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1. INTRODUCTION

Consider an additive Gaussian noise channel modelled by

Xt = X0 +
√

tZ,

where t � 0, Z is a standard normal random variable and the initial value X0 is independent
of Z. In information theory, the classical De Bruijn’s identity, first studied by Stam [19],
establishes a relationship between the time derivative of the entropy of Xt to the Fisher
information of Xt. While such a Gaussian channel is very popular in the literature (see
e.g., [12,16]), in recent years researchers have been investigating into various generalizations
of the noise channel. This includes the Fokker–Planck channel [22] in which it is mod-
elled via the stochastic differential equation driven by Brownian motion with general drift
and diffusion, and also the dependent case [13] where X0 and Z are jointly distributed as
Archimedean or Gaussian copulas.

In reality, however, the channel may exhibit features that are not adequately modelled
by the classical model. For example, in the area of Eternet traffic [23], it has been reported
that the traffic exhibits self-similarity and long-range dependence.A similar phenomenon is
also observed in analyzing video conference traffic [3]. As these non-standard characteristics,
in particular long-range dependence, cannot be effectively captured in the traditional addi-
tive Gaussian noise model, it motivates us to consider channel driven by fractional Brownian
motion (fBm) naturally as a possible generalization. In particular, long-range dependence
is a significant feature possessed by with Hurst parameter greater than 1/2. In this paper
we derive generalized De Bruijn’s identity for such channel and discuss its relationship with
Stein’s identity as well as entropy power. Interestingly, the time paramter t and the Hurst
parameter H of the fBm both play an important role in these results.

Our mathematical contributions in this paper are as follows.

• We derive a generalized version of the celebrated De Bruijn’s identity for channel
driven by fBm. It involves a combination of techniques such as Itô’s formula and
the Fokker–Planck equation.

• We build the connection and prove the equivalence between Stein’s identity for
Gaussian distributions and the generalized De Bruijn’s identity, when the initial
noise is a normal distribution.

• As another application of the generalized De Bruijn’s identity, we demonstrate that
the convexity/concavity of the entropy power depends on the Hurst parameter. This
phenomenon is not observed in the classical Brownian motion case.

The rest of the paper is organized as follows. In Section 2, we first introduce the channel
driven by fBm, followed by stating the results for generalized De Bruijn’s identity as well as
their proofs. In Section 3, we present two applications. In Section 3.1, we prove the equiv-
alence between the generalized De Bruijn’s identity and the Stein’s identity for Gaussian
distribution, while in Section 3.2, we prove that the entropy power is convex or concave
depending on the value of H. Finally in Section 4, we conclude our paper along with future
research directions.

Before we proceed to the main results of the paper, we first review a few important
concepts that will be frequently used in subsequent sections. A fBm BH = (BH

t )t�0 with
Hurst parameter H ∈ (0, 1) is a centered Gaussian process with stationary increments and
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covariance function given by

EBH
s BH

t =
1
2
(t2H + s2H − |t − s|2H).

For further references of fBm, we refer readers to Mandelbrot and Van Ness [14]. The
Shannon entropy of a random variable X with probability density function fX , denoted by
h(X), is given by

h(X) := −E(ln fX(X)) = −
∫

R

fX(x) ln fX(x) dx. (1.1)

Let b : R → (0,∞) be a positive function. The generalized Fisher information with respect
to b, first introduced by Wibisono et al. [22], is given by

Jb(X) := E

[
b(X)

(
∂

∂x
ln fX(X)

)2
]

. (1.2)

Note that when b=1, J1(X) is simply the classical Fisher information. When X follows a
parametric distribution, say with location parameter θ, then the Cramér-Rao lower bound
states that the variance of any unibased estimator of θ is lower bounded by the reciprocal
of J1(X). The Kullback–Leibler (KL) divergence, or the relative entropy, between X and
random variable Y with density fY , written as K(X||Y ), is given by

K(X||Y ) := E

[
ln

fX(X)
fY (X)

]
=
∫

R

fX(x) ln
fX(x)
fY (x)

dx. (1.3)

For two random variables X and Y, the relative Fisher information with respect to b is

