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Relative Equivariant Motives and Modules

Baptiste Calmès, Alexander Neshitov, and Kirill Zainoulline

Abstract. We introduce and study various categories of (equivariant) motives of (versal) �ag varieties.
We relate these categorieswith certain categories of parabolic (Demazure) modules. We show that the
motivic decomposition type of a versal �ag variety depends on the direct sum decomposition type of
the parabolicmodule. To do this we use localization techniques of Kostant and Kumar in the context
of generalized oriented cohomology as well as the Rost nilpotence principle for algebraic cobordism
and its generic version. As an application, we obtain new proofs and examples of indecomposable
Chow motives of versal �ag varieties.

1 Introduction

he theory of Chow motives of twisted �ag varieties has been a topic of intensive
investigation for decades. Inspired by results on motives of quadrics by Rost [25]
and Vishik [27] and on motives of Severi–Brauer varieties by Karpenko [11], it has
developed into a powerful tool to study quadratic forms, linear algebraic groups, and
the associated homogeneous spaces over arbitrary ûelds (see [6] for applications to
the theory of quadratic forms). Several important invariants of algebraic groups, e.g.,
canonical dimension, can be interpreted using the language ofmotives (see [24]).

We ûx a split reductive linear algebraic group G over a ûeld k of characteristic 0,
its split maximal torus T , and a Borel subgroup B ⊃ T . In this paper, we focus on
the study of motivic decompositions of versal �ag varieties E/P, where E is a versal
G-torsor and P ⊃ B is a standard parabolic subgroup of G. We refer the reader to [10]
for a recent discussion concerning Chow groups and K-theory of versal �ags and
to [21, 23] for recent results about motivic decompositions. It was shown in [21] that
direct sum decompositions of the motive of complete versal �ag E/B correspond to
direct sum decompositions of the D-module D⋆, where D is the associated aõne
Hecke-type algebra for G and D⋆ is the T-equivariant cohomology of G/B. In the
second author’s PhD thesis [20], this result was extended to all versal E/P’s, where P

is special (all P-torsors are locally trivial inZariski topology). Our goal is to push these
results further by investigating motives of E/P’s for arbitrary parabolic subgroups P.

We work in a bit more of a general situation than the theory of Chow motives.
Namely, we consider an oriented cohomology theory h in the sense of Levine-Morel
[19] and the theory of the associated h-motives (see [8] for deûnitions and basic
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properties of this category). As the ûrst step,we establish several connections between
the following pseudoabelian categories: h-motives Mk of versal �ags, G-equivariant
motives MG , and relative equivariant motives MG∣T of split �ags. More precisely, we
show that there is a chain of 1–1 correspondences between the direct sum decompo-
sitions of the respective objects

(1.1) [versal E/P] ∈Mk
Thm.4.1←→ [G/P] ∈MG

Cor.4.2←→ [G/P] ∈MG∣T .

To do this we use the generalization (Lemma A.13) from Chow groups to algebraic
cobordismof [28, Lemma 6.2] and the Rost nilpotence for free theories proven in [8].
As the second step, we introduce the category of W-equivariant motives MW

T ,
where W is the Weyl group of G with respect to T and show (Corollary 3.5) that
there is the natural inclusion of endomorphism rings

(1.2) EndMG∣T ([G/P])↪ EndD(D⋆P),

where D⋆P is the so-called parabolic D-module with respect to the ⊙-action of
[18, §3]. (In the context of the usual cohomology, D⋆P coincides with HT(G/P) and
the ⊙-action is simply the induced W-action studied by Brion, Knutson, Peterson,
Tymoczko, and others.) Informally speaking, (1.1) and (1.2) say that the motivic de-
composition type of [E/P] is bounded by the direct sum decomposition type of D⋆P .
In particular, ifD⋆P is indecomposable (as aD-module), then so is [E/P] (as amotive).

Next, we investigate the endomorphism ring ED = EndD(D⋆P) using the localiza-
tion techniques of [3, 4] (these are generalizations of the respective techniques for
Chow groups and K-theory of Kostant and Kumar [13, 14]). We describe endomor-
phisms of ED with respect to the localization basis (Lemma 5.4) and the Schubert
basis for the Chow theory (Corollary 6.2). We relate ED with the induced (inte-
gral/modular) representations of theWeyl group W and its parabolic subgroup WP .
In particular,we show that ifD⋆P is indecomposable, then so is IndWWP

1 (Corollary 6.3).
Finally, we apply all these results to obtain new proofs and examples of indecom-

posablemotives of versal �ag varieties. Propositions 7.1, 7.4, 7.7, and 7.10 provide new
proofs (by showing the indecomposability of theD-moduleD⋆P) of the classical results
about versal Severi-Brauer varieties and quadrics. In Proposition 7.12, we provide a
new example of indecomposablemotive of the 6-dimensional involution variety, the
form of a split projective quadric twisted by a versal HSpin8-torsor. Observe that re-
sults on quadrics and involution varieties (7.4, 7.7, 7.10, and 7.12) cannot be obtained
from [20,21].

he paper is organized as follows. First, we recall basic properties of equivariant
oriented cohomology and of the associated category of equivariant motives; we in-
troduce and study the categories of relative equivariant motives and W-equivariant
motives. hen we investigate relations between relative equivariant motives and par-
abolic modules. In Section 5, we study the endomorphisms of parabolic modules
using the localization techniques of [3, 4]. In the next section, we study the same
endomorphisms for the Chow theory with respect to the Schubert basis using the re-
sults of [18]. In the last section, we discuss applications to Chow motives of versal
�ags (Sever–Brauer varieties, 4 and 6-dimensional quadrics and involution varieties).
In the appendix, we prove the generic nilpotence for algebraic cobordism.
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2 Categories of Equivariant Motives

In this section we recall basic properties of equivariant oriented cohomology and of
the associated category of equivariant motives. his is essentially the compilation of
results of [9,16,17] summarized in [4, §2]. We also introduce and study the categories
of relative equivariant motives andW-equivariant motives.

Equivariant cohomology

Given a split reductive algebraic group G over a ûeld k of characteristic 0 and
given a graded oriented cohomology theory h of Levine-Morel [19, §1], let hG be a
G-equivariant oriented cohomology theory deûned on the category of smooth quasi-
projective G-varieties over k that satisûes properties listed in [4, §2]. More precisely,
for restrictions (natural transformations resϕ of [4, §2]) and for the property [4, (A2)],
we only require that, given a split maximal torus T of G, there is the respective
T-equivariant oriented cohomology hT that satisûes the same properties except for
restrictions, and there are natural transformations of functors

resϕ ∶hT Ð→ h ○ Resϕ and resϕ′ ∶hG Ð→ hT ○ Resϕ′

that commute with push-forwards and smooth pull-backs, where Resϕ and Resϕ′ are
the forgetful functors of [4, §2] for the inclusions ϕ∶{1}↪ T and ϕ′∶T ↪ G.
A key property of h (and of hG) is the Quillen formula [19, Lemma 1.1.3] (see also

[16, §2.5])
c
h
1 (L1 ⊗L2) = F(ch1 (L1), ch1 (L2)),

where ch1 is the ûrst (equivariant) characteristic class in the theory h (resp. hG), Li
is a (equivariant) line bundle over X and F(x , y) ∈ R[[x , y]] is the associated formal
group law over the coeõcient ring R = h(pt) (here pt = Spec k).
Conversely, given a formal group law F over R, one deûnes the algebraic oriented

cohomology theory as
h(−) ∶= Ω(−)⊗Ω(pt) R,

where Ω is the algebraic cobordism of Levine-Morel (universal cohomology theory)
over the Lazard ring L = Ω(pt) and the map Ω(pt) → R is determined by F. Such
theories h are called free theories [8, §2.12]. We refer to [8] for the basic facts and
properties of free theories.
By the following process (the Borel construction) one can producemany examples

of equivariant oriented theories of [4, §2], such as equivariantChow theory of [26, §1]
and [5], the BG-style equivariantK-theory of [26, §3] (see [12] and [15] for the relation
with homason’s equivariant K-theory), equivariant algebraic cobordism of [9, 17].
Consider a system of G-representations Vi and its open subsets U i ⊆ Vi such that
● G acts freely on U i and the quotient U i/G exists as a variety over k;
● Vi+1 = Vi ⊕Wi for some representation Wi ;
● U i ⊆ U i ⊕Wi ⊆ U i+1, and U i ⊕Wi → U i+1 is an open inclusion;
● codim(Vi/U i) strictly increases as i does and limi dimVi =∞.

Such a system is called a good system of representations of G.
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Now let X be a smoothG-variety (e.g., a projective homogeneous variety). Follow-
ing [9, §3 and §5] the inverse limit induced by pull-backs

lim←Ð
i

h(U i ×G
X), U i ×G

X = (U i × X)/G ,

does not depend on the choice of the system (Vi ,U i) and, hence, deûnes the equi-
variant oriented cohomology hG(X). For the deûnition and properties of restriction
maps we refer to [5, p. 608] and [16, §2.2].

In this paper we only deal with equivariant theories obtained by the Borel
construction.

Equivariant motives

Fix a Borel subgroup B of G. Consider the full additive subcategory of the category
of G-equivariant h-motives generated by themotives (and their direct summands) of
�ag varieties G/P for all standard parabolic subgroups P of G containing B. We refer
to [8, §2], [23], and [22] for deûnitions and basic properties of this category. Recall
only thatmorphisms in this pseudo-abelian category are given by cohomology classes
in hG(X×Y),whereG actsdiagonally on the product of smoothprojectiveG-varieties
X and Y and the composition is given by the usual correspondence product:

(2.1) β ○ α ∶= pXZ∗(p∗XY(α)p∗YZ(β)), α ∈ hG(X × Y), β ∈ hG(Y × Z)
(here pXY is the projection X×Y×Z → X×Y and p∗XY , pXY∗ is the induced equivariant
pull-back and push-forward respectively).

