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The wake behind a cube with a face normal to the flow was investigated experimentally
in a water tunnel using laser induced fluorescence (LIF) visualisation and particle
image velocimetry (PIV) techniques. Measurements were carried out for moderate
Reynolds numbers between 100 and 400 and in this range a sequence of two flow
bifurcations was confirmed. Values for both onsets were determined in the framework
of Landau’s instability model. The measured longitudinal vorticity was separated into
three components corresponding to each of the identified regimes. It was shown that
the vorticity associated with a basic flow regime originates from corners of the bluff
body, in contrast to the two other contributions which are related to instability effects.
The present experimental results are compared with numerical simulation carried out
earlier by Saha (Phys. Fluids, vol. 16, 2004, pp. 1630–1646).
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1. Introduction
Vortex shedding behind bluff bodies is a classic research area. From the first

accurate measurements in the wake of a prismatic body by Bénard in 1905 and the
first theoretical model by von Kármán in 1911 (Provansal 2006; Wesfreid 2006), this
subject has been one of the more active topics in fluid mechanics.

The studies of the Bénard–von Kármán instability in two-dimensional systems
characterise scenarios of transition with a well-defined Hopf bifurcation. The
experimental study of Mathis, Provansal & Boyer (1984), concerning the wake
behind a cylinder for Reynolds numbers near the threshold, proves the validity of
Landau’s model for the description of the evolution of measured transversal velocity
components. It is shown that the squared value of this quantity is proportional to
Re − Recr, where Recr is the Reynolds number of the onset of Hopf bifurcation.
Complex Landau’s equations, including phase variables, allow the deduction of
the linear dependence of frequency associated with vortex shedding on Reynolds
number. Moreover, the vortex shedding process has been studied extensively using
the concept of a global mode. Constant frequency of synchronised oscillations of
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shedding in the streamwise direction is one of its major features. This frequency
remains constant despite the fact that the flow profiles, which govern stability,
vary with streamwise distance measured from the obstacle. Earlier experimental
(Goujon-Durand, Jenffer & Wesfreid 1994; Wesfreid, Goujon-Durand & Zielinska
1996) and numerical (Zielinska & Wesfreid 1995) investigations have shown that the
evolution of parameters describing the instability of the flow (e.g. transversal and
longitudinal velocity components) has the character of a global mode and shows
a scaling law for the spatial properties of the amplitude of the envelope of the
perturbation as predicted by the Landau–Ginzburg model.

The phenomenon of vortex shedding behind three-dimensional bluff bodies has
similarities with and differences from the classical two-dimensional case. For the
simplest example of an axisymmetric body, a sphere, the following scenario is known.
At low Reynolds numbers the separation bubble is axisymmetric and its length grows
until a first regular transition occurs, after which this bubble loses axial symmetry.
The value at the first onset is about Re = 211 (Johnson & Patel 1999; Tomboulides
& Orszag 2000; Thompson, Leweke & Provansal 2001; Bouchet, Mebarek & Dǔsek
2006; Szaltys et al. 2011). It leads to a three-dimensional steady flow with planar
symmetry, characterised by a double thread structure with two weak counter-rotating
vortices. When the Reynolds number is increased, the flow becomes time-dependent
and follows a Hopf transition. The existence of single-frequency hairpin vortex
shedding is observed. Moreover, the symmetry plane from the previous regime is
preserved. The Reynolds number of this second onset is reported to be approximately
275 (Ormiéres & Provansal 1999; Thompson et al. 2001; Schouveiler & Provansal
2002; Bouchet et al. 2006; Gumowski et al. 2008; Przadka et al. 2008; Szaltys
et al. 2011). It should be noted that both experimental (Schouveiler & Provansal
2002; Gumowski et al. 2008) and numerical (Thompson et al. 2001) investigations
report the kinking of two trails of vorticity as a precursor to a second transition.
Experiments with flow visualisations reveal that hairpin vortices are always shed
on the same side (Achenbach 1974; Ormiéres & Provansal 1999; Schouveiler &
Provansal 2002; Szaltys et al. 2011). In contrast, numerical simulations of Johnson &
Patel (1999) and Fabre, Auguste & Magnaudet (2008) report two-sided hairpin vortex
structures in the far wake. However, it seems that each side of a vortical structure
has a different origin, and only one is caused by direct separation and shedding of
part of the vortex ring formed immediately behind the bluff body in the recirculation
zone (Brucker 2001).

