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Abstract

Automated commonsense reasoning (CR) is essential for building human-like AI systems featur-
ing, for example, explainable AI. Event calculus (EC) is a family of formalisms that model CR
with a sound, logical basis. Previous attempts to mechanize reasoning using EC faced difficulties
in the treatment of the continuous change in dense domains (e.g. time and other physical quan-
tities), constraints among variables, default negation, and the uniform application of different
inference methods, among others. We propose the use of s(CASP), a query-driven, top-down
execution model for Predicate Answer Set Programming with Constraints, to model and rea-
son using EC. We show how EC scenarios can be naturally and directly encoded in s(CASP)
and how it enables deductive and abductive reasoning tasks in domains featuring constraints
involving both dense time and dense fluents.

KEYWORDS: event calculus, constraints, ASP, commonsense reasoning

1 Introduction

The ability to model continuous characteristics of the world is essential for commonsense

reasoning (CR) in many domains that require dealing with continuous change: time, the
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height of a falling object, the gas level of a car, the water level in a sink, etc. Event

calculus (EC) is a formalism based on many-sorted predicate logic (Kowalski and Sergot

1989; Mueller 2014) that can represent continuous change and capture the commonsense

law of inertia, whose modeling is a pervasive problem in CR. In EC, time-dependent

properties and events are seen as objects and reasoning is performed on the truth values

of properties and the occurrences of events at a point in time.

Answer set programming (ASP) is a logic programming paradigm that was ini-

tially proposed by Marek and Truszczynski (1999) and Lifschitz (1999) to realize non-

monotonic reasoning. ASP has been used by Lee and Palla (2012; 2020) to model the

EC. Classical implementations of ASP are limited to variables ranging over discrete and

bound domains and use grounding and SAT solving to find out models (called answer

sets) of ASP programs. However, reasoning on models of the real world often needs

variables ranging over dense domains (domains that are continuous, such as R, or that

are not continuous but have an infinite number of elements in any bound, non-singleton

interval, such as Q). Dense domains are necessary to accurately represent the properties

of some physical quantities, such as time, weight, space, etc.

This paper presents an approach to modeling EC using the s(CASP) system by Arias

et al . (2018) as the underlying reasoning infrastructure. The s(CASP) system is an im-

plementation of constraint answer set programming over first-order predicates which

combines ASP and constraints. It features predicates, constraints among non-ground

variables, uninterpreted functions, and, most importantly, a top-down, query-driven ex-

ecution strategy. These features make it possible to return answers with non-ground

variables, possibly including constraints among them, and to compute partial models by

returning only the fragment of a stable model that is necessary to support the answer

to a given query. Thanks to its interface with constraint solvers, sound non-monotonic

reasoning with constraints is possible. This approach achieves more conciseness and ex-

pressiveness, in the sense of being able to succinctly express complex computations and

reasoning tasks, than other related approaches. Dense domains can be faithfully modeled

in s(CASP) as continuous quantities, while in other proposals such domains had to be

discretized, as done by Mellarkod et al . (2008a) and Lee and Palla (2020), therefore losing

precision or even soundness. Additionally, in our approach the amalgamation of ASP and

constraints and its realization in s(CASP) is considerably more natural: under s(CASP),

answer set programs are executed in a goal-directed manner so constraints encountered

along the way are collected and solved dynamically as execution proceeds — this is very

similar to the way in which Prolog was extended with constraints. The implementation

of other ASP systems featuring constraints is considerably more complex.

In the rest of the paper we present s(CASP) and its unique capabilities together with

a terse introduction to EC (Section 2), our approach to modeling EC with s(CASP)

(Section 3), a quantitative and qualitative evaluation (Section 4), and, finally, related

work and conclusions (Sections 5 and 6).

2 Background

ASP is a logic programming and modeling language that evaluates normal logic programs

under the stable model semantics proposed by Gelfond and Lifschitz (1988). s(ASP),

introduced by Marple et al . (2017), is a top-down, goal-driven ASP system that can

evaluate ASP programs with function symbols (functors)without grounding them either
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before or during execution. Grounding is a procedure that substitutes program variables

with the possible values from their domain. For most classical ASP solvers, grounding is

a necessary pre-processing phase. Grounding, however, requires program variables to be

restricted to take values in a finite domain. As a result, traditional ASP solvers cannot

be used to model continuous time or change.

2.1 s(CASP)

s(CASP), presented by Arias et al . (2018), extends s(ASP) by adding constraints, simi-

larly to how CLP extends Prolog. Also, similarly to how s(ASP) can compute the stable

model semantics with non-ground programs and return non-ground models including

disequalities in the Herbrand domain, s(CASP) keeps constraints as relations among

variables both during execution and in the answer sets.

Constraints have historically proved to be effective in improving both expressiveness

(programs are shorter and easier to understand, as many computation details are taken

care of by the underlying constraint solver) and efficiency in logic programming, as they

can succinctly express properties of a solution and reduce the search space. As a result,

s(CASP) is more expressive and faster than s(ASP), while retaining the capability of

executing non-ground predicate answer set programs.

2.1.1 Syntax and behavior

An s(CASP) program is a set of clauses of the following form:

a :- ca, b1, . . ., bm, not bm+1, . . ., not bn.

where a and b1, . . ., bn are atoms. An atom is either a propositional variable or the

expression p(t1, . . ., tn) if p is an n-ary predicate symbol and t1, . . ., tn are terms.

A term is either a variable xi or a function symbol f of arity n, denoted as f/n, applied to

n terms, for example, f(t1, t2, . . ., tn), where each ti is in turn a term. A function

symbol of arity 0 is called a constant. Program variables are usually written starting

with an uppercase letter, while function and predicate symbols start with a lowercase

letter. Numerical constants are written solely with digits.1 Therefore, s(CASP) accepts

terms with the same conventions as Prolog: f(a, b) is a term, and so are f(g(X),Y)

and [f(a)|Rest] (to denote a list with head f(a) and tail Rest).

A note on terminology ASP literature often uses the term constraint to denote con-

structions such as :- p, q, that is, rules without head. They express that the con-

junction of atoms p ∧ q cannot be true: either p, q, or both, have to be false in any

stable model. Our programs use as well a designated class of predicates that restrict the

domains of variables (Marriott and Stuckey 1998; Marriott et al. 2006) and whose se-

mantics comes from the structure and domain of an underlying constraint system. In

Constraint Logic Programming (CLP), these predicates are called “constraints” as well.

To avoid the ambiguity that may arise from using the same name for constraints appear-

ing among (free) variables during program execution and in the final models and for rules

1 There are additional syntactical conventions to separate variables and non-variables that are of no
interest here.
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without heads, and following Mellarkod et al. (2008b), we will refer to headless rules as

denials.

ca is a simple constraint or a conjunction of constraints: an expression establishing re-

lations among variables in some constraint system, as described by Marriott and Stuckey

(1998). Similar to CLP, s(CASP) is parametrized by the constraint system, from which

it inherits its semantics. Since the execution of an s(CASP) program needs negating

constraints (Section 2.1.3), we require that this can be done in the constraint system by

means of a finite disjunction of basic constraints (Stuckey 1991; Dovier et al . 2000).

At least one of a, bi, not bi, or ca must be present. When the head a is not present

it is supposed to be substituted by the head false. The rules have then the form

:- ca, b1, . . ., bm, not bm+1, . . ., not bn.

(and, as mentioned before, we call this rule a denial) and their interpretation is that the

conjunction of the constraints and goals has to be false, so at least one constraint or goal

has to be false.

The execution of an s(CASP) program starts with a query of the form

?- ca, b1, . . ., bm, not bm+1, . . ., not bn.

The s(SCASP) answers to a query are partial stable models where each one is a subset

of a stable model that satisfies the constraints, makes non-negated atoms true, makes

the negated atoms non-provable, and, in addition, includes only atoms that are relevant

to support the query. Additionally, for each partial stable model s(CASP) can return on

backtracking the justification tree and the bindings for the free variables of the query

that correspond to the most general unifier (mgu) of a successful top-down derivation

consistent with this stable model.

An atom can have the form -r (i.e. have a hyphen as its first character). In that case

it is assumed to express the classical negation of atom r. Rules with head -r, to express

when r is false, can be part of the program. To ensure soundness, a denial

:- r, -r.

is automatically added to guarantee that atom r and its classical negation -r are not

both simultaneously true in any model. Other than that, -r is not treated specially by

s(CASP). The construct not -r is allowed and rules with -r in their head or body are

subject to dualization (Section 2.1.3).