Taking the respective graded components (e.g., dimX component of hG(X × X)
for irreducible X)we obtain the category of graded equivariant motiveswhichwe call
simply G-equivariant motives and denote by MG . We refer the reader to [6, §63-64]
for the comparison between graded and non-gradedmotives in case h = CH.

To simplify the notation, we will omit the grading degree for the cohomology, i.e.,
we will write hG(X × X) instead of hdim X

G (X × X). Observe that the actual grading
can be easily traced down using the fact that the pull-backs preserve the codimension
(degree) m and the push-forwards preserve the dimension dimX −m (codegree) of
cohomology classes.

Relative equivariant motives

Fix a split maximal torus T ⊂ B. Similarly, let MT denote the category generated
by T-equivariant motives of G/P’s, i.e., morphisms in MT are given by classes in
hT(X × Y). Since the forgetful map

resGT ∶hG(X × Y)Ð→ hT(X × Y)
commuteswith smoothpull-backs andpush-forwards, it induces the forgetful functor

ResGT ∶MG Ð→MT .

Deûnition 2.1 he categorical image of ResGT , i.e., the wide subcategory (subcate-
gory containing all the objects) ofMT with morphisms given by classes in im(resGT ),
is called the category of relative equivariant motives and denoted byMG∣T .
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We denote the endomorphism ring of [X] in MG∣T (resp. in MG) by EG∣T(X)
(resp. EG(X)). By deûnition,

EG∣T(X) = im (resGT ∶hG(X × X)Ð→ hT(X × X))

is an algebra (withmultiplication given by the correspondence product) over the com-
mutative ring

EG∣T(pt) = im (resGT ∶hG(pt)Ð→ hT(pt)).

To simplify the notation, we denote EG∣T(pt) by EG∣T and EG(pt) = hG(pt) by EG .

Example 2.2 Consider the variety of complete �ags G/B. Since the forgetful map
is injective by [21, Lemma 4.5], we can identify EG(G/B) with the convolution ring
(hG(G/B ×G/B), ○) ≃ (hT(G/B), ○) of [21, §4].

The W-action and motives

Let W be theWeyl group of G with respect to T and let X be a G-variety. here is a
natural (le�) action ofW on hT(X). It can be either realized by pull-backs induced
by the right action ofW on each step of the Borel construction U ×T X via

(u, x)T ⋅ σT = (uσ , σ−1
x)T , σ ∈ NG(T),

where U is taken to have a right G-action; or through the natural isomorphism
hT(X) ≃ hG(G/T×X) and theG-equivariant right action ofW on the varietyG/T×X
given on points by (gT , x) ⋅ σT = (gTσ , x).

he forgetful map resGT ∶hG(X)→ hT(X) factors through the W-invariants
hT(X)W by deûnition.

Lemma 2.3 Consider the diagonal action of G on the products X × Y of G/P’s and,
hence, the induced action of W on hT(X × Y). For any α ∈ hT(X × Y)W and β ∈
hT(Y × Z)W , we have β ○ α ∈ hT(X × Z)W in MT .

Proof It follows from the fact that the projections pXY , pYZ , and pXZ in the deû-
nition of the correspondence product (2.1) are G-equivariant. So the induced pull-
backs p∗XY , p

∗

YZ and the push-forward pXZ∗ are W-equivariant by deûnition of the
W-action. ∎

Deûnition 2.4 he subcategory ofMT with morphisms given by correspondences
from hT(X × Y)W of the lemma is called the category ofW-equivariant motives and
it is denoted byMW

T .

Observe that the forgetful functor factors as

ResGT ∶MG
ResG∣TÐ→ MG∣T

ResWTÐ→ MW
T

ResTÐ→ MT ,

where ResG∣T is full and ResWT , ResT are faithful by deûnition.
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3 Equivariant Motives and Parabolic Modules

In this section, we investigate relations between relative equivariant motives and par-
abolicmodules. Our main result here is Corollary 3.5.

Realization functor

Consider the contravariant motivic realization functor

RT ∶MT Ð→ S-mod

to the category of S-modules, where S = hT(pt) is the equivariant coeõcient ring. It
is given on objects by [X]↦ hT(X) and on morphisms as

α ∈ hT(X × Y)z→ α∗∶hT(Y)
p∗YÐ→ hT(X × Y) α⋅Ð→ hT(X × Y) pX∗Ð→ hT(X).

Restricting to W-equivariant correspondences, we obtain the realization functor

RW
T ∶MW

T Ð→ SW-mod,

from MW
T to the category of SW-modules, where SW is the twisted group algebra of

W . he latter is the free le� S-module with basis δw , w ∈W andmultiplication given
by the twisted product

(sδw) ⋅ (s′δw′) = sw(s′)δww′

(here theW-action is given by δw(a) = w(a), w ∈W , a ∈ hT(X)).

Lemma 3.1 here is a commutative diagram of faithful functors

MW
T

ResT //

RW
T

��

MT

RT

��
SW -mod

resT // S-mod,

where resT is induced by the ring inclusion S ↪ SW , s ↦ sδ1.

Proof he functors ResT and resT are faithful by deûnition.
Since all G/P’s are T-equivariant cellular spaces, the realization maps on mor-

phisms α ↦ α∗ are Künneth isomorphisms of [21, Lemma 3.7]. Hence, RT is faithful
(for a correspondence α in MT , α∗ = 0Ô⇒ α = 0) and so that RW

T . ∎

Remark 3.2 Observe that [21, Lemma 3.7] is stated in [21] only for the product
of the equivariant cellular space X with itself, however, the same proof works for
products of diòerent spaces leading to the Künneth isomorphism of hG(S)-modules
hG(X ×S Y)→ HomhG(S)(hG(X), hG(Y)) in the notation of [21].

Corollary 3.3 he composite of functors

RW
T ○ResWT ∶MG∣T Ð→ SW -mod, [X]z→ hT(X), α z→ α∗

is faithful. In particular, there is the inclusion of rings

EG∣T(X) ↪Ð→ EndSW (hT(X)).
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Parabolic Demazure modules

We recall the algebraic construction of the cohomology hT(G/P) from [4] and the
W-action on it.
First, following [4, §3],we identify the equivariant coeõcient ring S = hT(pt)with

the so called formal group algebra

R[[xλ]]λ∈T∗/(x0 , xλ+µ − F(xλ , xµ))

corresponding to the formal group law F of the theory h.
At the next step, assuming that S satisûes [4, Assumption 5.1] (which basically says

that all xα ’s are regular in S) we localize S at all xα ’s (characteristic classes) corre-
sponding to positive roots α of the root system Σ of G. he resulting localized ring is
denoted by Q.

Now consider the respective localized twisted group algebra QW ofW . he subal-
gebra of QW generated by the so-called Demazure elements Xα = xα

−1(1− δα), α ∈ Σ
and elements of S is called the formal aõne Demazure algebra and is denoted by D.

Example 3.4 By [21] the algebra D can be identiûed with the convolution algebra
(hG(G/B × G/B), ○). For the Chow theory, D coincides with the nil (aõne) Hecke
algebra, and for the K-theory it gives the 0-aõneHecke algebra.

LetWP denote the set of uniqueminimal le� coset representatives ofW/WP . Con-
sider a free Q-module QW/WP on the basis {δw} indexed by w ∈ WP . We denote by
DP the image of D under the canonical projection p∶QW → QW/WP , and call it the
parabolic Demazure algebra.

We will extensively use two key results concerning DP : he ûrst (see [4, heo-
rem 8.11]) says that the cohomology ring hT(G/P) can be identiûed with the S-dual
D⋆P = HomS(DP , S). he second (see [3, hm. 11.9]) identiûes D⋆P with its image in
the cohomology S⋆W/WP

of the T-ûxed point locus ofG/P under the algebraicmoment
map.

To see how the algebraic moment map behaves with respect to theW-action, we
identify the T-ûxed point locus of G/P with a ûnite constant scheme W/WP with
trivial T-action. hen we have

hT(W/WP) = h(U ×T
W/WP) = ⊕xWP∈W/WP S

= Hom(W/WP , S) = S
⋆

W/WP
,

where the class of (u, xWP)T maps to xWP ↦ [uT]. Consider the le� W-action on
Hom(W/WP , S) given by

(w ⋅ f )(x) = w ⋅ f (w−1
x), x ∈W/WP , f ∈ Hom(W/WP , S).

We claim that the induced pullback map (the algebraicmoment map)

D
⋆

P = hT(G/P)Ð→ hT(W/WP) = S
⋆

W/WP
is W-equivariant.

Indeed, the action ofW on U ×T G/P is given by

(u, gP)T ⋅ σT = (uσ , σ−1
gP)T
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for any U in the Borel construction. Restricted to U ×T W/WP , the action of w = σT

gives amap

U ×T
W/WP Ð→ U ×T

W/WP , (u, xWP)T = (uσ , σ−1
xWP)T .

So its pullback deûnes an endomorphism of Hom(W/WP , S) given by f ↦ w ⋅ f ,
where w ⋅ f ∶ x ↦ w f (w−1x).
By the very deûnition, theW-action on S⋆W/WP

= Hom(W/WP , S) and, hence, its
restriction on D⋆P coincides with the⊙-action of [18, §3]. Together with Corollary 3.3
it gives the following corollary.

Corollary 3.5 For any parabolic subgroup P of G there is the inclusion of rings

EG∣T(G/P) ↪Ð→ EndSW (D⋆P).