Jb(X||Y ) := E

[
b(X)

(
∂

∂x
ln

fX(X)
fY (X)

)2
]

. (1.4)

2. GENERALIZED DE BRUIJN’S IDENTITY

In this section, we derive the generalized De Bruijn’s identity for channel modelled
via stochastic differential equation driven by fBm. More precisely, consider a channel
governed by

dXt = σ(Xt) ◦ dBH
t , (2.1)

with initial value X0 = x0, where (BH
t )t�0 is a fBm with Hurst parameter H ∈ (0, 1). The

stochastic integral σ(Xt) ◦ dBH
t is in the “pathwise” sense, i.e., if H ∈ (1/2, 1), the integral

is understood as Young’s integration [24]; if H ∈ (1/4, 1) it is understood in the rough paths
sense of Lyons [8]; if H ∈ (1/6, 1) it is understood in the sense of symmetric integral [18];
and if H ∈ (0, 1), and it is understood as m-order Newton-Cotes functional [11].

By Theorem 2.10 in Nourdin [15], assuming that the diffusion coefficient σ(x) is suf-
ficiently regular (say, infinitely differentiable with bounded derivatives of all orders), the
one-dimensional SDE (2.1) with H ∈ (0, 1) has a unique solution Xt = ϕ(BH

t ), where
ϕ′(x) = σ(ϕ(x)) with ϕ(0) = x0, which can be obtained by using the Doss–Sussman trans-
formation as in Sussmann [20]. Note that the solution Xt is a function of BH

t , rather than
a functional of (BH

s )0�s�t. This particular form allows functions of Xt to have a simple
Itô’s formula (Lemma 2.1) without involving Malliavian derivatives. As a consequence, the
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Fokker–Planck equation (Lemma 2.2) can be derived, and furthermore, a Feynman–Kac
type formula can also be obtained for a class of partial differential equations (see Corollary
26 and Example 28 in Baudoin and Coutin [2]). Note that by Remark 27 in Baudoin and
Coutin [2], this type of formulas only hold for the SDEs driven by fBm in the commutative
case which is in the form of (2.1) if the dimension is one.

Theorem 2.1 (Generalized De Bruijn’s identity for Shannon entropy of fBm): Consider
the channel X = (Xt)t�0 modeled by Eq. (2.1) with Hurst parameter H ∈ (0, 1) and initial
value X0 = x0. Assume that the diffusion coefficient σ(x) ∈ C∞(R) has bounded derivatives
of all orders. The entropy flow of X is given by

d

dt
h(Xt) = Ht2H−1

{
Jσ2(Xt) − E

[
∂2

∂x2
σ2(Xt)

]
+ E

[
σ′′(Xt)σ(Xt) + (σ′(Xt))2

]}
, (2.2)

where we recall that the generalized Fisher information Jσ2(Xt) is defined in (1.2).

Remark 2.1: Note that when H = 1/2, the fBm W = BH is a Brownian motion, and the
Stratonovich Eq. (2.1) becomes

dXt =
σ(Xt)σ′(Xt)

2
dt + σ(Xt) � dWt

where the stochastic integral is in the Itô sense. Then formula (2.2) coincides with the
classical De Bruijn’s identity [13,22]. That is, when H = 1/2, (2.2) becomes

d

dt
h(Xt) =

1
2

{
Jσ2(Xt) − E

[
∂2

∂x2
σ2(Xt)

]
+ E

[
σ′′(Xt)σ(Xt) + (σ′(Xt))2

]}
,

which is the result in Wibisono et al. [22, Thm. 5] with drift σ(x)σ′(x)/2 and diffusion
coefficient σ(x). In particular, when σ = 1, we have

d

dt
h(Xt) =

1
2
J1(Xt).

Theorem 2.2 (Generalized De Bruijn’s identity for KL divergence of fBm): Consider the
channel X = (Xt)t�0 (resp. Y = (Yt)t�0) modeled by Eq. (2.1) with Hurst parameter H ∈
(0, 1) and initial value X0 = x0 (resp. Y0 = y0). Assume that the diffusion coefficient σ(x) ∈
C∞(R) has bounded derivatives of all orders. The time derivative of the KL divergence
between Xt and Yt is given by

d

dt
K(Xt||Yt) = −Ht2H−1Jσ2(Xt||Yt), (2.3)

where we recall that the relative Fisher information Jσ2(Xt||Yt) is defined in (1.4). In
particular, K(Xt||Yt) is non-increasing in t.