Default negation not r differs from classical negation -r in that not r succeeds when

it cannot be proven from the program that r holds, while -r succeeds if there is a rule

that states how to deduce -r and this rule, together with the rest of the program, can be

used to derive -r. The difference from the point of view of reasoning can be illustrated

with a simple piece of commonsense knowledge: a bus may cross the railway tracks if no

train is approaching. A possible rule using classical negation expresses would be:

cross :- -train.

It means the railway tracks can be crossed if we explicitly know (because there is a proof

for it) that no train is approaching — for example, because there are sensors that send

us information that ensures that there is definitely no train on the tracks within some

safety range. The rule using default negation would be:

cross :- not train.
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which means that we can cross the railway tracks if there is no evidence (because we

cannot prove it) that a train is approaching — for example, we do not receive information

of a train coming. But there may be no train coming, or the sensors may be faulty and

not sending signals. That is why -r is sometimes referred to as strong negation: it carries

with it the meaning that there is a constructive proof that r is false. Therefore, lack of

evidence is not a hard proof. Classical and default negation have two different meanings

inside the language and are used to express very different CR scenarios.

When -r and r are defined, the decision to invoke -r or not r in the body a rule

depends on what the programmer wants to express. There is a relation of containment

between not r and -r, but it is clearer in the context of non-propositional atoms. There-

fore, we defer its explanation to the end of Section 3.4, when we deal with the translations

of the axioms of the Basic Event Calculus (BEC).

In s(CASP), and unlike Prolog’s negation as failure and ASP default negation, not

p(X) can return bindings for X on success, that is, bindings for which the call p(X) would

have failed. Constraints may be returned as well: for the program

1 p(a).

the query ?- not p(X). would return the binding X �= a and the model {not p(X |
{X �= a})}, representing the set of not p(X) such that the atom p(X) can be proven

only when X �= a.2 Note that X in the query appeared only in a negated atom, and

did not need to be part of any non-negated atom. This is possible thanks to the use of

constructive negation (Marple et al . 2017) and coinductive success (Gupta et al . 2007)

in s(ASP).

These are augmented in s(CASP) with the constraint processing capabilities presented

in Arias et al . (2018), such that the program

1 p(X):- X > 0.

will return, for the same query as before, the model {not p(X | {X ≤ 0})}.
s(CASP) uses a top-down, goal-driven execution procedure that implements an ex-

tension of the stable model semantics introduced by Gelfond and Lifschitz (1988) for

non-ground programs. Default negation is solved against the dual rules of the program,

which give a constructive definition of the negation of program predicates. The top-down

algorithm does not need grounded programs and makes it possible as well to return

partial stable models.

2.1.2 Overview of the execution procedure of s(CASP)

In the following sections we will present an abridged description of the top-down evalu-

ation procedure used by s(CASP), which, in a nutshell, is:

1. Rules expressing the constructive negation of the predicates in the original ASP

program are synthesized (Section 2.1.3). We call this the dual program. Its mission is

to provide a means to constructively determine the conditions and constraints under

which calls to non-propositional predicates featuring variables would have failed: if

2 Uniqueness of names is assumed for constants and function names: any two constants or functions
with different names represent different objects.
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we want to know when a rule such as p(X, Y) :- q(X), not r(Y). succeeds, the

dual program computes the constraints on Y under which the call r(Y) would fail.

This is an extension of the usual ASP semantics that is compatible with the case

of programs that can be finitely grounded.3

2. The original program is checked for loops of the form p :- q, not p. and denials

are generated for them.
3. The denials generated in point 2, together with any denials present in the original

program, are collected in a predicate synthesized by the compiler that is invoked

by adding an auxiliary goal to this predicate at the end of the query.
4. The union of the original program, the dual program, and the denials is handled

by a top-down execution algorithm that implements the stable model semantics.

Item number 4 is specially relevant. The dual program (item 1) is synthesized by means

of program transformations drawing from classical logic. However, its meaning differs

from that of first-order logic. That is so because it is to be executed by a metainterpreter

that does not implement the inference mechanisms of first-order logic, as it is designed

to ensure that the semantics of answer set programs is respected. In particular, it treats

specifically cyclic dependencies involving negation — see Section 2.1.4. For conciseness,

we have not included in this paper the description of the execution algorithm, which can

be found in Marple et al . (2012) and Marple et al . (2017).

Therefore, the soundness of s(CASP) (and its version without constraints, s(ASP))

needs to be assessed taking into account the dual program, the generation of the denials

and the evaluation algorithm as a whole. This was done by Marple et al . (2012) for the

propositional case (which lays the bases of the whole procedure) and extended for the

case of predicate logic, including arbitrary function symbols, by Marple et al . (2017).

We will provide reasons supporting the soundness of the s(CASP) algorithm in the next

sections.

2.1.3 Dual programs

We summarize here the synthesis of the dual of a logic program P : the completion

procedure described by Clark (1978) is performed to generate a program Comp(P ), its

rules are converted into an equivalent form with negated heads, and then De Morgan’s

laws are applied to generate separate clauses.

1. Following Ferraris et al . (2011, Section 2.1), first-order sentences are constructed

for each clause by considering each i-th rule of predicate p

p :- ca, b1, . . ., bm, not bm+1, . . ., not bn.

as a shorthand for ∀�x�yi (pi(�x) ← Bi), where Bi corresponds to the conjunction

ca ∧ b1 ∧ . . .∧ bm ∧¬bm+1 ∧ . . .∧¬bn and �yi are the variables appearing in Bi that

do not appear in �x. The rationale for this transformation is that the grounding of

an ASP program substitutes variables in the program clauses for all the constants

3 Note that, in the presence of function symbols and constraints on dense domains, this is in general
not the case for s(CASP) programs.
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in the program, and all the resulting clauses have to be satisfied. This is precisely

what the universal quantifier expresses.

We will assume that clauses are normalized, that is, head unifications have been

made explicit as goals in the bodies of the corresponding clauses and the heads

contain only variable names. Also, in what follows we will not distinguish user

predicates bi from constraints ca until the last step of the generation of the dual

program; we will make the necessary distinction there.
2. All sentences corresponding to the same predicate name are conjoined together:

∀�x�yi (p(�x)← B1) ∧
...

∀�x �yk (p(�x)← Bk).

3. The bodies in the antecedent of the sentences are joined in a single body:

∀�x�y (p(�x)← B1 ∨ . . . ∨Bk).

The variables �y are updated to include all �yi that appear in the different Bi and

do not appear in �x.
4. The scope of the quantifiers is minimized to make further simplifications possible:

∀�x (p(�x)← ∃�y(B1 ∨ . . . ∨Bk)),

and then

∀�x (p(�x)← ∃�y1B1 ∨ . . . ∨ ∃ �ykBk).

Transformations 2 to 4 are valid in intuitionistic logic, and so they preserve the

stable models of the original formulae, as mentioned by Ferraris et al . (2011, Section

6.1).
5. Implications are replaced by equivalences, to generate the Clark completion of the

original predicate:

∀�x (p(�x)←→ ∃�y1B1 ∨ . . . ∨ ∃ �ykBk).

This transformation is, in general, not model-preserving, except in the case of

tight programs as presented by Erdem and Lifschitz (2003). For a program P ,

positive loops makes the Clark completion Comp(P ) under the classical first-order

semantics be weaker than P under the stable model semantics: all stable models

of P are classical models of Comp(P ), but not the other way around. Therefore,

there may be classical models of Comp(P ) that are not stable models of P .
6. We create new predicate names to separate the bodies corresponding to the different

original clauses:

∀�x ( p(�x)←→ p1(�x) ∨ . . . ∨ pk(�x) )

∀�x ( pi(�x)←→ ∃�yiBi).

7. Their duals ¬p/n, ¬pi/n are:

∀�x ( ¬p(�x)←→ ¬(p1(�x) ∨ . . . ∨ pk(�x)) )

∀�x ( ¬pi(�x)←→ ¬ ∃�yiBi ).
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This is a semantically-preserving operation in the classical logic semantics, and so

the models of the Clark completion remain untouched.
8. De Morgan’s laws are applied to the first formula (the “entry point” of the negated

predicate) and the existential quantifier is negated:

∀�x ( ¬p(�x)←→ ¬p1(�x) ∧ . . . ∧ ¬pk(�x) )
∀�x ( ¬pi(�x)←→ ∀�yi¬Bi ).

