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In response to the data-based measures of model dependence proposed in King and Zeng

(2006), Sambanis and Michaelides (2008) propose alternative measures that rely upon

assumptions untestable in observational data. If these assumptions are correct, then their

measures are appropriate and ours, based solely on the empirical data, may be too

conservative. If instead, and as is usually the case, the researcher is not certain of the

precise functional form of the data generating process, the distribution from which the data

are drawn, and the applicability of these modeling assumptions to new counterfactuals, then

the data-based measures proposed in King and Zeng (2006) are much preferred. After all,

the point of model dependence checks is to verify empirically, rather than to stipulate by

assumption, the effects of modeling assumptions on counterfactual inferences.

We are grateful for the attention devoted to our work (King and Zeng 2006, hereinafter KZ)
in Sambanis and Michaelides (2008, hereinafter SM) and appreciate this opportunity to
respond. KZ develops methods that reveal when analyses are model dependent without
the laborious process of sensitivity testing; KZ does this by building on the general under-
standing that inferences on the empirical support of the data are less model dependent than
interpolations which, in turn, are usually less model dependent than extrapolations. KZ put
this position on firmer footing by proving the mathematical conditions under which it holds
and solving an open problem in computational geometry tomake it easy, in the kinds of data
political scientists use, to determine whether an inference requires extrapolation. We (and
King and Zeng 2007) also confirmed the advantage of these methods in checking model
dependence in political science applications. SM does not question any of these points.

KZ uses the long-standing consensus definition of extrapolation in the statistical liter-
ature that is data based (Jevons 1874, 120; Hastie, Tibshirani, and Friedman 2001). SM

Authors’ note: Easy-to-use software to implement the methods discussed here, called ‘‘WhatIf: Software for Eval-
uating Counterfactuals,’’ is available at http://gking.harvard.edu/whatif. All information necessary to replicate the
analyses herein can be found in King and Zeng (2008). Conflict of interest statement. None declared.
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criticizes this choice as ‘‘too severe’’ (2008, 1) and ‘‘too conservative’’ (2008, 3, 6, 10, 12,
16, 17). SM uses instead a new definition that is assumption based, does not depend on the
data, and defines extrapolation as an inference off the population support (the set of all
possible values of X under an assumed population distribution) and causal inference as
supposedly guaranteed free of model dependence when the treated and control groups
are drawn from a common population distribution, regardless of the content or quantity
of data or parameters to be estimated. Population support encompasses the empirical
support and includes additional space in X only by assumption since the population dis-
tribution is of course almost never known in observational studies. Yet, the difference be-
tween SM’s population support and our empirical support is the basis on which SM argue
that our diagnostics, using the literature’s data-based definition of extrapolation, are too
conservative.

To facilitate discussion, we define terms standard in the literature and used in KZ. With-
out loss of generality, consider a simple example, with all observations on a single covariate
X at 0, 1, or 3 and inferences about the expected value of the outcome variable Y, given some
value x of X, E(YjX 5 x), such as estimated via the predicted value in a regression. Then,
consider three types of inferences: (1) those on the empirical support of the data: E(YjX 5

0), E(YjX 5 1), and E(YjX 5 3); (2) interpolations: E(YjX 5 x) for any x between 0 and 3
but excluding values at 0, 1, and 3; and (3) extrapolations: E(YjX 5 x) for any x less than
0 or greater than 3. Inferences that fall in categories (2) or (3) are called counterfactuals.
The convex hull is the boundary marking off the extrapolation region, in this case points
0 and 3. These concepts are defined for the sample data, without an imaginary superpo-
pulation, and require no hypothesis tests; they also apply when X contains many covariates.

By the standard definition of extrapolation, in our running example, E(YjX 5 200) is
a massive extrapolation from 0, 1, and 3 and, thus, highly model dependent, but it is on the
population support of the Poisson distribution (the set of nonnegative integers) and so SM
would deem it not model dependent if they chose to make that assumption for the pop-
ulation distribution. Yet, in almost no real data would we know the population density. And
even if it were known, we would also need to assume that the functional form of the model
for E(YjX) is sufficiently smooth and stable to extrapolate so far from the data, which would
be a heroic assumption indeed. The model dependence here would be easy to confirm by
proper sensitivity testing. The Poisson model assumption seems extreme, but it is not as
extreme as SM’s standard normal densities for which the empirical support is almost al-
ways in [–5, 5], but the population support is (–N,N); thus, SM’s definition implies that no
counterfactuals are ever model dependent, which is clearly false.

