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Abstract
Given a graph G and a bijection f : E(G)→{1, 2, . . . , e(G)}, we say that a trail/path in G is f -increasing
if the labels of consecutive edges of this trail/path form an increasing sequence. More than 40 years ago
Chvátal and Komlós raised the question of providing worst-case estimates of the length of the longest
increasing trail/path over all edge orderings ofKn. The case of a trail was resolved byGraham andKleitman,
who proved that the answer is n− 1, and the case of a path is still wide open. Recently Lavrov and Loh pro-
posed studying the average-case version of this problem, in which the edge ordering is chosen uniformly
at random. They conjectured (and Martinsson later proved) that such an ordering with high probability
(w.h.p.) contains an increasing Hamilton path.

In this paper we consider the random graph G=Gn,p with an edge ordering chosen uniformly at ran-
dom. In this setting we determine w.h.p. the asymptotics of the number of edges in the longest increasing
trail. In particular we prove an average-case version of the result of Graham and Kleitman, showing that
the random edge ordering of Kn has w.h.p. an increasing trail of length (1− o(1))en, and that this is tight.
We also obtain an asymptotically tight result for the length of the longest increasing path for random
Erdős–Renyi graphs with p= o(1).

2010 MSC Codes: Primary 05C38; Secondary 05C80

1. Introduction
A trail in a graph G is a sequence of vertices v1, . . . , vt such that vi is adjacent to vi+1 for all i, and
no edge appears more than once. A path is a trail where no vertex is repeated. Given a graphG and
a bijection f : E(G)→{1, 2, . . . , e(G)}, we say that a trail in G whose edges (in consecutive order)
are (e1, e2, . . . , ek) is f -increasing if the labels f (e1), f (e2), . . . , f (ek) form an increasing sequence.
Let m(G) denote the largest integer k for which every bijection f : E(G)→{1, 2, . . . , e(G)} gives
an f -increasing path of length k, and letm∗(G) denote the largest integer k for which every such f
gives an f -increasing trail of length k.
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The problem of proving worst-case estimates for the length of the longest increasing trail/path
in graphs goes back more than 40 years to Chvátal and Komlós [5]. In 1971 they asked how to
determinem(Kn) andm∗(Kn) for the complete graph Kn on n vertices. For trails this problem was
resolved by Graham and Kleitman, who showed that m∗(Kn)= n− 1 unless n ∈ {3, 5} (in these
cases m∗(Kn)= n). Graham and Kleitman [7] actually proved a lower bound for general graphs.
Namely, they showed that every graph of average degree d satisfies m∗(G)� d (in particular, this
impliesm∗(Kn)� n− 1).

The problem of determining m(G) and m∗(G) for a general graph G appears to be quite
challenging. In particular, even in the case G=Kn, the lower and upper bounds for the length
of the longest increasing path are still quite far apart. An old lower bound of Graham and
Kleitman [7], of order

√
n, was improved only in 2015 by Milans [11] to m(Kn)� n2/3/ logC n.

Very recently, a nearly linear lower bound m(Kn)� n1−o(1) was proved in [3]. For the upper
bound, an old construction of Calderbank, Chung and Sturtevant from the 1980s [4] gives
m(Kn)� (1+ o(1))(n/2), and there have been no improvements since then. There are also many
results considering m(G) and m∗(G) for other graphs rather than Kn. The interested reader is
referred to [1, 12, 13, 14, 16] and the references therein.

Rather than studying the worst-case scenario, it is also natural to investigate the average case
of the increasing trail/path problem, i.e. with respect to random edge-labelling. Let G be a graph
on n vertices and let f : E(G)→{1, . . . , e(G)} be a bijection chosen uniformly at random. What
can we say about the length of the longest f -increasing trail/path in G? This interesting ques-
tion was raised by Lavrov and Loh [8]. They conjectured, and later Martinsson [9] proved, that
the uniform random edge ordering of Kn w.h.p. (i.e. with probability tending to 1 as n tends
to infinity) contains an increasing path of length n− 1, which is obviously best possible. What
about the longest increasing trail in the random edge ordering of Kn? In this paper we answer this
question.

