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Bistability and hysteresis of axisymmetric
thermal convection between differentially
rotating spheres
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Heating a quiescent fluid from below gives rise to cellular convective motion as the
temperature gradient becomes sufficiently steep. Typically, this transition increases heat
transfer. Differentially rotating spherical shells also generate a state of cellular motion,
which in this case transports angular momentum. When both effects are present, it is
often assumed that the fluid adopts a configuration which maximises the transfer of
angular momentum and heat. Depending on how the equilibrium is reached, however,
this maximisation may not always be achieved, with two different stable equilibria often
co-existing for the same heating and rotation strengths. We want to understand why
the fluid motion in a spherical shell is bistable, and how this scenario might arise. We
consider a deep, highly viscous fluid layer, of relevance to the ice shells of Saturn’s and
Jupiter’s moons. We find that bistability depends largely on the relative strength of heating
and differential rotation, as characterised by the Rayleigh number Ra and inner sphere
Reynolds number Re1, and that the nature of the transition between bistable states depends
strongly on the ratio of momentum diffusivity ν to thermal diffusivity κ defined by the
Prandtl number Pr = ν/κ . In particular, we find that the transition between solutions at
large Pr, depends on the strength of thin thermal layers and can occur either due to the
destabilisation of an equatorial jet by buoyancy forces, or alternatively of a polar thermal
plume by differential rotation. Our results demonstrate that, although bistability in this
system cannot be simply explained by the flow maximising its torque or heat transfer, the
polar and equatorial regions are of particular significance.

Key words: convection, nonlinear dynamical systems, instability

1. Introduction

When two concentric spherical shells are differentially rotated, the fluid layer contained
between these spheres is sheared, generating vortical fluid motion. In the subsurface
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oceans of Jupiter’s and Saturn’s icy moons, it is thought that extremely vigorous motion is
driven by the differential rotation of the ice shell and rocky core, and that the viscous
dissipation may play a role in maintaining the ocean’s liquid state (Peale, Cassen &
Reynolds 1979; Tyler 2008; Nimmo & Pappalardo 2016; Wilson & Kerswell 2018).
Covering these tidally heated oceans is an ice shell, which, particularly for deeper shells,
is suspected to convect thermally (McKinnon 1999; Barr & McKinnon 2007; Mitri &
Showman 2008). A role of the ice and ocean layer in these systems is therefore to increase
the transfer of both angular momentum and heat, although, as we shall demonstrate,
the motion favoured by each driving mechanism differs. The competition between these
nonlinear effects results in a system with bistable solution states.

Bistability or multistability (Feudel, Pisarchik & Showalter 2018), has been observed
in numerical simulations (Mamun & Tuckerman 1995) and experiments of the laminar
(Wimmer 1976; Bühler 1990) and turbulent (Zimmerman, Triana & Lathrop 2011) flow
between differentially rotating spheres. It is also observed in experiments with turbulent
flow between differentially rotating cylinders (Huisman et al. 2014; van der Veen et al.
2016) and for a cylinder with rotating end caps (Ravelet et al. 2004). In each of these
configurations, cellular flows are generated to transport angular momentum, although
neither experiments or computations indicate that the flow chooses the state which
maximise its torque. Zimmerman et al. (2011) attributes bistability to the formation and
destruction of resilient zonal flows such as jets, while Wimmer (1976) attributes it to the
centrifugal forces responsible for instabilities in rotating spheres which vary with latitude.

For thermal convection in spherical shells, multistability has also been demonstrated
numerically (Li et al. 2005; Feudel et al. 2011) and experimentally (Travnikov et al. 2017).
In this scenario, the high degree of symmetry in a spherical domain permits a number
of subspaces, or basins of attraction. Provided perturbations of the laminar state remain
sufficiently small, these basins of attraction are not explored and the flow remains stable,
but for larger Rayleigh numbers Ra > 104 this is not always the case (Huisman et al.
2014). Experimental and numerical simulations in long cylinders, show that a large scale
circulation or mean wind alternates between two states, and that the relative time spent in
each state may be controlled by varying the aspect ratio (Xi & Xia 2008; van der Poel,
Stevens & Lohse 2011; Weiss & Ahlers 2013). This behaviour has also been demonstrated
experimentally in a rectangular box by Sreenivasan, Bershadskii & Niemela (2002) who
proposed a physical model for this behaviour, and related the alternation of its mean wind
to the concept of self-organised criticality (Jensen 1998).

In summary, bistable behaviour is observed in both laminar and turbulent flows, where
the transfer of heat and angular momentum is of importance. As this phenomenon is of
particular relevance in planetary systems, we attempt to explain how this can occur by
focusing on a model system where both effects are present.

1.1. Description of physical processes
In figure 1(a) the fluid motion arising due to differential rotation of the spheres (with
angular velocities ω1 /=ω2 and radii r1, r2) is sketched. This configuration is also known
as spherical Couette flow (Marcus & Tuckerman 1987a,b). The differential rotation shears
the flow imparting angular momentum to the fluid. Since the annular domain is closed, the
fluid is forced to recirculate so that for small rotation rates, as characterised by the inner
sphere Reynolds number Re1 = ω1r2

1/ν, the resulting imbalance generates a large scale
flow containing two cells. These cells tend to localise about the equator where the velocity
is greatest, establishing a radial inflow or outflow in the direction of decreasing angular
momentum. In figure 1(a) this is an equatorial outflow as ω1 > ω2.
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Figure 1. Schematic of the anticipated fluid flow in a spherical annulus due to differential rotation (shear)
or a destabilising thermal gradient (buoyancy). (a) Inner sphere rotation establishes a cellular pattern of fluid
motion, originating from the need to transport high angular momentum fluid outwards at the equator, where the
sphere’s velocity is greatest. (b,c) Thermal convection can establish even or odd cellular patterns depending on
the annulus width. Cells transport lighter hot fluid outwards and draw cooler fluid inwards. (a) Couette flow,
(b) even convection and (c) odd convection.

In figures 1(b) and 1(c) the behaviour of thermal convection is shown schematically.
When the ratio of buoyancy to viscous forces as characterised by the Rayleigh number
Ra becomes sufficiently large, a cellular flow succeeds the conductive state. In this
convecting state hotter fluid with a lower density rises while colder heavier fluid sinks
under the action of gravity. This behavioural tendency was first outlined theoretically by
Rayleigh (1916) who demonstrated that a fluid layer heated from below becomes unstable
to two-dimensional (2-D) rolls with a definite horizontal wavenumber. Similarly in a
spherical shell, a different number of cells will occupy the annulus depending on the
separation d between the spheres. This is shown schematically in (b,c) of figure 1 where an
even two-cell and odd three-cell flow are depicted. Distinct from spherical Couette flow,
thermal convection can establish either an equatorial inflow or outflow. In addition, the
cellular convecting state arises from a thermal instability while in spherical Couette flow
it is present for all Re1 /= 0.

Astrophysical studies of rotating convection typically focus on the case of rapid
co-rotation where the dominant physical balances are between the Coriolis and buoyancy
forces (Zhang & Liao 2017). In this regime rotation tends to stabilise the flow such that
it arranges itself in concentric layers of fluid known as Taylor columns (Proudman &
Lamb 1916). Uniform rotation is then the dominant effect, and variations in the rotation
rate appear as perturbations. Although this is the most relevant configuration for the
subterranean oceans of Jupiter’s and Saturn’s moons (Wilson & Kerswell 2018), in their
ice shells it is buoyancy and viscous forces which take precedence (McKinnon 1999).
As shown in appendix A, azimuthal shear is then dynamically significant. In this paper,
we consider viscous thermal convection with a stationary outer sphere and rotating inner
sphere (ω2 = 0, ω1 /= 0) in order to accentuate the effect of differential rotation. This
configuration is chosen with the purpose of understanding how the flow facilitates the
transport of angular momentum and heat, as the strength of the temperature gradient Ra
and differential rotation Re1 increase. According to the Rayleigh criterion (Taylor 1923)
rotating the inner sphere (or counter-rotating the spheres) is the least stable configuration.
Therefore, we anticipate that when ω2 = 0 the flow is likely to transition to a more
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complicated state at smaller values of Ra,Re1. In § 4 we present numerical simulations
which confirm this assumption and indicate that including co-rotation does not modify our
findings significantly. Fixing Re2 = 0 also provides a welcome reduction in the parameter
space to be studied.

