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Coagulation and growth of aerosol particles subject to isotropic turbulence has been
explored using direct numerical simulations. The computations follow the trajectories
of 262 144 initial particles as they are convected by the turbulent flow field. Collision
between two parent particles leads to the formation of a new daughter particle with
the mass and momentum (but not necessarily the energy) of the parent particles. The
initially monodisperse population of particles will develop a size distribution over
time that is controlled by the collision dynamics. In an earlier study, Sundaram &
Collins (1997) showed that collision rates in isotropic turbulence are controlled by
two statistics: (i) the radial distribution of the particles and (ii) the relative velocity
probability density function. Their study considered particles that rebound elastically;
however, we find that the formula that they derived is equally valid in a coagulating
system. However, coagulation alters the numerical values of these statistics from the
values they attain for the elastic rebound case. This difference is substantial and must
be taken into consideration to properly predict the evolution of the size distribution
of a population of particles. The DNS results also show surprising trends in the
relative breadth of the particle size distribution. First, in all cases, the standard
deviation of the particle size distribution of particles with finite Stokes numbers is
much larger than the standard deviation for either the zero-Stokes-number or infinite-
Stokes-number limits. Secondly, for particles with small initial Stokes numbers, the
standard deviation of the final particle size distribution decreases with increasing
initial particle size; however, the opposite trend is observed for particles with slightly
larger initial Stokes numbers. An explanation for these phenomena can be found by
carefully examining the functional dependence of the radial distribution function on
the particle size and Stokes number.

1. Introduction
The effect of turbulent coagulation on the evolution of the particle size distribu-

tion of an aerosol is not well understood, despite its importance in a broad range
of technological and naturally occurring flows. Examples of flows where turbulent
coagulation is likely to play an important role include such diverse topics as powder
manufacturing (Pratsinis, Zhu & Vemury 1996; Moody & Collins 2000) soot forma-
tion in turbulent flames (Fairweather et al. 1992) and raindrop formation from cloud
drop nuclei (Pinsky & Khain 1997; Shaw et al. 1998). In each example, turbulent fluc-
tuations can induce relative motion between neighbouring particles or drops causing
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46 W. C. Reade and L. R. Collins

an enhancement of the collision rate. Moreover, because the dynamic response of each
particle is a sensitive function of its size and response time, turbulent coagulation can
bias collision statistics causing a substantial change in the shape of the particle size
distribution.

Experimental observations of turbulent coagulation in the literature focus primarily
on the evolution of the particle size distribution (Adachi, Stuart & Fokkink 1994; Yuu
& Umekage 1996; Kusters, Wijers & Thoenes 1997). Due to limitations in the spatial
and temporal resolution of most experiments, direct measurement of the collision
rates between particle classes is not yet feasible. Furthermore, the time-dependent
particle (drop) size distribution cannot be related to the underlying collision kernel
without invoking ad hoc assumptions to make the so-called ‘inverse problem’ well
posed (Rosner & Tassopoulos 1991). Consequently, the relationship between the
turbulence parameters, particle properties and the associated collision kernel remains
poorly understood.

Direct numerical simulation (DNS) has recently begun to fill the void by pro-
viding an accurate ‘model-free’ representation of dilute turbulent aerosols. Early
studies focused on point-mass (collision-free) particles (Elghobashi 1991; Elghobashi
& Truesdell 1992; McLaughlin 1994). An important finding of the early work is that
particle concentrations in a turbulent flow field can become highly inhomogeneous
(Maxey 1987; Squires & Eaton 1991; Wang & Maxey 1993) when particle response
times are of the order of the Kolmogorov time scale. This effect results from lo-
cal regions of strong vorticity acting like centrifuges, forcing particles out of vortex
cores and into the high-strain regions that lie in between. As a consequence, local
concentrations of particles can be much higher than the average concentration. This
phenomenon, often referred to as ‘preferential concentration’, has been observed in
experiments as well (Eaton & Fessler 1994). The effect that preferential concentration
has on collision rates of finite-size particles was investigated by Sundaram & Collins
(1997). They found collision enhancements as large as 1–2 orders of magnitude for
particles with response times near the Kolmogorov time scale, as have other more
recent investigations (Zhou, Wexler & Wang 1998; Chen, Kontomaris & McLaughlin
1998).

