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In the first aerial crossing of the South Atlantic, by Gago Coutinho and Sacadura Cabral in
1922, several methods of astronomical maritime navigation were used with adaptions to aerial
navigation. In order to apply these methods, the navigator needed to know the approximate
altitude of the aircraft so that its position could be determined. The instrument available at that
time, the altimeter, did not give reliable values for altitude. Therefore, Coutinho had to devise a
method that enabled the navigator to determine the altitude quickly and efficiently. The method
Coutinho devised is based on a mathematical and geometrical procedure. In this paper, we study
in detail Coutinho’s method to determine altitude, with diagrams to aid understanding of the
deductions and calculations. We also present a real example of how this method would be used
during the flight.
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1. INTRODUCTION.

Navigation is the means whereby the mariner or aviator ascertains his position on the
surface of the earth, and determines the exact direction in which he must head his craft
in order to reach its destination. (Brown, 1920, p. 93)

Until 1922 there were no scientific methods of astronomical navigation that permit-
ted an aircraft to fly out of sight of land safely. There was little need for such methods,
since most of the flights that were made were of short distance and within sight of land.
In this situation the navigator could check the progress of the aircraft towards the desired
destination simply by observation of landmarks and the use of very rudimentary instru-
ments. Although such equipment was capable of providing basic data such as direction
(compass), distance (speedometer) and altitude (altimeter), this information was not suffi-
cient to achieve the objective of flying long distances over the sea. For this reason, it was
essential to develop air navigation procedures which allowed an aircraft to fly out of sight
of land safely. The first methods developed in the beginnings of aerial navigation were
inspired by the procedures used in maritime navigation.
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In short journeys over land by aeroplane or airship the duties of a navigator are light, so
long as he can see the ground and check his progress towards the objective by observa-
tion and a suitable map. But for long distance flights, especially over the ocean and under
circumstances whereby the ground cannot be seen, the navigator of the air borrows much
from the navigator of the sea. (Brown, 1920, p. 94)

Nevertheless, Brown highlights the fact that there are also some distinctions between
air and sea navigation, resulting from differences in the characteristics of the elements in
which each type of navigation is carried out, namely, water or air.

The chief differences between the navigation of aircraft and the navigation of seacraft are

occasioned by:

(a) The vastly greater speed of aircraft, necessitating more frequent observations and
quicker methods of calculation.

(b) The serious drift caused by the wind. This may take aircraft anything up to forty or
more miles off the course in each hour’s flying, according to the direction and strength
of the wind. In cloudy weather, or at night, a change in the wind can alter the drift
without the knowledge of the navigator. Hence, special precautions must be taken to
observe the drift at all possible times.

(c) The absence of need for extreme accuracy of navigation in the air, since a ten or even
twenty mile error from the destination in a long journey is permissible. Another favor-
able point is that rocks, reefs and shoals need not be avoided. This permits the aerial
navigator to use short cuts and approximations in calculation, which would be criminal
in marine navigation. (Brown, 1920, p. 95)

In 1919 Hawker and Grieve attempted to cross the Atlantic Ocean but unfortunately they
were obliged to ditch their plane at sea. From their experience, however, they concluded
that accurate methods of aerial navigation needed to be developed in order to guarantee the
success of long flights over the ocean: ‘in a flight such that which we attempted, a non-
stop journey of over 2000 miles, accurate navigation is of absolutely prime importance’
(Hawker and Grieve, 1919, p. 60).

In 1922 Gago Coutinho and Sacadura Cabral, two officers of the Portuguese Navy,
completed the first air crossing of the South Atlantic from Lisbon to Rio de Janeiro. This
crossing was different from that of Hawker and Grieve in that the latter only depended on
the navigator’s ability to reach the west coast of Ireland, but Coutinho and Cabral needed
to reach Saint Paul’s Rocks, a tiny point in the immensity of the Atlantic Ocean.

The highest point of St. Paul’s Rocks is sixty feet above water; for the most part they are
only twenty feet in height, and they are less than a hundred yards long. To hit this tiny spot

after flying 11% hours over the open Atlantic is the greatest example of air navigation yet
performed. (Jones, 1931, p. 255)

The success of this flight was due to the fact that the Portuguese expedition conceived
and developed the first scientific methods of aerial navigation: ‘This crossing, having been
done in the most accurate and scientific manner, is an unparalleled stride towards the prac-
tical solution of the problems concerning navigation through the air.” (Anonymous, 1922,
p. 361).