1.2. Prior work and the axisymmetric assumption
To the authors’ knowledge four works have previously studied this configuration.
Yanase, Mizushima & Araki (1995) and Araki, Yanase & Mizushima (1996) allow for
rotation of the inner sphere with fixed Prandtl number Pr = 7 and separation d = 0.45.
Assuming the system is axisymmetric and by artificially enforcing equatorial symmetry,
they numerically solve for even solutions only. Loukopoulos (2004) also studied the
axisymmetric system numerically, but allowed for equatorial asymmetry and axial gravity
in contrast to Yanase et al. (1995) and Araki et al. (1996). Varying Ra, while keeping
Pr =1, d = 0.18 and Re1 fixed, asymmetric solutions and the transitions towards a solution
state with a progressively larger number of Taylor vortices was reported.

Recently Inagaki, Itano & Sugihara-Seki (2019) considered the fully 3-D problem for
fixed Pr = 1, d = 1. Numerically they showed that the axisymmetric two-cell solution
(cf. figure 1a,b) is preferred for a large range of (Re1,Ra) parameter space. Their stability
diagram, although not always easy to follow, indicates that the Ra at which the onset of 3-D
convection occurs increases with Re1, while for large Re1 � 500 it is reduced. In addition
they showed that increasing Re1 for fixed Ra, induces the transition to a non-axisymmetric
state, but that the resulting transition does not necessarily increase the torque or heat
transfer.

This paper is structured as follows. After outlining the governing equations in § 2, we
investigate how the onset of both even and mixed/odd convection is modified by the
presence of weak inner sphere rotation in § 3. In this section we also outline how Pr
and system symmetries influence whether the transition from an even to odd number of
cells exhibits hysteresis. Fixing Pr = 10, d = 3 in § 4, we outline all possible solutions
in Re1,Ra space, and to understand the physical mechanisms underlying the transition
between different solutions examine their least stable perturbations. In § 5 we validate
our restriction to axisymmetry by computing the stability of axisymmetric states to
non-axisymmetric disturbances. Finally in § 6 we summarise the main results.

2. Formulation of the problem

As shown in figure 2, we consider convection in a spherical annulus of separation
d = (r2 − r1)/r1 allowing for differential rotation of the spheres ω1 /=ω2. Constant
temperatures T1, T2 are prescribed at the spheres’ boundaries, with difference ΔT =
T1 − T2 > 0. We assume a Boussinesq fluid with density ρf that varies linearly with
temperature fluctuations according to the relation

ρ = ρf [1 + β̂(T0(r)− T(r, θ, t))], (2.1)

where the thermal expansion coefficient β̂ is small and T0(r) is the conductive base state.
The spherically symmetric gravity field is expressed as

g = −g0g(r)r = −g0r2
1

r3 r, (2.2)

where g0 is the acceleration due to gravity on the inner sphere’s surface. Choosing the
length scale r1, thermal diffusion time scale r2

1/κ and ΔT as the temperature scale, the
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Figure 2. The fluid domain is a closed annular region between two concentric spheres, of radii r1, r2. Each
sphere maintains a constant surface temperature T1, T2, rotating with angular velocities ω1, ω2 respectively.
Gravity g acts radially inward. The inner core has a density ρc and the fluid annulus ρf .

governing Oberbeck–Boussinesq equations may be written non-dimensionally as

1
Pr

(
Du
Dt

+ ∇p
)

= Ra g(r)rT + ∇2u, (2.3a)

∂T
∂t

+ u · ∇T = ∇2T, ∇ · u = 0, (2.3b)

where p contains pressure- and gradient-like terms, Pr is the Prandtl number and the
strength of the thermal gradient is characterised by the Rayleigh number Ra. In addition,
we specify no-slip boundary conditions for u and assume perfectly conducting spherical
shells for T at the spherical walls

u(r = 1, θ, ϕ) = Re1Pr sin θ ϕ̂, u(r = 1 + d, θ, ϕ) = Re2Pr sin θ ϕ̂

T(r = 1, θ, ϕ) = 1, T(r = 1 + d, θ, ϕ) = 0,

}
(2.4)

such that the strength of the differential rotation is defined by |Re1 − Re2|. Unless
otherwise stated, it can be assumed that Re2 = 0 for the remainder of this paper. For
reference, it is convenient to define the following parameters:

Pr = ν/κ

Ra = g0β̂ΔT r3
1

νκ

Re1 = ω1r2
1

ν

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Prandtl Number

Rayleigh Number

Reynolds Number.

(2.5)
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We begin by assuming that all longitudinal variations ∂/∂ϕ = 0, and concentrate
primarily on the axisymmetric system

u = ∇ ×
(

0, 0,
ψ

r sin θ

)
+
(

0, 0,
Ω

r sin θ

)
=
(

1
r2 sin θ

∂ψ

∂θ
,

−1
r sin θ

∂ψ

∂r
,
Ω

r sin θ

)
,

(2.6)

such that the axisymmetric flow u is described by a streamfunction ψ(r, θ, t) and
specific angular momentum Ω(r, θ, t). We do not, however, discount the possibility
of non-axisymmetric motions. We first solve for axisymmetric solutions of (2.3) and
subsequently compute their stability to 3-D perturbations. In this manner, we determine
whether a given axisymmetric solution represents a stable 3-D state. This approach is
motivated by numerical simulations of the fully 3-D system (Inagaki et al. 2019) and
by experiments and numerical simulations of isothermal spherical Couette flow (Junk
& Egbers 2000; Hollerbach, Junk & Egbers 2006). Both scenarios show that the flow
remains axisymmetric for moderate Re1. In addition, the axisymmetric case is easier to
treat both analytically and numerically, and represents an appropriate starting point from
which valuable insights can be obtained.

Substituting (2.6) into (2.3), a set of coupled equations for ψ, T,Ω are obtained. In
the following sections these equations are analysed using direct numerical simulation
(DNS). Their discretisation, outlined in Mannix (2020), uses a Galerkin projection in
terms of Legendre P�(cos θ) and Gegenbauer G�(θ) = sin θ∂θP�(cos θ) polynomials to
treat the θ dependency exactly following Mavromatis & Alassar (1999). Evaluating
the triple integrals which arise in this formulation is facilitated by the method of
Johansson & Forssén (2016). A Chebyshev collocation method is used to treat their
radial dependency (Trefethen 2000). A limitation of this method is its high numerical
complexity ∼ O(N3

θ ), where Nθ is the number of polynomials used, thus restricting our
computations to cases where moderate Nθ provides adequate resolution. In the most
demanding cases considered we have used Nr = 50, Nθ = 60. This ensures that our
truncated Chebyshev coefficients remain at most O(10−5), while polar coefficients are
O(10−8) and O(10−3) for equatorially asymmetric and symmetric solutions respectively.
The difficulties encountered in resolving the symmetric flow are attributed to thin thermal
layers, which arise in the neighbourhood of the equator. Time stepping, steady-state
solving and linear stability analysis are performed following Mamun & Tuckerman (1995).
Numerical continuation is implemented using a weighted pseudo-arc length method
following Uecker, Wetzel & Rademacher (2014), while the continuation of bifurcation
points is implemented following Kuznetsov (2004). In addition to this spectral code, an
additional code which uses second-order finite differences in both spatial directions has
also been used. We have been able to reproduce the results presented in this paper using
both codes.

2.1. Base states
When Re1 = 0 we obtain the thermal convection problem. In this case, the temperature
equation admits the purely conductive base state T0(r), which is obtained by solving
∇2T = 0 with boundary conditions (2.4). This yields

dT0

dr
= AT

r2 , T0 = AT/r + BT , AT = 1 + d
d

, BT = −1
d
, (2.7a–d)

implying that temperature gradients are greatest near the inner sphere’s surface. For
Ra = 0 and Re1 � 1, (2.3) admit a Stokes solution Ω0(r, θ) which is obtained by solving
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Figure 3. Decoupled steady-state solutions of the differential rotation and thermal convection (Pr = 10)
problems illustrating similar spatial solutions. (a) Differential rotation (2.8) for Re1 = 1, d = 3,Ra = 0.
A two-cell poloidal flow ψ0 transports fluid near the inner sphere with high specific angular momentum
(shown as yellow in the Ω0 field) outwards. (b) Two-cell thermal convection Re1 = 0, d = 3,Ra = 740,
(c) three-cell thermal convection Re1 = 0, d = 1.8,Ra = 2160. Hot fluid near the inner sphere is convected
outwards by a cellular flow ψ . For the convection problem Ra /= 0, the number of cells as specified by
the annulus width increases as d reduces; (a) ψmax,min = (0.07,−0.07), (b) ψmax,min = (2.72,−2.72) and
(c) ψmax,min = (2.80,−3.93).