The focus of the present study is on how turbulent coagulation affects the particle
size distribution of an initially monodisperse population of particles. We are concerned
with particle loadings that are dilute, and so we ignore the effect of the particles on
the fluid motion (so-called reverse coupling). This corresponds to the asymptotic
limit of zero particle loading. Of course, the simulations have a finite particle loading;
however, we are careful to remain in the regime of small mass loadings (see Sundaram
& Collins 1999 for an in-depth discussion of this point). The simulations are similar
to earlier ones of elastically rebounding particles by Sundaram & Collins (1997);
however, in the present simulations, particle collisions lead to coagulation events.
Particle populations are then monitored for arbitrary periods of time to determine how
the particle size distribution evolves. The goal of this investigation is to understand
how particle and turbulence properties affect the particle size distribution. We also
compare the results from the simulations to limiting solutions for particles with zero
response time (Saffman & Turner 1956; Wang, Wexler & Zhou 1998a; Brunk, Koch &
Lion 1997, 1998a, b) and infinite response time (Abrahamson 1975; Reade & Collins
1998).

The paper is organized as follows. Section 2 gives an overview of the governing
equations and the numerical methods used to solve them. The major findings of the
study are then presented in § 3, followed by conclusions in § 4.
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2. Governing equations
The domain of the simulations consists of a periodic cube of fluid of length 2π (in

arbitrary units). By periodic we mean that fluid or particles that leave one bounding
surface of the cube immediately enter the opposite bounding surface. Thus, the total
mass in the cube is conserved. To simplify the analysis of the results, the turbulence
is made statistically stationary by introducing large-scale forcing. This eliminates the
complication of time-dependent turbulence length and time scales. The governing
equations and numerical algorithms used to solve them are summarized below.

2.1. Fluid mechanics

We assume that the flow is incompressible and isothermal. Furthermore, we neglect
the effect of the suspended particles on the flow under the assumption of dilute
conditions. Consequently, the equations governing the velocity field and pressure are

∇ · u = 0, (2.1)

∂u

∂t
+ u · ∇u = −∇p

ρ
+ ν∇2u+ F , (2.2)

where u is the local fluid velocity, p is the pressure, ρ is the fluid density, ν is the
kinematic viscosity and F is a solenoidal forcing function. We use a forcing scheme
similar to the one described by Eswaran & Pope (1988).

The velocity field is updated in Fourier space using a pseudospectral algorithm
(Canuto et al. 1988). The time update of the Fourier amplitudes is accomplished
using a fourth-order Runge–Kutta method.

2.2. Aerosol particles

The trajectory of each particle is computed based on the analysis of Maxey & Riley
(1983). If the density of the particles is much larger than the carrier gas (typically we
expect ρp/ρ = O(100–1000), where ρp is the particle density), the equations reduce to

dx(i)
p

dt
= v(i)

p , (2.3)

dv(i)
p

dt
=
u(x(i)

p )− v(i)
p

τ
(i)
p

+
1

m
(i)
p

∑
j 6=i

F (ij), (2.4)

where x(i)
p and v(i)

p are the position and velocity of the centroid of the ith particle,

a(i), m(i)
p and τ(i)

p ≡ (ρp/ρ)(a(i))2/(9ν) are the radius, mass and response time of the

ith particle, and F (ij) is the impulsive force experience by the ith particle due to a
collision with the jth particle. A similar equation can be written and integrated for
each particle in the system.

The numerical algorithm used to update the position and velocity of each of
the particles must also check for possible collisions between particles. Owing to the
large number of possible colliding pairs in the system, a neighbourhood searching
algorithm, similar to the one described in Sundaram & Collins (1996), is used. We
define the collision time, ∆t(ij), as the time for particles i and j to make contact. Each
pair of particles that satisfies 0 6 ∆t(ij) 6 ∆t is added to the collision list. The collision
list is sorted in order of increasing ∆t(ij), and then each collision is enacted in turn.
Collisions are assumed to produce a coagulation event with 100% efficiency, yielding
a spherical daughter particle with the following properties (note that variables with a
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U ′ ε ν ρ L T η τη Re kmaxη

0.84 0.20 1.3× 10−2 1.0 1.65 1.98 5.6× 10−2 0.25 54.5 1.8

Table 1. Summary of turbulence conditions for all of the simulations (in arbitrary units, with the
exception of the final two terms which are dimensionless). U ′ is the turbulence intensity, ε is the
dissipation rate, ν is the kinematic viscosity, ρ is the density, L is the integral length scale, T is the
large-eddy turnover time, η is the Kolmogorov length scale, τη is the Kolmogorov time scale, Re
is the Reynolds number (based on the Taylor microscale), and kmaxη is a measure of the fine-scale
resolution of the simulation.

prime refer to properties of the daughter particle):

m′(i)p = m(i)
p + m(j)

p , (2.5)

v′(i)p =
m(i)
p v

(i)
p + m(j)

p v
(j)
p

m′(i)p
, (2.6)

where we assume that i < j and for accounting purposes assign the daughter particle
to the smaller index, i (the jth particle is removed from the system). Following each
collision update, the remaining pairs are again checked and re-sorted to ensure that
the newly-formed daughter particle does not change the outcome of the remaining
collisions. This process is continued until all of the colliding pairs in the list have
been updated.