Moreover, in [18] it was shown that the ⊙-action of QW on the Q-dual Q∗

W/WP
re-

stricts to the action of D on D⋆P . Since QW is the localization of SW and Q∗

W/WP
is

the localization of D⋆P , any SW-equivariant endomorphism of D⋆P extends uniquely
to the QW-equivariant endomorphism of Q∗

W/WP
, which then restricts to the unique

D-equivariant endomorphism of D⋆P . So we can replace the endomorphism ring
EndSW (D⋆P) of the corollary by EndD(D⋆P).

Deûnition 3.6 heD-moduleD⋆P with respect to the⊙-action is called the parabolic
module.

Direct sum decompositions

Observe that (see [1, Corollary 6.20]) if E is the endomorphism ring of an object M

in some pseudoabelian category A (e.g., M = [X], E = EG∣T(X) in A = MG∣T), then
there is a 1–1 correspondence between direct sum decompositions ofM and complete
ûnite systems of pairwise orthogonal idempotents {p i}i∈I in E:

(3.1) M =⊕
i∈I
coker(p i) ←→ ∑

i∈I
p i = id, p i ○ p j = 0, i ≠ j.

Moreover, two direct summands coker(p i) and coker(p j) ofM are isomorphic inA

(hence, so are the idempotents p i and p j of E) if and only if there exist θ i j ∈ p i ○E○ p j
and θ ji ∈ p j ○ E ○ p i such that θ i j ○ θ ji = p i and θ ji ○ θ i j = p j .

We say that two direct sum decompositions of M (resp. two systems of idempo-
tents in E) are isomorphic if they coincide up to isomorphisms and permutations of
summands. Finally,we say that M is indecomposable if there are no non-trivial direct
summands of M (resp. if there are no non-trivial idempotents in E).

Translating the inclusion of Corollary 3.5 into the language of idempotents and
direct sum decompositions we obtain

Corollary 3.7 If D⋆P is indecomposable (as the parabolic D-module), then so is [G/P]
in MG∣T (as themotive).
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4 G-equivariant vs. Relative Equivariant Motives

In this sectionwe relate the categories ofG-equivariantmotives and relative equivari-
ant motives of split �ags. Our main results areheorem 4.1 and Corollary 4.2.

Motives of versal flag varieties

Let E be a G-torsor over a ûeld k. Consider the (non-equivariant) category of
h-motives Mk given by the motives (and their direct summands) of the twisted �ag
varieties E/P’s for all parabolic subgroups P’s (the full subcategory of the category
of motives considered in [8, §3]). Observe that the morphisms in Mk are given by
graded correspondences in h(X × Y).
Following [21, §4], consider the composite of P × P-equivariant maps

E × E ≃Ð→ E ×G Ð→ G ,

where ûrst map is the isomorphism by the deûnition of a torsor, the second map is
the projection on the second factor, the action of P × P on the E × E is given by
(e1 , e2) ⋅ (p1 , p2) = (e1p1 , e2p2) and on G is given by g ⋅ (p1 , p2) = p−1

1 g p2. he
induced pullback (see [21, Lemma 4.6] for H = P)

γ∶hG(G/P ×G/P) = hP2(G)Ð→ hP2(E2) = h(E/P × E/P)
is the ring homomorphism γ∶EG(G/P)→ E(E/P) from endomorphisms of the
G-equivariant motive [G/P] to endomorphisms of the (non-equivariant) motive
[E/P] (here we identify hG((G/P)2) with hP2(G) as in [21, (7)]).
Consider the following important case of a torsor E and variety E/P. SupposeG is a

split reductive group deûned over a ûeld k′ of characteristic 0. Recall that aG-torsor E
is called versal (or generic) if it is the generic ûber of the quotientmapGLN → GLN/G
for an embedding ofG intoGLN for some N ≥ 1, i.e., E is aG-torsor over the function
ûeld k = k′(GLN/G) (see e.g., [10]). Given such E, the respective twisted �ag variety
E/P over k is called the versal �ag variety. Informally speaking, the versal torsor E
(resp. E/P) can be viewed as the ‘most twisted’ form of G (resp. G/P).

Lifting of idempotents

We recall several facts concerning the li�ing of idempotents following [24, §2].
Suppose γ∶E′ → E is a ring homomorphism. We say that γ li�s idempotents and

isomorphisms between them if for any complete ûnite system of pairwise orthogo-
nal idempotents {p i}i∈I in E there exists a complete system of pairwise idempotents
{q i}i∈I in E′ such that γ(q i) = p i and for any θ i j , θ ji deûning an isomorphism be-
tween p i and p j there exist θ′i j , θ

′

ji which deûne an isomorphism between q i and q j

with γ(θ′i j) = θ i j , γ(θ′ji) = θ ji . Such γ then induces a 1–1 correspondence between
isomorphisms classes of systems of idempotents in E and E′.

We can additionally assume that both rings E and E′ are graded, e.g., for motives.
In this case γ has to be a homomorphismof graded rings, all idempotents have degree
0 and all isomorphisms are homogeneous (see [24, Deûnition 2.3]). In view of (3.1),
such γ will induce a 1–1 correspondence between isomorphism classes of direct sum
decompositions of the respectivemotives.
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We are now ready to state our main result.

heorem 4.1 Suppose G is a split reductive algebraic group over a ûeld k of charac-

teristic 0. Suppose h is a free theory. Consider the associated G-equivariant theory hG
and let MG be the respective category of G-equivariant motives. Suppose E is a versal

G-torsor over k.

he pull-back γ induces a 1–1 correspondence between isomorphism classes of direct

sum decompositions of the motive [G/P] in MG and direct sum decompositions of the

motive [E/P] in Mk .

Proof Consider the�ag varietyG/P. Let {U i}i be the sequenceofG-representations
from the Borel construction for hG . hen hG(G/P × G/P) = lim←Ði

h((U 2
i × G)/P2),

where the latter quotient is deûned on points (u1 , u2) ∈ U 2
i , g ∈ G, (p1 , p2) ∈ P2 as

(U 2
i ×G)/P2 = (U 2

i ×G)/(u1 , u2 , g) ∼ (u1p1 , u2p2 , p−1
1 g p2).

Let V ⊃ E be the ambient G-representation, i.e., E is G-invariant open in V . he
map γ is the limit of surjectivemaps (cf. the proof of [21, Lemma 7.9])

γ i ∶h((U 2
i ×G)/P2) ≃Ð→h((U 2

i × V ×G)/P2)↠

h((U 2
i × E ×G)/P2) ≃Ð→ h((U 2

i × E × E)/P2),

where the ûrst map is an isomorphism, because of the homotopy invariance prop-
erty [4, (A4)] for the projection V ×G → G, the secondmap is surjective by the local-
ization property [4, (A3)], and the last map is induced by the isomorphism E × G ≃
E × E from the deûnition of a G-torsor.

We now slightlymodify the proof of [28, Lemma 3.2]. By the localization sequence
for h each element ϕ in the kernel of γ i lies in the image of

h((U 2
i × Z ×G)/P2) ι∗Ð→ h((U 2

i × V ×G)/P2),

where Z = V/E ι↪ V is the closed complement of E in V . Consider the quotient
(Ud+1

i ×Gd)/Pd+1 deûned as Ud+1
i ×Gd modulo

(u1 , . . . , ud+1 , g1 , . . . , gd) ∼ (u1p1 , . . . , ud+1pd+1 , p−1
1 g1p2 , . . . , p−1

1 gd pd+1)

for (u1 , . . . , ud+1) ∈ Ud+1
i , (g1 , . . . , gd) ∈ Gd and (p1 , . . . , pd+1) ∈ Pd+1. Consider the

maps

π j , j′ ∶ (Ud+1
i ×G

d)/Pd+1 Ð→ (U 2
i ×G)/P2 , 1 ≤ j < j

′ ≤ d + 1,

which descend from the standard projection Ud+1
i → U 2

i on the j and j′ compo-
nents and the map Gd → G deûned on points by (g1 , . . . , gd) ↦ g−1

j−1g j′−1 for j > 1
and (g1 , . . . , gd) ↦ g j′−1 for j = 1. hen the d-fold correspondence product on
h((U 2

i ×G)/P2) is given by

ϕ ○ ⋅ ⋅ ⋅ ○ ϕ = (π1,d+1)∗(
d
∏
j=1

π
∗

j , j+1(ϕ)).
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Since for each j there is the Cartesian square

(Ud+1
i × Z ×Gd)/Pd+1

��

ι // (Ud+1
i × V ×Gd)/Pd+1

π j, j+1

��
(U 2

i × Z ×G)/P2 // (U 2
i × V ×G)/P2 ,

for every ϕ ∈ h((U 2
i ×V×G)/P2) supported on (U 2

i ×Z×G)/P2, the element π∗j , j+1(ϕ)
is supported on (Ud+1

i × Z ×Gd)/Pd+1. By Lemma A.13 applied to

p j , j+1∶Y = (Ud+1
i × V ×G

d)/Pd+1 Ð→ X = (U 2
i × V ×G)/P2 ,

we obtain that for d > dim(V)/ codim(Z), we have ∏d
j=1 im(ι∗) = 0, and, hence,

ϕ○d = 0. herefore, γ is a limit of surjectivemaps with nilpotent kernels.
Now by [20, Prop. 6.2.1], each inclusion U i → U i+1 induces a surjective homo-

morphism ker(γ i+1)→ ker(γ i). So by [20, Lemma 4.3.4], which is the limit-
generalization of [24, Prop. 2.6], the map γ li�s idempotents and isomorphisms be-
tween idempotents in the sense of [24, Def. 2.3]. Hence, it induces the 1–1 correspon-
dence between isomorphism classes of direct sum decompositions of [G/P] in MG
and [E/P] in Mk . ∎

Corollary 4.2 Under the hypothesis of the theorem, there is a 1–1 correspondence
between direct sum decompositions of themotive [G/P] in MG and in MG∣T .