D2Ω = 0 with boundary conditions (2.4) giving

Ω = PrRe1Ω0(r, θ)+ O(PrRe3
1) = PrRe1

(
ã r2 + b̃

r

)
G1(θ)+ O(PrRe3

1),

ψ = PrRe2
1ψ0(r, θ)+ O(PrRe4

1) = PrRe2
1f (r)G2(θ)+ O(PrRe4

1),

⎫⎪⎪⎬
⎪⎪⎭ (2.8)

where

ã = 1
(1 + d)3 − 1

, b̃ = −(1 + d)3

(1 + d)3 − 1
, (2.9a,b)

and f (r) is a known quintic polynomial (Munson & Joseph 1971a,b). Notably, this base
state is not a simple function of a single spatial variable but instead depends on both r
and θ . This leads to a cellular background flow ψ(r, θ) for all non-zero Re1, as shown
in figure 3(a). It is because this cellular flow always exists for non-zero rotation, rather
than arising from an instability, that makes the analysis of this convection problem
non-standard.

2.2. Decoupled steady solutions
As shown schematically in figure 1, fluid motion (vorticity) in this model can be
maintained by two distinct processes: buoyancy forces, which drive thermal convection
when the conductive state becomes unstable, and differential rotation (wall shear), which
drives a recirculating flow. Decoupled solutions of (2.3) for each process are shown in
figure 3, where it is noteworthy that the contours of poloidal motion ψ in panels (a,b) have
a qualitatively similar spatial form. While a poloidal flow ψ0 is generated for all Re1 /= 0,
thermal convection arises from an instability of the conductive base state (2.7a–d) when
the Ra exceeds a critical Rayleigh number termed Rac. The solutions shown in panels (b,c)
are therefore simulated at a supercritical Rayleigh number Ra > Rac.

In the left half panel of figure 3(a) the specific angular momentum field Ω0
corresponding to the Stokes solution (2.8) for Re1 = 1 is shown. In panels (b,c), the
temperature field T produced using DNS is shown. The corresponding poloidal flow field
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in terms of ψ is also shown on the right-hand side of each panel. Focusing on panel (a)
we see that the effect of inner sphere rotation is to generate a radial gradient of Ω that
is strongest at the equator where the sphere’s velocity is greatest. The fluid responds by
generating a two-cell poloidal flow ψ0, which transports fluid near the inner sphere with
high specific angular momentum Ω0 outwards at the equator. In panels (b,c) an analogous
situation arises, with hot fluid near the inner sphere convected outwards by a cellular
poloidal flow ψ . Notably, the number of cells is determined by the annulus width d, so
that by reducing d in panel (c) the number of cells has increased. This contrasts with the
behaviour of the flow shown in panel (a), where a two-cell flow is generated independent
of d provided Re1 is not too large.

Given equations (2.3) with boundary conditions (2.4) and the knowledge that the two
physical mechanisms driving the fluid flow yield distinct solution regimes, we numerically
answer the following questions in § 3. In addition to the rotating and thermal convection
solution regimes outlined, is there an intermediary regime where a mixed state exists? If
so, how does the Prandtl number Pr influence the solution state obtained and the type of
transition observed? While § 3 only indirectly influences our main conclusions, we believe
that by outlining the role of symmetries and Pr for simple transitions, a potential physical
mechanism for hysteresis is made clearer.

3. The role of Pr in hysteresis transitions

To understand how differential rotation alters the cellular pattern selected by thermal
convection we consider two values of the annulus separation for a range of Pr. The value
d = 3 is chosen to ensure that thermal convection selects a two-cell flow and conversely
d = 1.8 is chosen so that an odd three-cell flow is selected. The choice of a wide annulus
favouring low wavenumbers is also motivated by simplicity. Numerically fewer modes
are required to resolve wider annuli and the presence of a similar spatial structure of the
flows facilitates qualitative interpretations. From now on we refer to solutions qualitatively
similar to the left-hand side of panel (a) of figure 3 as rotating solutions and those
qualitatively similar to (b,c) as convective solutions.

3.1. Even solutions d = 3
Figure 4 shows how the bifurcation of the conductive state to a state of even convection
is altered by rotation of the inner sphere. In these bifurcation diagrams and those which
follow, the L2 norm of the streamfunction as defined by

‖ψ‖ = sign[ur(r = 1 + d/2, θ)]
Nθ∑
�=1

‖ψ�(r)‖, (3.1)

is used as a solution measure. In selected bifurcation diagrams, ‖ψ‖ is multiplied by the
sign of the radial velocity ur at the equator to demonstrate branching symmetry.

Solutions for different Re1 are shown for three values of Pr in figure 4. When
Re1 = 0, the conductive basic state T0(r) loses stability at a critical Rayleigh number
Rac through a pitchfork bifurcation. For Re1 /= 0, the pitchfork is split and becomes an
imperfect pitchfork bifurcation, as shown in figure 4. The branches with positive equatorial
velocity u+

r resembling the rotating solution connect continuously to the conductive state,
while those with negative velocity u−

r resembling the convective solution emerge from
a saddle-node bifurcation. The distance of this saddle-node bifurcation from the point
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Figure 4. Splitting of the pitchfork bifurcation due to differential rotation is more pronounced for larger Pr.
The figure shows the bifurcation of the conductive state to even thermal convection for different Re1 and Pr.
Solid lines denote stable equilibria while dashed lines denote unstable equilibria. When Re1 /= 0 the symmetric
pitchfork is split into two branches: a rotation dominated branch with positive radial velocity at the equator u+

r
which emerges continuously from the conductive state and a convection dominated branch with negative radial
velocity at the equator u−

r ; (a) Pr = 0.1, (b) Pr = 1 and (c) Pr = 10.
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Figure 5. Symmetric solution states are bistable but do not exhibit hysteresis. Transition between the rotating
branch u+

r and the convection branch u−
r for (Ra − Rac)/Rac = 0.5. At Re1 = 0 the u+

r , u−
r solution branches

are approximately equal, but for sufficient Re1 the u−
r convection branch terminates in a saddle-node bifurcation

and transitions to the rotating state. As rotation in both directions is equivalent when the outer sphere is fixed,
only half the axis (Re1 > 0) is shown in (b); (a) Pr = 1 and (b) Pr = 10.

(Rac, ‖ψ‖ = 0) is observed to increase with both Re1 and Pr. For small Pr the pitchfork is
slightly deformed while for larger Pr the role of rotation begins to dominate. Similarly for
larger rotation rates Re1 = 10 the bifurcation is further deformed as shown in figure 4(c),
such that the lower convection branches are longer found within the range investigated.

Fixing (Ra − Rac)/Rac = 0.5 and performing continuation in Re1 we find that only the
rotating branch persists for large Re1 as shown in figure 5. Starting on the u−

r branch and
increasing Re1 causes a transition to the u+

r branch, but decreasing Re1 does not lead to
the backwards transition. The system is bistable but not hysteretic. Comparing figures 5(a)
and 5(b), we observe that the u−

r solution persists for a larger interval of Re1 when Pr is
smaller. Similarly, the amplitude of the rotating branch increases at a faster rate for large
Pr.