The solutions devised by the two officers include the invention of two instruments,
namely the path corrector and the precision sextant — a sextant with an artificial horizon.
Besides these instruments, Coutinho also developed the first methods of aerial astronomic
navigation, which include a method to determine the aircraft’s position as well as its
altitude. We shall describe these solutions briefly.
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The determination of wind direction and speed was a problem that needed to be solved
so that the navigator could estimate the drift caused by the wind. To deal with this difficulty,
Coutinho and Cabral invented an instrument, called the path corrector, which enabled the
navigator to determine the direction and speed of the wind. Furthermore, the path corrector
could also be used to determine the new direction of the aircraft in order to compensate for
wind drift. For a detailed study of the construction and use of the path corrector, the reader
is referred to Coutinho and Cabral (1927) and Canas et al. (2019): ‘Among the instruments
used for the purpose the course corrector must have a prominent place, because perfectly
accurate dead reckoning can be done with it.” (Anonymous, 1922, p. 361)

The sextant used in maritime navigation could not be used in aerial navigation due to
the difficulty of the definition of the sea horizon at a normal flight altitude. Nevertheless,
Coutinho believed that its accuracy would be essential to determine the position of the
aircraft during flight. Therefore, he developed a new model of sextant with an artificial
horizon, called a precision sextant, which could be used to measure the height of a star
without the need of the sea horizon. For details about the precision sextant, the reader is
referred to Coutinho and Cabral (1927) and Pereira (2015).

The sextant, used for observations in the air, with its own artificial horizon, makes it practi-
cal to estimate the altitudes with the accuracy required in aerial navigation, in cases where it
is impossible or inconvenient to descend in order to observe the sea horizon. (Anonymous,
1922, p. 361)

Another important achievement accomplished by Coutinho and Cabral was the devel-
opment of methods of astronomic navigation which could be used effectively on board of
aircrafts.

The use of points of reference through the line of the intended crossing, and the able and
skilled modifications of the formulae of nautical astronomy, by which the observer may,
before starting, prepare the greatest part of his calculations, in this way leaving only another
quite minor part to be done in the air; are the two conceptions by which astronomical
navigation with a sextant can be done in the air with accuracy and comfort, as happens on
board ship, together with the quickness exacted in virtue of the great speed of aeroplanes.
(Anonymous, 1922, pp. 361-362)

A crucial aspect for the success and effectiveness of the methods of astronomic navi-
gation developed and used by Coutinho and Cabral was the determination of the aircraft’s
altitude. ‘The calculation of the position, through observations of the stars, requires the
approximate knowledge of our altitude’! (Coutinho, 1923, p. 10). To solve this problem,
Coutinho developed a geometrical procedure which allowed the navigator to determine the
aircraft’s altitude quickly during flight. For this, the navigator would have to measure the
aircraft’s shadow on the sea surface and then, with the help of a table which had been
pre-calculated before the flight, he could easily determine the aircraft’s altitude.

[...] the shadow of the aeroplane on the surface of the sea is sufficiently clear for measuring
with the sextant or telemetric binoculars. Evidently, one must, [...] have a small table
calculated with the length of the wings of the aeroplane to give the coefficient K in the
formula

height = Kcot.angle of shadow

1O célculo da posigdo, por meio de observagdes dos astros, exige o conhecimento aproximado da nossa
altitude [...]” (Coutinho, 1923, p. 10).
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a formula which gives the height with an error of a few feet, equivalent to an error of less
than a minute of depression. (Coutinho and Cabral, 1922, p. 374)

In Section 3, we study in detail Coutinho’s geometrical procedure to determine the
aircraft’s altitude? and how to determine the coefficient K in the above formula. Having
determined the mathematical expression to calculate the coefficient K, we will then explain
how Coutinho calculated in advance the table he referred to. We will include various dia-
grams to understand better the mathematical construction that underlies the procedure. We
conclude the paper with an example of how the procedure would have been used during
the flight.

2. THE NEED TO DETERMINE THE AIRCRAFT’S ALTITUDE IN AERIAL
NAVIGATION. The first scientific methods of aerial navigation were inspired by the
techniques used in maritime navigation, however, aerial navigation involved specific prob-
lems that did not arise in maritime navigation. One of those problems was the need to
determine the aircraft’s altitude.