Our results are more general and we consider increasing path/trail problems in the random
graph setting. Let G=Gn,p be a graph on n vertices in which every pair xy is an edge randomly
and independently with probability p. Note that when p= 1 we get the complete graphKn. Expose
the edges of G=Gn,p and let f : E(G)→{1, 2, . . . , e(G)} be a random bijection. What can one say
about the asymptotics of the length of the longest increasing path/trail for typical G and f ? To
make the discussion a bit more formal, let Xk,p and Yk,p be random variables which count the
number of increasing paths and trails, respectively, of length k inG=Gn,p with respect to random
edge ordering. It is easy to check that

E[Xk,p]=
(

n
k+ 1

)
(k+ 1)!pk 1

k! ,

and

E[Yk,p]� nk+1pk 1
k! .

Using Stirling’s formula one can check that for any fixed ε > 0 and p=ω( log n/n), the expec-
tation of Yk,p tends to 0 for k� (1+ ε)enp. By Markov’s inequality, this implies that w.h.p. the
longest increasing trail has length at most (1+ ε)enp. Our first theorem shows that this bound is
(asymptotically) tight.

Theorem 1.1. Let ε > 0 be fixed, let p=ω( log n/n), G=Gn,p and let f : E(G)→{1, . . . , e(G)} be
a uniformly random edge ordering of G. Then, w.h.p. the longest increasing trail has length at least
(1− ε)enp.

When p= 1, this theorem gives an analogue for trails of the above-mentioned result of
Martinsson, showing that the longest increasing trail in the random edge ordering of Kn w.h.p.
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has length at least (1− ε)en. Compared with the result of Graham and Kleitman it shows that a
random ordering differs by a factor of e from the worst-case scenario.

For p= o(1) our proof gives a bit more. In this regime we can actually produce not only a trail
but a path of a similar length. This gives the following result, which is tight, since the longest
increasing path is no longer than the longest trail.

Theorem 1.2. Let ε > 0 be fixed, let log n/n� p� 1, let G=Gn,p, and let f : E(G)→{1, . . . , e(G)}
be a uniformly random edge ordering of G. Then w.h.p. the longest increasing path has length at least
(1− ε)enp.

Note that the above theorem does not cover the regime of p being a constant. The case p= 1 is
covered by the main result in [11], and unfortunately, for p=�(1) our proof only gives paths of
length around (1− e−ep − o(ep))n. It would be interesting to derive an (asymptotically) optimal
result for constant p as well, and we leave this as an open problem.

Finally we remark that for the very sparse regime when p= c/n, c> 1, it is easy to prove that
the answer is k= (1− o(1))( log n/ log log n)=ω(np). Indeed, it is well known that w.h.p. Gn,p
contains a path of length �(n) (for more details, see e.g. [2]). Expose G, fix such a path and cut
it into�(n/k) edge-disjoint subpaths each of length k=�( log n/ log log n). Now, by exposing f ,
the probability for each such subpath to become increasing is exactly 2/k! (there are two possible
orientations) and the subpaths are independent with respect to the property ‘being increasing’.
Now, observe that as the expected number of increasing subpaths is�(n/(k · k!))=ω(1), one can
use Chernoff ’s bound (or the law of large numbers) to conclude that w.h.p. at least one such sub-
path is increasing. On the other hand, if k= (1+ ε)( log n/ log log n) thenE[Yk,p]= o(1). Thus, by
Markov’s inequality, w.h.p. there is no increasing trail (and hence no increasing path) of length k.

2. Auxiliary results
In this section we state (and prove) a few lemmas that we need in the proofs of our main results.
First, we show that a typical Gn,p does not contain too many ‘short’ cycles. All the results are
asymptotic as n tends to infinity.

Lemma 2.1. Let p� 1/n. Then, w.h.p. the number of cycles of length at most k in Gn,p is at most
(np)k+1.

Proof. Let Xk denote the random variable counting the number of cycles of length at most k in
Gn,p. Clearly,

E[Xk]=
k∑
�=3

(
n
�

)
· (�− 1)!

2
p� �

k∑
�=3

(np)� · 1
2�

� (np)k.

Since p� 1/n, the result now follows fromMarkov’s inequality.

For 0�m�
(n
2
)
, let Gn,m be a random graph on n vertices with exactly m edges, chosen uni-

formly at random among all such graphs. We make use of Lemma 2.1 in order to prove that Gn,m
typically contains a ‘large’ subgraph with ‘large’ girth and ‘large’ minimum degree.

Lemma 2.2. Let log0.5 n/n� p� log2 n/n and m= (n
2
)
p. Then, the random graph Gn,m w.h.p.

contains a subgraph H ⊆Gn,m such that:

(i) |V(H)|� (1− o(1))n,
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(ii) δ(H)� (1− o(1))np, and
(iii) H has girth at least log n/2 log np.