The flow instability behind a disk resembles topologically that observed for the
sphere. Experimental investigations of the wake behind a disk (Szaltys et al. 2011;
Bobinski, Goujon-Durand & Wesfreid 2014) prove the existence of three subsequent
regimes. In analogy to the sphere, regular bifurcation occurs with increasing
Reynolds numbers, replacing axisymmetry by planar symmetry and preserving the
time-invariance. It leads to the appearance of two counter-rotating filaments of
vorticity. Finally, as the Reynolds number is increased, and after a Hopf transition,
one-sided hairpin vortex shedding with single frequency is observed. In this regime,
for higher Reynolds numbers, small irregularities between the heads of shed hairpins
are present. In addition, similarly to the case of the sphere, the kinking of two trails
of counter-rotating vortices is observed prior to a Hopf transition. For a disk of low
aspect ratio D/h (where D denotes disk diameter and h its thickness) onset values
strongly depend on the aspect ratio, as verified experimentally in Bobinski et al.
(2014).

In numerical simulations performed for the disk, the sequence of transitions is
similar to the one observed in experiments. However, it is to be noted that one
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additional Hopf bifurcation between the two counter-rotating vortices and the hairpin
vortex shedding regimes was reported. The description of this additional regime
varies strongly between different studies (Fabre et al. 2008; Shenoy & Kleinstreuer
2008; Meliga, Chomaz & Sipp 2009). Their common feature is periodic rotation of
shed structures. In particular, for a thick disk, Auguste, Fabre & Magnaudet (2010)
obtained numerically a sequence of six bifurcations before the regime where regular
hairpin vortex shedding is observed.

Different physical situations occur when the flow behind a bluff body is not
axisymmetric, as is the case for a prolate spheroid or a cube. The former case with
the major axis oriented perpendicularly to the free-stream flow and for Re = 50, 75,
100, 150, 200, 250 and 300 has been analysed by El Khoury, Andersson & Pettersen
(2012). The wake behind such an obstacle shares some of the features of the sphere
as well as those of the planar wake behind a cylinder. For the lowest investigated
Reynolds numbers (Re= 50 and 75) the wake remains steady and strictly symmetric,
about equatorial and meridional symmetry planes. At Re= 100 the flow starts to be
time-dependent, characterised by regular double-sided hairpin vortex shedding, with
only one equatorial symmetry plane retained. Vortical structures formed behind the
spheroid are similar to those observed for the sphere by Johnson & Patel (1999). At
Re = 200 the second frequency associated with hairpin vortex shedding is found. In
addition no symmetry plane is present.

In the case of a cube with a normal face to the flow, the basic flow exhibits
orthogonal symmetry, namely four symmetry planes inclined at 45◦ to each other.
The wake of such an obstacle was investigated numerically in Raul, Bernard &
Buckley (1990), Saha (2004) and in Saha (2006). The studies of Raul et al. (1990)
concentrate on laminar flow at Reynolds numbers ranging from 10 to 100. The
flow behind the obstacle forms a recirculation zone, whose size increases with the
Reynolds number. It is also observed that corners of the bluff body contribute to a
local increase of pressure in their vicinity. Moreover, no periodic vorticity shedding
is observed for the investigated Reynolds number range. Their numerical results are
also confirmed by experimental investigation of the drag coefficient of free-falling
cubes (Raul et al. 1990).