Remark 2.2: Note that again when H = 1/2, (2.3) becomes

d

dt
K(Xt||Yt) = −1

2
Jσ2(Xt||Yt),

which is Wibisono et al. [22, Thm. 6].
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In the first two main results above, we assume that the initial value is X0 = x0. In the
following result, we assume that the channel is of the form

Xt = X0 + BH
t , (2.4)

where the initial value X0 is independent of the fBm. We shall derive the generalized De
Bruijn’s identity via the classical version:

Theorem 2.3 (Deriving the generalized De Bruijn’s identity via the classical De
Bruijn’s identity): Consider the channel X = (Xt)t�0 modeled by Eq. (2.4) with Hurst
parameter H ∈ (0, 1), initial value X0 independent of the fBm and has a finite second
moment. The entropy flow of X is given by

d

dt
h(Xt) = Ht2H−1J1(Xt). (2.5)

In particular, when X0 is a Gaussian distribution with mean 0 and variance σ2
0, we then

have
d

dt
h(Xt) =

Ht2H−1

σ2
0 + t2H

.

2.1. Proof of Theorem 2.1, Theorem 2.2 and Theorem 2.3

We first present two lemmas that will be used in our proofs of Theorems 2.1 and 2.2.

Lemma 2.1 (Itô’s formula): Consider the channel X = (Xt)t�0 modeled by Eq. (2.1) with
Hurst parameter H ∈ (0, 1), initial value X0 = x0 and twice differentiable diffusion coeffi-
cient σ(x). Suppose that f(t, x) is any twice differentiable function of two variables. Assume
that the functions σ(x) and f(t, x) and their (partial) derivatives are at polynomial growth.
Then

f(t,Xt) = f(0, x0) +
∫ t

0

fs(s,Xs)ds +
∫ t

0

fx(s,Xs)σ(Xs) � dBH
s

+ H

∫ t

0

s2H−1
(
fxx(s,Xs)σ(Xs) + fx(s,Xs)σ′(Xs)

)
σ(Xs)ds.

Proof: Note that Xt = ϕ(BH
t ) with ϕ′(x) = σ(ϕ(x)) and ϕ(0) = x0. By Itô’s formula in

Section 8 of Alòs et al. [1] for H ∈ (1/4, 1) and in Corollary 4.8 of Cheridito and Nualart [5]
for H ∈ (0, 1/2), noting that ϕ′′(x) = σ(ϕ(x))ϕ′(x), we have

f(t,Xt) = f(t, ϕ(BH
t ))

= f(0, x0) +
∫ t

0

fs(s, ϕ(BH
s ))ds +

∫ t

0

fx(s, ϕ(BH
s ))ϕ′(BH

s ) � dBH
s

+ H

∫ t

0

s2H−1
(
fxx(s, ϕ(BH

s ))(ϕ′(BH
s ))2 + fx(s, ϕ(BH

s ))ϕ′′(BH
s )
)
ds

= f(0, x0) +
∫ t

0

fs(s,Xs)ds +
∫ t

0

fx(s,Xs)σ(Xs) � dBH
s

+ H

∫ t

0

s2H−1
(
fxx(s,Xs)σ(Xs) + fx(s,Xs)σ′(Xs)

)
σ(Xs)ds. �
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Remark 2.3 (The condition imposed on σ(x) in Theorems 2.1 and 2.2): The proofs of
Theorems 2.1 and 2.2 rely on the Itô’s formula given in Lemma 2.1 and the existence and
uniqueness of the solution to (2.1). On the one hand, in order to apply Lemma 2.1, it is
natural to assume that σ(x) is twice differentiable with the derivatives growing at most
polynomially fast. On the other hand, more regularity condition on σ(x) was imposed to
establish the existence and uniqueness of the solution to (2.1) in Theorem 2.10 of Nour-
din [15] for small Hurst parameter H. More precisely, for H ∈ (1/4m + 2, 1) with m ∈ N, it
is assumed that, σ(x) belongs to C4m+1(R) and is Lipschitz.