Figures 6(a) and 6(b) show the corresponding spatial solutions of the branches in
figure 4 at Pr = 0.1, 10. To illustrate the different coupling regimes present at high and
low Pr we have shown solutions at Pr = 0.1 on the left half of each panel and solutions at
Pr = 10 on the right half of each panel. The poloidal two-cell flow ψ remains qualitatively
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Figure 6. Gradients ofΩ are strongly advected by the poloidal flow for Pr � 1 and gradients of T for Pr � 1.
This figure shows steady equilibrium solutions for Re1 = 1, (Ra − Rac)/Rac = 0.5 demonstrating different
coupling regimes of the u+

r (a) and u−
r (b) solutions at high Pr = 10 right half image and low Pr = 0.1 left half

image.

consistent in all cases, although its amplitude changes. Comparing the temperature and
specific angular momentum (T,Ω) for each case, however, the differences in these flows
are made evident.

Considering the rotating branch u+
r shown in figure 6(a), we see that, for Pr = 0.1,

the contours of T are weakly deformed from concentric circles, but that gradients of
Ω are strongly advected by the poloidal motion. Conversely, we see that, for Pr = 10,
gradients of T are strongly advected. For the convecting branch u−

r shown in figure 6(b),
similar behaviour is observed, with gradients of T more strongly advected at Pr = 10
while gradients of Ω are more strongly advected at Pr = 0.1. A specific difference
which emerges in this flow at Pr = 0.1 is that the poloidal motion, favoured by thermal
convection, pushes fluid with greater specific angular momentum to higher latitudes. This
is shown in the right half of the Ω field in (b).

3.2. Odd solutions d = 1.8
Figure 7 shows how the bifurcation from a conductive state to a state of odd convection
is modified by rotation of the inner sphere at different Pr. To examine this transition
a preference for odd convection has been set by fixing d = 1.8. Branches with zero
rotation are shown in black while those with Re1 = 1 are shown in blue. Contrasting
with the transitions observed for even solutions, the bifurcation to odd convection remains
a pitchfork for Re1 /= 0 as follows from the asymmetry of odd numbered Legendre
polynomials which constitute the polar eigenfunctions. Depending on the strength of
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Figure 7. Differential rotation causes the onset of odd convection to become subcritical for Pr � 1. This
figure shows bifurcation diagrams of odd mode thermal convection. In (a,b) the forward pitchfork bifurcation
is slightly perturbed to Ra ≥ Rac, while in (c) the two-cell branch dominates for a larger range of Ra and the
pitchfork bifurcation to the three-cell solution becomes subcritical or backwards. The hysteresis loop between
the bistable two- and three-cell solution states is demarcated by dashed red lines; (a) Pr = 0.1, (b) Pr = 1 and
(c) Pr = 10.

rotation and Pr, however, the location of the bifurcation point and whether the bifurcation
is forward or backward varies.

For Pr = 0.1, 1 we observe that the odd convection branch, shown in blue, bifurcates
via a forward pitchfork almost coincidently with the black branch. In each case,the
rotating solution can be seen to persist as an unstable branch for values of Ra beyond this
threshold. For Pr = 10 the two-cell branch persists for a larger range of (Ra − Rac)/Rac
and transitions to a three-cell solution at larger Ra via a subcritical pitchfork, as shown
in figure 7(c). Notably the two- and three-cell solution states, which are connected by an
unstable branch, are bistable within a range of (Ra − Rac)/Rac. Following this unstable
branch backwards from the bifurcation point, we find that the odd component of the
solution increases until it gains a stable eigenvalue and stabilises at the saddle node. Fixing
(Ra − Rac)/Rac = 0.25 and performing continuation in Re1 we find that increasing Re1
destabilises the three-cell branch, causing a transition to a two-cell branch and that, by
decreasing Re1, the reverse transition can also take place. This is distinct from the even
case we previously considered where transitions between the convection state and the
rotating state could be induced only by variations in Re1 and were not hysteretic.

Figure 9 shows the corresponding spatial solutions for the bifurcation figures 7 and 8
at Pr = 0.1, 10. Despite variations in amplitude the three-cell poloidal motions of both
cases appear similar, although differences do emerge in the Ω, T fields. For Pr = 0.1,
gradients in Ω are strongly advected by the poloidal flow, such that its profile becomes
highly asymmetric. Whereas at Pr = 10, it is gradients of T that are strongly advected,
resulting in the emergence of plumes.

3.3. Symmetries
The bifurcations and spatial solutions presented demonstrate that (2.3) have two
symmetries in addition to those imposed by axisymmetry, namely a reflection symmetry Γ
about the equator and a sign change symmetry Re of even convection solutions. The latter
symmetry, which accounts for the pitchfork bifurcation observed for even modes, stems
from the self-adjoint nature of the convection problem linearised about the conductive
state (Munson & Joseph 1971b). Following Araki et al. (1996), we define the equatorial
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Figure 8. Hysteresis between the convecting three-cell flow and the rotating two-cell flow for (Ra −
Rac)/Rac = 0.2. (a) Increasing Re1 causes the three-cell solution to jump to the two-cell branch, and similarly,
when decreasing Re1, the two-cell solution either persists unstably or returns to the convecting three-cell
branch. (b) Increasing Re1 causes the convecting three-cell branch to terminate in a saddle-node bifurcation
and transition to a two-cell rotating flow; (a) Pr = 1 and (b) Pr = 10.
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Figure 9. Mixed/odd equilibrium solutions for Re1 = 1, (Ra − Rac)/Rac = 0.25 demonstrating different
coupling regimes at high and low Pr. Left half of each panel shows the Pr = 0.1 solution and right half Pr = 10.
For Pr = 0.1, gradients of Ω are strongly advected by the poloidal flow, while at Pr = 10 it is gradients in the
T field.

reflection operator by

ΓX =
⎛
⎝−ψ(r,π − θ, t)

T(r,π − θ, t)
−Ω(r,π − θ, t)

⎞
⎠ , where X =

⎛
⎝ψ(r, θ, t)

T(r, θ, t)
Ω(r, θ, t)

⎞
⎠ , (3.2)

is the solution vector. Decomposing the solution into its symmetric even X S and
antisymmetric odd X A components one obtains

X S = 1
2(X + ΓX ), X A = 1

2 (X − ΓX ). (3.3a,b)

While the even component is a fixed point of the Z2 reflection symmetry operation
Γ (X S) = X S, by operating on the odd component a second solution is obtained

ΓX A = 1
2(ΓX − X ) = −X A, (3.4)

such that X acquiring an odd component corresponds to a symmetry-breaking bifurcation.
As shown by Golubitsky & Schaeffer (1985), this symmetry breaking will typically result
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Mode interactions in spherical convection

in a symmetric pitchfork bifurcation, or a symmetric Hopf bifurcation giving rise to a small
amplitude periodic orbit. Numerically this can also be exploited to reduce computational
cost, in particular when detecting symmetry-breaking bifurcations such as observed in the
previous subsection. Writing (2.3) in terms of the solution vector X and decomposing its
symmetric and anti-symmetric components one obtains

M∂X S

∂t
= F s(X S,X A) ≡ N (X S,X S)+ N (X A,X A)+ LX S + F ,

M∂X A

∂t
= FA(X S)X A ≡ N (X A,X S)+ N (X S,X A)+ LX A,

⎫⎪⎪⎬
⎪⎪⎭ (3.5)

where M,L are linear matrix operators, N (, ) is a nonlinear term and F a forcing term,
resulting from the substitution of (2.8) into (2.3). The second equation in (3.5) corresponds
to the linearisation of (2.3) about the symmetric state, demonstrating that antisymmetric
solutions arise from an instability of the symmetric solutions X S. The perturbation of
the symmetric equation by a constant forcing term F accounts for the splitting of the
even mode pitchfork or breaking of the sign change symmetry Re previously observed.
Unlike the pitchfork bifurcation leading to mixed three-cell convection shown in figure 7,
the pitchfork bifurcation from the conductive state to a state of even convection is not
symmetric. Its branches are not related by a symmetry operation. Inspection of figure 4
shows that they attain different amplitudes as Ra increases.

4. Examining mechanisms for hysteresis transitions at large Pr

In § 3 we observed that rotation splits the primary pitchfork bifurcation of even two-cell
flows, leading to a rotation dominated steady state u+

r and a convection dominated state
u−

r . Similarly, the symmetry-breaking pitchfork bifurcation to an odd state of three-cell
convection switches from supercritical to subcritical at larger Pr. This leads to a bistable
parameter region where for larger Pr finite amplitude perturbations may induce a transition
between states. Given that we concentrated on transitions for small values of (Re1, Ra), we
now investigate hysteresis for larger parameter values and seek to identify the underlying
physical mechanisms. To facilitate numerical simulations we fix d = 3,Pr = 10 and vary
Re1,Ra.