Proof In the commutative diagram

hG(G/P ×k G/P)
γ //

resGT
��

h(E/P ×k E/P)

ϕ
��

hT(G/P ×k G/P)
resTk̄ // h(G/P ×k̄ G/P),

themap ϕ has nilpotent kernel by the Rost Nilpotence Principle for free theories (see
[8, Corollary 4.4]). By the theorem, γ is a limit of surjective maps with nilpotent
kernels, hence, so is the restriction resGT . he result then follows again by the li�ing of
idempotents (see e.g., [20, Lemma 4.3.4]). ∎

Summarizing the above arguments, we obtain the following chain of 1–1 corre-
spondences between direct sum decompositions of the respectivemotives:

[versal E/P] ∈Mk ←→ [G/P] ∈MG ←→ [G/P] ∈MG∣T .

Combining this with Corollary 3.7 we obtain the following corollary.

Corollary 4.3 If the parabolic D-module D⋆P is indecomposable, then so is themotive

(in Mk) of the versal �ag variety E/P.
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5 Localized Endomorphisms

In this section, we study the endomorphism ring EndD(D⋆P) using the localization
techniques of [3, 4] and the results from [18, §3]. Our main results are Corollary 5.2
and Lemma 5.4.

Endomorphisms of localized modules

Consider the Q-dual Q∗

W/WP
with the basis { fw}, w ∈ WP dual to {δw}. Following

[18, §3], the ⊙-action of QW on Q∗

W/WP
is deûned by

qδw ⊙ p fv = qw(p) fwv , q, p ∈ Q , v ∈WP ,

wherewv denotes theminimal coset representative ofwvWP . Consider the endomor-
phism ring EQ = EndQW (Q∗

W/WP
) of QW-modules with respect to the ⊙-action.

Since the QW-module Q∗

W/WP
is generated by f1, any ϕ ∈ EQ is uniquely deter-

mined by its value at f1, that is,

(5.1) ϕ( f1) = ∑
w∈WP

cw fw , cw ∈ Q .

Moreover, we have the following lemma.

Lemma 5.1 ϕ ∈ EQ ⇐⇒ v(cw) = cvw , ∀v ∈WP , ∀w ∈WP .

Proof ⇒∶ Since δv ⊙ ϕ( f1) = ϕ(δv ⊙ f1) = ϕ( f1) for all v ∈WP , we obtain

∑
w∈WP

v(cw) fvw = ∑
w∈WP

cw fw for all v ∈WP .

⇐∶ For each w′ ∈ WP , we set ϕ( fw′) ∶= δw′ ⊙ ϕ( f1). It is enough to show that
δw ⊙ ϕ( fw′) = ϕ(δw ⊙ fw′) for all w ,w′ ∈WP or, equivalently,

δww′ ⊙ ϕ( f1) = ϕ( fww′) = δww′ ⊙ ϕ( f1).
But ww′ = ww′v, v ∈WP , and δv ⊙ ϕ( f1) = ϕ( f1) by the assumption. ∎

Let PWP denote the set of minimal double WP-coset representatives. Since each
w ∈ WP can be written uniquely as w = vu, where v ∈ WP and u ∈ PWP , we can
rewrite (5.1) as ϕ( f1) = ∑w∈WP , w=vu v(cu) fw , and we obtain the following corollary.

Corollary 5.2 ϕ ∈ EQ is uniquely determined by the coeõcients cu ∈ QWP∩uWPu−1
,

u ∈ PWP .

Example 5.3 Let G be of Dynkin type An and let P be of type An−1, i.e., G/P = Pn .
We haveW = ⟨s1 , . . . , sn⟩, WP = ⟨s2 , . . . , sn⟩, andWP = {1, v1 , v2 , . . . , vn}, where s i
denotes the i-th simple re�ection and v i = s i s i−1 . . . s1.
For any ϕ ∈ EndQW (Q∗

W/WP
), presentation (5.1) can be written as

ϕ( f1̄) = c0 f1 + c1 fv1 + ⋅ ⋅ ⋅ + cn fvn , where c i ∈ Q .

Since there are only two double cosets WP andWP s1WP , ϕ is determined by two co-
eõcients c0 ∈ Q⟨s2 , . . . ,sn⟩ and c1 ∈ Q⟨s3 , . . . ,sn⟩ with c j = v j

v1
(c1), 1 ≤ j ≤ n.
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Localized endomorphisms

he localization D ⊂ QW induces the inclusion

ED = EndD(D⋆P) ↪Ð→ EQ = EndQW (Q∗

W/WP
).

We investigate its image.
According to [18, §3] D⋆P is a D-module generated by the class of a point

[pt] = xΠ/P f1 ∈ S
⋆

W/WP
,

where xΠ/P = xΠ/xP , xP = ∏α∈Σ−P
xα and xΠ = ∏α∈Σ− xα , Σ−P is the set of all negative

roots of the root subsystem for P.
herefore, any ϕ ∈ ED is uniquely determined by its value on [pt]. On the other

hand, ϕ([pt]) belongs to D⋆P as an element of S⋆W/WP
⊂ Q∗

W/WP
if and only if it satisûes

the criteria of [3,hm. 11.9]. Combining these, we obtain the following lemma.

Lemma 5.4 An endomorphism ϕ ∈ EQ comes from ED if and only if its coeõcients

cw ∈ Q satisfy

xΠ/Pcw ∈ S and xw(α) ∣ xΠ/P(cw − csw(α)w) for all α ∉ ΣP .

he localization SW ⊂ QW also induces the inclusion

ES = EndSW (S⋆W/WP
) ↪Ð→ EQ = EndQW (Q∗

W/WP
),

where ϕ ∈ EQ comes from ES if and only if all the coeõcients cw of ϕ are in S. From
now onwe identify ED and ES with their images in EQ . We have the following lemma.

Lemma 5.5 ES ⊂ ED in EQ .

Proof Consider an endomorphism ϕ ∈ ES with ϕ( f1) = ∑ cw fw , cw ∈ S. By
Lemma 5.4, it is enough to show that

xw(α) ∣ xΠ/P(cw − csw(α)w) for all α ∉ ΣP .

If w(α) ∉ ΣP , then xw(α) ∣ xΠ/P , hence we may assume w(α) ∈ ΣP . By Lemma 5.1,
csw(α)w = sw(α)(cw). hen xw(α) ∣ (cw − sw(α)(cw)) by [2, Corollary 3.4]. ∎

Finally, observe that the endomorphism ϕ, which maps [pt] to ∑w∈WP fw ∈ D⋆P ,
clearly belongs to ED but not to ES in general.

6 Endomorphisms in Terms of the Schubert Basis

In this section we concentrate on the study of the Chow theory h(−) = CH(−) ⊗ R

(here, R = Z or R = Z/pZ, where p is a prime). In this case, S is the polynomial ring
in the basis of characters T∗, X i = Xα i = (1 − δs i )/α i corresponds to the classical
divided diòerence operator ∆ i for the simple root α i and D is the nil (aõne) Hecke
algebra.
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Endomorphisms of D-modules

Recall that there is the free S-basis of hT(G/P) given by the so called Schubert classes
ξw , w ∈ WP . he latter are the classes of the Schubert varieties of dimensions l(w)
(the length of w), the closures of the orbits BwP/P in G/P. We have the following
well-known formula for the⊙-action by divided diòerence operators on the Schubert
classes (see e.g., [18, Example 4.8]):

X j ⊙ ξv =
⎧⎪⎪⎨⎪⎪⎩

ξs jv if l(s jv) ≥ l(v) and s jv ∈WP ,
0 otherwise.

We now describe endomorphisms of D⋆P with respect to the Schubert basis ξw .
Let ϕ ∈ ED = EndD(D⋆P). As an endomorphism of free S-modules ϕ is uniquely

determined by its values on the classes ξw , w ∈WP , that is,

ϕ(ξw) =∑
v
av ,w ξv ,

where (aw ,v) is the corresponding generalized matrix of coeõcients in S (here the
coeõcients are indexed by the product of le� Bruhat posets in v and w).

Since D is generated by X j ’s and elements of S, ϕ ∈ ED if and only if

X j ⊙ ϕ(ξw) = ϕ(X j ⊙ ξw) for all j and w ∈WP .

Using the properties of the ⊙-action of [18, §3], we compute the le�-hand side as
follows (for v ,w ∈WP)

X j ⊙∑
v
av ,w ξv =∑

v
(s j(av ,w)X j + ∆ j(av ,w))⊙ ξv

= ∑
s jv∈WP , l(s jv)≥l(v)

s j(av ,w)ξs jv +∑
v
∆ j(av ,w)ξv

= ∑
v′∈WP , l(s jv′)≤l(v′)

s j(as jv′ ,w)ξv′ +∑
v
∆ j(av ,w)ξv .

As for the right-hand side, we obtain

ϕ(X j ⊙ ξw) =
⎧⎪⎪⎨⎪⎪⎩

∑v av ,s jw ξv if l(s jw) ≥ l(w) and s jw ∈WP ,
0 otherwise.

Combining, we obtain the following recursive formulas for the coeõcients av ,w .

Lemma 6.1 If l(s jw) ≥ l(w) and s jw ∈WP , then

av ,s jw =
⎧⎪⎪⎨⎪⎪⎩

s j(as jv ,w) + ∆ j(av ,w) if l(s jv) ≤ l(v),
∆ j(av ,w) otherwise.

If l(s jv) ≤ l(v), then (observe that s j∆ j = ∆ j in the Chow theory)

as jv ,w =
⎧⎪⎪⎨⎪⎪⎩

s j(av ,s jw) − ∆ j(av ,w) if l(s jw) ≥ l(w) and s jw ∈WP ,

−∆ j(av ,w) otherwise.

