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COORDINATION ON SADDLE-PATH
SOLUTIONS: THE EDUCTIVE
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We investigate local strong rationality (LSR) in a one-step-forward-looking univariate
model with memory one. Eductive arguments are used to determine when common
knowledge (CK) that the solution is near some perfect-foresight path is sufficient to
trigger complete coordination on that path (i.e., the path is LSR). Coordination of
expectations is shown to depend on three factors: the nature of the CK initial beliefs, the
degree of structural heterogeneity, and the information structure. Our sufficient conditions
for LSR precisely reflect these features and provide basic consistent justifications for the
choice of the saddle-path solution.
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1. INTRODUCTION

Take a linear one-dimensional system of the form yt − δyt−1 − βye
t+1 = 0, where

ye
t+1 denotes the expectation of yt+1. This dynamical system is one-step-forward

looking and has memory one. It has a single steady state, yt = 0, and for some
values of the parameters displays a saddle-path configuration: Starting from any
y0, there are two constant-growth-rate perfect-foresight solutions, one converging
to zero, the so-called saddle-path stable solution, and the other one exploding
away from zero. There are also many other solutions, indeed a continuum, with
variable growth rates, going ultimately to infinity.

The conventional wisdom among economists is that, among the infinity of
perfect-foresight solutions that exist in this context, the right one to select, for
economic modeling purposes, is the saddle-path stable solution.
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It seems that such conventional wisdom arose first from considerations of con-
venience: The selected solution is the only one that does not go to infinity, a
rather desirable feature for descriptive realism in most situations. However, more
convincing arguments have been given, and we underline two of them. The first
elaborates on the convenience argument by putting emphasis on “determinacy”
ideas: For given initial conditions, the saddle-point stable path is not just the only
perfect-foresight equilibrium that converges to the steady state, but it is also, since
in this case there are no stationary sunspot equilibria in its neighbourhood, the
only rational-expectations equilibrium that does not go to infinity. The other argu-
ment is based on “evolutive” or “adaptive” learning, that is, learning in real time
based on rules for revising expectations, and gives conditions for the asymptotic
convergence of such learning rules.1

The purpose of this paper is to revisit the justifications of the saddle-path stable
solution by taking the somewhat more basic perspective of “eductive learning,”
which refers to considerations that have a game-theoretical flavor and explicitly
refer to common-knowledge (CK) considerations.

Specifically, the viewpoint we take, the “strong rationality viewpoint,”2 proceeds
as follows. We start from restrictions on the possible paths of the system, which
themselves reflect restrictions on individual strategies. These restrictions, tenta-
tively supposed to be CK, trigger a mental process that, when rationality is itself
“commonly known,” mimics the process of determination of rationalizable strate-
gies (from the initial set of restricted strategies). When such a process converges to
the candidate equilibrium, the equilibrium is said to be strongly rational. Actually,
as in the following, the CK initial restrictions will always be taken locally, so that
we shall be concerned only with a weaker variant of the test that selects locally
strongly rational equilibria. The question treated in this paper can then be more
compactly reformulated: When is it the case that the saddle-path stable solution
of a dynamical system is a good candidate for expectational coordination, in the
sense just introduced of being locally strongly rational, for restrictions to be made
precise?

As the reader will easily guess, the question, as raised, is almost meaningless
if we refer to the standard reduced forms of dynamical systems, such as the one
alluded to earlier. To make sense of the question, we must, as we did in Evans and
Guesnerie (1993) in a different context, imbed the model in a framework in which
agents and their strategies are well defined. This is indeed what we do in Section 2,
where the strategic imbedding is presented in the more general framework of a one-
step-forward-looking, one-period memory nth-dimensional system. Sections 3, 4,
and 5 focus on the analysis of expectational coordination along the lines just pre-
sented in the one-dimensional linear version of the model: Section 3 considers a
benchmark case, Section 4 is concerned with an extension of the so-called CK re-
striction, and Section 5 considers a variant of the model where the formation of ex-
pectations is subject to different institutional constraints. The conclusion follows.

A companion paper, Evans and Guesnerie (2000), extends the analysis to the
nth dimensional version of the paper.
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2. FRAMEWORK

2.1. Dynamic Expectations Models

We are interested in models of the following kind:

Q
(
yt−1, yt , ye

t+1

) = O,

where t is a time index, y is a finite dimensional vector, and Q is a temporary
equilibrium map that relates yt to its lagged values and to expectations. The quantity
ye

t+1 denotes the expectation of yt+1 formed by agents at time t. In this formulation,
we assume that agents are able to observe yt when forming their expectations or,
if not, that they can condition their actions on the values yt that are realized.

Since, depending on the problem, this may or may not be a realistic assumption,
we also consider a second variation in which the strategies of agents at t cannot
be conditioned on yt :

Q̃
(
yt−1, yt , y∗

t , y∗
t+1

) = O.

In this case the actions of agents, and hence yt , depend not only on the expectations
of yt+1, as before but now denoted by y∗

t+1, but also on their expectations of yt

itself, which we denote by y∗
t . The change in notation is used to emphasize the

change in the information assumptions of the model.
In either case, as announced above, we restrict attention to deterministic sys-

tems, though it would be possible to generalize the argument to allow for ex-
ogenous stochastic shocks, and we are interested in perfect-foresight equilibria, in
which expectations are correct, and in the coordination issues associated with such
equilibria.

We need to be more precise on the strategic aspects of the coordination problem.
To do so we will adopt a very simple strategic interpretation of the model which
makes explicit the decision-theoretic aspects of the model and the aggregation of
those decisions into a temporary equilibrium map.

2.2. Strategic Expectations Model

2.2.1. Basic structure. We now embed the dynamic model in a dynamic game,
along lines that are somewhat similar to those of Evans and Guesnerie (1993). In
this section we consider the first version of the model:

Q
(
yt−1, yt , ye

t+1

) = O.