De Morgan’s Law are of course semantics-preserving in classical logic, but also in

the stable model semantics because the formulas ¬(A∧B) and ¬A∨¬B are strongly

equivalent, as mentioned by Lifschitz et al . (2001, Proposition 5).
9. For each dual rule corresponding to each pi, an auxiliary negated predicate corre-

sponding to the negated body is synthesized:

∀�x ( ¬p(�x)←→ ¬p1(�x) ∧ . . . ∧ ¬pk(�x) )
∀�x ( ¬pi(�x)←→ ∀�yi¬p′i(�x, �yi) )
∀�x�y ( ¬p′i(�x, �y)←→ ¬Bi ).

Let us remember that each Bi has the form bi,1 ∧ . . .∧ bi,m ∧¬ bi,m+1 ∧ . . .∧¬ bi,n.

Therefore, the last sentence is

∀�x, �y ( ¬p′i(�x, �y)←→ ¬(bi,1 ∧ . . . ∧ bi,m ∧ ¬ bi,m+1 ∧ . . . ∧ ¬ bi,n) ).

10. We apply De Morgan’s Law to the last sentence in the previous point to obtain

∀�x, �y ( ¬p′i(�x, �y)←→ ¬bi,1 ∨ . . . ∨ ¬bi,m ∨ bi,m+1 ∨ . . . ∨ bi,n ).

11. We revert the introduction of the equivalence. This transformation changes the

models of program w.r.t. that of the Clark completion. However, programs under

the stable semantics (and under Prolog semantics) have a clear notion of direction

and the metainterpreter only uses the goal-driven direction “use Body to prove

Head”. The closed-world assumption, captured by Clark’s completion, is already

implicit in the top-dow evaluation algorithm of s(CASP).

∀�x ( ¬p(�x)← ¬p1(�x) ∧ . . . ∧ ¬pk(�x) )
∀�x ( ¬pi(�x)← ∀�yi¬p′i(�x, �yi) )
∀�x�y ( ¬p′i(�x, �y)← ¬bi,1 ∨ . . . ∨ ¬bi,m ∨ bi,m+1 ∨ . . . ∨ bi,n) ).

12. Separate the disjunction in the body of the last sentence in different clauses:

∀�x�y ( ¬p′i(�x, �y)← ¬bi,1 )

∀�x�y ( ¬p′i(�x, �y)← ¬bi,2 )

...

∀�x�y ( ¬p′i(�x, �y)← bi,n ).

These clauses, together with the original program and the denials, are used by the

metainterpreter to decide whether some atom belongs or not to a stable model of

a program and to return the (minimal) support for that atom.
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This provides a definition for ¬p(�x) via a clause with head ¬pi(�x) for each original clause

with head pi(�x). The newly introduced negated atoms ¬bi.1 . . .¬b1.m can fall into two

categories: they are either negations of user predicates or negations of constraints. In

the former case, the procedure just described generates a definition for the negation of

user predicates. In the latter case, constraints are either head unifications created after

normalizing the clauses, or they are constraints in a different domain. Both cases are

treated similarly:

• If the negation of a constraint can be expressed as a finite disjunction of basic

constraints (Dovier et al . 2000; Stuckey 1991), the compiler makes that expansion.

In the simplest case, that disjunction is a single constraint: a linear constraint

E1 < E2 is translated into E1 ≥ E2. In other cases, it can be a “real” disjunction:

the constraint E1 = E2 in CLP(Q) (linear constraints over the rationals), is negated

by converting it into E1 < E2 ∨ E1 > E2, and each component of the disjunction

is handled by a clause. In practice, it is not necessary that all constraints in a

constraint system can be negated, but only those that are required in a given

program to answer some query.
• When the negation of a constraint cannot be expressed as a finite disjunction

of constraints, we make a best effort to provide an ad hoc implementation. For

example, for the equalities vi = ti in the Herbrand domain CLP(H) that were

added when normalizing clauses, we introduce a call diff (vi, ti) to a disequality

solver provided by the runtime environment. Negation of equality in CLP(H) can
be expressed as a finite disjunction only for programs that can generate a finite

number of ground terms.

Executable code for the dual program is generated by removing the external quantifiers

(as in Horn clauses) and translating the universal quantifiers that were applied to local

variables into a call to the predicate forall(Var, Pred), provided by the s(CASP)

runtime.

Example 1

Given the program

1 p(X):- q(X, Z), not r(X).

2 p(Z):- not q(X, Z), r(X).

3 q(X, a):- X #> 5.

4 r(X):- X #< 1.

its dual is shown below

1 % not p/1

2 not p(A) :- not p_1(A), not p_2(A).

3

4 not p_1(A) :- forall(B, not p_1(A,B)).

5 not p_1(A,B) :- not q(A,B).

6 not p_1(A,B) :- r(A).

7

8 not p_2(A) :- forall(B, not p_2(A,B)).

9 not p_2(A,B) :- q(B,A).

10 not p_2(A,B) :- not r(B).

11 % not q/1

12 not q(A,B) :- not q_1(A,B).

13

14 not q_1(A,B) :- B \= a.

15 not q_1(A,B) :- A #=< 5.

16

17 % not r/1

18 not r(A) :- not r_1(A).

19 not r_1(A) :- A #>= 1.
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2.1.4 Sketch of the execution scheme

Queries to the original program extended with the dual rules are evaluated by a runtime

environment. This is currently a metainterpreter written in Prolog that executes the

algorithm described by Marple et al . (2012). This algorithm has similarities with SLD

resolution, but it takes into account specific characteristics of ASP and the dual pro-

grams, such as the different kinds of loops, the denials, and the introduction of universal

quantifiers in the body of the clauses. The main highlights of this algorithm are:

Loop handling: Two different cases are distinguished by Marple et al . (2012):

• When a call eventually invokes itself and there is an odd number of intervening

negations (as in, e.g. p :- q. q:- not r. r:- p.), the evaluation

fails (and backtracks) to avoid contradictions of the form p ∧ ¬p.
• When there is an even number of intervening negations, as in

p :- not q. q:- r. r:- not p. the metainterpreter generates sev-

eral stable models, such as {p, not q, not r} and {q, r, not p}.
Denials: The s(CASP) compiler automatically generates an auxiliary predicate that

captures all the denials written by the programmer. This predicate is invoked dur-

ing query evaluation to ensure that the returned models are consistent with the

denials. The current implementation executes them at the end of the query evalua-

tion, when a candidate model has been generated. It would however be possible to

check them at appropriate points while the execution proceeds, in order to increase

performance, as suggested by Marple and Gupta (2014).

The s(CASP) compiler also detects statically rules of the form r :- q, not r. and

introduces denials to ensure that the models satisfy ¬q ∨ r, even if the atoms r or

q are not needed to solve the query. This is done by building a dependency graph

of the program and detecting the paths where this may happen, including across

several calls. For the propositional case, such an analysis can be precise. For the

non-propositional case, an over-approximation is calculated. In both cases, denials

that are not used during program evaluation can be generated. These may impose

a penalty in execution time, but are safe. Therefore, s(CASP) will state that the

program

1 p :- not q. 2 q :- not p. 3 r :- not r.

has no stable models, regardless of the initial query.

Universal quantification: Universal quantifications in the body of the clauses are

translated into the construction forall(Var, Pred). This is implemented by the

runtime environment by solving Pred, extracting the constraints attached to the

quantified variables, and using these constraints negated to narrow the constraint

store under which Pred is executed. This is iterated until failure or until the con-

straint store has an empty domain for the quantified variables. Arias et al . (2018)

present this algorithm in more detail.

2.1.5 Execution with unsafe variables and uninterpreted Function Symbols

The code in Example 1 has variables that would be termed as unsafe in regular ASP

systems: variables that appear in negated atoms in the body of a clause, but that do
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not appear in any positive literal in the same body. Since s(CASP) synthesizes explicit

constructive goals for these negated goals, the aforementioned code can be run as-is in

s(CASP). The query ?- p(A). generates three different models:

{ p(A | {A > 5}), q(A |{A > 5}, a), not r(A |{A > 5}) }

A > 5

{ p(A | {A �= a}), not q(B |{B < 1}, A |{A �= a}), r(B |{B < 1}) }

A �= a

{ p(a), not q(B | {B < 1}, a), r(B |{B < 1}) }

A = a

where the notation V | {C} for a variable V is intended to mean that V is subject to the

constraints in {C}. The constraints A = 5, A �= a, and A = a correspond to the bindings

of variable A that make the atom in the query ?- p(A) belong to the stable model.

Another very relevant point where s(CASP) differs from ASP is in the possibility of

using arbitrary uninterpreted function symbols to build, for example, data structures.

While in mainstream ASP implementations these could give rise to an infinite grounded

program, the s(CASP) execution model can deal with them similarly to Prolog, with the

added power of the use of constructive negation in the execution and in the returned

models.