We then obtain the following analogues of Lemma 5.1 and Corollary 5.2.
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Corollary 6.2 An endomorphism ϕ ∈ ED is uniquely determined by theWP-invariant

coeõcients av = av ,1 ∈ SWP , v ∈WP such that l(s jv) ≥ l(v) for all s j ∈WP .

Proof It follows immediately by the recurrent formulas that ϕ is uniquely deter-
mined by its value at [pt] = ξ1, i.e., by the coeõcients av . Comparing X j ⊙ ϕ(ξ1) and
ϕ(X j ⊙ ξ1), we obtain that for all s j ∈WP ,

∆ j(av) =
⎧⎪⎪⎨⎪⎪⎩

−as jv if l(s jv) ≤ l(v),
0 otherwise.

∎

Homogeneous endomorphisms

Recall that the endomorphism ring of the relative equivariant motive consists of
graded correspondences α ∈ CHn

T(G/P × G/P), where n = dimG/P. he respec-
tive realization map ϕ = α∗ then preserves the dimensions of cycles and, hence, the
dimensions l(w) of the respective Schubert classes ξw . In other words, the inclusion
of Corollary 3.5

EG∣T([G/P]) ↪Ð→ ED = EndD(D⋆P), α z→ α∗ ,

factors through the subring E(0)
D of endomorphisms ϕ where each coeõcient av ,w is

a homogeneous polynomial of degree dim ξv − dim ξw = l(v)− l(w). We call such ϕ

a homogeneous endomorphism.
If ϕ ∈ E(0)

D , then ϕ([pt]) = ∑v∈WP av ξv , where av = av ,1 ∈ S is homogeneous of
degree l(v). Since ξv = ∑w∈WP cw ,v fw where all cw ,vs are homogeneous of degree
n− l(v),we get ϕ( f1) = ∑v∈WP cw fw where each coeõcient cw = 1

xΠ/P
∑v av cw ,v is the

quotient of homogeneous polynomials of degree n.
Now ϕ comes from ES of Lemma 5.5 if and only if each cw ∈ S is a polynomial of

degree 0, i.e., each cw ∈ R. Since RW = R[W], R⋆W/WP
= R[W/WP], and the ⊙-action

restricted to S = R coincides with the le� action ofW on W/WP , we obtain the fol-
lowing corollary.

Corollary 6.3 We have ES ∩ E(0)
D = EndR[W](R[W/WP]). In particular, if D⋆P is

indecomposable (as a D-module with R = Z), then so is the induced integral represen-

tation IndWWP
1 of theWeyl group W .

Idempotent matrices

Observe that av ,w = 0 if l(v) − l(w) < 0. So the generalized matrix of coeõcients
(av ,w) of a homogeneous endomorphism ϕ is always a lower triangular matrix.

Lemma 6.4 he generalized matrix of coeõcients (av ,w) of an idempotent ϕ is a

lower triangular idempotent matrix. In particular, its coeõcients satisfy

∑
u , l(u)≤l(v)

auav ,u = av , v , u ∈WP ,
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and its diagonal is the direct sum of idempotent matrices

n
⊕
d=0

(av ,w){(v ,w)∣l(v)=l(w)=d} , n = dimG/P.

Proof Any idempotent ϕ is homogeneous, so (av ,w) is triangular and idempotent.
By deûnition, ϕ(ϕ([pt])) = ϕ([pt]), which leads to

∑
v
av ξv = ϕ(∑

u
au ξu) =∑

u
auϕ(ξu) =∑

u ,v
auav ,u ξv

and, hence, to the formula for the coeõcients. he latter statement follows from the
properties of triangular idempotent matrices. ∎

7 Applications to Chow Motives

hepurpose of this section is todemonstratehow the recursive formulas ofLemma 6.1
can be applied to show indecomposability of certain D-modules D⋆P and, hence, of
Chow motives of versal �ag varieties E/P. Depending on the case, we work either
over R = Z or over R = Z/pZ, where p is the respective modular (torsion) prime.
Note that the indecomposability over Z/pZ obviously implies the indecomposability
over Z.

7.1 Projective Spaces

We ûx a simple split group G of type An and its standard parabolic subgroup P of
type An−1. he respective G/P is isomorphic to the projective space Pn . We consider
the adjoint form G = PGLn+1 so that T∗ is the root lattice with the basis given by
simple roots {α1 , . . . , αn}. Set R = Z. he algebra D is then the usual nil-Hecke
algebra over the polynomial ring S = Z[T∗] = Z[α1 , . . . , αn]. he Weyl group is
given byW = ⟨s1 , . . . , sn⟩,where s i is the simple re�ection corresponding to α i ,WP =
⟨s2 , s3 , . . . , sn⟩ andWP = {1, v1 , v2 , . . . , vn}, where v i = s i s i−1 . . . s1.
Consider an idempotent ϕ ∈ E(0)

D and the associated generalizedmatrix of coeõ-
cients (av ,w). For simplicity of notation, set

c i , j ∶= av i ,v j , c i ,0 ∶= av i ,1 , c0, j = a1,v j for i , j ≥ 1, and c0,0 = a1,1 .
So (c i , j) = (av ,w) is a lower-triangular idempotent (n+ 1)× (n+ 1)-matrix in homo-
geneous polynomials c i , j ∈ Z[α1 , . . . , αn] of degrees deg c i , j = i − j.

he recursive formulas of Lemma 6.1 turn into:

c i , i = s i(c i−1, i−1) + ∆ i(c i , i−1) if i ≥ 1,
c i , j = ∆ j(c i , j−1) if i ≠ j, j ≥ 1,

c i ,0 = (−1)n−i∆ i+1, . . . ,n(cn ,0) for n > i ≥ 1.

which can be expressed by the diagramof operators in Figure 1. hese formulas imply
(over Z)

c i , j = ∆ j , . . . ,1(c i ,0) = (−1)n−i∆ j , . . . ,1, i+1, . . . ,n(cn ,0) for i > j ≥ 1 (under the diagonal),

c i , i = s i(c i−1, i−1) + (−1)n−i∆ i , . . . ,1, i+1, . . . ,n(cn ,0) (on the diagonal).
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Figure 1: he case of a projective space.

In particular, thematrix (c i , j) and, hence, the idempotent ϕ is uniquely determined
by the homogeneous polynomial cn ,0 of degree n.

Using relations in the nil Hecke algebra D for the divided diòerence operators ∆ j
and the fact that ∆ j(cn ,0) = 0 for all j ≠ 1, n (Corollary 6.2) we get

∆k ○ ∆ i−1, . . . ,1, i+1, . . . ,n(cn ,0) = 0, for all k ≠ i .

So c i , i−1 ∈ SWi , where Wi is generated by all simple re�ections except the i-th one.
Since c i , i−1 has degree 1, we can express it as c i , i−1 = b1α1 + ⋅ ⋅ ⋅ + bnαn , b i ∈ Z. hen
c i , i−1 ∈ SWi is equivalent to

b2 = 2b1 , b3 = 3b1 , . . . , b i = ib1 = (n + 1 − i)bn , . . . , bn−2 = 3bn , bn−1 = 2bn .

Assume n + 1 = pr for some prime p and r ≥ 1. hen

p ∣ ∆ i(c i , i−1) = 2b i − b i−1 − b i+1 = b1 + bn .

Since ϕ is an idempotent, all diagonal elements c i , i are idempotent as well by
Lemma 6.4, i.e., each c i , i is either 0 or 1. he recursive formulas and the fact that
p ∣ ∆ i(c i , i−1) then imply that c i , i = c i−1, i−1 for all i, i.e., that there are no nontrivial
idempotents in ED . In other words, we obtain the following proposition.

Proposition 7.1 Let G = PGLn+1, where n = pr − 1 for some r ≥ 1 and a prime p. Let

P be the standard parabolic subgroup of type An−1.

hen the D-module D⋆P is indecomposable over Z.

Remark 7.2 In view of Corollary 4.3, this fact implies the celebrated result by
Karpenko [11] on indecomposability of the integral motive of the Severi–Brauer
variety of a generic algebra. On the other side, according to Corollary 6.3, it also
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implies that the induced integral representation IndSn+1
Sn

1 of the symmetric group is
indecomposable.

7.2 Klein Quadrics

LetG be a simple split group of type A3 with the character lattice T∗ = ⟨α1 , α2 , α3 ,ω2⟩
(here ω2 is the respective fundamental weight), i.e., G = SL4/µ2. Let P be the stan-
dard parabolic subgroup of type A1 ×A1, i.e., G/P = Gr(2, 4) is a split 4-dimensional
smooth projective quadric. Again, we set R = Z. By deûnition, the Weyl group
W = ⟨s1 , s2 , s3⟩, WP = ⟨s1 , s3⟩, and the set of minimal coset representatives WP is
given by theHasse diagram

1
s2 ⋅ // s2

s3 ⋅

��

s1 ⋅ // s1s2

s3 ⋅

��
s3s2

s1 ⋅ // s1s3s2
s2 ⋅ // s2s1s3s2 .

Consider an idempotent ϕ ∈ E(0)
D and the associated generalized matrix (av ,w).

For simplicity, set a lmn . . .
i jk . . . = as i s j sk . . . ,s l sm sn . . . and a∅ = a1.

By the recursive formulas of Lemma 6.1 and of Corollary 6.2, we obtain over Z:

a
2
2 = a∅ + ∆2,1,3(a132),(7.1)

a
12
12 = a2

2 − ∆1,2,3(a132) and a
32
32 = a2

2 − ∆3,2,1(a132),
a
12
32 = −∆1,2,1(a132) and a

32
12 = −∆3,2,3(a132),

a
132
132 = a12

12 + ∆3(∆1,2 − ∆2,1)(a132) = a32
32 + ∆1(∆3,2 − ∆2,3)(a132),

a
2132
2132 = a132

132 + ∆2,1,3,2(a2132) + ∆2,1,3s2(a132),

which can be also expressed as the diagram of operators in Figure 2.