The positions and velocities of the remaining (non-colliding) particles are then
advanced using a fourth-order Runge–Kutta algorithm with an exact treatment of
the linear terms (we use an integrating factor in the update). Fluid velocities are inter-
polated to particle centres using a fourth-order Hermite polynomial approximation.

2.3. Parameters

Isotropic turbulent flow is characterized by three parameters: the turbulence intensity,
U ′, the dissipation rate, ε, and the kinematic viscosity, ν, or equivalently one di-
mensionless parameter, the Reynolds number. Here we choose the Reynolds number
based on the Taylor microscale, defined as

Re =

√
15

νε
U ′2. (2.7)

In general, this quantity is limited by the number of nodes used in the simulation. In
this study we use 643 nodes for all of the runs, corresponding to Re = 54. The fluid
properties are fixed throughout the entire study. A summary of the fluid parameters
is given in table 1.

The introduction of an initially monodisperse population of particles into the system
adds three more parameters: the particle density, ρp, the number of ‘monomers’, N1,
and the monomer radius, a1. Note that superscripts refer to particle numbers whereas
subscripts refer to particle ‘categories’. For example at t = 0, the particles all belong
to the monomer category, and so a(i) = a1 for i = 1, ..., N1. The three variables that
characterize the particle phase can be expressed in dimensionless form as

φ ≡ 4πa3
1N1

3V
, (2.8)
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Run a1 ρp N1 St1 λ1 φ

1 4.9× 10−3 122 643 0.2 0.0875 5.2× 10−4

2 4.9× 10−3 183 643 0.3 0.0875 5.2× 10−4

3 4.9× 10−3 305 643 0.5 0.0875 5.2× 10−4

4 4.9× 10−3 427 643 0.7 0.0875 5.2× 10−4

5 2.45× 10−3 487 643 0.2 0.04375 6.5× 10−5

6 9.8× 10−3 30 643 0.2 0.175 4.2× 10−3

7 2.45× 10−3 170 643 0.7 0.04375 6.5× 10−5

8 9.8× 10−3 107 643 0.7 0.175 4.2× 10−3

Table 2. Summary of initial aerosol properties for the eight simulations performed in this study.
a1 is the monomer radius, ρp is the particle density, N1 is the initial number of monomers, St1
is the monomer Stokes number, λ1 is the monomer size parameter (made dimensionless by the
Kolmogorov length scale, η), and φ is the volume fraction of particles.

λ1 ≡ a1

η
, (2.9)

St1 ≡ 2

9

(
ρp

ρ

)
a1

2/ν√
ν/ε

=
2

9

(
ρp

ρ

)
λ1

2, (2.10)

where φ is the volume fraction of particles, V ≡ (2π)3 is the volume of the box, λ1

is a size parameter defined in terms of the Kolmogorov length scale, η ≡ (ν3/ε)1/4,
and St1 is the Stokes number, which is a dimensionless particle response time defined
in terms of the Kolmogorov time scale, (ν/ε)1/2. The parameters given in (2.7)–(2.10)
define the initial state of the simulations.

3. Results and discussion
The specific runs performed in this study are summarized in table 2. In general,

we focused on the effect of the initial Stokes number, St1, and the initial particle size
parameter, λ1. In each case, an initially monodisperse population of particles is first
allowed to equilibrate with the turbulence for eight large-eddy turnover times before
coagulation is initiated. During this equilibration period, particle collisions are treated
as hard-sphere elastic collisions. After eight large-eddy turnover times, coagulation is
initiated and the particle size distribution is monitored until 25% of the particles have
coagulated. Because of the different coagulation rates associated with each parameter
set, the time required to complete each run varies substantially. However, comparisons
are done at fixed percent coagulation so that intrinsic differences in the coagulation
kernel can be separated from extrinsic differences in the rates of evolution of each
system. Statistics of the particle and fluid phases are monitored at 5% intervals.

3.1. Particle size distribution

For an homogeneous system, it is possible to write a population balance for the
evolution of ni, defined as the number density of i-mers (e.g. n1 = N1/V , where V is
the volume of the system). Following Smoluchowski (1917) we have

dni
dt

=
1

2

i−1∑
j=1

Ki−j,j ni−jnj − ni
∞∑
j=1

Ki,jnj , (3.1)
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where Ki,j is the collision kernel for collisions between i-mers and j-mers. The first
term on the right-hand side accounts for additions to the i-mers due to collisions of
smaller particles that produce an i-mer while the second term accounts for losses from
this category due to collisions of an i-mer with anything. In principle, knowledge of
the collision kernels allows the particle size distribution to be computed from (3.1).
Sundaram & Collins (1997) derived the following generalized collision kernel for
spherical particles suspended in a turbulent flow field:

Ki,j = 4πaij
2gij(aij)

∫ 0

−∞
−wijPij(aij |wij) dwij , (3.2)

where aij ≡ (i1/3 + j1/3)a1 is the collision diameter, gij(r) is the two-particle radial
distribution function (hereafter referred to as the r.d.f.), wij ≡ (vi − vj) · (xi − xj) is
the relative velocity along the line of centres, and Pij(r|wij) is the relative velocity
p.d.f. (probability density function) conditioned on the separation distance, r. (Note
that (3.2) is a generalization of Sundaram & Collins 1997 for an arbitrary collision
between an i-mer and a j-mer. In addition, the relative velocity integral is rewritten
in accordance with the correction by Wang, Wexler & Zhou 1998b.) The above
relationship is not a closed expression for the collision kernel, as gij(r) and Pij(r|wij) are
not easily expressed in terms of the turbulence and particle parameters; nevertheless,
(3.2) provides a framework for examining the results of the DNS, as will be shown.

Under two limiting conditions it is possible to determine Ki,j . If we consider St1 � 1,
the classical result of Saffman & Turner (1956) applies, and we can write

Ki,j =

(
8π

15

)1/2 (ε
ν

)1/2

a3
ij . (3.3)

Although some questions remain concerning the numerical coefficient in (3.3) (Brunk
et al. 1997, 1998a, b; Wang et al. 1998a), there is general agreement on the func-
tional form of Ki,j , which ultimately is what controls the shape of the particle size
distribution.

In the other limit, St1 � 1, kinetic theory applies and the collision rate can be
expressed as (Abrahamson 1975)

Ki,j =

[
32π

3

(
Ei + Ej

2

)]1/2

a2
ij , (3.4)

where Ei is the average kinetic energy (per unit mass) of the i-mers. In general, Ei is
not known and must be solved for simultaneously. An analytical equation for Ei was
derived by Reade & Collins (1998) based on the assumption of Gaussian velocity
fluctuations. The resulting expression is

d(niEi)

dt
=

1

6

i−1∑
j=1

Kj,i−jnjni−jΦj,i−j − 7

6
Eini

∞∑
j=1

Ki,jnj − ni(Ei − Eeq
i )

τpi
, (3.5)

where

Φi,j =
(MiEi −MjEj)

2

(Ei + Ej)
+ 3(M2

i Ei +M2
j Ej), (3.6)

Mi =
i

(i+ j)
, (3.7)

and Eeq
i is the equilibrium kinetic energy of the i-mers in the surrounding turbulence.
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Figure 1. Particle size distributions for limiting cases of (a) zero Stokes number and (b) infinite
Stokes number at 5% – 25% coagulation.

Recall that we are interested in the limit τpi →∞, thus the last term on the right-hand

side of (3.5) represents an O(St−1
1 ) correction. In the results presented below, we have

neglected this term. Figure 1 shows the particle size distributions for the two limiting
solutions at 5%, 10%, 15%, 20% and 25% coagulation. Notice that the Saffman &
Turner kernel produces a broader distribution than the infinite-St kernel. This is due
to the higher power of aij in (3.3) as compared to (3.4). This causes each subsequent
generation to collide at a higher rate, accelerating the broadening of the distribution.

The size distribution of particles with finite initial Stokes number has been deter-
mined from the numerical simulations. The dependence of the distribution on the
initial Stokes number, St1, for fixed λ1 = 0.0875 is shown in figure 2. First, it is
apparent that the distributions for all of the finite-Stokes-number particles is much
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Figure 2. Particle size distribution from DNS at 25% coagulation for λ1 = 0.0875 and for
St1 = 0.2, 0.3, 0.5 and 0.7. Solid lines show limiting solutions for zero and infinite Stokes numbers
as indicated.

5% 10% 15% 20% 25%

St1 = 0.2 0.0733 0.1917 0.3690 0.7135 1.4504
St1 = 0.3 0.0753 0.1972 0.3733 0.6130 0.8212
St1 = 0.5 0.0753 0.1902 0.3399 0.5338 0.7766
St1 = 0.7 0.0744 0.1790 0.3174 0.4856 0.6857

p = 2 0.0544 0.1145 0.1846 0.2608 0.3523
p = 3 0.0511 0.1221 0.2040 0.3502 0.4311
p = 4 0.0562 0.1272 0.2178 0.3347 0.4878
p = 5 0.0575 0.1336 0.2359 0.3762 0.5728
p = 6 0.0590 0.1418 0.2614 0.4411 0.7281
p = 7 0.0609 0.1529 0.3019 0.5746 1.2168
p = 8 0.0633 0.1700 0.3912 0.9773 1.6780