Proof. It is more convenient to work with the Gn,q model. Let q= p− p/ log2 n, and observe that
w.h.p. we have e(Gn,q)�m (this follows immediately fromChernoff ’s bounds). Therefore, one can
easily coupleGn,q as a subgraph ofGn,m (by simply addingm− e(Gn,q) randomly selected edges to
Gn,q). To prove the lemma, we show thatGn,q w.h.p. contains a subgraphH satisfying the required
properties; then, w.h.p. H ⊆Gn,q ⊆Gn,m. Note that as p= (1+ o(1))q, we can exchange them in
our computations to obtain properties (i)–(iii). with respect to p instead of q, so let G=Gn,q.

First note that w.h.p. e(G)= (1/2+ o(1))n2q. Fix k< log n/(2 log np). From Lemma 2.1 it fol-
lows that w.h.p. we have at most (nq)k+1 cycles of length at most k in Gn,q. Therefore, by deleting
one vertex from each such cycle we obtain a subgraph G′ satisfying properties (i) and (iii) of the
lemma. Let V ′ denote the set of deleted vertices. By construction, w.h.p. we have

|V ′|� (nq)k+1 = exp ((k+ 1) log nq)� exp
(
1
2
log n+ log nq

)
�
√
n log2 n. (2.1)

Observe that as every subgraph of a graph of girth at least k also has girth at least k, it is enough
to show that there exists H ⊆G′ with δ(H)� (1− o(1))nq and with |V(H)|� (1− o(1))n. To do
so, fix ε > 0 and consider the following process. Let V ′′ be the set of all vertices in G with degree
at most (1− ε)nq and let V0 =V ′ ∪V ′′. Now, as long as there exists a vertex v in V(G) \Vi with
degree at least εnq into Vi, do the following. Let v be such a vertex, and define Vi+1 :=Vi ∪ {v}.
We show that this process must terminate after at most (say) �= n/ log n iterations. To this end
let us note that by Chernoff ’s bounds and Markov’s inequality, one can easily obtain that w.h.p.

|V ′′| = n · exp (−�(nq))� n
elog0.4 n

. (2.2)

Using (2.1) and (2.2), we see that after � steps we obtain a set V� with at most |V0| + �� 2� ver-
tices, and with at least εnq� edges. We show that this is impossible in Gn,q. Indeed, given a subset
X⊆V(Gn,q) of size �� |X|� 2�, the number of edges in Gn,q[X] is distributed as Bin(

(|X|
2
)
, q).

Therefore, the probability of having at least εnq� edges in Gn,q[X] is at most( |X|2
εnq�

)
qεnq� �

(
e|X|2q
εnq�

)εnq�
�

(
�

n

)εnq�/2
� e−0.5εnq� log n/�.

Now, by applying the union bound to all subsets of sizes between � to 2�, as there are at most
2�

( n
2�

)= eO(� log n/�) of them, we obtain that w.h.p. there is no such subset V�.
In order to complete the proof, let s be the last step of the above process, and let H :=G′ \Vs.

Then we can easily check that w.h.p.

|V(H)|� n
(
1− 3

log n

)
, δ(H)� (1− 2ε)qn= (1− 2ε− o(1))pn

and H has girth larger than k (since it is a subgraph of G′).

The next lemma, which might be of independent interest, studies increasing paths in random
edge-labellings of trees. Before stating it, we need to introduce some notation. Let Tk

D be the rooted
D-ary tree with k levels, that is, there is a root r of degree D, and each of its neighbours has D
descendants and so on for k levels, where the last level are leaves. Here we prove an asymptotically
best possible dependence between k and D for which a random labelling of the edges of Tk

D w.h.p.
has an increasing path from the root to some leaf. Our proof relies on standard methods in the
study of branching random walks. More precisely, we apply a second moment method and use a
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truncation argument similar to that in [6, 10], for example. Here, the terminology w.h.p. refers to
the asymptotic behaviour as D tends to infinity.

Lemma 2.3. Fix ε > 0, and let k� (1− ε)eD. Then, a random uniform labelling of E(Tk
D) w.h.p.

results in an increasing path from r to some leaf.

