r all xn]]. Then there is some m ∈ [[xn]] such that it is

not true that 
[[r]]m. For all i < n, since 
 ∈ [[r all xi ]], m ∈ [[xi ]]. But then m ∈ [[xn]],
and this is a contradiction.

For (efq), it is vacuously true that if M |= 〈y1, ... , ym〉 and M |= [y1, ... , ym], then
M |= [x1, ... , xn], since 〈y1, ... , ym〉 and [y1, ... , ym] are contradictory.

The soundness of (raa) is by induction on the number of instances of (raa)
in the proof tree. Assume that the last use of (raa) is at the root of the proof
tree showing Γ � 〈x1, ... , xn〉. Then we have Γ ∪ {[x1, ... , xn]} � 〈y1, ... , ym〉 and
Γ ∪ {[x1, ... , xn]} � [y1, ... , ym]. By induction, these deductions are sound, so every
model of Γ ∪ {[x1, ... , xn]} satisfies both 〈y1, ... , ym〉 and [y1, ... , ym]. But these
sentences are contradictory, so Γ ∪ {[x1, ... , xn]} has no models. In other words, every
model of Γ satisfies 〈x1, ... , xn〉, as was to be shown. �

Definition 4.5. Let Γ be a theory, and let S be a set of terms.

1. Γ is inconsistent if it proves both [x1, ... , xn] and 〈x1, ... , xn〉 for some list of
terms x1, ... , xn. Otherwise, Γ is consistent .

2. S is Γ-inconsistent if there is a list of terms x1, ... , xn from S such that
Γ � [x1, ... , xn]. Otherwise, S is Γ-consistent.

Lemma 4.6. Let S be Γ-consistent. Then for all x, either S ∪ {x} or S ∪ {x} is Γ-
consistent.

Proof. Suppose not. Then by (str), there are y1, ... , yn ∈ S such that
Γ � [x, y1, ... , yn], and there are z1, ... , zm ∈ S such that Γ � [x, z1, ... , zm]. By (res),
Γ � [y1, ... , yn, z1, ... , zm]. This contradicts the Γ-consistency of S. �

Lemma 4.7. Let S be a maximal Γ-consistent set of terms. Then for all x, exactly one
of x or x belongs to S.

Proof. By Lemma 4.6 and maximality, either x or x belongs to S. Both cannot
belong to S, since this would contradict Γ-consistency, due to (ax). �

Lemma 4.8. LetS be maximal Γ-consistent, and suppose that (r all x) /∈ S. Then there
is some maximal Γ-consistent T such that x ∈ T ; and whenever (r all y) ∈ S, we have
y ∈ T .
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Proof. Let T0 = {x} ∪ {y : (r all y) ∈ S}. If T0 is Γ-inconsistent, then by (str) there
are y1, ... , yn such that (r all yi) ∈ S for all i and Γ � [y1, ... , yn, x]. By (rel),

Γ � [r all y1, ... , r all yn, r all x].

Since S contains each term (r all yi), by Γ-consistency it does not contain (r all x). So
by Lemma 4.7, Γ contains (r all x). This is a contradiction.

So T0 is Γ-consistent. By Zorn’s Lemma, T0 has a maximal Γ-consistent extension,
say T . �

The canonical model of Γ. Let M be the set of all maximal Γ-consistent sets of
terms. We define a model M(Γ) with domain M by defining:

S ∈ [[p]] iff p ∈ S
S[[r]]T iff for some z ∈ T , (r all z) ∈ S.

Lemma 4.9 (Truth Lemma). In M(Γ), for any term x, [[x]] = {S ∈M : x ∈ S}.

Proof. By induction on x. When x is a noun, this is by the definition of the model.
Induction step for (r all x): Suppose (r all x) ∈ S, and suppose T ∈ [[x]]. By

induction x ∈ T , so by the definition of the model, S[[r]]T . Thus S ∈ [[r all x]].
Conversely, suppose S ∈ [[r all x]], and assume for contradiction that (r all x) /∈ S.
By Lemma 4.8, there is some T ∈M such that x ∈ T , and whenever (r all y) ∈ S, we
have y ∈ T , so y /∈ T by Lemma 4.7. By induction, T ∈ [[x]], but it is not the case that
S[[r]]T , which is a contradiction.

Induction step for x: For any S ∈M , we have S ∈ [[x]] if and only if S /∈ [[x]].
By induction, this is equivalent to x /∈ S. And by Lemma 4.7, x /∈ S if and only if
x ∈ S. �

Lemma 4.10. If Γ is consistent, then M(Γ) |= Γ.