Lemma 7.3 For any homogeneous polynomial g of degree 3, we have the following

chain of congruences modulo 2, i.e., over Z/2Z:

∆3,2,1(g) ≡ ∆1,2,3(g) ≡ ∆3,2,3(g) ≡ ∆1,2,1(g),
∆2,1,3(g) ≡ ∆3,1,2(g) ≡ ∆1,3,2(g) ≡ 0.

Proof As for the ûrst chain of congruences, observe that ∆1(g) ≡ ∆3(g) ≡ 0 for
any polynomial g that does not contain α2, and the computations are symmetricwith
respect to α1 and α3. So it is enough to check it only on monomials α2

2α1 and α2ω2α1.
Direct computations mod 2 then give

∆3,2,1(α2
2α1) ≡ ∆3,2(α2

1 ) ≡ ∆3(α2) ≡ 1, and

∆1,2,3(α2
2α1) ≡ ∆1,2(α1α3) ≡ ∆1(α1 + α2 + α3) ≡ 1;

∆3,2,1(α2ω2α1) ≡ ∆3,2(ω2α1) ≡ ∆3(α1 + α2 − ω2) ≡ 1, and
∆1,2,3(α2ω2α1) ≡ ∆1,2(ω2α1) ≡ ∆1(α1 + α2 − ω2) ≡ 1.

Similarly, we get ∆3,2,3(g) ≡ ∆1,2,1(g) and ∆3,2,3(g) ≡ ∆1,2,3(g).
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Figure 2: he case of Klein’s quadric.

As for the second chain of congruences, it is enough to verify that ∆1,3(h) ≡ 0 for
any quadratic h and ∆2,1,3(α3

2) ≡ 0. Indeed, for quadratic h, it reduces to ∆1,3(α2
2) ≡

∆1(α3) ≡ 0 and

∆2,1,3(α3
2) ≡ ∆2,1(α2

2 + α2α3 + α2
3) ≡ ∆2(α1 + α3) ≡ 0. ∎

Now byLemma 6.4, since ϕ is an idempotent, all diagonal entries of the generalized
matrix (av ,w) are idempotents as well. So the coeõcients a∅, a2

2 , a
132
132 , a

2132
2132 can only

take values 0 or 1, and thematrix

M = (
a12
12 a12

32

a32
12 a32

32
)

is a 2 × 2-idempotent matrix over Z.
By the recursive formulas (7.1) and Lemma 7.3, we obtain a32

12 ≡ a12
32 and a

12
12 ≡ a32

32 ,
which implies that M ≡ 0 (the zero matrix) or M ≡ I (the identitymatrix) over Z/2Z.
herefore, a32

12 ≡ a12
32 ≡ 0, and we get the following chain of congruences modulo 2

(here we use (7.1) and Lemma 7.3 again)

a∅ ≡ a2
2 ≡ a12

12 ≡ a32
32 ≡ a132

132 ≡ a2132
2132 .

his shows that ϕ is trivial over Z/2Z.
We claim that ϕ is trivial over Z. As the coeõcients a∅, a2

2 , a
132
132 , a

2132
2132 are either 0’s

or 1’s over Z, it remains to show that M = 0 or M = I over Z.
Indeed, suppose M ≠ 0 over Z. Since M is idempotent, the g.c.d. of all non-zero

coeõcients of M has to be 1, so M ≡ I. Suppose M ≠ I over Z. Let m be the g.c.d. of
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all non-zero coeõcients of the diòerence M − I. Since M − I ≡ 0, we have 2 ∣ m. On
the other side, since (M − I)2 = I −M, we obtain m = 1, a contradiction.

Proposition 7.4 Let G be a split simple group of type A3 with the character lattice

T∗ = ⟨α1 , α2 , α3 ,ω2⟩, i.e., G = SL4/µ2. Let P be a parabolic subgroup of type A1 ×A1.

hen the D-module D⋆P is indecomposable over Z.

Remark 7.5 Again in view of Corollary 4.3 this fact implies indecomposability of
the integral motive of a generic 4-dimensional quadric.

7.3 Involution Varieties

Let G be a split simple group of type D4 and let P be of type A3, i.e., G/P is a
split 6-dimensional smooth projective quadric. heWeyl group W = ⟨s1 , s2 , s3 , s4⟩,
WP = ⟨s2 , s3 , s4⟩ and the set ofminimal coset representativesWP is given by theHasse
diagram

1
s1 ⋅ // s1

s2 ⋅ // s2s1

s3 ⋅

��

s4 ⋅ // s4s2s1

s3 ⋅

��
s3s2s1

s4 ⋅ // s4s3s2s1
s2 ⋅ // s2s4s3s2s1

s1 ⋅ // s1s2s4s3s2s1 .

By the recursive formulas of Lemma 6.1 and of Corollary 6.2, we obtain (as before
we set ak lm . . .

i jk . . . = as i s j sk . . . ,sk s l sm . . . and a∅ = a1):

a
1
1 = a∅ + ∆1,2,3,4,2(a24321),

a
21
21 = a1

1 − ∆2,1,3,4,2(a24321),
a

321
321 = a21

21 + ∆3,2,1,4,2(a24321) and a421
421 = a21

21 + ∆4,2,1,3,2(a24321),
a
421
321 = ∆4,2,1,4,2(a24321) and a321

421 = ∆3,2,1,3,2(a24321),
a
4321
4321 = a421

421 + ∆3,2,1,4,2(a24321) − ∆3,4,2,1,2(a24321)
= a321

321 + ∆4,2,1,3,2(a24321) − ∆4,3,2,1,2(a24321),
a

24321
24321 = a4321

4321 + (∆2,4,3,2,1 − ∆2,4,3s2∆1,2)(a24321),
a
124321
124321 = a24321

24321 + ∆1,2,4,3,2(s1(a24321) + ∆1(a124321)),
which can be also expressed as the diagram of operators in Figure 3.
From this point on, we set R = Z/2Z. Let ∆di1 , i2 , . . . denote the image ∆ i1 , i2 , . . .

(Symd(T∗)) modulo 2.

PGO8-case

Assume T∗ corresponds to the root lattice, i.e., G = PGO8. We have the following
analogue of Lemma 7.3 for the type D4.

Lemma 7.6 We have (over Z/2Z) ∆2
3,4 = 0, ∆3

3,4 = ⟨α3 + α4⟩,
∆4

3,4 = ⟨(α3 + α4)α1 , (α3 + α4)α3 , (α3 + α4)α4⟩, ∆4
2,3,4 = ⟨α3 + α4⟩.

Moreover, it holds for any permutation of the set of subscripts {1, 3, 4}.
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Figure 3: he PGO-case.

Proof he proof follows from the fact that ∆3 and ∆4 are trivial mod 2 on all simple
roots except α2 and that ∆3,4(α2

2) ≡ ∆3,4(α4
2) ≡ 0, ∆3,4(α3

2) ≡ α3 + α4. ∎

From the lemma, we immediately obtain

a
124321
124321 , a

1
1 ∶ ∆4

1,2,3,4 = ∆1(∆4
2,3,4) = 0,

a
24321
24321 , a

21
21 ∶ ∆3

2,3,4 = 0, ∆2,1(∆4
3,4) = 0,

a
321
321 , a

421
421 ∶ ∆4

3,2,1,4 = 0, ∆4
4,2,1,3 = 0,

a
4321
4321 ∶ ∆4

4,2,1,3 = 0, ∆2
3,4 = 0.

If ϕ ∈ ED is an idempotent over Z/2Z, it gives
a∅ ≡ a1

1 ≡ a21
21 ≡ a321

321 ≡ a421
421 ≡ a4321

4321 ≡ a24321
24321 ≡ a124321

124321 .

So there are no non-trivial idempotents over Z/2Z, and we obtain the following
proposition.

Proposition 7.7 Let G = PGO8 and let P be themaximal parabolic subgroup gener-

ated by all simple re�ections except the ûrst one.

hen the D-module D⋆P is indecomposable over Z/2Z.
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Remark 7.8 In view of Corollary 4.3, this fact implies indecomposability of the
Z/2Z-motive of a generic twisted form (e.g., of involution variety) of a 6-dimensional
split quadric.

SO8-case

Assume that ω1 ∈ T∗, that is G = SO8. hen Lemma 7.6 turns into the following
lemma.

Lemma 7.9 We have ∆2
3,4 = 0, ∆3

3,4 = ⟨α3 + α4⟩,

∆4
3,4 = ⟨(α3 + α4)α1 , (α3 + α4)α3 , (α3 + α4)α4 , (α3 + α4)ω1⟩, ∆4

2,3,4 = ⟨α3 + α4⟩.

So we obtain

a
124321
124321 , a

1
1 ∶∆4

1,2,3,4 = ∆1(∆4
2,3,4) = 0

a
24321
24321 , a

21
21 ∶∆3

2,3,4 = 0, ∆2,1(∆4
3,4) = 0,

which gives only that

a∅ ≡ a1
1 ≡ a21

21 and a
4321
4321 ≡ a24321

24321 ≡ a124321
124321 .

Since ∆3( f ) ≡ ∆4( f ) for any linear f , we have

∆4,2,1,3,2 ≡ ∆3,2,1,3,2 .

Moreover, direct computations show that

∆3,2,3(α2
2α3) ≡ ∆3,2,3(α2

2α4) ≡ 1,

so that ∆3,2,3(g) ≡ ∆4,2,4(g). Combining, we obtain

∆4,2,1,3 = ∆4,2,3,1 ≡ ∆3,2,3,1 ≡ ∆4,2,4,1 ≡ ∆3,2,4,1 = ∆3,2,1,4 ,

so a21
21 ≡ a321

321 ≡ a421
421 ≡ a4321

4321 . Hence, there are no non-trivial idempotents as well, and
we get the following proposition.