Example 2

The predicate member/2 below models the membership to a list as it is usual in (classical)

logic programming. The query is intended to derive the conditions for one argument not

to belong to a given list.

1 member(X, [X |Xs]).
2 member(X, [_ |Xs]):- member(X, Xs).

3

4 list([1,2,3,4,5]).

5

6 ?- list(A), not member(B, A).

This program and query return in s(CASP) the following model and binding:

{ list([1,2,3,4,5]),

not member(B | {B �= 1,B �= 2,B �= 3,B �= 4,B �= 5}, [1,2,3,4,5]),

not member(B | {B �= 1,B �= 2,B �= 3,B �= 4,B �= 5}, [2,3,4,5]),

not member(B | {B �= 1,B �= 2,B �= 3,B �= 4,B �= 5}, [3,4,5]),

not member(B | {B �= 1,B �= 2,B �= 3,B �= 4,B �= 5}, [4,5]),

not member(B | {B �= 1,B �= 2,B �= 3,B �= 4,B �= 5}, [5]),

not member(B | {B �= 1,B �= 2,B �= 3,B �= 4,B �= 5}, []) }

A = [1,2,3,4,5], B �= 1, B �= 2, B �= 3, B �= 4, B �= 5

That is, for variable B not to be a member of the list [1,2,3,4,5] it has to be different

from each of its elements.

In addition to default negation, s(CASP) supports classical negation to capture the

explicit evidence that a literal is false, as mentioned in Section 2.1.1.

s(CASP) is implemented in Ciao Prolog (Hermenegildo et al . 2012) and is available at

https://gitlab.software.imdea.org/ciao-lang/scasp.
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2.1.6 s(CASP) as a conservative extension of ASP

The behavior of s(CASP) and ASP is the same for propositional programs. For programs

featuring unsafe variables (legal in ASP, but not in mainstream ASP systems) or programs

that could create data structures arbitrarily large or whose variable ranges are defined

in infinite domains (either unbound or bound but dense), which are outside the standard

domain of ASP systems as they cannot be finitely grounded, s(CASP) extends ASP in a

consistent way. The domain of the variables is implicitly expanded to include a domain

which can be potentially infinite.

Let us use an example introduced in Marple et al . (2017, Pag.12). We are interested

in knowing whether p(X) (for some X) is or not part of a stable model:

1 d(1).

2 p(X) :- not d(X).

The only constant in the program is 1, which is the only possible domain for X in the

second clause. That clause is not legal for ASP, as X is an unsafe variable (Sect. 2.1.5).

Adding a domain predicate call for it (i.e. adding d(X) to the body of the second clause),

makes its model be {d(1)} (not p(1) is implicit).

That second clause is however legal in s(CASP). Making the query ?- p(X) returns

the partial model {p(X|{X \= 1}), not d(X|{X \=1})} stating that p(X) and not

d(X) are true when X \= 1, which is consistent with, but more general than, the model

given by ASP. As the model is partial, only the atoms (perhaps negated) involved in the

proof for ?- p(X) appear in that model.

2.2 Circumscription

Circumscription (McCarthy 1980; Lifschitz 1985) is a technique to perform non-

monotonic reasoning within the framework of first-order logic. Circumscription minimizes

the extension4 of the predicates that we want to circumscribe. Intuitively, it aims at for-

malizing that the known objects in a certain class are all the objects that are in that

class. EC theories require that some of their predicates are circumscribed to ensure that

they can only be interpreted as they appear in the description of the scenario.

The following definition of circumscription is due to Lifschitz (1985):

Definition 1 (Circumscription)

Let A(P,Z) denote a sentence, where P is a tuple of predicate constants and Z a tuple of

function and/or predicate constants disjoint with P . The circumscription of P in A(P,Z)

with variable Z is defined as the second order sentence A(P,Z)∧¬∃p, z(A(p, z)∧ p<P ).

The < symbol in the previous expression is defined as follows: if U and V are n-ary

predicates, U≤V stands for ∀x1 . . . xn(U(x1, . . . , xn) → V (x1, . . . , xn)). U = V stands

for U≤V and V≤U and U<V stands for U≤V ∧¬(V ≤U). These definitions are extended

to tuples of predicates in the obvious fashion.

U≤V expresses that the extension of U is a subset of the extension of V , and U<V

means that the extension of U is a proper subset of the extension of V . The circumscrip-

tion of A(P,Z) is a formula whose extension is the minimal extension of the predicates

4 The extension of a predicate is the set of tuples for which predicate is true.
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in P that makes A(P,Z) true, and in which the objects in Z are allowed to vary. It is

expressed with CIRC(A;P ;Z) or CIRC(A;P ) if Z is empty.

Example 3

Let’s take A = P (a). Its minimization should express that P is only true for a:

CIRC(A;P ) ≡ ∀x(P (x)↔ x = a).

Example 4

Let’s take A = ¬P (a). We only have information about P not being true in a, which

is the only constant that appears in A, but also all the constants that appear in the

sentence. Its minimization expresses this as:

CIRC(A;P ) ≡ ∀x¬P (x).

Computing circumscriptions is in general a hard task. However, there are class of

formulas (separable formulas) for which it has shown to be easy by Lifschitz (1985).

Also, Ferraris et al . (2011) have shown that there is a close relationship between cir-

cumscription and stable models and indeed Lee and Palla (2012, Definition 2) proved

that the stable model semantics coincides with the circumscription for a large class of

formulas called canonical formulas. Non-canonical formulas can often be rewritten as

canonical formulas, therefore expanding the range of coincidence of circumscription and

stable model semantics.

2.3 Event calculus

EC (presented at length by, for example, Mueller (2014)) is a formalism for reasoning

about events and change, of which there are several axiomatizations. There are three

basic, mutually related, concepts in EC: events, fluents, and time points. An event is an

action or incident that may occur in the world: for instance, a person dropping a glass

is an event. A fluent is a time-varying property of the world, such as the altitude of a

glass. A time point is an instant in time. Events may happen at a time point; fluents have

a truth value at any time point or over an interval, and their truth values are subject

to change upon the occurrence of an event. In addition, fluents may have (continuous)

quantities associated with them when they are true.

For example, the status of a glass falling may be represented by two fluents: one that

captures the fact that the glass is falling and another one that captures the height of the

glass over the ground. The event of dropping a glass initiates the fluent that captures

that the glass is falling and gives some initial value to its height. This height changes with

time according to some formula. The event of catching the glass makes the fluent that

reflects it is falling false and makes its height not to change, possibly until a further event

takes place. An EC description consists of a domain narrative (Figure 1) and a universal

theory (Figure 2). The domain narrative consists of the causal laws of the domain, the

known events, and the fluent properties, and the universal theory is a conjunction of EC

axioms that encode, for example, the inertia laws.

The original EC (OEC) was introduced by Kowalski and Sergot (1989). OEC has sorts

for event occurrences, fluents, and time periods. In this paper we use the BEC formulated

by Shanahan (1999) as presented by Mueller (2008a). BEC allows fluents to be released
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Fig. 1. Basic event calculus (BEC) predicates
(e = event, f , f1, f2 = fluents, t, t1, t2 = timepoints).

Fig. 2. Formalization of BEC theory as presented by Mueller (2014).

from the commonsense law of inertia via the Release predicate, and adds the ability

to represent continuous change via the Trajectory predicate. Figure 2 summarizes the

seven axioms of the BEC theory. An explanation of these axioms follows:

• Axiom BEC1. A fluent f is stopped between time points t1 and t2 iff it is termi-

nated or released by some event e that occurs after t1 and before t2.
• Axiom BEC2. A fluent f is started between time points t1 and t2 iff it is initiated

or released by some event e that occurs after t1 and before t2.
• Axiom BEC3. A fluent f2 is true at time t2 if a fluent f1 initiated at t1 does not

finish before t2 and it makes fluent f2 be true.5

• Axiom BEC4. A fluent f is true at time t if it is true at time 0 and is not stopped

on or before t.

5 For implementation convenience, and without loss of expressiveness, we assume that argument t2 in
Trajectory(f1, t1, f2, t2) is not a time difference w.r.t. t1, but an absolute time after t1.
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• Axiom BEC5. A fluent f is false at time t if it is false at time 0 and it is not

started on or before t.
• Axiom BEC6. A fluent f is true at time t2 if it is initiated at some earlier time

t1 and it is not stopped before t2.
• Axiom BEC7. A fluent f is false at time t2 if it is terminated at some earlier time

t1 and it is not started on or before t2.