Table 3. Standard deviation of the particle size distributions shown in figure 2, normalized by the
mean particle size, for λ1 = 0.0875, as a function of Stokes number and percent coagulation. Also
included for reference are standard deviations for the algebraic collision kernel proposed in (3.8)
for 2 6 p 6 8.

broader than either of the limiting solutions. Clearly, the dynamics of finite-inertia
particles are not well represented by either limit. Furthermore, there is a noticeable
trend that as St1 increases, the breadth of the distribution decreases. This can be
seen more quantitatively in table 3, which gives the standard deviation of each run
at different percentages of coagulation. The standard deviation achieves the largest
value for St1 = 0.2 and the smallest for St1 = 0.7.

It is tempting to try and at least correlate the DNS results by considering a collision
kernel of the form

Ki,j = Ca
p
ij , (3.8)

where C and p are fitting parameters. In particular, by adjusting the power p it
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Figure 3. Particle size distribution for the power-law collision kernel given in (3.8) at 25%
coagulation.

St1 λ1 5% 10% 15% 20% 25%

0.2 0.04375 0.0766 0.2140 0.4193 0.8836 —
0.2 0.0875 0.0753 0.1972 0.3690 0.7135 1.4504
0.2 0.175 0.0637 0.1614 0.3057 0.6231 0.7050

0.7 0.04375 0.0669 0.1518 0.2621 0.3935 0.5545
0.7 0.0875 0.0744 0.1790 0.3174 0.4856 0.6857
0.7 0.175 0.0689 0.1906 0.3646 0.6231 1.0905

Table 4. Standard deviation of the particle size distributions shown in figure 4, normalized by the
mean particle size, as a function of Stokes number, size parameter and percent coagulation. The
case of St1 = 0.2, λ1 = 0.04375 and 25% coagulation is not shown because the run was prohibitively
long.

is possible to control the breadth of the distribution (or equivalently its standard
deviation). Figure 3 shows particle size distributions that result from substituting (3.8)
into (3.1) using 2 6 p 6 8. Table 3 also summarizes the resulting standard deviations.
It is apparent that no power, p, can effectively correlate the DNS results for all time.
For example, to fit the St1 = 0.2 case, the power p must be larger than 8 to get
the 5% and 10% values, but it drops between 7 and 8 for the remaining percent
coagulation. Thus, its value should be viewed as a dynamic quantity. Furthermore,
the value of p required to correlate any of the finite-Stokes-number particles is much
greater than either of the two limiting powers (i.e. p = 3 and p = 2 respectively).
Clearly, something about the dynamics of real particles introduces new biases in
the collision kernel that are not well represented by (3.3), (3.4) or (3.8). In § 3.4, we
return to the question of the mechanism(s) responsible for broadening the particle
size distribution of finite-Stokes-number particles.

Figure 4(a) shows the dependence of the particle size distribution on the initial
size parameter, λ1, at St1 = 0.2. To accomplish this, the particle size and density are
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Figure 4. Particle size distribution from DNS for (a) St1 = 0.2 and (b) St1 = 0.7 and size
parameters as indicated at 20% coagulation.

varied simultaneously such that ρpa
2
1 is constant. Notice that the broadest distribution

occurs with the smallest initial particle and that the breadth decreases with increasing
particle size. Quantitative results for the standard deviation, summarized in table 4,
confirm these observations. The equivalent plot at St1 = 0.7 is shown in figure 4(b).
Remarkably, the trend in this case is reversed. That is, the narrowest distribution
occurs with the smallest-sized particle, and the breadth increases with increasing
particle size.

In order to explain these trends in the size distibutions, it is necessary to look
more closely at the behaviour of the two underlying statistics that control the
collision kernel, namely the r.d.f., gij(r) and the relative velocity p.d.f., Pij(r|wij). One
complication associated with a coagulating system is the large matrix of interactions
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that occur. For example, a system with K particle size categories has K2/2 interactions.
We cannot consider all of the interactions, due to the lack of adequate statistical
samples; however, it is possible to consider a few low-order interactions and generalize
the results to explain the trends observed in figures 2 and 4.

3.2. Radial distribution function

According to (3.2), the collision kernel is proportional to the r.d.f. at contact, gij(aij). It
is therefore useful to consider the dynamics of this function as the coagulation process
proceeds. For that purpose, it is convenient to define a residual radial distribution
function (r.r.d.f.) as

hij(r) ≡ gij(r)− 1, (3.9)

such that under the circumstance of a uniform distribution we expect that hij(r) ≈ 0.