Proposition 7.10 LetG = SO8 and let P be themaximal parabolic subgroup generated

by all simple re�ections except the ûrst one.

hen the D-module D⋆P is indecomposable over Z/2Z.

Remark 7.11 his fact implies indecomposability of the Z/2Z-motive of a generic
6-dimensional quadric.

HSpin8-case

Assume ω4 ∈ T∗, that is, G = HSpin8. hen T∗ = ⟨α2 , α3 , α4 ,ω4⟩.
We claim that ∆1,2,3,4,2(a24321) ≡ 0. Indeed, let f = ∆2,3,4,2(a24321) ∈ Sym1(T∗).

hen

∆3( f ) = ∆3,2,3,4,2(a24321) = ∆2,3,2,4,2(a24321) = ∆2,3,4,2(∆4(a24321)) = 0.

Now for f = a2α2 + a3α3 + a4α4 + bω4, we get ∆1( f ) ≡ a2, but ∆3( f ) ≡ a2 as well.
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Similarly, ∆3,2,1,4,2(a24321) ≡ 0. In this case, denote f = ∆2,1,4,2(a24321). hen
∆1( f ) = ∆1,2,1,4,2(a24321) = ∆2,1,2,4,2(a24321) = ∆2,1,4,2(∆4(a24321)) = 0, and ∆3( f ) ≡
∆1( f ) ≡ 0.
By the same arguments, ∆3,2,1,3,2(a24321) ≡ ∆3,4,2,1,2 ≡ 0.
Now consider ∆2,1,3,4,2(a24321). Let g = ∆3,4,2(a24321). We have ∆3,2(g) = 0. Let

g = ∑2≤i≤ j c i jα iα j +∑2≤i b iω4α i + dω2
4. hen

∆2(g) ≡ c22(α2 + α3 + α4) + α2(c23 + c24) + ω4(b3 + b4).

he fact that ∆3,2(g) ≡ 0 implies that c22 + c23 + c24 ≡ 0. But

∆1(g) ≡ c22α1 + c23α3 + c24α4 + b2ω4 ,

so that ∆2,1(g) ≡ (c22 + c23 + c24) ≡ 0. Combining, we obtain that

a∅ ≡ a1
1 ≡ a21

21 ≡ a321
321 ≡ a321

421 ,

a
421
421 ≡ a421

321 ≡ a4321
4321 ≡ a24321

24321 ≡ a124321
124321 .

So the D-module D⋆P is either indecomposable over Z/2Z or it splits into two in-
decomposable direct summands with a generating function 1 + t + t2 + t3 (over S)
each.

Remark 7.12 his fact implies that themotive of aHSpin8-versal involution variety
E/P is either indecomposable or splits as a direct sum [E/P] = N ⊕ N(3), where N

is indecomposable with a generating function 1 + t + t2 + t3. Using known results on
motives of quadratic forms (e.g., that a�er splitting the algebra, themotive of a Spin8-
versal quadric splits into 2-fold Rost motives [6, XVII]), it follows that the second
decomposition is impossible, i.e., [E/P] is indecomposable.

A Appendix: Generic Nilpotence for Cobordism

his appendix is included to prove Lemma A.13, the obvious generalization from
Chow groups to algebraic cobordism of [28, Lemma 6.2]. We therefore closely follow
arguments of [28],whilemaking the following adjustments to cobordism: LemmaA.9
is the analogue of [28, Lemma 6.4], and Lemma A.12 is the analogue of [7, Proposi-
tion 3.3] that was used in the proof of [28, Lemma 6.2].

Let Schk denote the category of reduced schemes of ûnite type over k and let Smk
denote its subcategory of smooth schemes over k. Let Ω∗(−) denote the algebraic
cobordism functor of Levine–Morel [19].

Deûnition A.1 Let X ∈ Schk and let i∶ Z ↪ X be a closed subset. Wewill denote the
image of the map i∗∶Ω∗(Z) → Ω∗(X) by ΩZ(X) and say that elements of ΩZ(X)
are supported on Z.

Deûnition A.2 Wewill call a projectivemap f ∶ Z′ → Z in Schk a good cover if there
are ûltrations by closed subsets ∅ ⊆ Z′0 ⊆ Z′1 ⊆ ⋅ ⋅ ⋅ ⊆ Z′n = Z′ and ∅ ⊆ Z0 ⊆ Z1 ⊆ ⋅ ⋅ ⋅ ⊆
Zn = Z such that
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● dim Z′i = dim Z i ;
● f −1(Z i − Z i−1)→ Z i − Z i−1 is an isomorphism;
● f (Z′i) ⊆ Z i .

for any 0 ⩽ i ⩽ n.

Example A.3 Here is a typical good cover. If f ∶X′ → X is a projective map that
induces an isomorphism of non-empty open subsets f −1(X − Z) ≅ X − Z for some
closed subset Z of X with dim Z < dimX, then themap X′ ⊔ Z → X is a good cover;
the respective ûltrations can be chosen as ∅ ⊆ Z ⊆ X′ ⊔ Z and ∅ ⊆ Z ⊆ X.

Remark A.4 We could have deûned good covers inductively by declaring that iso-
morphisms are good covers and that the map f ∶X′ → X in Schk is a good cover
provided there are closed subsets Z ⊆ X and Z′ ⊆ X′ such that

● dimX′ = dimX;
● f −1(X − Z)→ X − Z is an isomorphism;
● f (Z′) ⊆ Z and f∣Z′ ∶ Z′ → Z is a good cover.

Lemma A.5 If f ∶ Z′ → Z is a good cover, then f∗∶Ω∗(Z′)→ Ω∗(Z) is surjective.

Proof Let (Z i)n
i=0 and (Z′i)n

i=0 be ûltrations as in Deûnition A.2. We prove that
Ω∗(Z′i) → Ω∗(Z i) is surjective by induction on i. he case i = 0 is obvious, since
Z′0 ≅ Z0. For the induction step consider the map of localization sequences induced
by f∗:

Ω∗( f −1(Z i−1)) //

��

Ω∗(Z′i) //

��

Ω∗( f −1(Z i − Z i−1))

��

// 0

Ω∗(Z i−1) // Ω∗(Z i) // Ω∗(Z i − Z i−1) // 0

he right vertical map is an isomorphism by Deûnition A.2. he le� vertical map is
surjective, because it ûts into the composition

Ω∗(Z′i−1)Ð→ Ω∗( f −1(Z i−1))Ð→ Ω∗(Z i−1),

where the compositemap is surjective by the induction hypothesis. Hence the central
arrow is surjective as well. ∎

Lemma A.6 Good covers are preserved by �at base-change: if f ∶ Z′ → Z is a good

cover and g∶Y → Z is �at, then f ′∶Y ×Z Z′ → Y , the base-change of f to Y , is a good

cover.

Proof Let (Z′i)n
i=1 and (Z i)n

i=1 be ûltrations on Z′ and Z as in Deûnition A.2, and
let Yi = g−1(Z i) and Y ′

i = (g′)−1(Z′i). hese are ûltrations on Y and Y ′ that satisfy
Deûnition A.2. Indeed, we have dimY ′

i = dimYi by �atness of g (and g′); the map
( f ′)−1(Yi −Yi−1)→ Yi −Yi−1 is the base change of the isomorphism f −1(Z i −Z i−1)→
Z i − Z i−1, so it is an isomorphism, and the inclusion f ′(Y ′

i ) ⊆ Yi is obvious. ∎
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Lemma A.7 Let X ∈ Schk and let E be a vector bundle over X. Suppose that Z is a

closed subset of X. hen there exists a projective map p∶X′ → X with dimX′ = dimX

and a closed subset Z′ of X′ such that

(i) p∗E has a ûltration by subbundles whose successive quotients are line bundles;

(ii) p(Z′) ⊆ Z, and themap p∶ Z′ → Z is a good cover.

Proof Consider the projection p∶Fl(E)→ X where Fl(E) is the variety of complete
�ags of the vector bundle E over X. hen p∗E has a ûltration by tautological sub-
bundles. Any point x ∈ X is contained in an open neighbourhood U over which the
bundle E is trivial, so Fl(E)∣U ≃ Fl × U , and there is a section s∶U → p−1(U). Let
X′

U be the closure of s(U) in Fl(E). Note that the projection (p∣X′U )
−1(U) → U is an

isomorphism.
Wewill construct X′ as a disjoint union of schemes of the form X′

U by induction on
d = dim Z. When d = 0, the set Z is a ûnite union of closed points z1 , . . . , zn . Each z i
is contained in someneighbourhoodU i as above, andwe can take X′ = X′

U1
⊔⋅ ⋅ ⋅⊔X′

Un
.

Each X′

U i
contains a copy of the point z i , and we can take Z′ to be the disjoint union

of those copies. hen Z′ = Z is a good cover.
Consider the case of a general d. Let Z1 , . . . , Zn be irreducible components of Z.

For any i, there is a neighbourhood U i of the generic point of Z i such that Z i ∩ U i
is disjoint with Z j for j ≠ i, and E is trivial over U i . hen let Z′i be the closure of
Z i ∩ U i in X′

U i
. Observe that the projection p∣Z′i ∶ Z

′

i → Z i induces an isomorphism
(p∣Z′i )

−1(Z i ∩U i)→ Z i ∩U i .
Let D i = Z i − (Z i ∩ U i) and D = ∪n

i=1D i . hen dimD < d and by the induc-
tion hypothesis, there is a map pD ∶X′

D → X and a closed subset Z′D ⊆ X′

D such that
pD ∶ Z′D → D is a good cover, and p∗D(E) satisûes (i). Take

X
′ = X

′

D ⊔ X
′

U1
⋅ ⋅ ⋅ ⊔ X

′

Un
, Z′ = Z

′

D ⊔ Z
′

1 ⊔ ⋅ ⋅ ⋅ ⊔ Z
′

n .