In Theorems 2.1 and 2.2 for all H ∈ (0, 1), we simply assume that σ(x) is smooth and
all derivatives are bounded, which clearly satisfies the conditions in Lemma 2.1 above and
Theorem 2.10 of Nourdin [15].

Lemma 2.2 (Fokker–Planck equation): Consider the channel X = (Xt)t�0 modeled by
Eq. (2.1) with Hurst parameter H ∈ (0, 1) and initial value X0 = x0. Assume that the dif-
fusion coefficient σ(x) ∈ C∞(R) has bounded derivatives of all orders. Let Pt(x) be the
probability density function of Xt, then

∂

∂t
Pt(x) = Ht2H−1

(
− ∂

∂x
σ′(x)σ(x)Pt(x) +

∂2

∂x2
σ2(x)Pt(x)

)
.

Proof: Let g(x) be a twice differentiable function, and we substitute f(t, x) = g(x) in
Lemma 2.1. We arrive at

d

dt
E[g(Xt)] = Ht2H−1

(
E
[
gxx(Xt)σ2(Xt)

]
+ E [gx(Xt)σ′(Xt)σ(Xt)]

)
. (2.6)

Note that the left hand side of (2.6) is

d

dt
E[g(Xt)] =

∫
R

g(x)
∂

∂t
Pt(x) dx.

Using integration by part, the right hand side of (2.6) can be written as

Ht2H−1

(∫
g(x)

(
∂2

∂x2
σ2(x)Pt(x)

)
dx −

∫
R

g(x)
(

∂

∂x
σ′(x)σ(x)Pt(x)

)
dx

)
.

The desired result follows since g is arbitrary. �

2.1.1. Proof of Theorem 2.1 Denote by Pt(x) the probability density of Xt, and let
f(s, x) = − ln Ps(x) in Lemma 2.1. Then we have

fx(s, x) = −(Ps(x))−1 ∂

∂x
Ps(x),

and

fxx(s, x) = (Ps(x))−2

(
∂

∂x
Ps(x)

)2

− (Ps(x))−1 ∂2

∂x2
Ps(x).

Thus,

E[fx(s,Xs)σ′(Xs)σ(Xs)] = −
∫

R

∂

∂x
Ps(x)σ′(x)σ(x)dx

=
∫

R

Ps(x)(σ′(x)σ(x))′dx = E
[
σ′′(Xs)σ(Xs) + (σ′(Xs))2

]
,
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and

E[fxx(s,Xs)σ2(Xs)] =
∫

R

[
(Ps(x))−1

(
∂

∂x
Ps(x)

)2

− ∂2

∂x2
Ps(x)

]
σ2(x)dx

= E

[
σ2(Xs)

(
∂

∂x
ln Ps(Xs)

)2
]
− E

[
∂2

∂x2
σ2(Xs)

]
.

Therefore, we have the following formula.

− d

dt
E[lnPt(Xt)] = Ht2H−1

{
E

[
σ2(Xt)

(
∂

∂x
ln Pt(Xt)

)2
]
− E

[
∂2

∂x2
σ2(Xt)

]

+ E
[
σ′′(Xt)σ(Xt) + (σ′(Xt))2

]}
. (2.7)

2.1.2. Proof of Theorem 2.2 In this proof, we write Pt(x) to be the probability den-
sity of Xt, Qt(y) to be the probability density of Yt and let f(s, x) = ln(Ps(x)/Qs(x)) in
Lemma 2.1. Then we have

fx(s, x) =
(

Ps(x)
Qs(x)

)−1
∂

∂x

Ps(x)
Qs(x)

,

fxx(s, x) =
(

Ps(x)
Qs(x)

)−1(
∂2

∂x2

Ps(x)
Qs(x)

)
−
(

Ps(x)
Qs(x)

)−2(
∂

∂x

Ps(x)
Qs(x)

)2

=
(

Ps(x)
Qs(x)

)−1(
∂2

∂x2

Ps(x)
Qs(x)

)
−
(

∂

∂x
ln

Ps(x)
Qs(x)

)2

,

fs(s, x) =
1

Ps(x)
∂

∂s
Ps(x) − 1

Qs(x)
∂

∂s
Qs(x).