3 From event calculus to s(CASP)

3.1 Circumscription in s(CASP)

Circumscription is applied to EC domain narratives, and as a result, the events that

happen and their effects are only those explicitly defined. As mentioned before, the

definition of a given scenario (its narrative part) states the basic actions and effects

using the predicates in Figure 1. Let us consider example 14 by Mueller (2014), which

reasons about the turning on and off of a light switch:

Happens(e, t) ≡ (e = TurnOn ∧ t = 2) ∨
(e = TurnOff ∧ t = 4).

Assuming circumscription, we can write the axioms Happens(TurnOn, 2) and

Happens(TurnOff , 4), instead of writing the previous formula, while ensuring that there

are no events (resp., effects) other than those stated. That is, we can prove that the

light is off at t = 6, because we can prove the absence of an event turning the light on

between t = 4 and t = 6. If we need to add a new event (e.g. Happens(TurnOn, 5)) we

only have to add it, instead of modifying the formula that expresses the circumscription

of the narrative. It has to be noted that in this case the circumscribed formula is simple,

but the circumscription of more complex formulas is more involved.

Similarly, since EC assumes the circumscription of the rest of the predicates defined

in the narrative (InitiallyN , InitiallyP , Initiates , Terminates , Releases , and Trajectory),

we have that the explicitly known effects of events are the only effects of events.

EC does not assume circumscription for the underlying theory. Since BEC1 and BEC2

are definitions which can be expanded wherever they appear, they do not need to be

taken care of specially.

However, for the rest of the BEC theory axioms in Figure 2, from BEC3 to BEC7,

we cannot apply this assumption because they are not circumscribed and they are

implications: HoldsAt is true if the body of one of its corresponding axioms holds. This

means that, if we cannot infer that HoldsAt(f, t) is true, then, we cannot deduce that

¬HoldsAt(f, t) is true. Instead, the falsehood of HoldsAt(t, f) must be inferred through

the axioms BEC5 and BEC7 if this is supported by direct evidences defined in the

narrative. It is important to note that if the narrative describes a scenario in which it

is possible to deduce that a fluent f is true and false at the same point in time t, this

narrative is inconsistent and there are no valid models for this scenario. Furthermore, if

a given narrative is described in terms of the truth or falsehood of a fluent f at some

point in time t, but we are not able to decide this value, then there are multiple valid

models because we have that HoldsAt(t, f) ∨ ¬HoldsAt(t, f).
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Let us describe below how we use s(CASP) to compute the circumscription based on

predicate completion (Mueller 2014; Lee and Palla 2012) while we are able to express the

truth/falsehood of HoldsAt using classical negation.

3.2 Modeling BEC with s(CASP)

Two key factors contribute to s(CASP)’s ability to model EC: the preservation of non-

ground variables during the execution and the integration with constraint solvers.

Treatment of variables in s(CASP): Thanks to the use of non-ground variables,

s(CASP) is able to directly model EC axioms that would otherwise require “unsafe” rules

(Section 2.1.5). Let us take, for example, rule BEC4 of Figure 2. In a straightforward

encoding (see Figure 3), the parameter t (T in the code), which appears in the head and

does not appear in a positive literal in the body (i.e. it only appears in ¬StoppedIn(0, f, t))
would be classified as unsafe by a mainstream ASP system.

It may be argued that a way to overcome this issue would be to translate the negation

in the axioms as classical negation, that is, -stoppedIn(0, F, T). However, this would

need to generate a negation of the two clauses of stoppedIn/3 which would in turn need

the (classical) negations of terminates/3, happens/2, and releases/3. However, these

narrative predicates do not come with a definition stating when they are false, in the

classical sense of negation.

Fig. 3. Basic Event Calculus (BEC) modeled in s(CASP).
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An ASP solver such as clingo (Gebser et al . 2014) will not be able to directly process

unsafe rules like this. The standard approach to fix unsafe rules is to add a positive

literal defining the domain of the unsafe variable (T in this case), but this is not feasible

if we want to maintain the property that T represents time and is therefore not discrete

and not finite. On the other hand, the top-down execution strategy of s(CASP) makes it

possible to keep logical variables both during execution and in answer sets and therefore

free (logical) variables can be handled in heads and in negated atoms.

Integration with constraint solvers: The s(CASP) system has a generic interface to

enable plugging in constraint solvers. s(CASP) currently includes the CLP(Q) linear con-

straints solver by Holzbaur (1995), that supports the arithmetic constraints<,>,=,≤,≥.
This is used to implement the definitions and axioms of BEC that require comparisons

of points in (continuous) time and to solve the equations that arise from these compar-

isons. The selection of CLP(Q) instead of the faster CLP(R) is motivated by soundness

reasons. Since CLP(R) uses internally floating-point numbers, rounding and approxima-

tions compromise accuracy and termination of some code. On the other hand, CLP(Q)

represents rational numbers exactly and therefore it should not introduce any calculation

error. One example in which the use of floating-point numbers would be inadequate is the

code in Figure 5, which uses the factor 4
3 and that does not have an exact floating-point

representation.

The s(CASP) infrastructure is however parametric w.r.t. the underlying constraint

solver, and other implementations of constraint domains can be implemented and plugged

in if necessary. As an example, s(CASP) includes a solver for disequality in the Herbrand

domain (Sec. 2.1.3), which is necessary to generate the dual of almost any interesting

program.

3.3 Translating the BEC axioms into s(CASP)

Our translation of the BEC axioms into s(CASP) is related to the translation used by

the systems EC2ASP and F2LP (Lee and Palla 2012; 2020). We differ in three aspects

that improve performance for a top-down system, fully use s(CASP)’s ability to treat

unbound variables, and do not compromise the soundness of the translation (according

to the proofs presented by Lee and Palla (2012)). These are: the treatment of rules with

negated heads, the possibility of generating unsafe rules, and the use of constraints over

dense domains (rationals, in our case). We describe below, with the help of a running

example, the translation that turns logic statements (as found in BEC) into an s(CASP)

program. The code corresponding to the translations of the axioms of BEC in Figure 2

can be found in Figure 3. s(CASP) code follows the syntactical conventions of logic

programming: constants (including function names) and predicate symbols start with

a lowercase letter and variables start with an uppercase letter. In addition, numerical

constraints are written as constraints in s(CASP), (e.g. #< ) to make it clear that they

do not correspond to Prolog’s arithmetic comparisons:

• Atoms and Constants: Their names are preserved.Uniqueness of Names (Shana-

han 1999) is assumed by default (and enforced) in logic programming.
• Constraints: Predicates that represent constraints (e.g. on time) are directly

translated to their counterparts in s(CASP). For example, t1 < t2 becomes
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T1 #< T2, which is handled by the CLP(Q) solver. The translation is parame-

terized on the constraint domain.
• Definitions: The axiomatization of BEC uses definitions of the form

D(x) ≡ ∃yB(x, y), where B(x, y) is a conjunction of (possibly negated) atoms,

disjunctions of atoms, and constraints (e.g. BEC1). The use of these definitions

makes it easier to build and reuse conceptual blocks out of basic predicates. They

are however not strictly necessary per se as predicates. For performance reasons

we treat them as if they were written as ∀x(D(x) ← ∃yB(x, y)), following the

work of Lee and Palla (2020). Since D, as mentioned above, is given a name as a

convenience to write the BEC axioms, we can ignore its truth value in the (par-

tial) models that s(CASP) generates because if it were expanded where it is used,

it would have disappeared. Therefore, the models returned using implication or

equivalence for the definition of D are the same.
• Rules with Positive Heads: A rule (e.g. BEC6)

∀x(H(x)← ∃y(A(y) ∧ ¬B(x, y) ∧ x < y)),

where x < y is a constraint, is translated into

1 h(X) :- X #< Y, a(Y), not b(X,Y).

The constraint X #<Y could be placed anywhere in the clause. However, in top-down

evaluation schemes, the general recommendation is to execute constraints as soon as

possible to use a constraint and generate mechanism instead of generate and test in

order to improve performance. In the very common case where user-level constraint

operations are translated into constraint propagation, which is usually required

to be deterministic, executing them earlier in the tree simplifies the constraints

without performing internal search or creating search branches. On the other hand,

by constraining the domains of the variables earlier, the size of the search trees

needed by calls to user predicates (a(Y), not b(X, Y) in this case) are reduced.
• Rules with Negated Heads: BEC rules 5 and 7 infer negated heads

¬HoldsAt(f, t) while rules 4 and 6 infer positive heads HoldsAt(f, t), that is, they

follow, respectively, the scheme

∀x(¬H(x)← ∃yA(x, y)) ∧ ∀x(H(x)← ∃yB(x, y)).