We assume that, at each period t , there exists a continuum of agents, a part of
whose strategies are not reactive to expectations (in an OLG context, these are
the agents who are at the last period of their lives), and a part of which “react to
expectations.” The latter agents are denoted ωt and belong to a convex segment of
R, endowed with Lebesgue measure dωt . It is assumed that an agent of period t is
different from any other agent of period t ′, t ′ �= t.3 More precisely, agent ωt has a
(possibly indirect) utility function that depends upon
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(i) his own strategy s(ωt );
(ii) sufficient statistics of the strategies played by others, that is, on yt =

F(	ωt{s(ωt )}, ∗), where F in turn depends first upon the strategies of all agents who
at time t react to expectations, and second upon (∗), which is here supposed to be
sufficient statistics of the strategies played by those who do not react to expectations,
and that includes but is not necessarily identified with—see below—yt−1;

(iii) finally upon the sufficient statistics for time t + 1, as perceived at time t : that is,
on yt+1(ωt ), which may be random and, now directly, upon the sufficient statistics
yt−1.

In this version of the model, we assume that the strategies played at time t can
be made conditional on the equilibrium value of the t sufficient statistics yt . Now,
let (•) denote both (the product of ) yt−1 and the probability distribution of the
random variable ỹt+1(ωt ) (the random expectation held by ωt of yt+1). Then, let
G(ωt , yt , •) be the best response function of agent ωt . Under these assumptions,
the sufficient statistics for the strategies of agents who do not react to expectations
is (∗) = ( yt−1, yt ).

The equilibrium equations at time t are written

yt = F
[
	ωt{G(ωt , yt , yt−1, ỹt+1(ωt ))}, yt−1, yt

]
. (1)

Note that when all agents have the same point expectations denoted ye
t+1, the

equilibrium equations determine what we called earlier the temporary equilibrium
mapping:

Q
(
yt−1, yt , ye

t+1

) = yt − F
[
	ωt

{
G

(
ωt , yt , yt−1, ye

t+1

)}
, yt−1, yt

]
.

2.2.2. Linearization. Let us return to the basic expression (1). The right-hand
side is a rather complex term, but under regularity assumptions,4 it has, through
two different channels, derivatives with respect to yt , and with respect to yt−1. Also
assuming that all ỹt+1 have a very small common support “around” some given
ye

t+1, decision theory suggests that G, to the first order, depends on the expectation5

of the random variable ỹt+1(ωt ), which is denoted ye
t+1(ωt ) (and is close to ye

t+1).

Taking into account the previous remark, the heterogeneity of expectations
across agents, and assuming again the existence of adequate derivatives, it is rea-
sonable to linearize, around any initially given situation, denoted (0), the above
expression as follows6:

yt = U (0)yt + V (0)yt−1 +
∫

W (0, ωt ) ye
t+1(ωt ) dωt ,

where yt , yt−1, and ye
t+1(ωt ) now denote small deviations from the initial values

of yt , yt−1, and ye
t+1; and U (0), V (0), and W (0, ωt ) are n × n square matrices.

Such a linearization is valid everywhere, but we will consider it only around
a steady state of the system. Hereafter, yt , yt−1, etc. denote deviations from the
steady state and U (0), V (0), and W (0, ωt ) are simply U, V , and W (ωt ).
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Supposing I − U is invertible, we have

yt = [(I − U )−1V ] yt−1 + (I − U )−1
∫

W (ωt ) ye
t+1(ωt ) dωt .

When expectations are homogeneous, ye
t+1(ωt ) = ye

t+1, the system becomes

yt = Bye
t+1 + Dyt−1,

with

B = (I − U )−1W,

where

W =
∫

W (ωt ) dωt ,

and when y is one-dimensional, using the corresponding small Greek letters, we
write the system as yt = βye

t+1 + δyt−1.

With the new notation, assuming W invertible, we can also write the initial
system as

yt = Dyt−1 + BW −1
∫

W (ωt ) ye
t+1(ωt ) dωt ,

or, for the one-dimensional version,

yt = δyt−1 + β
−1
∫


(ωt )ye
t+1(ωt ) dωt . (2)

At this stage, one may also notice that Nash equilibria of the game7 coincide with
perfect-foresight equilibria of the dynamical economy, whatever the dimension of
the vector y.

2.3. Alternative Formulation

As made explicit in Section 2.2.1, we have so far assumed that agents were able
to condition their time t strategies on the equilibrium value of yt . Whether this is
an appropriate assumption depends on the economic structure and we therefore
consider the alternative assumption, which in some cases will be more natural, that
the strategies can only be made contingent on yt−1. We outline how the previous
argument needs to be modified.

The best response function of agent ωt is instead G[ωt , yt−1, ỹt (ωt ), ỹt+1(ωt )],
where ỹt (ωt ) denotes the random expectation by ωt of yt , and ỹt+1(ωt ) denotes the
random expectation by ωt of yt+1. The dynamics at time t are governed by

yt = F
(
	ωt{G[ωt , yt−1, ỹt (ωt ), ỹt+1(ωt )]}, yt−1

)
.

Note that when all agents have the same point expectations y∗
t , y∗

t+1, the equilibrium
equations determine the “temporary equilibrium mapping”

Q̃
(
yt−1, yt , y∗

t , y∗
t+1

) = yt − F
[
	ωt

{
G

(
ωt , yt−1, y∗

t , y∗
t+1

)}
, yt−1

]
.
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For the linearization, we follow the same line of argumentation as above and
now obtain

yt = V yt−1 +
∫

Z(ωt ) y∗
t (ωt ) dωt +

∫
W (ωt ) y∗

t+1(ωt ) dωt ,

and for the one-dimensional system we write this as

yt = δyt−1 + β0ζ
−1

∫
ζ(ωt )y∗

t (ωt ) dωt + β1

−1

∫

(ωt )y∗

t+1(ωt ) dωt , (3)

where ζ = ∫
ζ(ωt ) dωt and 
 = ∫


(ωt ) dωt .

Coming, as above, to the case of homogeneous expectations, we have

yt = δyt−1 + β0 y∗
t + β1 y∗

t+1. (4)

2.4. Example

We consider a simple extension of the standard OLG (overlapping generations)
model, which may be viewed as somewhat artificial, but which provides a conve-
nient and pedagogical illustration of our framework. This is an OLG model with
a fiscal policy feedback rule. Agents live for two periods, working when young
and consuming when old. There is no population growth: When the old die they
are replaced by an equal number of young agents with identical utility functions.
When the economy begins at t = 1, there is an initial old generation. One unit
of the single (perishable) output is produced for each unit of labor. There is a
fixed quantity of money M , held by the initial old generation at t = 1. At each
time t the young agents decide how much to produce, trading their output, net of
(real) lump-sum taxes, for money at price pt in competitive markets. Government
consumption (per young agent), gt , is given by some known specified function of
current and lagged prices and is financed by lump-sum taxes levied on the young.
The government and the old purchase output on the competitive market and the
equilibrium price is determined by market clearing.