Figure 5 shows the r.r.d.f.s for (a) h11(r/a11); (b) h22(r/a22); and (c) h12(r/a12) at
5% and 25% coagulation for particles with an initial Stokes number, St1 = 0.7, and
initial size parameter, λ1 = 0.0875. The abscissas are all normalized by the appropriate
collision diameter so that contact corresponds to unity on each plot. Included in
each graph is a curve corresponding to purely elastic collision with no coagulation
(solid line) and a curve corresponding to interpenetrating or ghost particles (i.e.
no interaction; dashed line). Notice that for all cases shown in figure 5(a), h11(1)
is much larger than zero, indicating that preferential concentration is significantly
enhancing the monomer–monomer collision rate. However, a comparison between
the coagulation and elastic rebound cases shows that the latter has a much larger
value at contact (by nearly an order of magnitude). The difference highlights the
importance of the boundary condition at contact on the evolution of the r.d.f. In
the coagulation case, two monomers at contact produce a dimer, thus lowering the
concentration of monomers at small separations. This reduces the coagulating h11

distribution function at small separation distances.

The r.r.d.f. curves for the dimer–dimer interaction are given in figure 5(b). The
larger scatter in these curves reflects the smaller statistical sample that is available.
Nevertheless, it is readily apparent that the r.r.d.f. for the coagulating system at 5%
coagulation is much greater than all of the other cases (including the elastic rebound
case), whereas the curve for 25% coagulation is slightly below the elastic rebound
case. The most likely explanation is that dimers initially form in the spatial vicinity of
the parent monomers, hence at short times they have an r.r.d.f. that is similar to the
monomer r.r.d.f. As time passes, the dimer r.r.d.f. eventually relaxes into equilibrium
and looks closer to the elastic rebound case (actually a little below for the same
reason that the coagulating r.r.d.f. for the monomer is reduced).

A result similar to that of the dimer–dimer r.r.d.f. is observed for the cross-
correlation, h12(r/a12). The relatively high value at 5% coagulation again reflects a
temporary disequilibrium that fades away with time. Also notice that the numerical
value of the cross-correlation r.r.d.f. is smaller than either autocorrelation. This results
from a suppression of the off-diagonal correlations due to slight mismatches in the
local concentration of particles with different response times. As a result, particles are
more likely to see other particles from their own size category than from other size
categories. Reade & Collins (2000b) have explored this phenomenon and have shown
that this ‘diagonalization’ of the collision kernel leads to a significant broadening of
the particle size distribution.
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Figure 5. Residual radial distribution functions: (a) h11(r/a11), (b) h22(r/(a22)), and (c) h12(r/(a12))
for rebounding particles, ghost particles and for coagulating particles at 5% and 25% coagulation.
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3.3. Relative velocity statistics

The second input to the collision kernel (see (3.2)) is the relative velocity p.d.f.,
Pij(r|wij). Unfortunately, statistics from the simulations are not sufficient to obtain
Pij(r|wij) directly, hence we define two complementary expectations for negative and
positive relative velocities as follows:

w−ij (r) = −
∫ 0

−∞
wijPij(r|wij) dwij , (3.10)

w+
ij (r) =

∫ ∞
0

wijPij(r|wij) dwij , (3.11)

where the collision kernel given in (3.2) can be expressed in terms of w−ij (r) as

Ki,j = 4πa2
ijgij(aij)w

−
ij (aij). (3.12)

We first focus on w−ij (r) since this is the statistic that arises in the collision kernel.
Figure 6 shows the evolution of (a) w−11(r), (b) w−22(r) and (c) w−12(r). Included in
these graphs are the statistics for interpenetrating ghost particles (dashed line) and
particles that undergo a hard-sphere collision without coagulating (solid line). Once
again, we see that the relative velocity, much like the r.r.d.f. before (see figure 5a),
is substantially different from the hard-sphere colliding system, suggesting that the
boundary condition modifies this statistic as well. However, coagulation enhances
the relative velocity compared to the elastic rebounding case. Indeed, this change
may partially compensate for the reduction in the r.r.d.f. shown in figure 5(a). We
see a similar result for w−22(r), although the scatter in the curve makes it difficult to
separate the trend from statistical noise. The curves for w−12(r) are somewhat puzzling
since they imply excellent agreement between rebounding and coagulating cases even
though both disagree significantly with the ghost particle run.