Proof. Note that it is enough to consider the case where ε is small (for larger values, we actu-
ally prove a stronger statement). It will be convenient for us to consider a random bijection
f : E(Tk

D)→{1, . . . , e(Tk
D)} as follows. For every edge e ∈ E(Tk

D) we assign a random variable X(e),
uniform in [0, 1], where all the variables are independent. With probability 1 all the labels are
distinct and therefore the X(e) naturally define f by assigning the labels {1, . . . , e(Tk

D)} to the
edges according to the natural ordering of the X(e). Clearly, the obtained f is a uniformly chosen
bijection.

Let us first observe that the constant e in the lemma is best possible. Indeed, the expected
number of increasing paths from the root to some leaf is Dk/k! ≈ (eD/k)k, and this clearly goes to
0 whenever k� (1+ ε)eD.

Now, consider the number Y of paths from the root to some leaf of Tk
D along which the labels

are increasing and satisfy X(e)< 1− ε/2. In order to prove the result it suffices to show that there
exists a constant c> 0 (that may depend on ε) such that, for k� (1− ε)eD,

P[Y � 1]� c
k3/2

. (2.3)

Indeed, if we replace Y with a random variable Y ′ which counts the number of paths from the
root to some leaf of Tk

D along which the labels are increasing and satisfy X(e)> ε/2, we obtain
that Y ′ has the exact same distribution as Y . Moreover, w.h.p. the root of Tk+2

D has at least ε2D2/9
paths of length 2 with labels 0< a< b< ε/2 (the expected number of such paths is (D2/2)(ε/2)2).
Then, the estimate above shows that each of these short paths has probability larger than c/k3/2
of being extendable into an increasing path to some leaf of Tk+2

D . Since these trees are dis-
joint, by independence, we obtain that w.h.p. there exists an increasing path from r to some leaf
of Tk+2

D .
Let us now turn to the proof of (2.3). Applying the second-moment method to Y naively fails,

since if we condition on two paths with several common edges from the root to some leaves to be
increasing, the labels along the common edges will be very different from two independent paths
conditioned to be increasing. This leads to a dominant contribution to the second moment from
paths which are very different from typical increasing paths (it is worth mentioning that the naive
approach gives a constant 2 instead of e in the lemma, which is already non-trivial).

To overcome this problem, we introduce the notion of ‘good paths’, which are increasing paths
with some additional restrictions on the labels. Let (X1, . . . , Xk) be the labels along a fixed path
from the root to some leaf of Tk

D. For δ = ε/2, say that this path is good if the labels satisfy the
following.

(1) Monotonicity: X1 � · · ·� Xk,
(2) The last label satisfies 1− δ − 1/k� Xk � 1− δ.
(3) A lower bound: for every 1� i� k, Xi � (i/k)Xk.

We will apply a second moment method to show that the number Z of good paths is positive with
probability larger than c/k3/2. The result will then follow from the fact that Y � Z (which holds
deterministically).

We begin with the computation of the probability that a fixed path is good. We use a standard
trick which is based on Spitzer’s lemma (see [15]). Consider the labels (X1, . . . , Xk) along the path

https://doi.org/10.1017/S096354831900018X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831900018X


Combinatorics, Probability and Computing 27

to some fixed leaf of Tk
D. Conditional on the event X1 � · · ·� Xk and on the value of Xk, the law

of the increments Ii = Xi+1 − Xi (where X0 = 0) is invariant under cyclic permutations. In other
words, under P[· | X1 � · · ·� Xk, Xk] we have

(I1, . . . , Ik)
law= (Ic(1), . . . , Ic(k)) (2.4)

for every cyclic permutation c of {1, . . . , k}. Now it is easy to show (see [15]) that for any outcome
there exists exactly one cyclic ordering of these increments with∑

i�j
Ii �

j
k
Xk for all j.

Hence, the conditional probability of (3) holding is 1/k.
From the discussion above we have

P[the path is good]= 1
k
P

[
X1 � · · ·� Xk, 1− δ − 1

k
� Xk � 1− δ

]

= 1
k
· 1
k!

[
(1− δ)k −

(
1− δ − 1

k

)k]
. (2.5)

Note that (1− δ)k − (1− δ − 1/k)k � (1− δ)k and that for sufficiently small δ we have

(1− δ)k −
(
1− δ− 1

k

)k
= (1− δ)k

(
1− 1

(1− δ)k
)k

� (1− δ)k(1− e−(1+o(1))/(1−δ))

� (1− δ)k
2

.