Proof. Let ϕ ∈ Γ. First, suppose ϕ = [x1, ... , xn]. Suppose for contradiction that
there exists S ∈

⋂
i [[xi ]]. Then by the Truth Lemma, xi ∈ S for all i, contradicting

Γ-consistency of S.
Now suppose ϕ = 〈x1, ... , xn〉. We claim that the set {x1, ... , xn} is Γ-consistent.

If not, then using (str), Γ � [x1, ... , xn]. So Γ is inconsistent, contradicting our
assumption.

Since {x1, ... , xn} is Γ-consistent, we can extend it to a maximal Γ-consistent set S,
and by the Truth Lemma, S ∈

⋂n
i=1[[xi ]]. �

Theorem 4.11 (Completeness). For any sentence ϕ, if Γ |= ϕ, then Γ � ϕ.

Proof. Suppose ϕ = [x1, ... , xn]. If Γ is inconsistent, then by (efq), Γ � ϕ, and
we are done. So we may assume that Γ is consistent. Assume for contradiction that
Γ � � [x1, ... , xn]. Consider the canonical model M(Γ). By Lemma 4.10, M(Γ) |= Γ,
so M(Γ) |= ϕ. By (str), the set {x1, ... , xn} is Γ-consistent. So we can extend it to
a maximal Γ-consistent set S. By the Truth Lemma, S ∈

⋂n
i=1[[xi ]], so in M(Γ) �|=

[x1, ... , xn], which is a contradiction.
Now suppose ϕ = 〈x1, ... , xn〉. If Γ |= ϕ, then Γ ∪ {[x1, ... , xn]} has no models, so

by Lemma 4.10, Γ ∪ {[x1, ... , xn]} is inconsistent. This means that Γ ∪ {[x1, ... , xn]}
proves both 〈y1, ... , ym〉 and [y1, ... , ym], so by (raa), Γ � 〈x1, ... , xn〉, as was to be
shown. �
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We have just seen the completeness theorem for L+
4.5. Let L+

4 be the generalization
of L4 obtained by adding sentences of the form [x1, ... , xn] (but not 〈x1, ... , xn〉). Then
we can restrict our logical system for L+

4.5 to all the rules except for (efq) and (raa).
These rules are still sound for L+

4 , and we will show that they are complete as well.

Corollary 4.12. Let �0 be the proof system consisting of the rules (ax), (str), (res),
and (rel). Then �0 is sound and complete for L+

4 .

Proof. We have already observed the soundness. So suppose Γ is a theory in L+
4 and

ϕ is a sentence in L+
4 such that Γ |= ϕ. Moving up to the larger language L+

4.5, we have
Γ � ϕ by Theorem 4.11. Our goal is to show that Γ �0 ϕ.

We first claim that if Γ is any theory in L+
4 and � is any sentence in L+

4.5 such that
Γ � �, then (raa) is not used in the proof. The argument is by induction on height of
the proof tree. Suppose for contradiction that (raa) is used. We may assume that the
root of the proof tree is an application of (raa):

����������[x1, ... , xn]....
〈y1, ... , ym〉

����������[x1, ... , xn]....
[y1, ... , ym]

〈x1, ... , xn〉
raa.

The left subtree is a proof of 〈y1, ... , ym〉 from Γ ∪ {[x1, ... , xn]}. Since Γ ∪
{[x1, ... , xn]} is a theory in L+

4 , by induction (raa) is not used in this proof. But
none of the other rules produce consequences of the form 〈y1, ... , ym〉, so this is a
contradiction.

Now it is easy to see that if Γ is any theory in L+
4 , then no � proof from Γ uses (efq),

since none of our rules other than (raa) allow us to produce or introduce a premise of
the form 〈y1, ... , ym〉.

Therefore, if Γ � ϕ, then Γ �0 ϕ. �
4.3. Open problems concerning L4 and L4.5. We began this section with the result

that the consequence relation for L4 is Co-NPTime hard. This implies that, assuming
P �= NP, there is no boundedly complete syllogistic proof system for either L4 or L4.5

Instead, we added to the syntax and formulated a proof system which went beyond
the “purely syllogistic”; in that it used schematic rules and also (raa). But we did not
find proof systems of any kind for the original languages L4 and L4.5. We leave this
as an open problem. (There is a result of possible relevance in [5]: a syllogistic system
for sentences of the form (all p x), where p is a (complemented) noun, and x is either
a (complemented) noun or a term (r all q), where q is a (complemented) noun.) For
that matter, we also leave open the question of determining the exact complexities of
the consequence relations for L4 and L4.5.

§5. L5 and L5.5: Putting it all together. The largest logics in this paper are L5 and
L5.5, as described in Figure 1. We have much less to say about them than about their
sublanguages because a notational variant of L5.5 has already been studied. This is the
language R∗† in [10]. Here is the syntax of this language. We begin with a set N of
nouns a set V of verb atoms. A verb literal is either a verb r or its complement r. We
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define terms and sentences via the syntax below:

terms x, y, ... p ∈ N | p | r all p | r all p | r some p | r some p

sentences ϕ,�, ... all x y | some x y.