The same logic applies to causal inference where one needs treated and control
groups that are identical in-sample in your data, rather than on average across hypo-
thetical repeated experiments. This explains why matched-pair (MP) randomized
experiments, which guarantee exactly matched treatment-control groups in-sample,
are superior to complete randomization (CR) designs, which only guarantee equiva-
lence on average across experiments (Box, Hunger, and Hunter 1978; Imai, King,
and Stuart 2008).1 SM’s standard for their simulations is the inefficient CR design, which
explains how they can incorrectly conclude that the convex hull is too conservative. In

1For example, imagine onemedical experiment using CR (using a coin flip to determine treatment for each subject,
ignoring X) that happened to draw only healthy people in the treated group and only sick people for controls.
Experimentalists know that MP experiments (match pairs on observed pretreatment variables like health and flip
a coin within each pair for treatment) can massively increase efficiency, power, and robustness (King et al. 2007;
Imai, King, and Nall 2008).
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fact, the convex hull identifies the inefficiencies in CR, as it confirms that no counterfac-
tuals are extrapolations when using an MP design, since inferences are all on the empirical
support. Randomness is neither a panacea nor a proper standard of comparison when
used inefficiently.

This difference in designs is also apparent when SM describe their ‘‘n/k problem’’
which confuses the nature of highly sparse high-dimensional space filled randomly in SM
by CR rather than controlled exactly by MP. To appreciate the sparsity, take SM’s case of
k 5 10. To properly fill 10 dimensional space with data, so counterfactuals randomly drawn
from it would be nearby, n would need to be enormous. If we divide the possible values of
each variable into just 10 groups and define ‘‘closeness’’ as being in the same group, one
would need n 5 1010 to fill the space, so each point is ‘‘close’’ to at least one other. This is
the curse of dimensionality. To claim that 10 dimensional space of continuous variables can
be well packed with 1000 observations massively mischaracterizes the nature of high-
dimensional space. The convex hull appropriately captures the available data regardless
of how sparse and how much smaller the empirical support is relative to the population
support: It keeps empirical tests empirical.

SM err when they use the propensity score as the gold standard for evaluating balance in
their simulations since the goal of the propensity score check is population, not sample,
balance. To establish sample balance, one must check common empirical (not population)
support in the covariates directly (Ho et al. 2007). However, the only empirical check SM
do is a classic example of the balance test fallacy (Imai, King, and Stuart 2008) and so is
invalid. For example, with only 20 observations randomly spread over a huge 20 dimen-
sional space, their check would still certify the data as free from model dependence, which
is obviously incorrect. Appropriate checks would indicate that their simulated data are far
from exactly balanced empirically.2
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Fig. 1 Average distance to nearest match by n and k.

2Details appear in our replication file (King and Zeng, 2008). Moreover, even for checking population imbalance,
the propensity score is not guaranteed to help if it is incorrectly specified, which is unfortunately the case in SM
since in their simulation the true propensity score is exactly 0.5 whereas they use a misspecified logit model to
estimate it.
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SM’s Fig. 2 argues that, because more data fall outside the convex hull when n shrinks
and k grows, that something is amiss. However, they neglected to compute what should be
the case. When this is done, their result confirms the value of our approach: We rerun SM’s
simulation and directly measure the nature of the data by computing the average distance of
a data point to the nearest match, as a function of k and n. As the results in Fig. 1 show, the
average distance between a data point in the treatment or control group and the closest
point in the other group also grows when n shrinks (which can be seen by each line drop-
ping) and k grows (which can be seen by lines with larger values of k appearing higher on
the graph). This indicates that the convex hull diagnostic is appropriately empirical, as it
should be: when data are farther away from the counterfactual, the diagnostic ought to
indicate that.