To set up the model formally, we assume that the utility of agent ωt is given by

�ωt [ct+1(ωt )] − 
ωt [nt (ωt )],

where �ωt is increasing and concave, 
ωt is increasing and convex and both
functions are assumed to be smooth. The quantity of labor supplied when young
(which is equal to the quantity of output produced by ωt ) is denoted by nt (ωt ),
and ct+1(ωt ) is the quantity of consumption when old. The agent is subject to
the budget constraint ct+1(ωt ) = [nt (ωt ) − gt ](pt/pt+1), where gt = g(pt , pt−1).

Although g need not depend on pt , for the treatment in this paper we assume that
g depends nontrivially on pt−1.

When young the agent’s problem is to maximize utility subject to the budget
constraint. The details now depend on the information assumptions of the model,
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and we start with those of Section 2.2.1. Thus, we assume that pt is observable at t
when agent ωt is deciding on nt (ωt ), or at least that nt (ωt ) can be made conditional
on pt . Assuming an interior solution and point-expectations pe

t+1(ωt ) of pt+1, the
necessary first-order condition for the choice of agent ωt is

[
pt

/
pe

t+1(ωt )
]
�′

ωt

{
[nt (ωt ) − g(pt , pt−1)]

[
pt

/
pe

t+1(ωt )
]} = 
′

ωt
[nt (ωt )],

yielding an optimum choice of the form nt (ωt ) = G[ωt , pt , pt−1, pe
t+1(ωt )].

The decisions of an old agent do not depend on expectations and in fact are
trivial since their optimal strategy is simply to exchange all money holdings
for goods. The model is completed by the definition nt = ∫

nt (ωt ) dωt and the
market-clearing equation pt [nt − g(pt , pt−1)] = M, which can be solved locally
as pt = φ(nt , pt−1). Combining this latter equation with

nt =
∫

G
[
ωt , pt , pt−1, pe

t+1(ωt )
]

dωt ,

we obtain an equation of the form (1) with yt = pt . Linearization is of the form (2).
Suppose we now change the information assumptions so that when deciding

on nt (ωt ) the agent is unable to observe pt or nt (or to be able to condition their
choices on these values). The government spending rule continues to depend at
least on pt−1 and possibly on pt [in which case we assume that gt = g(pt , pt−1)

is made conditionally on pt ]. Thus the timing we are assuming is that, first, each
agent ωt must commit to nt (ωt ). Then, gt and pt are jointly determined, given nt ,

by gt = g(pt , pt−1) and pt (nt − gt ) = M.

The model is essentially unchanged except that, when choosing nt (ωt ), the
young agent does not know pt or gt . In the optimization problem, these are therefore
replaced by their expectations. It is assumed that the function g(pt , pt−1) is known.
For this alternative formulation the first-order condition for the young agent thus
becomes

[
p∗

t (ωt )
/

p∗
t+1(ωt )

]
�′

ωt

(((({
nt (ωt ) − g

[
p∗

t (ωt ), pt−1
]}[

p∗
t (ωt )

/
p∗

t+1(ωt )
]))))

= 
′
ωt

[nt (ωt )],

where p∗
t (ωt ) and p∗

t+1(ωt ) denote the expectations of agent ωt , based on the
more restrictive information set. The rest of the argument proceeds analogously,
following now Section 2.3, with the linearization in yt = pt taking the form (3).

2.5. A Coordination Criterion: Strong Rationality

Consider a perfect-foresight equilibrium of our economy. Why would agents co-
ordinate expectations on such a path? As argued in the introduction, we rely on
a criterion, called “strong rationality” by Guesnerie (1992, 1993), which is the
following:
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Assume that all agents in the system have beliefs that restrict the strategies pos-
sibly played by the others and consequently that induce restrictions on the possible
paths of the system. Then, assume that these restrictions, either on strategies or on
the associated paths, are common knowledge among the agents, that is, that every-
one knows them, that everyone knows that everyone knows them, . . . . If agents
are assumed to be Bayesian rational, this assumption triggers a mental process8

that starts as follows:
Given the common-knowledge restrictions, each agent deletes strategies from

his strategy set and two cases occur:

• Either the initial restrictions are further reinforced in such a way that the set of possible
paths of the system is tightened,

• or the initial restrictions are neither reinforced nor even confirmed, and in the latter
case the hypothetical CK assumption that was stated is self-defeating.

• In the first case, if we assume that Bayesian rationality is known, that it is known that
it is known, . . . , and ultimately that it is CK, the process may go on, along further
steps, mimicking the process of determination of rationalizable strategies. When it
converges toward a unique “equilibrium path,” we say that such an equilibrium is
strongly rational.

With the methodology just sketched, we shall here start from the following
assumption

(Hypothetical) CK Assumption [(H) CKA]: It is CK that (the strategies are
restricted so that)9 the actual path E of the economy lies in some well-defined
neighborhood V (E∗) of some given perfect-foresight trajectory E∗.

The perfect-foresight trajectory that we shall consider here is a trajectory that
lies in the stable manifold of the dynamical system, that is, in the one-dimensional
case, on a constant-growth-rate path that converges to the steady state. The choice
of neighborhood is discussed below.

The trajectory under consideration will be said to be locally strongly rational
(LSR) whenever assertion A triggers conclusion B:

(A) (H) CKA holds, with V (E∗), a local neighborhood of the candidate perfect-foresight
equilibrium E∗.

(B) It is CK that the actual trajectory E is the candidate perfect-foresight trajectory E∗.

3. ONE-DIMENSIONAL LINEAR MODEL

From now on, we focus on the linear or linearized system, but keeping in mind
the strategic structure just sketched. Since the linearization will be valid only in a
neighborhood of the stationary solution yt = 0, we will not consider solutions that
diverge from the stationary solution. We also focus, in the present paper, on the
univariate case. In this section, we consider the first formulation, in which agents
have knowledge of yt when making decisions:
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yt = δyt−1 + β
−1
∫


(ωt )ye
t+1(ωt ) dωt . (5)

The alternative formulation is taken up in Section 5.

3.1. Perfect-Foresight Solutions

Perfect-foresight solutions satisfy yt = βyt+1 + δyt−1.