Then again, height has to be allowed for. On board a ship this remains pretty constant, so

that corrections are easily made, whereas in an aeroplane, as in our case, one’s height can

vary within an hour or two or less from 15,000 feet to 1000 feet. Height is taken from

the barometer, but as the barometer reading alters according to atmospheric conditions as

well as being affected by height, a very big error can enter into this part of the calculation.
(Hawker and Grieve, 1919, pp. 61-62)

An alternative would be the use of an altimeter; however, readings from the altimeter
were also not reliable: ‘Hence an altimeter will commonly read 21,000 feet when the height
is really 20,000 feet.” (Wimperis, 1920, pp. 40—41). As we can see, the altimeter was not
reliable and efficient for aerial navigation. Hence, determining the altitude of the aircraft
was a new problem that needed to be solved. ‘Until we know our exact height above the
sea we cannot plot our exact position.” (Maitland, 1920, p. 44).

Knowledge of the exact altitude of the aircraft was important when determining its exact
position. The exact position of the aircraft could be known using methods of astronomic
navigation, therefore the knowledge of the aircraft’s altitude was important in order to
account for corrections related to dip.

Dip Correction. —The second correction to be applied is the correction for the dip of the
horizon. Viewed from an airplane, the horizon is below the eye. The greater the height of
the airplane above the water, the greater is the angle of the horizon below a horizontal line
through the observer’s eye. This angle is called the angle of dip. (Jones, 1931, pp. 130-131)

Therefore, it was necessary to develop an efficient and accurate procedure to determine
the altitude of the aircraft. Jones (1931) describes a method to determine the altitude.

One method of finding the altitude above the water was to drop plaster of Paris eggs and
count time from the instant they were released until they could be seen shattering on the

2 The vertical (geometrical) distance of the aircraft from mean sea level (MSL) is called true altitude. Alti-
tude (in current air navigation) is a barometric measure, it is the vertical distance in ISA (International Standard
Atmosphere) between the static pressure of the isobaric surface the aircraft is flying and the QNH pressure of
the isobaric surface at the MSL, at a certain temperature. True altitude is different from altitude by a correction
which depends on the real atmosphere deviation from ISA pressure and temperature. Coutinho’s method measures
the true altitude. In the early days of air navigation, however, there was no distinction between altitude and true
altitude. Therefore, we shall use the term altitude instead of true altitude throughout the paper.
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water. At night a searchlight with a conical beam of light was pointed vertically downwards.
The size of the circle of light on the water was dependent upon the altitude, so that by
measuring the diameter of this circle by means of stadia wires in a telescope mounted
alongside the searchlight the altitude could be obtained. (Jones, 1931, p. 40)

The latter method and Coutinho’s method are based on the same principle. Coutinho’s
method can only be used during the day, however, while the second method described
above can only be used at night. Coutinho’s method will be described in detail in Section 3.

Jones’s book was written in 1931. Therefore, some of the methods Jones described
might have been developed after Coutinho and Cabral’s 1922 flight or even developed
independently by other navigators. Furthermore, Jones does not describe the flights where
the methods were used, although he mentions that they were practical and used on actual
flights. “The methods described in this book are practical; they all have been used on actual
flights.” (Jones, 1931, p. vii).

Another method that we found in the literature was the method used by H.M. Air-
ship R34 in its successful east-to-west Atlantic crossing in 1919. Very briefly, the method
consisted of measuring the angle shadow of the airship on the sea surface and, with the
knowledge of that angle, the navigator would determine the value of the altitude.

Scott works out our height above the water in the following way — The airship is throw-
ing a very dark shadow on the surface of the sea on starboard side — almost immediately
underneath the ship. By taking with a sextant the angle subtended by length of the shadow,
and knowing the length of the shadow to be 640 feet, he gets the true height. In this case
the height works out at 2100 feet, whilst the aneroid gives us only 1200 feet — a variation
of 900 feet. (Maitland, 1920, p. 44)

Unfortunately, Maitland (1920) does not explain how the method worked, although he
mentions later in the text that the method is simple and reliable.