Figure 10 shows the loci of bifurcation points in Re1,Ra parameter space, curves that
define the stability regions for different types of steady and time-dependent solutions. The
figure illustrates that: (i) rotation stabilises the symmetric convection solution u+

r which
most resembles the one preferred by differential rotation, (ii) a greater multiplicity of
solution states is possible for small Re1 than at larger Re1 and (iii) for large Re1 transitions
from the two-cell u+

r state lead to time-dependent states. Physically we interpret the
stability of the two-cell u+

r solution (figure 6a) as Re1 increases in terms of a preference for
gradients ofΩ and T to be advected outwards at the equator; where the larger surface area
facilitates a greater heat or angular momentum flux as compared with the polar regions.

Within figure 10 the stable solutions are classified as follows:

(a) two-cell solutions u+
r , u−

r ;
(b) one-cell and two-cell solutions u−

r , u+
r ;

(c) one-cell and two-cell solutions u+
r ;

(d) time-dependent one-cell (t) and steady two-cell solutions u+
r ;

(e) two-cell solution u−
r ;

( f ) one-cell and two-cell solutions u−
r ;
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Figure 10. Increasing the rotation strength Re1 stabilises the two-cell u+
r solution, and leads to a bistable

envelope where u+
r shares stability with other solutions. This figure shows the bifurcation loci illustrating

the stable solutions in Re1,Ra space for d = 3,Pr = 10. Solid lines are used to denote saddle-node (SN) or
symmetric pitchfork bifurcations (PF), chained lines symmetric Hopf bifurcations (H�2) and dotted lines Hopf
bifurcations (H�1). Solid black and hollow circles denote co-dimension-2 points. Below the solid yellow, blue
and chained black lines the rotation dominated two-cell state u+

r is stable to all axisymmetric perturbations.
At low Re1 multiple steady solutions are bistable, while at larger Re1 increasing Ra causes a transition to
time-dependent behaviour.

(g) time-dependent one-cell (t) solution;
(h) time-dependent one-cell (t) solution and steady two-cell solution u−

r ;

where (t) indicates a time-dependent state. In addition to the one-cell (t) solution which
bifurcates from the steady one-cell solution as it crosses the dotted blue line H�1, a
time-dependent two-cell solution u+

r (t) is also possible. This occurs when u+
r undergoes

a Hopf bifurcation as it crosses the chained black line H�2 shown in the upper right of
figure 10.

Fixing Re1 = 5 and varying Ra we find that the bifurcation from u+
r to the one-cell

solution is subcritical, with each state connected by an unstable branch as shown in
figure 11(a). This implies that in regions b, c, d, finite amplitude perturbations are required
to induce a transition. Similarly by fixing Re1 = 40 and varying Ra we find that the
bifurcation from u+

r to the time-dependent state u+
r (t) also depends on the magnitude

of the perturbation applied as shown in figure 16(a). To better understand the physical
mechanism responsible for these transitions, we examine both the solutions and neutrally
stable eigenvectors at their bifurcation points. Doing so indicates that instabilities are
concentrated either at the poles or the equator.

Throughout this section bifurcation diagrams are presented in terms in terms of the
dimensionless torque G evaluated at either the inner sphere’s surface as defined by

G = 2πr3

Re1

∫ π

0
sin θ

[
∂uϕ
∂r

− uϕ
r

]
sin θ dθ, (4.1)
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Figure 11. The rotating two-cell solution u+
r loses stability to disturbances confined to the equator,

transitioning to a state with lower heat transfer. (a) Bifurcation diagram at Re1 = 5 in terms of the convective
heat transfer Nu, showing the sequence of transitions as Ra is varied. Stable and unstable branches are denoted
by solid and dashed lines respectively, bifurcation points are marked by solid black dots and are annotated with
their corresponding type. The time-dependent solution one cell (t), labelled movie 1 online, is indicated by
open circles. (b) Equilibrium solution X PF bottom and leading eigenvector qPF top evaluated at the symmetric
pitchfork bifurcation point PF.

and in terms of the convective heat transfer Nu. These are chosen to demonstrate that stable
solutions do not necessarily maximise the transfer of either heat or momentum.

4.1. Steady bifurcations

4.1.1. Even two-cell solution u+
r

Figure 11(a) shows a cross-section of figure 10 with fixed Re1 = 5. The figure illustrates
the stable and unstable solutions in terms of Nu which are found for this rotation strength
and the transitions which occur as Ra is varied. For small Ra only the two-cell solution
u+

r is stable. Increasing Ra this solution loses stability in a symmetry-breaking pitchfork
bifurcation at PF and transitions to an asymmetric one-cell state. Reducing Ra the one-cell
solution loses stability at SN and returns to the two-cell branch u+

r , and so this transition
is hysteretic. A two-cell u−

r solution disconnected from the other solution branches is
also possible for these parameter values. In contrast to figure 4, where small rotation
Re1 = 1 splits the pitchfork bifurcation connecting the u+

r and u−
r branches, the stronger

rotation now results in several unstable rungs. Figure 12(a) shows the same cross-section
as figure 11(a) in terms of the torque G. This figure also includes the effect of outer sphere
rotation Re2 /= 0 on selected solution branches to demonstrate that it does not qualitatively
change the bifurcation diagram presented.

In figure 11(b) the steady-state solution X PF and its least stable eigenvector qPF are
shown in the lower and upper images respectively. In this solution, the poloidal flow ψ

advects gradients of Ω and T outwards at the equator. In the temperature field this motion
results in two large plumes, a thin hot layer of fluid near the inner sphere’s surface and
a narrow jet of hot fluid drawn outwards along the equator. The least stable eigenvector
qPF shows that the disturbance which destabilises this flow is localised about the
equator.
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Figure 12. The one-cell solution loses stability to disturbances confined to the polar region driven by a
secondary flow (cf. figure 13). (a) Bifurcation diagram at Re1 = 5 in terms of the torque G, showing the
sequence of transitions as Ra is varied. Trends with markers show that the effect of outer sphere rotation
Re2 /= 0 is to increase the torque and shift the pitchfork bifurcation PF to higher Ra. Notably this does not alter
the bifurcation diagram qualitatively. (b) Equilibrium solution X SN bottom and leading eigenvector qSN top
evaluated at the saddle-node bifurcation point SN. Decreasing Ra beyond the bifurcation point SN the one-cell
solution loses stability to disturbances confined to the pole transitioning to a state of higher torque.

The physical interpretation is that as Ra increases large gradients of T accumulate in a
thin thermal boundary layer at the equator, with the approximate balance

ur
∂T
∂r

�
κ

r2
∂2T
∂θ2 , (4.2)

inside the narrow thermal plumes. Physically this relation states that the diffusion of
temperature across the plume tends to increase its width, but that this is balanced by
convection inside the plume which tends to elongate the jet. For values of Ra less than the
bifurcation point PF the strong radial flow driven by rotation helps achieve this balance,
but as Ra increases beyond PF the jet widens weakening the stabilising effect of diffusion.
This results in the growth of polar gradients which destabilise the flow in a localised
perturbation of the form qPF.

4.1.2. Odd one-cell solution
The steady equilibrium solution X SN shown in figure 12(b) contrasts greatly with that of
the two-cell solution. Its poloidal flow ψ consists of two large cells, whose circulation is
clockwise in the right half of each image and anti-clockwise in the left half. This flow
deflects the contours of Ω upwards and convects hot fluid radially outwards at the pole
creating a strong thermal plume. The flow also has two small recirculation zones at the
pole, in correspondence with the two smaller thermal plumes aligned either side of the
rotation axis in the T field.