The roots λ1, λ2 of the associated quadratic

βλ2 − λ + δ = 0

are real, if and only if βδ ≤ 1/4. From now, we restrict attention to this case.
Then, the solutions can be written as

yt = k1λ
t
1 + k2λ

t
2, (6)

where k1, k2 are real and k1 + k2 = ŷ0, where ŷ0 is the value given at t = 0.

Two particular solutions of interest are

yt = ŷ0λ
t
1 and yt = ŷ0λ

t
2.

Letting P(λ) = βλ2 − λ + δ and noting that P(−1) = β + δ + 1, P(1) = β +
δ − 1, and P ′(1) = 2β − 1, one can easily establish the following:

(i) Both roots are explosive, that is, have absolute value larger than 1, if either β + δ > 1
and β < 1/2 or β + δ < −1 and β > −1/2;

(ii) both roots are less than 1 in absolute value if either β + δ > 1 and β > 1/2 or β +
δ < −1 and β < −1/2, often called the indeterminate case; and

(iii) one root is larger than 1 in absolute value and the other root is smaller than 1 in
absolute value if |β + δ| < 1. This is often called the saddle-point stable case. As
indicated earlier, we will not consider explosive solutions since they diverge from
the stationary solution. Both the saddle-point stable and indeterminate cases are
of interest. These arise in the regions shown in Figure 1: EX denotes the regions
of explosive roots, IN the regions of indterminacy, and SP the saddle-point stable
region.

We note that, in the saddle-point stable case, for every initial y0, there is a unique
nonexplosive perfect-foresight solution and it converges to y = 0. In contrast, in the
indeterminacy case, for every initial y0, there is a continuum of paths converging
to y = 0 and in the explosive case every path is explosive unless initially y0 = 0.

3.2. Common-Knowledge Initial Restrictions

Fix the perfect-foresight solution yt (λ) = ŷ0λ
t , where λ = λ1 or λ = λ2. Here, ŷ0

is the given initial condition. We are thus focusing on one of the perfect-foresight
solutions: y(λ) = {yt (λ)}∞t=0.
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FIGURE 1. Basic case.

A (hypothetical) CK assumption, from which we start, might state, in the spirit
of what has just been announced, that the actual trajectory {ys}∞0 is close to the
equilibrium perfect-foresight trajectory y(λ), a fact formalized in Condition C0:

Condition C0: ∀s = 1, . . . ,∞, ys lies between (λ − ε)s ŷ0 and (λ + ε)s ŷ0 for
some specified ε > 0.

Note, however, that for high s, such a condition says that ys is close to zero, but
not in a very precise way, since the ratio of the upper bound to the lower bound
tends to infinity, when s itself tends to infinity. As a consequence, growth rates
between two periods are not bounded from the assumption, but such growth rates
play a key role in fixing expectations (as will become still clearer later). To say
things in another way, the idea of proximity of trajectories that we have introduced
in the tentative definition reflects proximity in a sense reminiscent of a C0 topology
on a space of functions, when we need to assume proximity in the sense of a C1

topology.
This is done with Condition C1.

Condition C1: ∀s = 1, . . . ,∞, ys lies between (λ − ε)ys−1 and (λ + ε)ys−1 for
some specified ε > 0.
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Note now that C1 implies C0: Both the path and the slope of y are close to the
path and slopes of y(λ).

Note also that the assumption is formulated in terms of one-period growth rates.
This formulation of the CK assumption is natural in the case, considered in this
section, in which agents can condition their actions on yt . To justify this, remember
that the equilibrium equations at time t can be written

yt/yt−1 = δ + β(yt/yt−1)

−1

∫

(ωt )

[
ye

t+1(ωt )
/

yt
]

dωt or

yt/yt−1 = δ

{
1 − β
−1

∫

(ωt )

[
ye

t+1(ωt )
/

yt
]

dωt

}−1

.

In other words, the equilibrium choices of the strategies of all agents—those
who react to expectations and those who do not—amounts to a choice of a growth
rate between yesterday and today that is influenced, through the choices of agents
who react to expectations, only by the distribution, across those agents, of ex-
pected growth rates between today and tomorrow. A restriction on the growth
rates between today and tomorrow is a special restriction on the strategies chosen
by the agents tomorrow, which, however, includes their equilibrium strategies.
Since equilibrium tomorrow is determined from the same strategic considerations
as those intervening today, this can be viewed as a restriction of the beliefs of
tomorrow’s agents, who in our story are supposed to be different agents, (but this
is not crucial), that is, the belief that the growth rate between tomorrow and the
day after tomorrow is restricted.10

3.3. Conditions for Local Strong Rationality

3.3.1. Key insight. The natural question to consider is whether the (Hypothet-
ical) CK Assumption C1, from now CKAC1, is internally coherent in the following
sense: The assumption being known and believed is compatible with a set of ra-
tional reactions of agents that generate a set of possible trajectories that may or
may not be compatible with the initial restriction.

Here, the following lemma is straightforward, under the condition that all the
numbers 
(ωt ) have the same sign, for example, positive.

LEMMA 1. Let either λ = λ1 or λ = λ2. If at period t, all agents conjecture
that the growth rate between today and tomorrow is between λ + ε and λ − ε,

then the actual growth rate is between λ + [δβ/(1 − βλ)2]ε + o(ε2) and λ −
[δβ/(1 − βλ)2]ε + o′(ε2),11 where o, o′ tends to zero with ε2.

Proof. From (yt/yt−1) = δ{1 − β
−1
∫


(ωt )[ye
t+1(ωt )/yt ] dωt }−1 and λ − ε

≤ [ye
t+1(ωt )/yt ] ≤ λ + ε, it follows that λ − ε ≤ 
−1

∫

(ωt )[ye

t+1(ωt )/yt ] dωt ≤
λ + ε. Since the derivative of δ(1−βx)−1 is δβ/(1 − βx)2, the conclusion obtains
immediately.

The result allows us to identify two cases:
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If |δβ/(1 − βλ)2| > 1, the actual trajectory generated by the CKAC1 does not
necessarily fit the CK conjecture in the following sense: There are trajectories
associated with beliefs compatible with CKAC1 that generate paths that are in
contradiction with CKAC1; in some sense, the assumption is not fully consistent,
it is self defeating . . . .12

If |δβ/(1 − βλ)2| < 1, then the growth rate of any trajectory “consistent” with
CKAC1, in the sense that at each period the equilibrium is determined by the
interaction of rational agents who have beliefs compatible with CKAC1, is between
λ − ρε and λ + ρε, with 0 < ρ < 1, when ε is small enough.