To gain greater insight into why w−11(r) for the coagulating system differs from the
elastic rebound case, it is useful to compare the statistics of inwardly moving particles
with those of outwardly moving particles, defined by w+

11(r). For the elastic rebound
case, all inwardly moving particles that collide produce outwardly moving particles
with precisely the same statistics; consequently, w−11(r) and w+

11(r) are identical at all
separation distances. In contrast, coagulation biases the two directions. Figure 7(a)
shows w−11(r/a11) and w+

11(r/a11) for a coagulating system. As r/a11 approaches unity,
the population of outwardly moving particles decreases. The reason is that inwardly
moving monomers that collide produce a dimer that is no longer counted. Thus,
coagulation imposes a bias that strongly favours inwardly moving particles over out-
wardly moving particles (see the p.d.f. in figure 7b). Furthermore, as r/a11 approaches
unity, w+

11(r) decreases since the population of outwardly moving particles in this limit
arises solely from particle pairs undergoing near misses at glancing angles that, by
definition, have a vanishingly small radial component. Conversely, inwardly moving
particles are biased towards faster moving particles, making w−11(r) larger than it is
for the elastic rebound case.

3.4. Explanation for trends in the particle size distribution

As noted earlier, there is a large matrix of particle interactions that ultimately control
the evolution of the particle size distribution. Nevertheless, by examining a few low-
order interactions, it is possible to explain qualitatively the trends observed earlier in
the particle size distributions. From the results presented in § 3.2 and § 3.3, we see that
over the range of Stokes numbers considered in this study, the effect of the r.d.f. on
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Figure 6. Average relative velocities normalized by their respective r.m.s. velocities: (a) w−11/
√

2E1/3,

(b) w−22/
√

2E2/3, and (c) w−12/
√

(E1 + E2)/3 for rebounding particles, ghost particles and for coag-
ulating particles at 25% coagulation.
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Figure 7. (a) Relative velocity of inwardly moving particles (w−11) and outwardly moving particles
(w+

11), normalized by the r.m.s. velocity, as a function of separation distance for a coagulating system.
(b) Probability density function of relative velocities at r/a11 = 1.1. Here, the break in symmetry
associated with coagulation is readily apparent.

the collision kernel is numerically greater than the effect of variations in the relative
velocity statistics. Thus, for the sake of simplicity, we focus this discussion on the
contribution the r.d.f. makes to the collision kernel. This assumption is reasonable for
particles with small-to-moderate Stokes numbers. Furthermore, we limit the discussion
to the diagonal r.d.f. terms, i.e. gii(aii). As noted earlier, off-diagonal terms are generally
smaller in magnitude and so have less of an influence on the particle size distribution.
Because our goal is only to explain the qualitative trends in the DNS, we feel justified
in considering only the dominant contributions to the collision kernel.

First we consider the trend in figure 2 which shows that a smaller initial Stokes
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Figure 8. (a) Collision enhancement factor for like particles with a density ratio ρp/ρ = 60 and 315
as a function of Stokes number. Solid circles represent a progression of monomer, dimer, trimer, etc.
for particles with an initially small Stokes number (St1 = 0.1). Open circles represent the equivalent
for a particle with a larger initial Stoke number (St1 = 0.7). (b) ∆g (see (3.13) for the definition) as
a function of the monomer Stokes number.

number leads to a broader distribution. If we define the initial Stokes number of
the monomer as St1, then the Stokes number of any given i-mer is by definition
Sti = i2/3St1. Figure 8(a) shows the monodisperse r.d.f. for a rebounding system with
two particle densities as indicated (taken from the correlations developed by Reade
& Collins 2000a). Although these curves are not accurate for a coagulating system,
the qualitative features remain the same. In particular, notice that the curve reaches
a maximum around St = 0.5. The circles shown on the graph represent the r.d.f.
for a monomer, dimer, trimer, etc. for each curve. Particles starting with a relatively
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small Stokes number (solid line and solid circles) have several generations of daughter
particles with collision kernels that are enhanced relative to parent particles. The trend
continues until the peak in the curve is reached (corresponding to i = 6 in this case).
This enhancement in the collision kernel resulting from the r.d.f. tends to broaden the
distribution. Equivalently, this can be thought of as increasing the effective power, p,
in (3.8), thus broadening the distribution. In contrast, particles starting with a larger
initial Stokes number (dashed line and open circles) experience a diminished collision
kernel for each subsequent generation. This trend slows down the broadening the
particle size distribution, or equivalently reduces the effective power p of the collision
kernel. Thus, particles with small initial Stokes numbers tend to have broad particle
size distributions.

The second set of results shown in figure 4 are somewhat subtler to explain. In
particular, understanding how the trend reverses at different initial Stokes numbers
requires an understanding of how the r.d.f. depends on both particle size and Stokes
number. To facilitate this, we define a variable ∆g as follows:

∆g ≡ g22(2
1/3 × 0.04375, 22/3 × St1)/g11(0.04375, St1)

g22(21/3 × 0.175, 22/3 × St1)/g11(0.175, St1)
. (3.13)

∆g is effectively a measure of the ‘acceleration’ in the dimer-collision kernel relative
to the monomer-collision kernel for small particles (numerator) compared to large
particles (denominator). When ∆g is greater than unity, small particles are ‘accelerated’
faster (i.e. produce a broader size distribution) than large particles. Conversely, when
∆g is less than unity, the opposite is true.