The sun is high, so Cooke is able to get a good idea of any barometric changes by observing
the angle the ship’s shadow on the water subtends with a sextant, thus calculating the dis-
tance of the shadow from the observer, and comparing with height recorded in the altimeter.
This is only possible at low altitudes, i.e. about 1500 feet. (It sounds a bit complicated, but
is quite effective!) (Maitland, 1920, p. 104)

Coutinho also faced the same problem of determining altitude. Therefore, he had to con-
ceive a solution to this problem that could be used effectively during the flight. His method
is similar to that used in 1919 by H.M. Airship R34 since it is based on the measurement
of the shadow of the aeroplane’s wingspan on the sea surface.

In the next section, we study in detail the method devised by Coutinho to determine
the aircraft’s altitude during flight. His procedure relies on a geometrical and mathematical
procedure to determine a specific constant K that would be multiplied by the cotangent of
the angle of the plane’s wingspan shadow on the sea surface. Our study of the mathematical
construction will be complemented with numerous diagrams and pictures so that the reader
can follow the construction easily.

3. COUTINHO’S GEOMETRICAL METHOD FOR THE AIRCRAFT’S ALTITUDE.
One of the problems of early aerial navigation was the determination of altitude in order
to account for dip correction, which is necessary to determine the exact position of the
aircraft. Therefore, it was necessary to find a way to determine the flight altitude as accu-
rately as possible. As we have seen above, the altitude could be obtained using the value
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Altitude

L

Figure 1. Theoretical example to determine altitude.

of the atmospheric pressure given by the barometer. However, this result would not be
the most accurate and would introduce errors in the calculations which could compromise
the success of the flight. Therefore, Coutinho needed to find a good solution to solve this
problem.

With clear sky, and with the sun at an altitude of more than 30 degrees, the shadow of the
aeroplane on the surface of the sea is sufficiently clear to be measured using the sextant or
the telemetric binoculars. Evidently, one must, as we did for Lusitania, have a small table,
calculated with the length of the wings of the aeroplane to give the coefficient K in the
formula:

height = K cot.angle of shadow

a formula which gives the height with an error of a few feet, equivalent to an error of less
than a minute of depression. (Coutinho and Cabral, 1922, p. 374)

First, we have to observe that Coutinho is perfectly aware that this formula is not exact;
however, as he states, the error is sufficiently small and can be ignored. Second, note that
Coutinho states that in order to measure the shadow of the aeroplane’s wingspan on the sea
surface, the sun’s height must be at least at 30°. This requirement is essential; in fact, if the
sun’s height is less than 30° then the plane’s shadow is stretched and projected far away,
making it extremely hard to make accurate measurements in this case. Another impor-
tant requirement is that the sun must be at the aircraft’s beam, so in order to make this
measurement, Coutinho had to steer the aircraft so that the sun was at its beam.

In the rest of this section, we will explain in detail how Coutinho arrived at the equation:

height = K cot (angle of shadow) (1)

and how this equation can be used to determine altitude in flight. We start with a simple
theoretical example. Let us observe the situation presented in Figure 1.
In this case, we have

L
tan o = & Altitude = —— < Altitude = L coto )
tan o

Altitude
Therefore, by knowing the angle @ and L, we can easily determine the altitude. However,
this is not the situation that we want to study, rather a theoretical example that illustrates the
problem of determining the altitude of an aircraft in flight. To solve this problem, Coutinho
developed an easy method which gives the altitude of the aircraft with an error of a few

https://doi.org/10.1017/50373463319000961 Published online by Cambridge University Press


https://doi.org/10.1017/S0373463319000961

NO. 4 COUTINHO’S METHOD FOR THE ALTITUDE 867

4

A

Figure 2. Geometrical scheme to determine altitude with the sun’s height at exactly 90°.

metres. Furthermore, Coutinho’s procedure could be performed quickly during the flight,
which is crucial in aerial navigation. In the rest of this section, we will study in detail how
Coutinho arrived at his solution for determining altitude during flight and we will conclude
with a real example.

For the sake of simplicity, we will start by considering the simplest case and then pro-
ceed to the general case. Let us start with the case when the sun’s height is exactly 90°, that
is, the sun is vertical relative to the aircraft. Let s;, denote the sun’s height, e the wingspan
of the biplane and let & denote the angle, measured with a sextant, of the biplane’s shadow
on the sea surface. Finally, let s denote the length of the biplane’s wingspan shadow on the
sea surface. In this particular situation, since s;, = 90° we clearly have s = e. (see Figure 2)

In this case, we have

) s o

Altitude > cot ( > ) 3)
Since the previous situation only occurs when the sun’s declination is equal to the latitude
of the location, which only happens in inter-tropical regions, Coutinho needed to develop a
procedure to determine altitude which could be used in any given situation, requiring only
that the sun’s height is at least 30°. As noted above, Coutinho formulated Equation (1),
where K is a coefficient that will be listed in a table. We will now explain how the coefficient
K is calculated.