Then, if the initial beliefs on growth rates are maintained through time, it will be
the case that actual growth rates will always be between λ − ρε and λ + ρε. Now,
here is the trigger to our CK argument, which will be used repeatedly in the next
sections: The conditions on actual growth rates (induced by the initial beliefs) are
known by the agents of period 1, who anticipate13 that it will be known by their
successors at any period. Then, the above process, relating actual growth rates to
beliefs, can be iterated once again, and using the full power of the CK assumption,

iterated indefinitely. At stage n of the mental process, it is CK that the growth rate
will be between λ − ρnε and λ + ρnε.

3.3.2. Main result. Recall the characteristic quadratic P(λ) = βλ2 − λ + δ.

Assuming P(λ) has distinct real roots, we denote the roots

λ1 = (2β)−1(1 −
√

1 − 4βδ) and λ2 = (2β)−1(1 +
√

1 − 4βδ).

Note that λ1 is closer to 0 than λ2; that is, |λ1| < |λ2|.
We then have the following proposition.

PROPOSITION 1. Assume all 
(ωt ) ≥ 0. Under CK AC1, the solution path
y(λ1) is LSR and the solution path y(λ2) is not LSR.

Proof. First note that since λ = δ(1 − βλ)−1 for λ = λ1, λ2, the condition
|δβ/(1 − βλ)2| < 1 is equivalent to |βλ/(1 − βλ)| < 1. There are two cases (we
ignore the case βδ = 0). If βδ > 0, then for both λ = λ1, λ2 we have 0 < βλ < 1
so that βλ/(1 − βλ) > 0. Then, βλ/(1 − βλ) < 1 if and only if 2βλ < 1. This
holds for λ1 but not for λ2, and so, y(λ1) is LSR and y(λ2) is not LSR.
If βδ < 0 then βλ1 < 0 and −1 < βλ1/(1 − βλ1) < 0. However, βλ2 > 1 and
βλ2/(1 − βλ2) < −1. Thus again, y(λ1) is LSR and y(λ2) is not LSR.

Note that, somewhat surprisingly, the above result applies even for |λ1| ≥ 1.

However, we do not stress this result because, here, we view linear models as
satisfactory approximations of nonlinear phenomena, a property that certainly
does not hold along an explosive path. The most relevant results, in the just-evoked
perspective, concerns (i) the saddle-path case and (ii) the so-called indeterminate
case:

(i) In the saddle-point stable case, it is immediate that the unique nonexplosive solution
is LSR.
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(ii) However, and surprisingly, LSR (local strong rationality) also holds in the case
of indeterminacy for y(λ1), the perfect-foresight path with smaller |λ|. This is
surprising because, in the earlier literature, determinacy of the perfect-foresight
path has appeared to be a necessary condition for LSR. This is discussed in
Section 4.2.

We stress that the above result requires the assumption that all the numbers

(ωt ) have the same sign, placing bounds on the structural heterogeneity we
permit. Evans and Guesnerie (1993) discuss the implications of relaxing this as-
sumption for static models. Here, we emphasize that Proposition 1 is a special case
of the more general Proposition 2.

PROPOSITION 2. Assume that the sign of 
(ωt ) varies across the set of
agents and let 
+ = ∫


(ωt )≥0 
(ωt ) dωt and 
− = ∫

(ωt )<0 
(ωt ) dωt . Under

CK AC1 the solution path y(λ2) is not LSR. The solution path y(λ1) is (locally) LSR
whenever

−1/[2(� − 1)] < βδ < 1/[2(� + 1)],

where � = (
+ − 
−)/
 .

We leave the proof to the reader.14

Note that the right-hand side (resp., left-hand side) equals 1/4 (resp., −∞) when
all the coefficients have the same sign, and decreases (resp., increases) with
the heterogeneity of individual reactions, as (reasonably) measured by � =
(
+ − 
−)/
. Because βδ < 1/4 whenever the roots are real, the statement
is indeed a generalization of Proposition 1. Also, it precisely establishes the role
of heterogeneity in LSR coordination.

4. LESS-RESTRICTIVE CK ASSUMPTIONS

4.1. Central Results

Assuming, as we now do, that |λ1| < 1, the CK (common-knowledge) assumption
C1 requires both that |yt | be small for large t and that the proportional growth rate
of yt be close to λ. (The latter implies the former under the assumption that we
made). As stated earlier, this corresponds to the idea of proximity in C1 topology.
We consider now the effect on the conditions for strong rationality of relaxing the
CK assumptions, in the following way:

Condition C0′: ∀s = 1, . . . ,∞, ys = ks + hs ys−1, where −η ≤ ks ≤ η and λ −
ε ≤ hs ≤ λ + ε, with ε > 0 and η > 0.

Obviously, C0′ is less restrictive than C1 since the latter is obtained from C0′

by setting η = 0. It can also be seen from the following result that C0′ involves
proximity in the C0 topology.

LEMMA 2. Under CK AC0′, ∀s = 1, . . . ,∞, ys = as + (gs)
s ŷ0 where gs lies

between λ−ε and λ+ε and where |as | ≤ (1−|λ| − ε)−1η. Hence sups |ys − ys(λ)|
is finite and can be made arbitrarily small by choosing ε and η sufficiently small.
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Proof. Substituting in recursively,

ys = (ks + hsks−1 + hshs−1 ks−2 + · · · + hshs−1 · · · h2k1) + (hshs−1 · · · h1)ŷ0.

Clearly, hshs−1 · · · h1 lies between (λ − ε)s and (λ + ε)s and

|ks + hsks−1 + hshs−1 ks−2 + · · · + hshs−1 · · · h2k1| ≤ η

∞∑
i=0

(|λ| + ε)i

= (1 − |λ| − ε)−1η.

This establishes the first claim, and |ys − ys(λ)| = |as + (gs)
s ŷ0 − λs ŷ0|. Since

(gs)
s = (λ + εs)

s for some εs with |εs | ≤ ε and using (λ + εs)
s = λs + sλs−1εs +

o(ε2
s ), we have maxs |ys − ys(λ)| ≤ |as | + (s|λ|s−1ε + |o(ε2)|)|ŷ0|. Finally, for

|λ| < 1 the quantity s|λ|s−1 has a maximum for some positive s depending on λ.