The least stable eigenvector qSN shows that the disturbance which destabilises this flow
is localised about the pole, particularly near the outer sphere. The ψ component of qSN
indicates that a cellular flow whose motion is in the opposite sense to the one-cell flow
will grow to restore the two-cell u+

r solution. The growth of this disturbance is attributed
to a secondary flow driven by the inner sphere’s rotation as illustrated schematically in
figure 13.
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Figure 13. Schematic of the anticipated fluid flow in the polar regions. (a) The inner sphere’s rotation draws
cooler fluid inwards along the rotation axis until it reaches the rotating sphere’s hot surface, where it is heated
and pumped outwards. The cellular motion observed in figure 12, which opposes this motion, is also indicated.
(b) In the case of outer sphere rotation, hot fluid is drawn upwards and then cooled as it moves outwards along
the cold sphere’s surface.

2.0 2.5 3.0 3.5 4.0 4.5

Latitude θ

2.0 2.5 3.0 3.5 4.0 4.5

Latitude θ

–20

–10

0

10

20

30

u
r 

(θ
)

–0.2

0

0.2

0.4

0.6

T
(r

, 
θ)

r = 3.65
r = 2.76

r = 1.75
r = 1.09

θ = 3.13
θ = 3.12

θ = 3.10
θ = 3.06

–8 –6 –4 –2 0 2

uθ(r)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

r

(b)(a) (c)

Figure 14. Inner sphere rotation draws fluid radially inwards along the rotation axis, inhibiting the convection
of hot fluid away from the inner sphere at this location. This figure shows the radial velocity ur, temperature
and polar velocity uθ profiles of the one-cell solution for Re1 = 33. (a) Near the inner and outer spheres ur is
directed inwards and becomes positive only near the annulus centre. (b) Temperature variation with latitude
θ showing the development of two plumes which align about the pole. (c) The latitudinal velocity is directed
towards the pole near the inner sphere (uθ < 0) and away from the pole near the outer sphere (uθ > 0).

Near the rotation axis and the rotating sphere’s surface we anticipate that the fluid flow is
similar to that near a rotating disc’s surface. In this configuration fluid is drawn downwards
along the rotation axis until it reaches the discs surface where it is centrifuged outwards
(Stewartson 1953). This behaviour is shown schematically in figure 13. In (a) the inner
sphere’s rotation draws fluid radially inwards at the rotation axis near the upper sphere,
and pumps it outwards near the inner sphere. Depending on the cellular motion driven by
convection, this pumping may be inhibited or enhanced. Figure 13(b) shows the equivalent
configuration for outer sphere rotation.

At large Ra, it is understood that this secondary flow is balanced by the strong cellular
flow driven by thermal convection. While rotation alters the radial velocity profile locally,
it does not alter the polar velocity even near the rotation axis as shown in figure 14.
Reducing Ra, however, decreases the strength of the convective flow such that it can no
longer balance this secondary flow.

4.2. Stability of thermal boundary layers
To understand why the steady u+

r solution remains stable for larger Ra as Re1 increases,
we examine the latitudinally averaged and centreline temperature profiles of the u+

r and
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Figure 15. Differential rotation enhances the temperature gradient at the sphere’s walls in both solutions (a),
but stabilises the u+

r solution by also enhancing gradients in the thin thermal plumes at θ = π/2 and in the
pole (b). This figure shows (a) the latitudinally averaged T(r, θ) and (b) the centreline T(r = 1 + d/2, θ)
temperature profiles of the u+

r and one-cell solutions for Ra = 22 × 103 with and without differential rotation.

one-cell solutions with and without rotation as shown in figure 15. Comparing these
profiles we observe the u+

r solution with differential rotation achieves the highest gradients
at both the sphere walls and at the poles. For this solution it also is seen that the
strong equatorial outflow driven by rotation increases gradients in the temperature profile,
such that thermal diffusion acts more strongly. In the one-cell solution’s polar plume
(figure 15b), the secondary flow modifies the polar plume’s thin thermal layer by opposing
the convection of hot fluid radially outwards at the axis. This results in wider plumes
neighbouring the North pole. It was shown in figures 11(a) and 12(a), that, of these two
solutions, the u+

r solution also achieves higher torque and heat transfer.

4.3. Transition to time dependence
As illustrated in figure 10, transition from the u+

r solution occurs along the steady
bifurcation PF for Re1 � 28. While for Re1 � 28 this flow transitions to a time-dependent
solution at the symmetric Hopf bifurcation H�2 resulting in an oscillation of the equatorial
jet. For large Re1 we also find that the one-cell solution may transition to a time-dependent
state one-cell (t) as Ra is increased beyond H�1. In this section we describe these
transitions, the resulting time-dependent states and the relevance of the mechanisms
outlined for the dynamics observed.

4.3.1. Oscillation of the equatorial jet
Figure 16(a) shows that as Ra is increased the u+

r solution loses stability in a
symmetry-breaking Hopf bifurcation at H�2. Its transition to a stable time-dependent
state u+

r (t) leads to a reduction in heat transfer. This was also reported by Inagaki
et al. (2019) who computed the corresponding transition from the axisymmetric u+

r state
to a 3-D time-dependent solution. Near the Hopf bifurcation H�2, the u+

r (t) solution’s
time dependence is periodic, but, as Ra is increased, this solution collides with the
unstable mixed one-cell branch at Ra � 2.43 × 104. Following Knobloch et al. (1986),
who analysed the sequence of transitions leading to chaos in a double-diffusive convection
system, it is assumed that the global bifurcation which occurs at this point results in a
heteroclinic limit cycle. By computing the leading eigenvalues on the unsteady branch
which bifurcates from PF we have verified that Šil’nikov’s inequality for the existence of
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Figure 16. Disturbances localised about the equator cause the transition of the two-cell solution u+
r to a

time-dependent state, leading to a reduction in heat transfer. (a) Bifurcation diagram at Re1 = 40. Increasing
Ra, the u+

r solution loses stability via a Hopf bifurcation at H�2, transitioning to an initially time periodic state
u+

r (t). Further increasing Ra, this periodic orbit undergoes a global bifurcation as it collides with the unstable
steady one-cell branch (cf. figure 20). (b) Equilibrium solution X H�2 bottom and, top, the leading eigenvector’s
real Re(q)H�2 and imaginary Im(q)H�2 components.
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Figure 17. Plots of the norm of the streamfunction ‖ψ‖ against its rate of change ˙‖ψ‖ for the two-cell solution
u+

r (t) at Re1 = 40. An initially time-periodic two-cell solution loses stability in a global bifurcation resulting
in a heteroclinic limit cycle, near which chaotic behaviour is found to emerge as Ra is increased further;
(a) Ra = 28 × 103, (b) Ra = 29 × 103 and (c) Ra = 30 × 103.

heteroclinic cycles is satisfied (Šil’nikov 1970). A projection of the limit cycle’s behaviour
near this bifurcation is shown for different Ra in figure 17.

The steady solution X H�2 (figure 16b) shows that both the T and Ω fields are strongly
advected by the flow ψ whose streamlines are almost parallel with the equator. The Ω
field in particular has begun to deviate from its Stokes flow profile, which was observed in
many of the previous two-cell solutions. The disturbance qH�2 shown in the upper half of
figure 16(b) indicates that an instability of a thin thermal layer at the equator is responsible
for the transition to a time-dependent state. An animation of the time-dependent solution
u+

r (t) labelled movie 2 accompanied by a projection of the limit cycle’s behaviour labelled
movie 3 are available online.

4.3.2. Oscillation of the polar plume
Also possible for a small range of Ra is the one-cell solution which is bistable with the
u+

r (t) and mixed one-cell solutions. Increasing Ra, this solution becomes initially time
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Figure 18. Disturbances localised at the pole cause the one-cell solution to transition to a time-dependent state,
leading to an increase in torque and heat transfer. (a) Increasing Ra at Re1 = 40 the one-cell solution looses
stability via a Hopf bifurcation at H�1 and transitions to the mixed one-cell solution. As Ra is increased, a
global bifurcation occurs resulting in a limit cycle one-cell (t) denoted by hollow blue circles. (b) Equilibrium
solution X H�1 bottom and, top, the leading eigenvector’s real Re(q)H�1 and imaginary Im(q)H�1 components.
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Figure 19. Plots of the norm of the streamfunction ‖ψ‖ against its rate of change ˙‖ψ‖ for the one-cell (t)
solution at Re1 = 40. As Ra is increased the mixed one-cell solution loses stability in a Hopf bifurcation.
This is found to give rise to chaotic behaviour near the bifurcation point. Although we have not investigated
its behaviour, it is thought that collision of the unstable periodic solution with the multiple unstable steady
branches may play a role in the complicated dynamics observed; (a) Ra = 34.7 × 103, (b) Ra = 35 × 103 and
(c) Ra = 35.3 × 103.

periodic beyond the Hopf bifurcation H�1, but ultimately loses stability and transitions to
the mixed one-cell state (cf. figure 20). As the time dependent branches shown in figure 18
are computed by time-stepping, it was not possible to determine the unstable branch easily.