As a result, using integration by part we arrive at

E[fs(s,Xs)] = −
∫ (

∂

∂s
Qs(x)

)
Ps(x)
Qs(x)

dx,

E[fx(s,Xs)σ′(Xs)σ(Xs)] = −
∫ (

∂

∂x
σ′(x)σ(x)Qs(x)

)
Ps(x)
Qs(x)

dx,

E[fxx(s,Xs)σ2(Xs)] =
∫ (

∂2

∂x2
σ2(x)Qs(x)

)
Ps(x)
Qs(x)

dx − Jσ2(Xs||Ys).

Now, by Lemma 2.1 we note that

d

dt
K(Xt||Yt) =

d

dt
E

[
ln

Pt(Xt)
Qt(Xt)

]

= E[ft(t,Xt)] + Ht2H−1
(
E[fx(t,Xt)σ′(Xt)σ(Xt)] + E[fxx(t,Xt)σ2(Xt)]

)
= −Ht2H−1Jσ2(Xt||Yt),

where the last equality follows from Lemma 2.2.
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2.1.3. Proof of Theorem 2.3 Let t ≥ 0 be such that sH =
√

t and denote Z to follow
the standard normal distribution. Using chain rule we have

d

ds
h(Xs) =

d

ds
h(X0 + sHZ)

=
d

ds
h(X0 +

√
tZ)

=
d

dt
h(X0 +

√
tZ)

dt

ds

=
1
2
J1(X0 +

√
tZ)2Hs2H−1

= Hs2H−1J1(Xs),

where the fourth equality follows from the classical De Bruijn’s identity (see e.g., [9]). In
particular when X0 is Gaussian, then Xs is also Gaussian with mean 0 and variance σ2

0 +
s2H . Since for normal distribution the Fisher information is the reciprocal of the variance,
we have

d

ds
h(Xs) = Hs2H−1J1(Xs) =

Hs2H−1

Var(Xs)
=

Hs2H−1

σ2
0 + s2H

.

3. APPLICATIONS

In this section, we present two applications of the generalized De Bruijn’s identity. In the
first application in Section 3.1, we demonstrate its equivalence with the Stein’s identity
for Gaussian distribution, while in Section 3.2, we prove the convexity or the concavity
of entropy power, which depends on the Hurst parameter H. Throughout this section, we
assume that the channel is of the form

Xt = X0 + BH
t ,

where the initial value X0 is independent of the fBm and the Hurst parameter H ∈ (0, 1).

3.1. Equivalence of the generalized De Bruijn’s identity and Stein’s identity for normal
distribution

It is known that the classical De Bruijn’s identity is equvialent to the Stein’s identity for
normal distribution as well as the heat equation identity, provided that the initial noise
X0 is Gaussian, see e.g., [4,17]. These identities are equivalent in the sense that one can
derive the others using any one of them. It is therefore natural for us to guess that the same
equivalence also holds for the proposed generalized De Bruijn’s identity. To this end, let
us recall the classical Stein’s identity for normal distribution. Writing Y to be the normal
distribution with mean μ and variance σ2, the Stein’s identity is given by

E[r(Y )(Y − μ)] = σ2
E

[
d

dy
r(Y )

]
, (3.1)

where r is a differentiable function such that the above expectations exist. In the following
result, we prove that the generalized De Bruijn’s identity presented in Theorem 2.3 is
equivalent to the Stein’s identity,
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Theorem 3.1 (Equivalence of the generalized De Bruijn’s identity (2.5) and Stein’s
identity): Consider the channel X = (Xt)t�0 modeled by Eq. (2.4) with Hurst parame-
ter H ∈ (0, 1) and initial Gaussian X0 independent of the fBm. Then the generalized De
Bruijn’s identity (2.5) is equivalent to the Stein’s identity (3.1).