The result follows.

For the model (5), with CK assumptions C0′, we obtain the following results,
again for the case in which 
(ωt ) all have the same sign, which we take to be
positive:

LEMMA 3. Let either λ = λ1 or λ = λ2. If at period t all agents conjec-
ture that yt+1 = k(ωt ) + h(ωt )yt where −η ≤ k(ωt ) ≤ η and λ − ε ≤ h(ωt ) ≤ λ + ε,
then the actual value of yt is given by yt = k̃ + h̃ yt−1, where k̃ lies between
β/(1 − βλ)−1η + o(η2, ε2) and −β/(1 − βλ)−1η + o(η2, ε2) and h̃ lies between
λ + [δβ/(1 − βλ)2] ε + o(ε2) and λ − [δβ/(1 − βλ)2]ε + o(ε2).

Proof.


−1
∫


(ωt )ye
t+1(ωt ) = k + hyt ,

where |k| ≤ η, |h − λ| ≤ ε. Hence, from (5), yt = βk(1 − βh)−1 + δ(1 − βh)−1 yt−1.

The result now follows from the derivative of the map (x1, x2) → (βx1(1 − βx2)
−1,

δ(1 − βx2)
−1).

PROPOSITION 3. Under CK AC0′, the solution path y(λ1) is LSR if and only
if the model is saddle-point stable. The solution path y(λ2) is not LSR.

Proof. First, note that if |β/(1 − βλ)−1| < 1 and |δβ/(1 − βλ)2| < 1, then, under
CKAC0’, Lemma 3 implies that at each period the equilibrium ys satisfies ys =
ks + hs ys−1 where −ρη ≤ ks ≤ ρη for some 0 < ρ < 1 and λ − ςε ≤ hs ≤ λ + ςε

for some 0 < ς < 1. Iterating the argument, along the same lines as in the preceding
section, we have that, for all n, −ρnη ≤ ks ≤ ρnη and λ − ςnε ≤ hs ≤ λ + ςnε.
Using Lemma 2, this implies that the iteration picks out y(λ), which is hence LSR.
Similarly, when the above conditions do not hold, y(λ) is not LSR.

Finally, we consider when the required conditions hold.
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In the proof of Proposition 1, it was shown that the solution y(λ2) al-
ways violates and y(λ1) always satisfies the condition |δβ/(1 − βλ)2| < 1. Using
βλ2 − λ + δ = 0, the condition |β/(1 − βλ)−1| < 1 is equivalent to |βλ/δ| < 1. It
is straightforward to show that |βλ1/δ| < 1 is satisfied when δ > 0 if β + δ > −1
and either δ > 1/2 or β + δ < 1. Similarly |βλ1/δ| < 1 is satisfied when δ < 0 if
β + δ < 1 and either δ < −1/2 or β + δ > −1. It can be verified from Section 3.1
and from Figure 1 that these conditions are compatible with the saddle-point region
and exclude the indeterminacy region.

4.2. Discussion

From the previous literature, one might suspect that solutions that are strongly
rational are necessarily determinate, that is, locally unique. (That the converse
need not hold is evident from analysis of the Muth cobweb model [Guesnerie
(1992) and Evans and Guesnerie (1993)]: Even globally unique solutions are not
always strongly rational.) Intuitively, if a solution is not locally unique, then, since
each nearby perfect-foresight solution is necessarily rationalizable, the solution
cannot be strongly rational.

The results of Section 3 might appear inconsistent with this view since for certain
regions of the parameter space, for example, β + δ > 1 and β > 1/2, the solution
y(λ1) is indeterminate but LSR. The results we have just obtained indicate how
to reconcile Section 3 with the intuition of the preceding paragraph by careful
attention to the definition of “closeness.”

In the C0 topology, there is a determinate solution, namely y(λ1), if and only
if |λ1| < 1 < |λ2|. This is evident from the set of perfect-foresight solutions (6)
using the sup norm. Closeness in C1 topology requires closeness in C0 topology
and also closeness in growth rates. For the solution y(λ) to be determinate in C1

topology we require that there do not exist perfect-foresight paths y �= y(λ) with
supt |yt/yt−1 − λ| arbitrarily small. This stricter definition of closeness implies that
determinacy in C1 is more permissive than determinacy in C0. Considering again
the set of perfect-foresight solutions (6) in the real case, we see that for |λ1| < |λ2|,
all perfect-foresight solutions except y(λ1) have asymptotic growth rates equal to
λ2: If k2 �= 0, then

lim
t→∞

yt

yt−1
= lim

t→∞
k1λ

t
1 + k2λ

t
2

k1λ
t−1
1 + k2λ

t−1
2

= lim
t→∞

k1k−1
2 λ1(λ1/λ2)

t−1 + λ2

k1k−1
2 (λ1/λ2)t−1 + 1

= λ2.

Thus in the C1 topology the solution y(λ1) is always determinate, even if the
absolute value of λ2 is less than one, while y(λ2) is never determinate.

To summarize, the stability conditions for local strong rationality generally will
depend on the common-knowledge assumptions, with less restrictive CK assump-
tions yielding correspondingly more restrictive stability conditions for LSR. The
results of Section 3, together with the current section, illustrate, despite initial
appearances to the contrary, that determinacy is indeed a necessary condition for
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local strong rationality, provided determinacy is defined using a topology that
corresponds to the CK assumptions.

5. ALTERNATIVE FORMULATION

A second theme of this paper is that the information structure of the model also
plays a role in the LSR stability conditions. We therefore now take up the alternative
formulation of the one-dimensional model, which, when linearized, leads to the
reduced form (3), reproduced here for convenience:

yt = δyt−1 + β0ζ
−1

∫
ζ(ωt )y∗

t (ωt ) dωt + β1

−1

∫

(ωt )y∗

t+1(ωt ) dωt .

This reduced form is appropriate when agents are unable to observe or condition
their strategies on yt when deciding on their actions. We again assume that all the
numbers ζ(ωt ) have the same sign and that all the numbers 
(ωt ) have the same
sign (for convenience we take them all to be positive).

5.1. Perfect-Foresight Solutions

We start by briefly discussing the perfect-foresight trajectories for the alternative
formulation. Under perfect foresight, yt = δyt−1 + β0 yt + β1 yt+1. The associated
quadratic is now

β1λ
2 − (1 − β0)λ + δ = 0.