Increasing Ra along the stable portion of the mixed one-cell branch, we find that for
Ra ≥ 3.38 × 104, this branch loses stability in a Hopf bifurcation. The limit cycle which
emerges one-cell (t) exhibits complex time-dependent behaviour, as shown in figure 19.
Although we have not investigated its behaviour, it is thought that collision of the unstable
periodic solution with the multiple unstable steady branches may play a role in the
complicated dynamics observed.

Compared with the solutions at smaller Re1, the poloidal flow shown in figure 18(b) has
strengthened to balance the strong differential rotation. The contours of Ω are deflected
upwards strongly, and the thermal boundary layer on the sphere’s Southern surface has
been strengthened. On the sphere’s Northern surface a stronger secondary flow is observed

911 A12-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
42

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1042


Mode interactions in spherical convection

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

4.0

Ωunstable Ωstable

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

4.0

Ψunstable Ψstable

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

4.0

Tunstable Tstable(b)(a) (c)

Figure 20. This figure shows the transition from the two-cell u+
r to the one-cell solution for Re1 = 40,Ra =

2.2 × 104. The unstable equatorial jet of the two-cell solution (left half of each panel) is deflected from the
equator towards the pole. The jet moves upwards under the action of the large convection cell, until it reaches
the stable mixed one-cell state (right half of each panel) where it is balanced by the secondary flow induced by
rotation.

to flatten the thermal plume and spread it apart. The role of this secondary flow is also
reflected in the disturbance qH�1 shown in the upper half of figure 18(b). An animation of
the time-dependent solution one-cell (t) labelled movie 4 accompanied by a projection of
the limit cycles behaviour labelled movie 5 are available online.

4.3.3. Connection between the unstable two-cell and stable one-stable branches
The one-cell and u+

r branches are found to connect via a mixed one-cell solution, as shown
in yellow in figure 18(a). Following this branch from PF towards the one-cell branch
shown in blue, we find that the narrow equatorial jets of the u+

r solution are gradually
deflected upwards towards the poles, such that a one-cell flow is obtained upon reaching
the blue one-cell branch shown in figure 20. This transition is accompanied by a decrease
in both convective heat transfer and torque, a reduction attributed to the decrease in surface
area from which strong radial advection of hot, high angular momentum fluid takes place.
In the u+

r solution this occurs within a band about the equator, while in the one-cell
solution it is reduced to a circular patch at the pole of much smaller surface area.

5. Stability of axisymmetric solutions to azimuthal perturbations

In the interest of understanding the bistability and hysteresis of solutions, we have so far
only considered axisymmetric solutions and their stability to axisymmetric disturbances.
However, in some circumstances 3-D solutions may be preferred (Inagaki et al. 2019).
We do not investigate the full 3-D problem, but in this section, we consider whether
the axisymmetric solutions we have found in §§ 3 and 4 are stable to disturbances
with azimuthal variation. For analytical convenience, we do this in the limit of weak
inertial effects Pr → ∞, Re1 → 0. This is performed by linearising (2.3), the equations
corresponding to the 3-D model, and verifying that all azimuthal perturbations of the
following form decay

u′(r, θ, ϕ, t) = q(r, θ) exp(imϕ + λt), where λ ∈ C, (5.1)

and the azimuthal wavenumber, which is denoted by m = ±1, ±2, . . . ., may be of odd or
even parity.

Although an axisymmetric state may initially be stable, it is likely that Re(λ) will
change sign as we increase Ra. This crossing can happen in two ways, either λ = 0 or
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λ = ±iω, however, the type of the bifurcation which occurs depends on the solution’s
symmetry. Before computing the stability of these axisymmetric solutions, we first
use their symmetries to briefly describe the solutions anticipated to result from their
bifurcations.

In three dimensions, the mixed axisymmetric solutions computed in §§ 3 and 4 gain
O(2) symmetry – the reflections and rotations on a circle described by

reflections ϕ → −ϕ : u′ → ū′,

rotations ϕ → ϕ + ϕ0 : u′ → u′ exp(imϕ0),

}
(5.2)

while the even solutions now have O(2)× Z2 symmetry, as they can also be reflected about
the equator. Following Matthews (2003), we expect that steady-state bifurcations in the
presence of O(2) symmetry, will result in steady equilibria whose symmetry is determined
by a subgroup of O(2), which in turn is found to depend on the shell separation (Li et al.
2005). While for a Hopf bifurcation in the presence of O(2) symmetry, a time-dependent
state with either SO(2) symmetry resembling a rotating wave or Z2 symmetry resembling
a standing wave will result (Crawford & Knobloch 1991). In a study of rotating convection
at both high and low Pr, Goldstein et al. (1993) showed that rotating waves are a direct
consequence of breaking reflection symmetry and that their precession frequency may
be identified with the rotation rate. Therefore while rotation may stabilise axisymmetric
solutions, when they do lose stability to non-axisymmetric perturbations, it is likely that a
state with travelling waves will result.

Taking the limit Pr → ∞ allows us to neglect the inertial terms appearing on the
right-hand side of (2.3a) provided advection terms are small and the flow is dominated
by viscous forces. While this simplifies our analysis it restricts the parameter regime we
may consider, as we require that Re1 → 0 such that PrRe1 ∼ O(1). This limit also assumes
that Ra remains finite so that advective terms driven by buoyancy are also small. Given an
axisymmetric solution determined in this limit, the real growth rate is calculated using a
Galerkin projection of (2.3) as outlined in Mannix (2020).

In § 3 we showed that allowing for differential rotation the convection problem
(2.3) admitted two classes of solutions. Equatorially Z2 symmetric solutions favoured
by differential rotation when Ra is small, and asymmetric solutions are favoured by
thermal convection when rotation is small. We now consider the stability of both
flows to non-axisymmetric perturbations for the separations d = 1, 1.5, 3, values where
the thermal problem has a preference for solutions with 4, 3 and 2 convection cells
respectively.

5.1. Symmetric even solutions
Figure 21(a) shows the stability of the two-cell solution for wavenumbers m = 0 → 4 as
Ra is varied for Re1Pr = 1. For all values of Ra, m = 1 is close to neutral stability, while
for Ra ≥ 2000 an axisymmetric mode becomes unstable. Figure 21(b) shows the least
stable wavenumber m = 1, which although unstable for small Ra or Re1Pr is stabilised
when either parameter is increased.

Figure 22(b) shows the stability of the four-cell solution to its least-stable wavenumbers
m = 3, 4 at multiple values of Re1Pr. Increasing the strength of rotation Re1Pr has the
effect of reducing the growth rate of these 3-D disturbances. A numerical study of the
fully 3-D problem by Inagaki et al. (2019) also found m = 3, 4 to be the least stable
wavenumbers for d = 1 and Pr = 1.
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Figure 21. Differential rotation stabilises the axisymmetric solution against 3-D (m = 1) disturbances. This
figure shows the stability of the two-cell u+

r solution for d = 3 in terms of its real growth rate Re(λ). (a) The
stability of wavenumbers m = 0 → 4 for Re1Pr = 1 as Ra is varied. High wavenumbers are strongly damped
while m = 1 remains close to neutral. For Ra ≥ 2000 an axisymmetric mode becomes unstable. (b) Increasing
Re1Pr the m = 1 mode is stabilised.
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Figure 22. Increasing the strength of differential rotation tends to stabilise the axisymmetric solution against
3-D disturbances. (a) With d = 1.5, for Ra vs. Re(λ), the wavenumber m = 1 is unstable, while in (b) with
d = 1, for Ra vs. Re(λ), the wavenumbers m = 3, 4 are unstable. In both cases increasing Re1Pr or Ra tends to
stabilise these wavenumbers.