Coutinho’s aircraft was a biplane, that is, an aircraft with two main wings, one above the
other and supported by struts. It was necessary to calculate the total length of the biplane’s
shadow on the surface of the sea, and the vertical distance between the two wings will
increase the length of the biplane’s shadow on the sea surface by a quantity that will depend
on the sun’s height (see Figure 3). Therefore, we first need to determine how the vertical
distance between the wings will increment the value of s. Recall that s denotes the length
of the biplane’s wingspan shadow on the sea surface. Let P denote the vertical distance
between the two wings and let x denote the quantity that we need to add to the length of
the wingspan to determine the length of the biplane’s shadow on the sea surface. That is,

s=etx 4)
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Figure 3. Scheme explaining how the sun’s height affects the length of the biplane’s shadow on the sea surface.

where
x = P cot(sp) 5)

After determining how the distance between the biplane wings will affect the dimension
of its shadow on the sea surface, we will now proceed with the detailed explanation of
Coutinho’s method of determining the altitude. We recommend the reader to follow the
diagram in Figure 4.

Recall that the objective is to determine the value of the altitude, here denoted by H.
However, as noted above,

H = K cot(angle of shadow) (6)

where K is a coefficient that will depend only on known values, such as the sun’s height,
the wingspan of the biplane and the vertical distance between the two wings. We will now
present a detailed explanation of how Coutinho determined the value of the coefficient K.
We will first determine the distance d. Consider the right triangle with right sides y, d and
angle «/2. To be absolutely precise, the measure of the angle is not exactly «/2, as can
be seen easily in the diagram depicted in Figure 4, nevertheless, for simplicity and without
any effect on the calculation, we can assume the measure of the angle is exactly «/2. We
have

d=y cot (%) (7)

The value of « will be at most 14°. This upper bound was deduced by the authors from a
planar model of the problem, that is, not considering the effect of the altitude. In fact, for a
fixed altitude we can easily see that the largest value of « is attained when the sun’s height
is exactly 90°. Furthermore, if the altitude increases then the value of « will decrease.
Coutinho’s observations were made at an altitude of around 90 metres, for which the value
of o will be at most 14°. “The best plan, when more reliable observations are desired, is to
lower the aeroplane till the line of the sea horizon becomes sufficiently clear (a height of
300 feet generally ensuring this), and to make observations upon it’ (Coutinho and Cabral,

1922, p. 373).
Using simple trigonometric formulas, we can easily deduce that
o o
2 =ex(5) 1 - (3] ;
cot (&) = co > an 7 ()
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s/2

s=e+x

Figure 4. Diagram explaining how to determine the variable d.

Since o < 14° we conclude that the term [1 — tan?(ct/2)] is close to 1, that is, in this case,
we have cot(a/2) ~ 2 cot(«). Therefore, it follows that

d=ycot (%) ~ 2y cot(a) 9)

Our next step will be to determine the value of y.

Since the sum of the measures of the interior angles of a triangle equals 180°, we must
have y =5, —«/2, where y is the angle marked in Figure 5 (left) and 6 = 90° + «/2,
where 0 is the angle marked in Figure 5 (right). Because the value of « is small, we can
approximate 8 by a right angle, therefore we have

cos (90° — sp) = 2 Sy = 3 cos(90° —sp) &y = 3 sin sy, (10)
s/2 2 2

Recall that our aim was to determine the distance d. In fact, by using all the results we have
obtained so far, we have

o .

d=ycot (E) (by Equation (7))

d ~ 2y cot(a) (by Equation (9))

d~ 2§sin(sh) cot (o) = ssin(sy) cot ()  (by Equation (10))

d ~ (e+ Pcot(s;)) sin(sy)cot ()  (by Equations (4) and (5))

Therefore,
d ~ (esin(s;) + P cos(s,)) cot(a) (11)

To conclude, consider the right triangle with side H and angle s;, as highlighted in Figure 6.
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Figure 5. Diagram to determine the angle y (left) and the variable y (right).