Roots are real, providedβ1δ ≤ (1 − β0)
2/4.Assuming real roots, there are solutions

of the form yt = k1λ
t
1 + k2λ

t
2, where k1, k2 are real and k1 + k2 = ŷ0, and we focus

on the solutions
yt = ŷ0λ

t
1 and yt = ŷ0λ

t
2,

where

λ1 = (1 − β0) −
√

(1 − β0)2 − 4β1δ

2β1
and

λ2 = (1 − β0) +
√

(1 − β0)2 − 4β1δ

2β1
.

It can be shown that the saddle-point stable case (one root larger than 1 in
absolute value and one root less than 1 in absolute value) arises when
|(β1 + δ)/(1 − β0)| < 1. The indeterminate case, in which both roots have absolute
value less than 1, arises if either (i) (β1 + δ)/(1 − β0) > 1 and β1/(1 − β0) > 1

2 or
(ii) (β1 + δ)/(1 − β0) < −1 and β1/(1 − β0) < − 1

2 .

5.2. Local Strong Rationality

We again have a key preliminary result:
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LEMMA 4. Let either λ = λ1 or λ = λ2. If at period t , all agents conjecture
that the growth rate between yesterday and today is between λ + ε and λ − ε and
also that the growth rate between today and tomorrow lies between these bounds,
then the actual growth rate lies between λ + ρε + o(ε2) and λ − ρε + o′(ε2), where

ρ = max(|β0|, |β0 + 2λβ1|).
Proof. We have

yt/yt−1 = δ + β0ζ
−1

∫
ζ(ωt )

[
y∗

t (ωt )
/

yt−1
]

dωt

+ β1

−1

∫

(ωt )

[
y∗

t (ωt )
/

yt−1
][

y∗
t+1(ωt )

/
y∗

t (ωt )
]

dωt

= δ +
∫ [

y∗
t (ωt )

/
yt−1

]{
β0ζ

−1ζ(ωt ) + β1

−1
(ωt )

[
y∗

t+1(ωt )
/

y∗
t (ωt )

]}
dωt .

Then, ζ−1
∫

ζ(ωt )[y∗
t (ωt )/yt−1] dωt lies between λ − ε and λ + ε since, by as-

sumption, y∗
t (ωt )/yt−1 lies between these bounds. Since also y∗

t+1(ωt )/y∗
t (ωt )

lies between λ − ε and λ + ε, the expression in curly braces must lie between
β0ζ

−1ζ(ωt ) + β1

−1
(ωt )(λ − ε) and β0ζ

−1ζ(ωt ) + β1

−1
(ωt )(λ + ε). The

upper and lower bounds for yt/yt−1 are thus the largest and smallest val-
ues of the four quantities: δ + β0(λ − ε) + β1(λ − ε)2, δ + β0(λ − ε) + β1(λ − ε)

(λ + ε), δ + β0(λ + ε) + β1(λ − ε)(λ + ε), and δ + β0(λ + ε) + β1(λ + ε)2. Us-
ing (λ + ε)2 = λ2 + 2λ + o(ε2), (λ − ε)2 = λ2 − 2λ + o(ε2), and (λ − ε)(λ + ε) =
λ2 + o(ε2), and also that δ + β0λ + β1λ

2 = λ, we obtain that the upper and lower
bounds for yt/yt−1 are thus the largest and smallest values of the four quantities
λ ± (β0 + 2λβ1)ε + o(ε2) and λ ± β0ε + o(ε2). The lemma follows.

Arguing as in Section 3, it follows that a perfect-foresight solution yt (λ) = ŷ0λ
t

is LSR when ρ < 1. We can now state the key result for the alternative formulation
of our model.

PROPOSITION 4. Under CK AC1, and assuming real roots, the solution path
y(λ1) is (locally) SR if and only if

β1δ > −1 + (1 − β0)
2/4 and |β0| < 1,

while the solution path y(λ2) is not (locally) SR.

Proof. First, consider y(λ2). Since β0 + 2λ2β1 = 1 +
√

(1 − β0)2 − 4β1δ > 1,
it follows immediately from the preceding lemma that y(λ2) is not SR. Next, con-
sider y(λ1). Again using the Lemma 4, if |β0| ≥ 1, then y(λ1) is not LSR, whereas
if |β0| < 1, then y(λ1) is LSR if β0 + 2λ1β1 = 1 −

√
(1 − β0)2 − 4β1δ > −1. This

last condition is equivalent to the condition β1δ > −1 + (1 − β0)
2/4.

The results of this proposition are illustrated in Figure 2. The shaded area shows
the region of strong rationality.
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FIGURE 2. Alternative formulation.

We remark that it is also possible to derive the stability conditions for local
strong rationality under the less-restrictive CK assumptions C0′. This is omitted
for reasons of space.

5.3. Discussion

It is revealing to compare the conditions for LSR obtained in this section with those
from Section 3. We do so under the same common-knowledge restrictions CK AC1.
For both cases the solution y(λ2) is never SR. However, for the model of Section 3,
the solution y(λ1) is always LSR, whereas in this section additional requirements
must be met for y(λ1) to be LSR. This point is particularly transparent for the case
β0 = 0 under which we have here the additional LSR condition

β1δ > −3/4.

For this case the models differ only in that, under the alternative formulation, agents
are unable to condition their actions on yt . Thus, this makes clear the importance
of a detailed specification of the information sets for the possibility of achieving
the coordination of expectations.

It is also convenient to comment here on the relationship between (local) strong
rationality and iterative expectational stability. With homogeneous expectations
the alternative formulation of this section can be written

yt = δyt−1 + β0 y∗
t + β1 y∗

t+1.

Iterative E-stability of a perfect-foresight solution yt = λyt−1 (where λ = λ1 or λ2)
is defined in terms of the mapping from the perceived law of motion yt = gyt−1
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to the implied actual law of motion. From the perceived law of motion, we
have y∗

t = gyt−1 and y∗
t+1 = g2 yt−1 so that the implied actual law of motion is

yt = T (g)yt−1, where T (g) = δ + β0g + β1g2. The solution yt = λyt−1 is said to
be iteratively E-stable [e.g., Evans (1985)] if limn→∞ T n(g) = λ for g near λ.

Clearly, iterative E-stability holds here if |T ′(λ)| = |β0 + 2β1λ| < 1.