5.2. Asymmetric mixed solutions
Figure 22(a) shows that, for the three-cell solution at d = 1.5, the m = 1 wavenumber is
also the least stable. The stabilising effect of rotation on this mode is shown, where Re(λ)
reduces as Re1Pr increases.

A restriction of our stability analysis is that we assume the symmetry axis of convection
coincides with that of the imposed differential rotation. Without a fully 3-D code it is
therefore not possible to determine if a 3-D solution becomes axisymmetric as the rotation
strength Re1 is increased. This behaviour has, however, been indicated by Inagaki et al.
(2019) for the fixed separation d = 1 and Pr = 1. Using a 3-D code they showed that for
small Re1, the value of Ra at which convection commences increases with Re1, while for
large Re1 � 500 it is reduced. Their (Re1,Ra) stability diagram also indicates that the
axisymmetric two-cell solution is preferred for a large range of parameter space. This is
despite their choice of Pr = 1. In addition to the results of our calculations, we believe
that this provides sufficient justification for assuming that the two-cell solution remains
axisymmetric.
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We have not computed the stability of the one-cell solutions presented in § 4 to
non-axisymmetric disturbances. Simple table-top experiments by Nadiga & Aurnou
(2008), which demonstrate the baroclinic (density driven) instability of a cold rotating
air mass in a warmer fluid, strongly suggest that this solution would become unstable to
non-axisymmetric disturbances for non-zero rotation rates. Following Knobloch (1994),
we anticipate that the resulting state would most likely resemble a non-axisymmetric
spiral. Nevertheless we believe that the instability mechanisms presented in § 4 are of
relevance as they highlight the significance of a secondary flow driven by inner sphere
rotation in the polar region.

6. Conclusion

Motivated by the ice shells of Jupiter’s and Saturn’s moons, we have studied a
model describing viscous thermal convection between differentially rotating spherical
shells (McKinnon 1999; Barr & McKinnon 2007; Mitri & Showman 2008). Focusing
in particular on the bistable behaviour encountered, a combination of analytical and
numerical approaches have been used to present an understanding of the different physical
mechanisms at play in this model. While the validity of our model is reliant on the
assumption of axisymmetry and temperature independent fluid properties, it is hoped that
our results may help explain bistability observed in systems where the transfer of both
angular momentum and heat play prominent roles.

A configuration where only the inner sphere is rotated was chosen for this study. This
was motivated by its likelihood to become unstable for smaller parameter values, thus
facilitating the study of transitions in the system. Adding rotation of the outer sphere was
not found to alter the bifurcation structure. We adopted the approach of identifying the
simplest aspects of the axisymmetric model first, and subsequently we studied the stability
of axisymmetric solutions to non-axisymmetric perturbations.

We find that there are two dominant solutions for this problem, a convection solution
for large Ra and small Re1 and a rotating solution favoured by differential rotation for
small Ra and large Re1, and that the transition between these solutions depends strongly
on the Prandtl number Pr. For low Pr the transition resembles that of the convection
problem and occurs via a supercritical pitchfork, while for Pr ≥ 1 the transition occurs
via a supercritical pitchfork and has hysteresis.

Examining this hysteretic transition further, our results highlight the significance of
strong zonal flows at large Pr, particularly near the equator and the poles. For flows with
an outward jet at the equator, it is found that rotating the inner sphere, strengthens the
poloidal flow and in turn the thermal boundary layers which emerge near the sphere’s
walls and in the plumes. This has the effect of stabilising that state of thermal convection,
which most resembles the one preferred by rotation. Conversely for flows with plumes
directed outwards along the rotation axis, it is found that an Ekman pumping driven by the
differential rotation hinders the development of strong plumes. We find that this has the
effect of destabilising the flow, which is localised at the poles and eventually gives rise to
a chaotic state.

To validate our restriction to axisymmetry, we computed the stability of solutions to
disturbances with azimuthal variation, in the high Pr limit with Re1Pr ∼ O(1). In this
limit we find that differential rotation tends to suppress non-axisymmetric disturbances,
and following Inagaki et al. (2019) who considered the fully 3-D problem, we assume that
for small Ra and large Re1 the preferred solution is generally axisymmetric.

An interesting physical feature highlighted in this model is that the bistable behaviour
observed cannot be explained by assuming the flow develops to maximise the torque or
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maximise heat transfer. It does appear, however, that an understanding of this behaviour
can be found by considering two critical regions in the flow: the equator and the poles.
It is also of interest that while increasing the rotation strength stabilises the flow, when it
does become bistable finite amplitude perturbations can induce a transition from a steady
equilibrium to a chaotic state, a feature characteristic of many shear flows.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.1042.
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Appendix A. Astrophysically relevant regime

In this appendix, we outline that while rotation and libration effects (here modelled as
differential rotation) predominate in the subsurface oceans of Saturn’s and Jupiter’s moons
(Wilson & Kerswell 2018), it is thermal convection effects followed by libration and
rotation which take precedence in their viscous ice shells (McKinnon 1999).

As shown by Wilson & Kerswell (2018), the large length scale r1 � 102–103 km,
rotation rate ω = max(|ω1, ω2|) ≈ 10−5 s−1 and low viscosity ν ≈ 10−6 m2 s−1 relevant
to the moon’s oceans, yield small Ekman numbers Ek = ν/ωr2

1 ≈ 10−14. This implies
that rotation provides the dominant stabilising force. In these oceans, forced libration is
the principle source of vorticity generation as measured by the Reynolds number times
Ekman number ReEk ≈ (|ω1 − ω2|/ω)Δφ, where Δφ denotes the libration amplitude.
For larger moons such as Callisto ReEk ∼ 10−6, but in the case of smaller moons like
Enceladus, it can be as large as ReEk ∼ 10−3 (Wilson & Kerswell 2018).

Although the kinematic viscosity and thermal diffusivity are strictly temperature
dependent in these ice shells, appropriate reference values are given by

ν ≈ 1012 m2 s−1, κ ≈ 10−6 m2 s−1, (A1a,b)

such that Pr = ν/κ ≈ 1018. To model the ice layer as a highly viscous Newtonian fluid
requires that the ice grain size is small (McKinnon 1999), a scenario supported by a
number of authors (Barr & McKinnon 2007; Mitri & Showman 2008). Owing to their large
viscosity, the Ekman number of these ice shells is Ek ≈ 105–107, such that the Coriolis
force is small. By comparison the Rayleigh number appropriate for Callisto’s thin ice shell
d = (r2 − r1)/r1 ≈ 0.075 is given by McKinnon (1999, 2006) as Ra ≈ 106–107, while for
Enceladus’ thick ice shell d ≈ 0.63 by Barr & McKinnon (2007) and Mitri & Showman
(2008) as Ra ≈ 105–107. Although similar to mantle convection in the sense that global
rotation now has a negligible effect, due to viscous shear at the boundary of these ice
shells they differ considerably. The effect of libration now, however, enters the problem as
a velocity boundary condition, which proportional to Pr Re = (|ω1 − ω2|r2

1/κ)Δφ � 1
cannot be neglected.

In our paper, we consider d = 3,Pr = 10, differential rotation, RePr ∈ (0, 500) and
heating in the range Ra ∈ (102, 105). By comparison the appropriate parameter values
for Enceladus’ thick ice shell are d ≈ 0.63,Pr ≈ 1018,Ra ∼ 106 and rotation strengths of
RePr ∼ 108. While our values of d and Ra are reasonable, our Prandtl number and rotation
rates are too low by several orders of magnitude.

The Rayleigh numbers considered in this paper lie within the regime of viscous
convection (Moore & Weiss 1973). Although our Pr is very much smaller than that of the
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ice shells, it should arguably capture the essence of high Pr physics. Numerical experiment
has demonstrated that rotation of the outer boundary does not greatly alter the solution
structure, and this should be still more the case at higher Pr. However, we have only
demonstrated that the axisymmetric assumption holds when RePr = O(1) and moderate
Ra. For RePr ∼ 1 and large Ra we anticipate that the temperature field would be advected
weakly in the azimuthal direction. However, for RePr � 1 and small Ra, azimuthal
advection of the temperature field is to be expected. For this reason we believe our results
will be most applicable to systems with smaller values of the length scale, r1.
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