The standard approach to translate rules with negated heads is to convert them

into denials (Lee and Palla 2012) such as :- a(X,Y), h(X). Our approach is to

create instead the atom -h(X) to denote (Section 2.1.1) the negation of h(X) and

a rule that captures the explicit evidence that h(X) is false:

1 -h(X) :- a(X,Y).

This makes it possible to invoke -h(X) as a regular predicate in a top-down execu-

tion. The compiler will additionally (Section 2.1.1) generate denials to ensure that

-h(X) and h(X) cannot be simultaneously true. Therefore, s(CASP) will detect an

inconsistency if both HoldsAt(f, t) and ¬HoldsAt(f, t) can be simultaneously de-

rived from the narrative. Having rules stating explicitly when ¬HoldsAt(f, t) can

be derived makes it possible to query for it, as some BEC rules need. We will later

see how this is connected with the translation of the narrative.
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• Rules with Disjunctive Bodies: A rule (e.g. BEC1)

∀x[H(x)← ∃y( (A(x, y) ∨B(x, y)) ∧ C(x, y) )]

is translated into two separate clauses:

1 h(X) :- a(X,Y), c(X,Y).

2 h(X) :- b(X,Y), c(X,Y).

3.4 Translation of the narrative

Every basic BEC predicate P (x) from the narrative (Figure 1) is translated into s(CASP)

as a set of rules of the form

P (x)← γ,

where the body γ is a conjunction of atoms, negated atoms, and constraints that can be

trivially true in some cases. The rules corresponding to the same P (x) are assumed to

state all the cases where P (x) is true.

Throughout this section we will use the light scenario problem from Mueller (2014,

example 14): a two-color bulb lamp can be switched on and off. We want to be able to

answer when the light is on (and its color in this case) and off. We will present the BEC

narrative and its translation into s(CASP), available in full in Figure 4.

Events: Let us consider the description below:

Happens(e, t) ≡ (e = TurnOn ∧ (t = 2 ∨ t = 5)) ∨
(e = TurnOff ∧ t = 4).

It states that the TurnOn event will happen at time t = 2 and t = 5, and that

TurnOff will happen at t = 4. As we mentioned before, since EC assumes circum-

scription, it is equivalent to the axioms Happens(TurnOn, 2), Happens(TurnOff , 4) and

Happens(TurnOn, 5), which are translated as facts (lines 1-3 of Figure 4).

Event Effects: The effects of events are represented using the predicates

Initiates(e, f, t) and Terminates(e, f, t). In our example, when the event TurnOn hap-

pens, the light is put in on status; similarly, when the event TurnOff happens, the light

will not be on, red or green:

Initiates(e, f, t) ≡ (e = TurnOn ∧ f = On)

Terminates(e, f, t) ≡ (e = TurnOff ∧ (f = On ∨ f = Red ∨ f = Green)).

Fig. 4. Narrative of the light scenario modeled in s(CASP).
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In both cases, this can happen at any time t, and the translation again becomes facts

(lines 5-9 in Figure 4)

Release from Inertia: When turned on, the light emits red light for one second and

after that it starts to emit green light. Trajectory expresses how this change depends on

the time elapsed since an event occurrence.

Trajectory(s, t1, c, t2) ≡ (s = On ∧ c = Red ∧ t1 < t2 ∧ t2 < t1 + 1) ∨
(s = On ∧ c = Green ∧ t2 ≥ t1 + 1).

The translation is in lines 10-14 of Figure 4. Releases states that the color of the light

is released from the commonsense law of inertia. After a fluent is released, its truth value

is not determined by BEC and it can change. Thus, there may be models in which the

fluent is true, and models in which the fluent is false:

Releases(e, f, t) ≡ (e = TurnOn ∧ (f = Red ∨ f = Green)).

Note that the time parameter t appears only in the head (it is universally quantified).

Releasing a fluent (lines 16 and 17 in Figure 4) frees it up so that other axioms in the

domain description can be used to determine its truth value, thus allowing us to represent

continuous change of the fluent.

State Constraints: State constraints usually contain HoldsAt(f, t) or ¬HoldsAt(f, t)
and represent restrictions on the models. In our running example, a light cannot be red

and green at the same time:

¬HoldsAt(Red , t) ∨ ¬HoldsAt(Green, t).

Note that this is logically equivalent to ∀t ¬(HoldsAt(Red , t)∧HoldsAt(Green, t)) and is

translated as :- holdsAt(red,T),holdsAt(green,T). Adding this denial to the pro-

gram in Figure 4 does not change its models. However, if we change the trajectory

definition for the red light stating t2 ≤ t1 + 1 instead of t2 < t1 + 1 the state constraint

is violated at t2 = t1 + 1 and therefore, there are no valid models.

A Note on Using ¬HoldsAt(f, t) in the Narrative: The narrative predicates may de-

pend on what the BEC theory can deduce. In other words,HoldsAt(f, t) or ¬HoldsAt(f, t)
can (perhaps indirectly) be used in the body γ of a narrative rule (see an example in

Figure 5). HoldsAt(f, t) can be invoked directly, but ¬HoldsAt(f, t) ought to be called

using classical negation, For example, -holdsAt(F,T). As we mentioned before, the rea-

son is that circumscription is not applied to the EC axioms and we can deduce only the

truth (or falsehood) of HoldsAt when we have direct evidence of either of them — that

is, what the positive (holdsAt(F,T)) and negative (-holdsAt(F,T)) heads provide.

As we mentioned before, the consistency rule (line 56 in Figure 3) introduced

by the compiler of s(CASP) would ensure that holdsAt(F,T) and -holdsAt(F,T)

are mutually exclusive by flagging an inconsistency. Note that if not holdsAt(F,T)

succeeds, then holdsAt(F,T) is false but it does not imply that -holdsAt(F,T) is

true (i.e. -holdsAt(F,T) ⇒ not holdsAt(F,T), but it is not the case that not

holdsAt(F,T) ⇒ -holdsAt(F,T)). Symmetrically for not -holdsAt(F,T) we have

that holdsAt(F,T) ⇒ not -holdsAt(F,T).
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Fig. 5. Encoding of an Event Calculus narrative with continuous change.

In previous implementations of EC, such as F2LP, reasoning about the falsehood of

HoldsAt(f, t) can be made using only the default negation, implemented as negation as

failure (i.e. not/1). Therefore, the presence of classical negation in s(CASP) not only

increases the expressive power from the point of view of the programmer (by, e.g. de-

termining whether a fluent is or not active at some point in time), but it also ensures

correctness in those cases where -holdsAt(F,T) �≡ not holdsAt(F,T), as inconsistent

models are discarded.

3.5 Continuous change: A complete encoding

We consider now an extension of the water tap example by Shanahan (1999), where we

define two possible worlds and added a triggered fluent to describe the ability of s(CASP)

to model complex scenarios. In this example, a water tap fills a vessel, whose capacity

is either 10 or 16 units, and when the level of water reaches the bucket rim, it starts

spilling. Let us present the main ideas behind its encoding, available in Figure 5.

Continuous Change: The fluent Level(x) represents that the water is at level x in the

vessel. The first Trajectory formula (lines 19-24) determines the time-dependent value

of the Level(x) fluent, which is active as long as the Filling fluent is true and the rim

of the vessel is not reached. The second Trajectory formula (lines 25-30) allows us to

capture the fact that the water reached the rim of the vessel and overflowed. Note the 3
4

factor that relates time and water amount. As mentioned before, if the underlying solver

approximates the numerical operations, water levels could be miscalculated and therefore

the answers to some queries could be wrong. The use of CLP(Q) prevents this.

Uniqueness of Level (x) A relevant question is whether the fluent Level(x) could take

two different values at the same time. Intuitively, it should not, because if we are modeling

faithfully a physical system evolving under a series of events, the level should be unique

at any point in time. Note, however, that if this were to happen, it would be because the
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narrative does not correspond to the reality. The specification given by Shanahan (1999)

includes explicitly an axiom

HoldsAt(Level (x1), t) ∧ HoldsAt(Level (x2), t)→ x1 = x2,

to avoid this situation.

We did not include it for two reasons: on the one hand, a careful inspection of the

narrative reveals that this could not be the case. On the other hand, if this axiom were

necessary, the model without it would allow the simultaneous existence of two alternative

water levels. That raises the question whether the model is correct, as the narrative

would in that case allow two different, diverging events happen at the same time, or the

trajectories would allow two inconsistent fluents overlap. Just stating this inconsistency

is of little value in practice, as it does not help catch errors in the model and it removes

possible correct states.6

Triggered Fluent: The fluent Spilling is triggered (lines 13-15) when the water level

reaches the rim of the vessel. As a consequence, the Trajectory formula in lines 32-35

starts the fluent Leak(x) and captures the amount of water leaked while the fluent

Spilling holds.