Therefore, combining these estimates with (2.5) we find that
1

2k · k! (1− δ)
k � P[the path is good]� 1

k · k! (1− δ)
k. (2.6)

Since the expectation of Z is equal to Dk · P[the path is good], we obtain, using Stirling’s
formula, that

E[Z]� Dk

2k · k! (1− δ)
k � CQkk−3/2, (2.7)

where De(1− δ)/k, and C is some absolute constant.
We now bound the second moment of Z. Consider two paths in Tk

D, say (e1, . . . , ek) and
(h1, . . . , hk). Suppose the two paths have k− i common edges, so that ek−i = hk−i is the last
common edge. If the e path is good, then

X(ek−i)�
k− i
k

X(ek)�
k− i
k

(
1− δ− 1

k

)
.

Conditionally on the e path being good, the h path is good with probability smaller than

P

[
k− i
k

(
1− δ − 1

k

)
� X(hk−i+1)� · · ·� X(hk)� 1− δ

]
.

The variables are increasing with probability 1/i! and are all in the necessary interval with
probability at most(

(1− δ)−
(
1− i

k

)(
1− δ − 1

k

))i
�

(
i(1− δ)+ 1

k

)i
� e1/(1−δ)

(
i(1− δ)

k

)i
.
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Hence,

P[h is good | e is good]� e1/(1−δ) 1
i!

(
i(1− δ)

k

)i
� e1/(1−δ)

(
e(1− δ)

k

)i
.

The number of pairs of paths with k− i common edges is bounded by Dk+i, so

E[Z2]�
k∑

i=0
e1/(1−δ)Dk+i

P[Ek]
(
e(1− δ)

k

)i
= e1/(1−δ)E[Z]

k∑
i=0

Qi. (2.8)

Recall that we set δ = ε/2. In this case we have that

Q� 1− δ
1− ε > 1,

which implies that the sum is within a constant factor with its last term. Using (2.7) we obtain

E[Z2]=O(E[Z]2k3/2) (2.9)
(with constant depending on ε). The Cauchy–Schwarz inequality implies that for some C′ > 0 we
have

P[Z� 1]� E[Z]2

E[Z2]
� 1

C′k3/2
. (2.10)

Since Y � Z deterministically, the equation above trivially implies equation (2.3).

Remark. The bound of c/k3/2 in (2.3) can be improved to c/k by applying Stirling’s formula to i!
above.

3. Proof of Theorem 1.1
In this section we prove our main result. As noted in the Introduction (before the statement of
the theorem), the upper bound follows by a simple union bound, so we only need to address the
lower bound. The main idea is to partition the graph into several subgraphs Gi with consecutive
values of edge weights. In each of these Gi, we find with high probability many reasonably long
increasing trails. In order to combine these, we leave aside a smaller number of the edges between
the vertices of Gi and Gi+1. We then argue that with high probability the end of any trail in Gi is
connected to the beginning of some trail in Gi+1 by one of these edges. This allows us to stitch the
individual trails together into a single long trail. We proceed to make this precise.

Fix ε > 0 and p=ω( log n/n). Let G=Gn,p and let f be a random bijection as in the assump-
tions of the theorem. Our goal is to show that w.h.p. G contains an f -increasing path of length
at least (1− ε)enp. Note that we may further assume that p� 1− ε/10. Indeed, assume p is
larger, and replace it with p′ = 1− ε/10. This gives us an increasing trail of length at least
(1− ε)enp′ � (1− 2ε)np, and by rescaling we obtain the result.

Before describing our algorithm, we need some preparation. First, expose the number of
edges m= e(Gn,p) (but not the edges themselves). Note that w.h.p. we have m= (1/2+ o(1))n2p.
Second, note that we can choose t := t(n), a := a(n), and b := b(n) such that

t := (1− o(1))
np

log0.5 n
, a= n log log n, b= (1− o(1))

n
2
log0.5 n and (a+ b)t=m.

Partition [m] into 2t consecutive and disjoint intervals [m]= I1 ∪ J1 ∪ I2 ∪ J2 · · · ∪ It ∪ Jt in such
a way that |Ii| = a and |Ji| = b for all i. For each i, let Hi and Gi be the subgraphs of Gn,p induced
by the edges with labels from Ii and Ji, respectively. Clearly, Gi

law= Gn,b and Hi
law= Gn,a for all i,

where for a fixed integer x, Gn,x is a graph on n vertices with exactly x edges, chosen uniformly at
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random among all such possible graphs (note that these graphs have disjoint edge-sets, and so are
not independent).