As noted earlier, the r.d.f. is a sensitive function of both the Stokes number and
the size parameter λ. In particular, the r.d.f. increases with decreasing size parameter
at a given Stokes number because smaller particles ‘pack’ more tightly than larger
particles due to their smaller excluded volumes. The effect is captured in the correlation
developed by Reade & Collins (2000a). Figure 8(b) shows ∆g as a function of St1
based on this correlation. Notice that small particles experience a stronger acceleration
at low St1 whereas large particles are favoured at large St1. This is consistent with
the results shown in figure 4 which show broader distributions for small particles at
lower St1 and large particles at higher St1.

An explanation for the trend in figure 8 can be found by considering the leading-
order term in the Reade & Collins (2000a) correlation

gii(λi, Sti) ≈ C(St)λ−p(St), (3.14)

where C(St) and p(St) are empirical functions that each have a maximum around
St ≈ 0.5. Substituting (3.14) into (3.13) yields

∆g ≈ C(22/3St1)(2
1/30.04375)−p(22/3St1)

C(St1)(0.04375)−p(St1)
× C(St1)(0.175)−p(St1)

C(22/3St1)(21/30.175)−p(22/3St1)

=

(
0.04375

0.175

)[p(St1)−p(22/3St1)]

. (3.15)

As [p(St1) − p(22/3St1)] changes sign near St1 = 0.5, ∆g changes from being greater
than unity for St1 < 0.5 to being less than unity for St1 > 0.5

To summarize, a qualitative understanding of the results reported in § 3.1 has
been obtained by considering only a few low-order interactions. Clearly, a first-order
analysis such as this cannot be expected to quantitatively explain all of the details
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of the particle size distribution since we have neglected off-diagonal contributions
to the r.d.f. and have not taken into account relative velocity statistics. Both will
probably influence the longer-time behaviour of the size distribution. Nevertheless, a
remarkably robust picture emerges from these simple considerations that appears to
explain all of the trends observed in the simulations.

4. Conclusions
This paper presented a numerical study of coagulating particles in stationary,

isotropic turbulence. The fluid velocity was updated using a standard pseudospectral
algorithm and the trajectory of each particle was calculated in a Lagrangian sense.
Crossing trajectories lead to coagulation events that produced a daughter particle
with the mass and linear momentum of the colliding parents. By following a large
population of these particles (initial concentrations of 262 144 particles), it was pos-
sible to determine the particle size distribution over time. The study focused on the
effect of the initial particle size and Stokes number.

Bounding solutions for the limit of zero or infinite Stokes number proved to be
ineffective in describing the evolution of finite-Stokes-number particles. In general,
particles with finite Stokes number yielded particle size distributions that were much
broader than either of the two limits. Likewise, fitting the collision kernel to a simple
algebraic form also proved to be ineffective.

Explanations for the behaviour of the particle size distribution could only be found
by examining the two underlying statistics that control the collision kernel, namely the
r.d.f. and the relative velocity p.d.f. For particles with relatively small Stokes numbers,
the r.d.f. was found to have the greatest influence on the early-time behaviour of the
particle size distribution. In particular, preferential concentration leads to a strong en-
hancement of like-particle collisions and only a modest enhancement of unlike-particle
collisions. The combination of effects leads to a broadening of the particle size distribu-
tion. By considering the functional dependence of the r.d.f. on the particle size parame-
ter and Stokes number, it was possible to explain the relative trends seen in the particle
size distribution. Increasing the particle Stokes number tends to decrease the breadth
of the particle size distribution. In contrast, the trend with particle size depends on the
Stokes number. At small Stokes numbers, small particles produce the largest variance
in the distribution, whereas at large Stokes numbers, small particles produce the small-
est variance. The level of analysis presented in § 3.4 may be sufficient to predict trends
even in complicated systems. For example, based on the simple arguments presented
earlier, one can determine the direction the breadth of a particle size distribution will
take given a change in a system parameter such as the local dissipation rate, ε.

The above results combined with a more detailed analysis of the r.d.f. suggests that
a quantitative model for the collision kernel in a coagulating system must take into
account the effect of coagulation on the r.d.f. and the relative velocity p.d.f. Moreover,
a dynamic model based on evolution equations is ultimately required to describe the
transient nature of the r.d.f.s. Such a model, combined with the population balance
given in (3.1), can be used to describe the evolution of the particle size distribution
under all conditions.

The authors gratefully acknowledge financial support from the National Science
Foundation, Grant CTS-9417527. All computations were performed on IBM SP2
nodes that were provided by generous support from the IBM Shared University
Research (SUR) program.
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