Sea
Figure 6. Diagram of the triangle to find the variable 7.
In this case, we have
sin (sp) = " (12)
d
That is,
H = dsin(sy) (13)
Therefore,
H = (esin(s;) + P cos (s5)) cot (o) sin(s,)  (by Equation (10))
~ (esin®(s;) + P cos (sy) sin(sy)) cot () (14
Thus, by letting
K = esin’(s;) + P cos (s;) sin(sy) (15)
we have
H =K cot («) (16)

as required.

Note that the coefficient K depends only on known values, such as the sun’s height,
the wingspan of the biplane and the height between the two wings, denoted by s, e and P,
respectively. Observe that e and P are fixed values for a given aircraft, in fact, in Coutinho’s
biplane, we have e = 19-2 metres and P = 1-6 metres. With this deduction for the coefficient
K Coutinho constructed a table as follows. In the left-hand side, we have the sun’s height sy,
varying from 90° to 20° and on the right-hand side we have the values of log K calculated
using Equation (14). All logarithms considered here are base 10 logarithms (see Figure 7).
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0,91086 | 0,00325|9,99675 || Go .:
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Figure 8. Value of log cot 7° (Hotiel, 1914, p. 48).

We will conclude this section with a practical example of how Coutinho determined the
altitude during the flight. Suppose that at the time of the measurement the sun’s height is
s, = 50° and o = 7°. Then, by Equation (14) we have

log K = log(e sin(sy) + P cos(sy,) sin(sy))e sin’(s;))

a7
=1og(19-25in%(50°) + 1-6 cos(50°)sin(50°)) = 1-081162

Observe that this is exactly the value that appears on the table in Figure 7 immediately
to the right of 50°. Having the value for log K Coutinho would consult the book Table
de Logarithmes, by J. Hoiiel, to obtain the value for log(cot ). In this particular case,
log(cot(7°)) = 0-91086 (see Figure 8). Thus,

log H =log K +log (cot («)) = 1-992

This implies that

H = 10192
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Figure 9. Value of 109°2 (Hoiiel, 1914, p. 2).

Finally, we need to find the value of 10"°2. This value can also be found in Hoiiel’s
logarithm tables. The value of H is between 10 and 100, closer to 100 than to 10. Thus,
searching for the value in Hotiel’s tables, one has to look for numbers on the table between
10 and 100 that best approximate 992, in this particular case the numbers are 98 and 99
(See Figure 9). Therefore, we conclude that the value of H would be between 98 and 99
metres, that is, the aircraft’s altitude would be approximately 98 metres.

To conclude, we should observe that for this procedure to be done easily and quickly
during flight, all the necessary tables should be at hand for the navigator. As it was previ-
ously emphasised, it was crucial that the navigator could be able to calculate the altitude
quickly and efficiently. Therefore, Coutinho had also pre-prepared Hoiiel’s logarithm tables
by attaching markers at the margins of the relevant pages in order to find the necessary page
easily.

The tables of logarithms, which were those of Hotiel, had also been prepared in such a way
that they could be immediately opened on the page necessary, for which there were glued
markers at the margin, like the indices of commercial books.” (Coutinho, 1923, p. 17)

4. CONCLUSIONS. Gago Coutinho and Sacadura Cabral successfully completed the
first air crossing of the South Atlantic from Lisbon to Rio de Janeiro in 1922. In the cross-
ing, they used, for the first time, scientific methods of astronomic navigation. The methods
and procedures they developed and used were adapted from and inspired by the methods
used in maritime navigation. For these new methods to be used successfully, however,
it was essential to know the approximate value of the aircraft’s altitude. The use of the
altimeter was not reliable since it gave readings with large errors. Therefore, Coutinho had
to conceive a method that allowed the navigator to determine the approximate value of the
altitude quickly and efficiently during the flight.

Coutinho’s method is based on a mathematical geometrical procedure. This research
aimed to study in detail Coutinho’s method to determine the altitude. The paper contains
several diagrams so that the reader can easily follow all the mathematical deductions. We
conclude our work with a real example of how this method would have been used in a real
flight.

3 ¢As tabuas de logaritmos, que eram as de Hoiiel, tinham também sido preparadas de modo a poderem ser
abertas imediatamente na folha necessaria para o que lhe foram coladas chamadas 4 margem, como usam os
indices dos livros comerciais.” (Coutinho, 1923, p. 17).
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