Note that we do not have recursion for terms. In the semantics, we interpret
complemented verbs using relational complement:

[[r]] = (M ×M ) \ [[r]].

The rest of the semantics is clear.

Proposition 5.1. There is a translation map ϕ �→ ϕ∗ of sentences in R∗† to sentences
in L5.5 with the following properties:

1. Γ |= ϕ iff Γ∗ |= ϕ∗, where Γ∗ = {�∗ : � ∈ Γ}.
2. ϕ �→ ϕ∗ is computable in PTime.

Proof. It is sufficient to translate terms x of R∗†. For this, we use

(r all x)∗ = r some x

(r some x)∗ = r all x.

The point is that the left sides of the equations above have the same interpretations as
the right side in every model. �

The translation in the other direction is more complicated due to the complex terms
in the languages of this paper. We use the standard technique of flattening.

Proposition 5.2. There is a translation map (Γ, ϕ) �→ (Γ∗, ϕ∗) from assertions inL5.5

to assertions in R∗† with the following properties:

1. Γ |= ϕ iff Γ∗ |= ϕ∗.
2. If Γ is finite, so is Γ∗. In this case, (Γ, ϕ) �→ (Γ∗, ϕ∗) is computable in PTime.

Proof. Fix Γ and ϕ in L5.5. Let T be the set of all terms in Γ ∪ {ϕ}, including
subterms. For each t ∈ T, let xt be a new noun. Let Δ1 be the set of all sentences of
R∗† below, for x ∈ T:

all xp p all p xp
all x(r all t) (r all xt) all (r all xt) x(r all t)
all x(r some t) (r some xt) all (r some xt) x(r some t)
all xp p all p xp
all xr all t (r some xt) all (r some xt) xr all t
all xr some t (r all xt) all (r all xt) xr some t

all x
t
xt all xtxt

An easy induction shows that for all t ∈ T, and all models M |= Δ1, [[xt ]] = [[t]]. We
translate the sentences of L5.5 to those of R∗† (with the new nouns) in the obvious way:
(all t u)∗ = all xt xu , and (some t u)∗ = some xt xu . Let Δ2 = {�∗ : � ∈ Γ}. Finally,
we take Γ∗ to be Δ1 ∪ Δ2, and ϕ∗ to be the translation that we just saw.

We check point (1): Γ |= ϕ iff Γ∗ |= ϕ∗. Assume that Γ |= ϕ, and let M |= Γ∗. Due
to Δ1, we have our key fact: for all relevant terms t, [[t]] = [[xt ]]. Using this and the fact
that M |= Δ2, it follows that M |= Γ. And so M |= ϕ. But then using our key fact
again, M |= ϕ∗. The converse is similar. �
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As shown in [10], the consequence relation for R∗† is ExpTime complete. Moreover,
there are no proof systems which are finite, sound, and complete for the logic, even
allowing reductio ad absurdum. (Nevertheless, there are logical systems for R∗†. For
example, Fitch-style system may be found in [4, 6]. That system uses individual
variables, as in first-order logic, but in a controlled way.)

It follows from the translations in Propositions 5.1 and 5.2 that the consequence
relation for L5.5 is ExpTime complete. Moreover, there can be no sound and complete
syllogistic proof system for L5.5, even allowing all of the (cases) rules in this paper.
Indeed, any rule allowing proof by cases would correspond to a rule in the language of
R∗† which is derivable from reductio ad absurdum.

We would like to point out that the ExpTime hardness result for L5.5 extends to the
weaker logic L5. To see this, we must recall the outline of the argument in [10]. The
starting point is Spaan’s theorem [12] that the satisfiability problem for LU , modal
logic with the universal modality, is ExpTime hard. One takes a sentence ϕ in LU and
translates it to a finite set Sϕ of sentences of R∗† with the property that ϕ and Sϕ are
equisatisfiable. By our translation, Sϕ may be taken to be a set of sentences in L5.5. By
examining the details, Sϕ is a set S∗

ϕ of sentences in L5, together with one additional
sentence of the form (some x x). The upshot is that ϕ is unsatisfiable iff S∗

ϕ |= all x x.
Note that (all x x) is a sentence in L5. In this way, the consequence relation for L5 is
at least as hard as the (un)satisfiability problem for LU .

This paper also explored extensions of syllogistic logic using schemes like (chains).
It is possible that there is a schematic extension of L5.5, and it is also possible that
extensions to the syntax will help. We have not explored this. The logical system for
R∗† which uses individual variables adapts to L5.5 in a straightforward way, and we
expect that the completeness and finite model properties which were shown in [4] hold
in the adapted system.
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