Now we are ready to describe our algorithm. The algorithm consists of t rounds, where each
round consists of two steps, one of which is performed within Gi and the other within Hi. After
each round i we obtain an increasing trail Ti for which:

(1) Ti−1 ⊆ Ti (i.e. Ti−1 is an initial segment of Ti),
(2) E(Ti)⊆⋃i

j=1 (E(Gj)∪ E(Hj)),
(3) either Ti = Ti−1, and in this case we consider the ith round as a failure, or the length of Ti,

denoted as �(Ti), satisfies �(Ti)� �(Ti−1)+ s, where s will be determined below.

Our goal is to prove that w.h.p. �(Tt)� (1− ε)enp, which is equivalent to

�(T0)+
t∑

i=1
(�(Ti)− �(Ti−1))� (1− ε)enp.

Initially, T0 =∅. Suppose that we are at the beginning of round i� 1, and T := Ti−1 = v1 · · · vx
satisfies the three properties defined above. Expose all the edges ofGi without assigning them with
the exact labels of f (recall that all its labels are taken from the interval Ji). By Lemma 2.2 we know
that w.h.p. there exists a subgraphG′i ⊆Gi with |V(G′i)|� (1− o(1))n, δ(G′i)� d := (1− ε/2)2b/n
and with girth at least (say) k= log0.9 n. Therefore, all the vertices in G′i serve as roots of some
d-ary tree of depth k. Note that if such a G′ does not exist, then this round is a failure and we set
Ti = T.

Now, exposing the exact values of f on E(G′i), by Lemma 2.3 andMarkov’s inequality we obtain
that w.h.p. there exists a subsetUi of vertices of size (1− o(1))n, such that for all u ∈Ui there exists
an f -increasing path of length (1− ε/2)ed with u as its starting point. Again, if there is no such set
then we declare the ith round a failure and set Ti = T. As all its labels are taken from Ji, it follows
that all its labels are larger than the labels of T. Finally, expose the edges (and labels) of Hi. In the
following claim we show that w.h.p. there exists a vertex u ∈Ui for which vxu ∈ E(Hi) (if not, we
declare this round a failure). Suppose it is true, and let Q denote an f -increasing trail in G′i with u
as its starting point. Define Ti = v1 · · · vxuQ and observe that T is an f -increasing trail of length
at least x+ (1− ε/2)ed which extends Ti−1. Therefore, we can choose s= (1− ε/2)ed in order to
satisfy property (2). In the case Ti−1 =∅, the ‘gluing’ step is useless and we can simply set Ti =Q
starting from an arbitrary point.

Claim 3.1. With high probability Hi contains an edge from vx to Ui.

Proof. Note that the edges of Hi are being chosen uniformly at random among the non-edges of
previous Gj and Hj. Moreover (recall that we assume p� 1− ε/10), as w.h.p. we have

dG(vx)� (1+ o(1))np�
(
1− ε

100

)
n and |Ui| − dG(vx)�

εn
200

,

it follows that there are at least εn/200 ‘free’ edges between vx and Ui. Recall that we work in
Hi =Gn,a so the probability of not having an edge between vx and Ui is at most((n2)−εn/200

a
)

((n2)
a

) �
(
1− εn/200(n

2
) )a

= e−�(a/n) = o(1),

where we use the fact that a=ω(n), and that for any p> r> q,(
p− q
r

)/(
p
r

)
�

(
p− q
p

)r
.
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To summarize, by Markov’s inequality, w.h.p. there are at most o(t) rounds which are consid-
ered as failures. Therefore, in at least t− o(t) rounds, the length of the current trail Ti extends by s.
Moreover, as s� (1− ε/2)2b/n we obtain that w.h.p. �(Tt)� (1− ε)e2bt/n� (1− 2ε)enp. This
completes the proof.

4. Proof of Theorem 1.2
The proof of Theorem 1.2 is more or less identical to the proof of Theorem 1.1. The only difference
is that in order to obtain a path (as opposed to a trail), we need to restrict ourselves to trees
which are vertex-disjoint from our ‘current’ path Pi−1 (which plays the role of Ti−1 in the proof
of Theorem 1.1). Here we are using the fact that p= o(1), so the total length of the path that we
are trying to construct is at most enp= o(n), and therefore at each step we still have (1− o(1))n
‘available’ vertices to work with (i.e. vertices that are not used in our current path). Under this
restriction, the rest of the strategy and the calculations are basically the same as in Theorem 1.1,
so we omit the details. �
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