Alternative Worlds: As we mentioned in Section 2.1.4, the presence of even loops

generates different worlds. In our implementation, the clauses in lines 3-4 force

the vessel capacity to be either 10 or 16, and therefore, they create two possi-

ble worlds/models: {max_level(10), not max_level(16),. . .} and {max_level(16),
not max_level(10),. . .}.
Different worlds can be used to model alternative scenarios where an event may happen

in one world and not in another. For this, a keyword #abducible is provided as a shortcut

in s(CASP). We will use it in Sec. 4.2, below.

4 Examples and evaluation

The benchmarks used in this section are available at http://www.cliplab.org/papers/

EC-sCASP-TPLP2020/. They were run on a macOS 10.15.7 laptop with an Intel Core i5 at

2GHz.

4.1 Deduction

Deduction determines whether a state of the world is possible given a theory and an

initial narrative. We can perform deduction in BEC for the previous examples through

queries to the corresponding s(CASP) program. For the lights scenario (Figure 4):

?- holdsAt(on,3) succeeds: it states that the light is on at time 3.

6 Let us note that EC does not preclude a fluent to have different associated values simultaneously:
it is only the semantics of this fluent that may disallow it. As an example, let us take the fluent
Occupied(n) that expresses that the seat n in a theater is occupied. Obviously, several instances for
different n can be true at the same time.
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?- -holdsAt(on,4.5) succeeds: the light is not on at time 4.5.7

?- holdsAt(F,3) is true in one stable model containing holdsAt(green,3) and

holdsAt(on,3), meaning that the light is on and green at time 3.

Additionally, as we mentioned in Section 3.4, using the default negation not/1 we can

check the absence of a proof for holdsAt/2 and -holdsAt/2. However, there are time

points, for example, at time 1, where neither the truth nor the falsehood for the fluent

representing that the light is on can be deduced from the program. Therefore, the queries

?- not holdsAt(on,1) and ?- not -holdsAt(on,1) would both succeed.

Finally, let us use the water level scenario (Figure 5) to make queries involving time

and the water level (that are continuous physical quantities):

?- holdsAt(level(H),15/2) is true when H=10/3.

?- holdsAt(level(10/3),T) is true when T=15/2.

Note that, as explained with more detail in the Evaluation subsection below, s(CASP)

can operate and answer correctly queries involving rationals (and, in general, dense do-

mains as long as they are supported by the underlying constraint solver) without having

to modify the original program to introduce domains for the relevant variables or to scale

the constants to convert rationals into integers.

4.2 Abduction

Abductive reasoning can be used to determine a sequence of events/actions that reaches

a given state. In the case of ASP, actions are naturally captured as the set of atoms

that are true in a model that includes the initial and final states, and that are con-

sistent with the BEC theory. For the water scenario (Figure 5), let us assume we

want to determine whether the water can reach a level of 12 at time 14. The query

?- holdsAt(level(12),14) will return a single model with a vessel size of 16 and the

rest of the atoms in the model capturing what must (not) happen to reach this state.

For EC, the relevant atoms are those related to the events that happen (as these trigger

fluents according to the model rules in initiates/3, releases/3, and trajectory/4)

and, to keep track of the state of the system, the atom holdsAt/2 and its classical nega-

tion. If, for the query mentioned above, we restrict the model to these atoms,8 we obtain

the following filtered model:

{ initiallyP(level(0)), not happens(tapOn,D | {D #> 0,D #< 5}),

holdsAt(level(0),5), happens(tapOn,5),

not happens(tapOff,F | {F #> 5,F #< 14}), holdsAt(level(12),14) }

where we have listed the atoms in increasing order of time stamp.

This subset of the model states what must happen to reach a state with a water level

of 12 at time t = 14. It captures events that must be observed (e.g. happens(tapOn,5),

meaning that the water tap has to open at time t = 5), what is the observable state of the

fluents (holdsAt(level(12),14), meaning that the water level at t = 14 is 12), but also

7 The decimal number 4.5 is automatically converted to rational representation.
8 This can be done automatically by placing #show directives in the source code.
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what eventsmust not happen (not happens(tapOn, D | {D #> 0,D #< 5}), meaning

that the tap must not be opened between t = 0 and t = 5, or not happens(tapOff,F

| {F #> 5,F #< 14}), meaning that the water tap must not be closed between t = 5

and t = 14).

Additionally, since s(CASP) only generates partial models, it does not contain atoms

that express actions that are not necessary for the conclusion, that is, the plan does

not contain references to actions (either positive or negative) that do not interfere with

the final state. For example, it does not state that the event of closing the tap must

or must not happen between t = 0 and t = 5: whether this event happens or not is

immaterial for the final result. Other abductive tasks can be performed: adding the

directive #abducible to the fact happens(tapOn,5), we specify that it is possible (but

not necessary) for the tap to be open at time 5. As we mentioned in Section 3.5, this

directive is translated into code that creates different worlds/models. For the previous

query, ?- holdsAt(level(L),14) (that determines the level of water at t = 14), we

obtain two alternative partial models:

• One containing the literal happens(tapOn,5) meaning that the tap is open at

t = 5, and therefore, the resulting model is the previous one.
• Another one containing { holdsAt(level(0),14), initiallyP(level(0)),

not happens(tapOn,G | {G #> 0,G #< 5}), not happens(tapOn,5), not

happens(tapOn,E | {E #> 5,E #< 14}) } meaning that the tap is not open at

t = 5 (and neither for 0 < t < 5, nor for 5 < t < 14), and therefore, the water level

at t = 14 remains equal to 0, which causes the literal holdsAt(level(0),14) be

part of the model.

Note that s(CASP) determined the truth value of Happens and, more importantly,

performed constraint solving to infer the time ranges during which some events ought

(and ought not) to take place, represented by the negated atoms in the models inferred

by constructive negation. Since all relevant atoms have a time parameter, they actu-

ally represent a timed plan. Due to the expressiveness of constraints, this plan contains

information on time points when events must (not) happen and also on time windows

(sometimes in relation with other events) during which events must (not) take place.

Note that it would be impossible to (finitely) represent this interval with ground atoms,

as it corresponds to an infinite number of points.

4.3 Evaluation

A direct performance comparison of our implementation of BEC in s(CASP) with imple-

mentations in other systems may not be meaningful: most previous systems implement

discrete Event Calculus (DEC) and they do not support continuous quantities. Since of-

fering this support is one of the key points of our proposal, giving up on it and comparing

with an implementation DEC in s(CASP) is pointless and defeats the main purpose of

this piece of work. We will then have to compare BEC in s(CASP) with how a system

that implements DEC can be used to approximate the results we can give.

One of the ASP-based tools that support DEC is F2LP, an ASP-based system that ac-

cording to Lee and Palla (2012) “outperforms DEC reasoner (Mueller 2008b)”, reported

there as the more efficient SAT-based implementation. F2LP is a tool that executes DEC
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by turning first-order formulas under the stable model semantics into a logic program

without constraints that is then evaluated using an ASP solver.

Our first evaluation compares the light scenario in Figure 4 running under s(CASP)

with the F2LP translation under clingo 5.1.1, the current version of the state-of-the-art

ASP system. Since the directive #domain is no longer available in clingo, we adapted

the translation of F2LP adding timestep(1..10) and timestep/1 to make the clauses

safe (Appendix A of the supplementary material accompanying the paper at the TPLP

archive). While under s(CASP) we can reason about time points in an unbounded, dense

domain, the encoding used by F2LP makes time belong to the integers (in particular, to

the interval from 1 to 10, with the previous timestep/1 fact). Therefore, since the light

can be red for t > 2, t < 3 and for t > 5, t < 6,9 there are no integer time points between

1 and 10 where the emitted light is red. Therefore, the query ?- holdsAt(red,T) does

not return any model under clingo, while the execution of the same query under s(CASP)

returns the constraint conjunctions T#> 2, T#<3 and T #>5, T#<6.

In order to determine at what time point the red light is on using clingo, we

modified the program generated by F2LP to refine the timestep domain with

timestep(1..10*P):- precision(P), where the new predicate precision(P) makes

it possible to have a finer grain for the possible values of timestep by increasing the

value of P. With this modification, it is possible to check if the light is red at time

t = 5.9 with clingo by stating that we want a precision of tenths (using precision(10))

and modifying the queries accordingly, for example, using ?- holdsAt(red,59). Sim-

ilarly, using p=100 in precision(P) it is possible to check for t = 5.99 by querying

?- holdsAt(red,599), and so on.