Consider themap p∣Z′ ∶ Z′ → Z. We have Z−D = ⊔i(Z i ∩U i), hence (p∣Z′)−1(Z−D)
→ Z − D is an isomorphism. By Remark A.4, themap p∣Z′ is a good cover, so X′ and
Z′ satisfy conditions (i) and (ii). ∎

Lemma A.8 Let X ∈ Schk and let E be a vector bundle over X that has a ûltration by

subbundles with line bundle quotients E1 , . . . , Ed . Assume that D1 , . . . ,Dd are divisors
such that E i is trivial over X − D i for each i. Let D = D1 ∩ ⋅ ⋅ ⋅ ∩ Dd . hen for any

α ∈ ΩZ(X) the element c̃d(E) ∩ α lies in ΩZ∩D(X).

Proof By the Whitney formula, we have c̃d(E) = c̃1(E1) ○ ⋅ ⋅ ⋅ ○ c̃1(Ed). For any
α ∈ ΩZ(X), the element c̃1(Ed) ∩ α vanishes in ΩZ−Dd (X − Dd), hence it lies in
ΩZ∩Dd (X). he statement thus follows by induction on d. ∎

Lemma A.9 Let E be a vector bundle of rank d on a quasi-projective variety X and let

Z be a closed subset of X. hen there is a closed subset Z̃ of Z such thatdim Z̃ ⩽ dim Z−d
and for any smooth morphism f ∶Y → X of schemes in Schk and any α ∈ Ω f −1(Z)(Y),
the element c̃d( f ∗E) ∩ α is supported on f −1(Z̃).
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Remark A.10 If dim Z − d < 0, then dim Z̃ < 0 so Z̃ = ∅, and the lemma concludes
that c̃d( f ∗E) ∩ α = 0 as already known; see [19, 2.3.13].

Proof By Lemma A.7, there is a projective map p∶X′ → X and a closed subset
Z′ ⊆ X such that p∣Z′ ∶ Z′ → Z is a good cover, while p∗E has a ûltration with line
bundle quotients E1 , . . . , Ed . Using quasi-projectivity of X, let D1 , . . . ,Dd denote di-
visors such that each E i is trivial over X′ − D i . Set D = D1 ∩ ⋅ ⋅ ⋅ ∩ Dd . One can
furthermore ensure that Z′ ∩ D and thus Z̃ = p(Z′ ∩ D) has dimension at most
dim Z′ − d = dim Z − d. Let Y ′ = X′ ×X Y and let g∶Y ′ → X′ be the canonical projec-
tion. hen g−1(Z′)→ f −1(Z) is a good cover by Lemma A.6. By Lemma A.5, the pro-
jection q∶Y ′ → Y induces the surjective push-forward Ω∗(g−1(Z′))→ Ω∗( f −1(Z)),
and thus Ωg−1(Z′)(Y ′) → Ω f −1(Z)(Y) is also surjective. Given α ∈ Ω f −1(Z)(Y),
choose a preimage α′ ∈ Ωg−1(Z′)(Y ′). hen c̃d( f ∗E) ∩ α = q∗(c̃d(q∗ f ∗E) ∩ α′),
and c̃d(q∗ f ∗E) ∩ α′ is supported on g−1(Z′ ∩ D) by Lemma A.8; thus, c̃d( f ∗E) ∩ α
is supported on q(g−1(Z′ ∩ D)), which is contained in f −1(Z̃). ∎

Lemma A.11 (cf. [28, Lemma 6.3]) Let f ∶V ↪ B and g∶T ↪ B be closed embeddings

with regular f and smooth quasi-projective B. hen there exists a closed embedding

h∶ Z ↪ V such that codim h ⩾ codim g, and for any smooth morphism ε∶W → B, we

have im ( f ∗W ○ (gW)∗) ⊆ im ((hW)∗) inside Ω∗(VW), where fW , gW , and hW are the

base changes of f , g, and h to W along ε.

Proof Consider the intersection T̃ of T and Z in B and base-change it along ε to
obtain the Cartesian squares

T B

T̃ V

g

g̃

f̃ f and
TW W

T̃W VW .

gW

̃fW

g̃W

fW

By [19, Proposition 6.6.3] f ∗W ○ (gW)∗ = (g̃W)∗ ○ f !W where the reûned pullback f !W is
given by the composition [19, (6.17), §6.6.2]:

Ω∗(TW)Ð→ Ω∗(CW)Ð→ Ω∗(NW)Ð→ Ω∗−d(T̃W),

where d is the codimension of f , while CW is the normal cone of f̃W and NW =
g̃∗W(N fW ) is the the normal bundle of fW pulled back to T̃W .

Let N = g̃∗(N f ) be the pullback of the normal bundle of f and C be the normal
cone of themap f̃ , both being bundles over T̃ . Let q∶P(N ⊕ 1)→ T̃ be the structural
map. Note that by �atness of ε∶W → B, base changing C (resp. N) to W does yield
CW (resp. NW ). Applying Lemma A.9 to the vector bundle E = q∗N ⊗ O(1) and to
the closed subset P(C ⊕ 1) inside P(N ⊕ 1), we get a closed subset Z̃ of codimension
at least d in P(C ⊕ 1) such that for every smooth morphism є∶W → B and every
cobordism class x supported on P(CW ⊕ 1) the class c̃d(ε∗E) ∩ x is supported on
ε−1(Z̃). Set Z = q(Z̃). By Lemma A.12, the right-hand side of the diagram
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Ω∗(P(CW ⊕ 1)) Ω∗(P(NW ⊕ 1)) Ω∗(P(NW ⊕ 1))

Ω∗(CW) Ω∗(NW) Ω∗(T̃W)

c̃d(ε∗E)∩−

is commutative (and so is the le�-hand side), while the le� vertical map is surjective,
since CW is open in P(CW ⊕ 1). herefore, the image of the composition Ω∗(CW)
→ Ω∗(NW) → Ω∗−d(T̃W) is supported on q(ε−1(Z̃)) ⊆ ε−1(Z) = ZW , i.e., is in
ΩZW (T̃W), which maps to ΩZW (VW) = im((hW)∗). hus, h∶ Z ↪ V satisûes the
requirements. ∎

Lemma A.12 Let X ∈ Schk and let E → X be a rank d vector bundle with a zero

section z∶X → E. Let q∶P(E⊕ 1)→ X be the structural map and let a∶ E → P(E⊕ 1) be
the natural open aõne chart sending e to [e ∶ 1]. hen the following diagram commutes.

Ω∗(P(E ⊕ 1))

a∗

��

c̃d(q∗E⊗O(1))∩− // Ω∗−d(P(E ⊕ 1))

q∗
��

Ω∗(E) z∗ // Ω∗−d(X)

Proof he composition O(−1) → q∗(E ⊕ 1) → q∗E of the natural embedding and
projection deûnes a global section s of the sheaf q∗E ⊗ O(1) = Hom(O(−1), q∗E).
he zero set of s is X ≃ P(1) (regularly) embedded in P(E ⊕ 1), and this embedding
coincides with s̄ = a ○ z. By [19, Lemma 6.6.7], the operator c̃d(q∗E ⊗ O(1)) ∩ − on
Ω∗(P(E ⊕ 1)) is given by s̄∗ s̄

∗. he right-down composition is thus q∗ s̄∗ s̄
∗ = s̄∗ =

z∗a∗. ∎

Let h be an oriented cohomology theory that is generically constant (i.e., the pull-
back h(k)→ h(L) is an isomorphism for any ûeld extensions L/k), and the canonical
map from algebraic cobordismΩ(X)⊗Lh(k)→ h(X) is surjective for every X ∈ Smk .
An example of such theory is given by the free theory of [8, §2.12].

Lemma A.13 Let X be a smooth quasi-projective variety. Let i1∶ Z1 ↪ X and

i2∶ Z2 ↪ X be closed embeddings. hen there exists a closed embedding i3∶ Z3 ↪ X

such that for any smooth morphism π∶Y → X,

codim Z3 ⩾ codim Z1 + codim Z2 and im(i′1)∗ ⋅ im(i′2)∗ ⊆ im(i′3)∗ in h(Y),
where i′j ∶ Z j ×X Y → Y , j = 1, 2, 3 are the base change along π of the respective closed

embeddings.

Proof We ûrst consider the case h = Ω. Applying Lemma A.11 to B = X × X,
f = ∆X ∶X → X × X, g = i1 × i2∶ Z1 × Z2 → X × X, one obtains a closed embed-
ding h∶ Z ↪ X such that codim Z ⩾ codim Z1 + codim Z2. Choosing W = Y × Y and
ε = π × π∶Y ×Y → X × X, it follows that fW is the natural inclusion Y ×X Y → Y ×Y ,
hW ∶ ZY×Y ↪ Y ×X Y is the obvious map and

im ( f ∗W ○ (i′1 × i
′

2)∗) ⊆ im ((hW)∗).
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he diagonal embedding Y → Y × Y factors as Y
ϕ→ Y ×X Y

fW→ Y × Y . Using the
Cartesian square

Y Y ×X Y

ZY ZY×Y

ϕ

ϕZ

hY hW

and [19, Proposition 6.6.3], we obtain ϕ∗ ○ (hW)∗ = (hY)∗ ○ ϕ!Z ,

im(i′1)∗ ⋅ im(i′2)∗ = im (∆∗Y ○ (i′1 × i
′

s)∗) ⊆ im ((hY)∗).

hus, i3 = h satisûes the requirements. Finally, the natural map Ω∗(−) ⊗L h(k) →
h(−) is surjective and compatible with push-forwards and the intersection product,
so we can replace Ω by h. ∎

Acknowledgements he authors are very grateful to the referee for comments and
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