Remark 3.1 (Equivalence of the generalized De Bruijn’s identity (2.2) and Stein’s identity):
While Theorem 3.1 is established for channel (2.4), it is natural to consider if the same
equivalence holds between (2.2) and Stein’s identity for channel (2.1). One direction is
straightforward: with (2.2) we have the classical De Bruijn’s identity by taking the diffusion
coefficent to be σ(x) = 1, and so we can derive the Stein’s identity. However, for the opposite
direction, we did not manage to prove (2.2) via the classical De Bruijn’s identity in the
presence of general diffusion coefficient σ(x). The trick employed in proving Theorem 2.3,
where the diffusion coefficient is simply 1, does not seem to carry over to this setting. If this
can be proved by other means, then the equivalence could be established.

Proof: If we have the Stein’s identity, then we can derive the classical De Bruijn’s identity
[17], and so we have the generalized De Bruijn’s identity by Theorem 2.3. For the other
direction, if we have the generalized De Bruijn’s identity, then we can derive the classical
De Bruijn’s identity by taking H = 1/2, and from it we can derive the Stein’s identity by
Park et al. [17]. �

3.2. Convexity/concavity of the entropy power

Recall that the entropy power of a random variable X is defined to be

N(X) :=
1

2πe
e2h(X). (3.2)

In the classical setting when the channel Xt is of the form (2.4) with X0 being an arbitrary
initial noise, Costa [6], Dembo [10] prove that the entropy power of N(Xt) is concave in
time t. Recently in Khoolenjani and Alamatsaz [13] the authors extend the concavity of
entropy power to the dependent case where the dependency structure between the initial
value X0 and the channel Xt is specified by Archimedean and Gaussian copulas. In our case,
interestingly convexity/concavity of the entropy power depends on the Hurst parameter H :

Theorem 3.2 (Convexity/concavity of the entropy power): Consider the channel X =
(Xt)t�0 modeled by Eq. (2.4) with Hurst parameter H ∈ (0, 1), initial value X0 independent
of the fBm and has a finite second moment. We have

d2

dt2
N(Xt) = 2N(Xt)

(
2H2t4H−2J1(Xt)2 + H(2H − 1)t2H−2J1(Xt) + Ht2H−1 d

dt
J1(Xt)

)

= 2N(Xt)g(t,H,Xt),

where g(t,H,Xt) = 2H2t4H−2J1(Xt)2 + H(2H − 1)t2H−2J1(Xt) + Ht2H−1(d/dt)J1(Xt).
Consequently,

N(Xt) =

{
convex in t if g(t,H,Xt) > 0,

concave in t if g(t,H,Xt) � 0.
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In particular, when X0 is a Gaussian distribution with mean 0 and variance σ2
0 , we then

have g(t,H,Xt) = H(2H − 1)t2H−2J1(Xt) and

N(Xt) =

{
convex in t if H ∈ (1/2, 1),
concave in t if H ∈ (0, 1/2].

Remark 3.2: In the special case when H = 1/2 and X0 is Gaussian, we retrieve the classical
result that N(Xt) is linear and hence concave (or convex) in t.

Remark 3.3 (The role of time parameter t): In Theorem 3.2, we see that there are factors
such as t2H−1 or t4H−2 appearing in the function g(t,H,Xt). While these terms equal to
1 in the classical H = 1/2 case, as we shall see in the proof these terms play an important
and interesting role in determining the second-order behavior of the entropy power in the
general fBm case. Note that these terms all come from the factor t2H−1 in front of the
Fisher information J1 in (2.5).

Remark 3.4 (On establishing the convexity/concavity of the entropy power in model (2.1)):
While Theorem 3.2 is stated for model (2.4), we can in fact state a similar result for
model (2.1) using Theorem 2.1. However, there will not be a clear cut distinction between
the two cases H � 1/2 and H > 1/2 as in Theorem 3.2; it will also depend on the derivatives
of the diffusion coefficient σ(x), which may not be tractable in general.