This change (see Appendix B of the supplementary material accompanying the paper at

the TPLP archive, for the complete program) is in principle not difficult to perform, but it

undoubtedly obfuscates the resulting program (and for more complex narratives it would

be harder, impractical, or even infeasible), and also impacts negatively its performance.

Table 1a shows how the additional precision necessary in the F2LP encoding increases

the execution run-time of clingo by orders of magnitude. On the other hand, s(CASP)

does not have to adapt its encoding/queries and its performance does not change.

The second benchmark is the water level scenario in Figure 5. The physical model

needs continuous quantities but, as it happened in the previous case, its execution with

clingo forces the level of water to be expressed using integers. For example, the query

?- holdsAt(level(11),T) returns the value T=53/4 (= 13.25) using s(CASP),10 while

the execution under clingo fails: the level of water is h = 10.6 at time t = 13 and h = 12

at time t = 14; therefore there is no integer point in time t with a level of water h = 11.

As before, we modified the program generated by F2LP by adding the predicate

precision(P) to specify the precision of the program by scaling the numbers clingo

deals with, which is necessary to determine at what time the level of the water is 11.

For this example, the resulting encoding (see Appendix C of the supplementary material

accompanying the paper at the TPLP archive) is more complex than for the previous

9 When turned on (at t = 2 and t = 5), the light emits red light for one second (see Section 3.4).
10 s(CASP) returns a rational number because it uses the rational constraint solver CLP(Q) in order not

to lose precision, as would happen if using floating-point numbers. s(CASP) can however output them
in decimal notation by using the command-line flag -r.
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Table 1. Comparative table of s(CASP) and F2LP+clingo

(a) Run time (ms) comparison for the light scenario

Queries s(CASP) F2LP+clingo and precision

?- holdsAt(red,5.9) 228 82 10
?- holdsAt(red,5.99) 240 8,364 100
?- holdsAt(red,5.999) 226 > 5 min. 1000

(b) Run time (ms) comparison for the water tap scenario

Queries s(CASP) F2LP+clingo and precision

?- holdsAt(level(11),T) 301 475 10*
77,305 100

(*) With this precision the value returned by clingo is wrong.

benchmark. Additionally, this example shows that the scaling value depends on the par-

ticular benchmark: precision(10) is not fine-grained enough to capture the solution,

and we have to go up to precision(100) to obtain a model with T=1325 (corresponding

to t = 13.25, the correct value) for the query holdsAt(level(1100),T).

An undesirable effect of rounding in ASP is that rounding may not only make programs

fail, but it may make them succeed with wrong answers. For example, in the water level

example, with precision(10), the query holdsAt(level(110),T) holds with T=133

(which would correspond to t = 13.3). This value is not right, and it is due to arithmetic

rounding performed during the program execution.

Also, note that increasing P as powers of 10, as we have done, may not always work:

scaling units to make an answer such as 1/3 expressible as integers needs the scaling factor

of 3 included. That points to the need to have some knowledge about the program answers

before scaling the program, or to transform the whole program by using multipliers

containing for example, all the denominators that can appear at run-time during the

program execution.

Table 1b shows that, also for this benchmark, the additional precision increases the

execution run-time of clingo by orders of magnitude.

5 Related work

Previous work translated discrete EC into ASP by reformulating the EC models as

first-order stable models and translating the (almost universal) formulas of EC into a

logic program that preserves stable models. Given a finite domain, EC2ASP (and its

evolution, F2LP) compiles (discrete) EC formulas into ASP programs (Lee and Palla

2020; 2012). This translation scheme relies on two facts: the semantics of second-order

circumscription and first-order stable models coincide on canonical formulas, and almost-

universal formulas can be transformed into a logic program while preserving the stable

models. As a result, computing models of EC descriptions can be done by computing the

stable models of an appropriately generated program.
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Clearly, approaches featuring discrete domains cannot faithfully handle continuous

quantities such as time. In addition, because of their reliance on SAT solvers to find the

stable models, they can only handle safe programs. In contrast, in the s(CASP) system,

because of its direct support for predicates with arbitrary terms, constructive negation,

and the novel forall mechanism (Marple et al . 2017; Arias et al . 2018), program safety is

not a requirement. Thus, s(CASP) can model EC axioms much more directly, elegantly,

and in continuous domains.

The approaches mentioned above assume discrete quantities and do not support rea-

soning about continuous time or change. As long as SAT-based ASP systems are used to

model EC, continuous fluents cannot be straightforwardly expressed since they require

unbound or dense domains for the variables. The work closest to incorporating continuous

time makes use of SMT solvers. In this approach, constraints are incorporated into ASP

and the grounded theory is executed using an SMT solver, as in Lee and Meng (2013).

However, this approach has not been directly applied to modeling the EC. The closest tool

chain is ASP Modulo Theory to SAT Modulo Theory (ASPMT2SMT) by Bartholomew

and Lee (2014) that uses gringo to partially ground the ASPMT theories and generate

constraints that are processed by Z3 (de Moura and Bjørner 2008). However, regular,

discrete ASP variables are at the heart of the model, and these are grounded and used

to generate the constraints. Therefore, if these discrete variables approximate continuous

variables in the model, the constraints generated will only approximate the conditions

of the original problem and therefore their solutions will also be an approximation (or

a subset) of the solutions for the real problem. In other words, the initial discretization

done for the ASP variables will be propagated via the generated constraints to the fi-

nal solutions that will, in the best case, be a discretized version of the actual solutions.

As an example, if time is discretized, the solutions to the model will suffer from this

discretization.

EC can be written as a (Horn-clause) logic program, but it cannot be executed directly

by Prolog, as reported by Shanahan (2000), because it lacks some necessary features, such

as constructive negation, deduction of negated atoms, and (to some extent) detection of

infinite failure. The last one can to some degree be worked around by using variants

of Prolog implementations that feature loop-breaking mechanisms in the presence of

constraints, as done by Arias and Carro (2019). The other points may eventually need

ad hoc coding for every example or crafting an interpreter able carry out deduction

tailored to the task.

A common approach is to write a metainterpreter specific to the EC variant at hand.

This can be as complex as writing a (specialized) theorem prover or, more often, a spe-

cialized interpreter whose correctness is difficult to ascertain (see the code by Chittaro

and Montanari (1996)). Therefore, some Prolog implementations of EC do not completely

formalize the calculus or implement a weaker version. In our case, we leverage the ca-

pabilities of s(CASP) to provide constructive, sound negation, negative rule heads, and

loop detection.

6 Conclusions

We showed how EC can be modeled in s(CASP), a goal-directed implementation of

constraint ASP with predicates, with fewer limitations than other approaches. s(CASP)

https://doi.org/10.1017/S1471068421000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000156
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can capture the notion of continuous time (and, in general, fluents) in EC thanks to its

grounding-free top-down evaluation strategy. It can also represent complex models and

answer queries in a flexible manner thanks to the use of constraints.

The main contribution of the paper is to show how EC can be directly modeled using

s(CASP), an ASP system that seamlessly supports constraints. The modeling of EC using

s(CASP) is more elegant and faithful to the original axioms compared to other approaches

such as F2LP, where time has to be discretized. While other approaches such as ASPMT

do support continuous domains, their reliance on SMT solvers makes constraints and

dependencies among variables be lost during grounding. The use of s(CASP) brings other

advantages: for example, in a query-driven system the trace of the proof / generation

of the model is a justification for the answers to a query. Likewise, explanations for

observations via abduction are also generated for free, thanks to the goal-directed, top-

down execution of s(CASP).

To the best of the authors’ knowledge, our approach is the only one that faithfully

models continuous-time EC under the stable model semantics. All other approaches dis-

cretize time and thus do not model EC in a sound manner. Our approach supports both

deduction and abduction with little or no additional effort.

The work reported in this paper can be seen as one of the first non-trivial applica-

tions of s(CASP). It illustrates the advantages that goal-directed ASP systems have over

grounding and SAT solver-based ones for certain domains / classes of applications. The

EC and its realization through s(CASP) is being used to model real-world avionics sys-

tems in the aerospace industry (Hall et al . 2021). Avionics systems are cyber-physical

system consisting of sensors and actuators. Sensors are modeled as fluents while actu-

ator actions correspond to events. The goal is to use the s(CASP) EC model to verify

(timed) properties of these avionics systems as well as to identify gaps with respect to

system requirements. Abductive capabilities of s(CASP) are being used to troubleshoot

the system as well as to find gaps in system design. The overarching goal of the project

is to build EC based tools for avionics software systems assurance.
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