SM’s Fig. 3 is a spectacular demonstration of the advantage of the convex hull over
population support: as the observed data region changes, the convex hull responds to reflect
the empirical evidence, but the population support remains the entire shaded rectangle,
always ignoring the data. SM’s argument that higher correlations between a treatment vari-
able and control variables causes a smaller interpolation region is as it should be, for the
same reason as with linear regression, where high collinearity between the control vari-
ables and your causal variable leads to more difficult estimation and interpretation prob-
lems: holding one constant and letting the other change is a more difficult counterfactual in
the presence of higher correlations. Similarly, by definition, we can make inferences more
difficult by including additional covariates even if unrelated to existing variables in X and
requiring counterfactuals to hold them constant, as SM do in their real data example; but
that is of course the point: counterfactuals more counter to more facts are harder to infer.
(And of course, the correct specification of X must be settled prior to the application of our
diagnostics.)

In these simulations, sparsity is cleanly determined by n and k, whereas in real data other
factors intervene. An application with any sized data can have 100% of inferences inside
the convex hull and in another of the same size 0%; one outcome is not more likely than the
other since data can take any structure and researchers can choose any counterfactuals they
wish. Thus, SM’s claim that ‘‘the probability that a data point is inside the hull of a set of
points is always extremely small’’ (12) is false.3 Similarly, SM’s claim about the Gower
distance that ‘‘there is a mechanical ‘upper bound’ for the percent of data that can be nearby
the factuals relative to the counterfactuals’’ is false for the same reason: the data can be
anywhere and scholars’ counterfactual choices can be whatever they wish. No matter ‘‘the
skewness of the treatment,’’ the Gower distance and convex hull can take any value, de-
pending on the data and inferential targets.

Finally, Section 3.1.3 of SM shows balancing on covariates unrelated to treatment, using
the convex hull, is inefficient but not biased. This is unsurprising as it is a form of over-
fitting (Greene, 2008, 136). If, however, X is related to treatment, removing extreme coun-
terfactuals can improve efficiency (Ho et al. 2007, 214). Of course, if one can rule out all
models but the true one, as SM does by assumption, then model dependence diagnostics are

3SM’s use of Elekes (1986) to support this claim is also incorrect: Elekes’ is only relevant to evaluating all points
that could in principle be drawn from a hypothetical population, not to SM’s n countable counterfactuals con-
structed from switching the treatment variable value in their n observed data points. In fact, Elekes’ proof does not
even apply to SM’s population since his proof requires bounded variables. That is why Eleke’s probability bound
applied to SM’s data can be so wrong: for example, for n 5 500 and k 5 2, his bound on the [0,1] probability is
125!
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irrelevant. When the model is unknown, the convex hull diagnostic unambiguously indi-
cates its worth, as our Fig. 1 and SM’s Fig. 2 demonstrate.

We hope readers agree with us that this exchange has been productive in clarifying the
nature of high-dimensional space, and the differences between empirical and population
support, for assessing model dependence. In summary, for those in the unusual position of
being sure about the population from which the data were drawn, the functional form of the
model that generates the dependent variable and the stability of the model when used to
infer the counterfactual of interest, SM’s population-based definitions of extrapolation can
sometimes be reasonable. If not, as is almost always the case in practice, then the venerable
empirical definition of extrapolation used in the literature, and our resulting measures, are
far more likely to give an accurate assessment of the degree of model dependence for any
given counterfactual. From a Bayesian perspective, our model dependence checks give the
objective data, which in different circumstances may or may not overwhelm one’s prior
beliefs.

After observing that the Mississippi River had been shortening 1.3 miles/year recently,
Twain (1883, 176) extrapolated: ‘‘Therefore, any calm person, who is not blind or idiotic,
can see that in the Old Oolitic Silurian Period, just a million year ago next November, the
Lower Mississippi River was upward of 1,300,000 miles long and stuck out over the Gulf
of Mexico like a fishing rod. And by the same token any person can see that 742 years from
now the Lower Mississippi will be only a mile and three-quarters long, and Cairo and New
Orleans will have joined their streets together and be plodding comfortably along under
a single mayor and a mutual board of aldermen. There is something fascinating about sci-
ence. One gets such wholesale returns of conjecture out of such a trifling investment of
fact.’’ As Twain obviously understood, the problem with this inference was his assumed
population model, the absurdity of which can only be seen by recognizing how far his
counterfactual had veered outside the convex hull of the observed data.
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