Proof: Using the definition of the entropy power (3.2), we have

d2

dt2
N(Xt) =

d

dt

(
2N(Xt)

d

dt
h(Xt)

)

= 2N(Xt)

(
2
(

d

dt
h(Xt)

)2

+
d2

dt2
h(Xt)

)

= 2N(Xt)
(

2H2t4H−2J1(Xt)2 + H(2H − 1)t2H−2J1(Xt) + Ht2H−1 d

dt
J1(Xt)

)

= 2N(Xt)g(t,H,Xt),

where we make use of the generalized De Bruijn’s identity (2.5) in the third equality.
Since N(Xt) � 0, convexity/concavity of N(Xt) thus depends on the sign of the function
g(t,H,Xt). In particular, when X0 is Gaussian with mean 0 and variance σ2

0 , we have

J1(Xt) =
1

σ2
0 + t2H

,

d

dt
J1(Xt) =

−2Ht2H−1

(σ2
0 + t2H)2

= −2Ht2H−1J1(Xt)2,

g(t,H,Xt) = H(2H − 1)t2H−2J1(Xt)

=

{
> 0 if H ∈ (1/2, 1),
� 0 if H ∈ (0, 1/2].

�

https://doi.org/10.1017/S0269964819000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964819000421


DE BRUIJN’S IDENTITY FOR FBM 379

Theorem 3.2 implies that, for channel of the form (2.4) and Gaussian distributed X0,
for t ∈ [0, 1], we have

N(Xt)

{
� tN(X0) + (1 − t)N(X1) if H ∈ (1/2, 1),
� tN(X0) + (1 − t)N(X1) if H ∈ (0, 1/2].

One application of the above equation lies in determining the so-called capacity region in a
Gaussian interference channel; see the paper [7]. It turns out that the concavity of entropy
power is a crucial step in the proof of Theorem 2 in Costa [7]. With our Theorem 3.2, it
seems possible to study the capacity region in an interference channel with fBm noise and
generalize the result to H ∈ (0, 1/2]. We leave this as one of our future research directions.

4. CONCLUSION

In this paper, we present the generalized De Bruijn’s identity for the channel driven by
fBm with Hurst parameter H ∈ (0, 1). Compared with the classical Brownian motion, i.e.,
H = 1

2 , in our setting, the term t2H−1 in general does not degenerate unless H = 1
2 , and thus

plays an essential role in the derivation of the identity. Consequently, we also investigate
its equivalence with the Stein’s identity and study the second-order behavior of the entropy
power. We hope that this paper can open new doors in analyzing the De Bruijn’s identity
in a more general context to model phenomenon such as self-similarity and long-range
dependency.

There are at least two future research directions. First, as mentioned in Section 3.2,
we can study the capacity region in an interference channel with fBm noise, where our
convexity/concavity result should be an important step in the analysis. Second, we can
consider more general channel driven by stochastic processes such as the Gaussian Volterra
process [21]. Members of this broad family include fBm as well as the Riemann–Liouville
process. This shall provide a unified framework in studying the De Bruijn’s identity and its
applications for channels driven by the more general Gaussian processes.
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and Statistics 41(6): 1049–1081, ISSN 0246–0203.
6. Costa, M.H.M. (1985). A new entropy power inequality. IEEE Transactions on Information Theory

31(6): 751–760.

https://doi.org/10.1017/S0269964819000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964819000421


380 M.C.H. Choi, C. Lee and J. Song

7. Costa, M.H.M. (1985). On the Gaussian interference channel. IEEE Transactions on Information

Theory 31(5): 607–615.
8. Coutin, L. & Qian, Z. (2002). Stochastic analysis, rough path analysis and fractional Brownian motions.

Probability Theory and Related Fields 122(1): 108–140.
9. Cover, T.M. & Thomas, J.A. (2006). Elements of information theory (2nd ed.). Hoboken, NJ: Wiley-

Interscience [John Wiley & Sons].
10. Dembo, A. (1989). Simple proof of the concavity of the entropy power with respect to added Gaussian

noise. IEEE Transactions on Information Theory 35(4): 887–888.
11. Gradinaru, M., Nourdin, I., Russo, F., & Vallois, P. (2005). m-order integrals and generalized Itô’s
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