From the results of this section, it follows that iterative E-stability is necessary
but not sufficient for LSR.15 This is in line with the earlier results of Evans and
Guesnerie (1993) but for a different reason. In our earlier paper, which considered
a static expectations model, the LSR conditions were stricter than iterative
E-stability in certain cases in which there was sufficient structural heterogene-
ity. In such cases the possibility of heterogeneous expectations could prevent co-
ordination even when iterative E-stability holds. This possibility does not arise
in the current section because we have made the assumption that all numbers
ζ(ωt ), and all numbers 
(ωt ), have the same sign. However, a new phenomenon
arises here from the dynamic structure. Our CK assumptions do not impose any
assumption that the deviations from the perfect-foresight path of y∗

t be “consis-
tent” with the deviations from y∗

t+1. This leads to a further possibility (which
also does not arise in the version of Section 3) of agents failing to coordi-
nate in a way not “tested” by iterative E-stability, and hence to stronger LSR
conditions.

6. CONCLUSION

In the univariate linear dynamic expectations model, which we have developed at
length, we have studied the conditions under which coordination of expectations
on a perfect-foresight path might be expected to arise. To make it possible to
“trigger” this coordination, we have assumed common knowledge of the agents
that the actual path of the economy lies close to the perfect-foresight path under
consideration. If these HCK (hypothetical common knowledge) assumptions are
sufficient to imply common knowledge of the perfect-foresight path itself, then we
say that it is locally strongly rational. This paper has worked out the LSR stability
conditions under several alternative assumptions.

As we have shown, the possibility of coordination of expectations on a perfect-
foresight solution, along the lines just recalled, depends to some degree on three
points.

First, the stability conditions depend on the nature of the initial beliefs of the
agents, a result that technically refers to the topology used to define proximity for
the local HCK assumptions. The examination of this question has enabled us to
illustrate, in a rather striking way, the fact that local determinacy of the equilibrium
path is a necessary condition for LSR. Also, the analysis makes clear that “eductive
stability” can be triggered only by quite demanding assumptions.

Second, agents’ reactions to expectations should not be too heterogenous.
Proposition 2 makes clear the extent to which heterogeneity, in the sense of a
violation of the sign condition, makes LSR more demanding.

https://doi.org/10.1017/S1365100501010331 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501010331


COORDINATION ON SADDLE-PATH SOLUTIONS 61

Third, the LSR stability conditions depend on the precise information structure
adopted. This point was illustrated by considering two versions of the model,
one in which agents were assumed to observe time t sufficient statistics yt when
formulating their strategies at t and a version in which they could not condition their
time t strategies on yt . In the second version, agents must allow for the possibility
of time-varying deviations from the perfect-foresight path and this also leads to
stricter LSR stability conditions. Hence, the justification of the saddle-path stable
solution as the right solution is not necessarily obtained, even with appropriate CK
restrictions and even when the agents are sufficiently homogeneous.

The specific results of this paper suggest that it would be possible and valuable to
extend our techniques to obtain LSR conditions for the more general multivariate
model developed in the first part of the paper. A key point, in view of this general-
ization, is the fact that conditions for LSR of an equilibrium, as analyzed here, are
closely tied to the “determinacy” of the perfect-foresight dynamics of growth rates,
a point emphasized by Gauthier (1998). The analysis is left to a companion paper.

NOTES

1. See, for example, Marcet and Sargent (1989) and Evans and Honkapohja (1999) for conditions
under which adaptive learning converges to rational expectations in this type of model.

2. This could be called the “local unique rationalizability” viewpoint in the terminology of
Bernheim (1984) or Pearce (1984), or the “local dominance solvability” viewpoint in the terminology
of Farquharson (1969) and Moulin (1979).

3. This means either that each agent is “physically” different or that the agents have strategies that
are independent from period to period. In an OLG interpretation of the model, each agent lives for two
periods but only reacts to expectations in the first period of his life.

4. For a more complete discussion, see Evans and Guesnerie (1993, p. 637).
5. This could be formalized along lines similar to those taken by Chiappori and Guesnerie (1991),

who also argue that the property is general in economic models that adopt the Bayesian view of
uncertainty.

6. This can be viewed as an “axiom,” whose field of validity is very large.
7. This applies to Nash equilibria that are perfect, whatever definition of perfection is adopted.
8. We can view the mental process, triggered by the CK assumption, as taking place at the beginning

of time, when all agents think simultaneously about present and future decisions. We can also think of
it as taking place in the minds of those who are concerned with the initial decisions (born in an OLG
interpretation), but who anticipate the mental processes that will be triggered later by the assumption
(which is then viewed as a continuing CK assumption).

9. Restrictions on strategies can equivalently be seen, as usual, as restrictions on beliefs or on beliefs
on beliefs . . . etc.

10. Equivalently, it can be viewed as a belief, of people at t, on the beliefs, of people at t + 1, over
the beliefs, of people at t + 2, or on a still higher-order belief.

11. Which number is the upper (or the lower) bound depends on the signs of the parameters, but
the two numbers unambiguously define an interval.

12. Naturally, the restriction on growth rates might be a credible policy restriction, that is, might be
implemented by a credible government. In this case, the assumption is not “hypothetical” but factual.
Under the condition that we are stressing, the restriction has no further power on coordination and may
actually have to be implemented in order to remain credible.

13. One can think of the mental process as taking place in the minds of people of period 1,
anticipating the mental processes of their successors, endowed initially with the HCKA belief, or
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as involving at the beginning of time all the future actors, assuming that they are born mentally not
physically, and thinking about the system.

14. A sketch of the proof obtains as follows:

(i) In the proof of Lemma 1, we instead have

λ − �ε ≤ 
−1

∫

(ωt )

[
ye

t+1(ωt )
/

yt
]

dωt ≤ λ + �ε.

(ii) The actual growth rates in Lemma 1 are therefore instead between λ + [δβ/(1 − βλ)2] �ε +
o(ε2) and λ − [δβ/(1 − βλ)2] �ε + o′(ε2).

(iii) The LSR condition is then |[δβ/(1 − βλ)2]| � < 1.
(iv) Inserting the value of λ1, found in Section 3.3.2, we obtain the result by use of simple but

tedious algebra.

15. For the model of Section 3, it can be shown that iterative E-stability and the LSR conditions
are identical.
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