In Saha (2004, 2006) the sequence of transitions is studied for a Reynolds number
ranging from 50 to 400. The basic flow is characterised by the existence of four pairs
of opposite-sign vortices. The length of the wake region behind the cube increases
with increasing Reynolds number as is observed by Raul et al. (1990) and the flow
is found to be steady and orthogonally symmetric. Regular bifurcation from the basic
state to the two counter-rotating vortices is reported at Reynolds number between
216 and 218, when the flow remains steady, but it breaks its orthogonal symmetry
in such a manner that only one symmetry plane is preserved. The distribution of the
longitudinal vorticity component (hereinafter denoted ωx) in this regime consists of a
major bean-shaped pair of vortices and four minor vorticity filaments. A new Hopf
bifurcation is found numerically to occur between the Reynolds numbers of 265 and
270. It leads to an unsteady regime where periodic hairpin vortex shedding occurs.
The planar symmetry and its orientation are preserved from the previous regime.
Based on streamlines, Saha (2004) presents the temporal behaviour of shed hairpin
vortices over a single period. The results are strikingly similar to those observed for
the sphere in Johnson & Patel (1999). The extraction of vortical structures described
in Jeong & Hussain (1995) reveals the double-sided structure of the shed hairpins.

The present study is concerned with the experimental investigation of the flow
past a fixed cube for a range of Reynolds numbers of 100–400. The front wall of
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FIGURE 1. (Colour online) Schematic of the water channel.

the cube remains perpendicular to the inflow velocity. The main aim is to explore
the sequence of transitions for a such a bluff body. As far as we know this is
the first full experimental investigation of the wake behind a cube. The results
obtained are compared with the numerical simulation carried out by Saha (2004). In
§ 2 the experimental set-up used in our experiments is described. Results obtained,
such as the evolution of the longitudinal vorticity component ωx as a function of
Reynolds number, as well as distance in the streamwise direction, the length of
the recirculation zone, the frequency and the Strouhal number, are presented in
§ 3. Section 4 consists of two kinds of analysis of experimental data, namely an
azimuthal Fourier decomposition of ωx as a function of Reynolds number as well as
the extraction of the components corresponding to each of the investigated regimes.
Finally, § 5 is devoted to conclusions.

Unless otherwise stated, on all figures presented the direction of the flow is from
the left to the right.

2. Experimental set-up

The present experiments were carried out in a horizontal water channel adapted for
low Reynolds numbers and used previously in similar experiments (see Thiria, Goujon-
Durand & Wesfreid 2006 and Marais 2011). It is presented schematically in figure 1.
The internal dimensions of its cross-section and the length of the test section were
100 mm× 100 mm and 860 mm respectively.

The flow was induced by gravity, using a constant-level tank to provide a constant
pressure gradient. Two honeycomb-type filters were present in the front of the test
section to make the flow fully uniform. The turbulence level was lower than 2 %,
obtained by considering the temporal standard deviations of measured velocity. It was
demonstrated for the wake of a sphere that this level of free-stream turbulence has
negligible influence on the vortex shedding (see Wu & Faeth 1994, Mittal 2000 and
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Bagchi & Balachandar 2004). Velocity of the flow in the channel was controlled by
means of two throttling valves and measured by a calibrated flow meter, which give
us the mean free stream velocity U.

The cube with edge length of d = 12 mm was mounted in the central part of the
cross-section at the beginning of the test section. The leading face was perpendicular
to the undisturbed flow, while its lateral faces were parallel to the internal walls of the
water channel. The support system consisted of a rigid, nearly horizontal, bent tube of
diameter φ= 1.7 mm with a threaded end to which the cube was screwed. The length
of the horizontal part of the tube was equal to 100 mm to diminish the influence of
its vertical part on the flow. This length was still sufficiently small to avoid elastic
oscillations of the cube support. On the other hand the Reynolds number, based on
the diameter of the support tube, was at maximum 50, limiting the existence of the
Bénard–von Kármán vortex street. As a result it was possible to investigate the wake
behind the cube as if it were an isolated body.

For qualitative study of three-dimensional vortical structures behind the cube, laser
induced fluorescence (LIF) visualisations were performed. The tube delivering the
colourant into the recirculation zone was also used as the support of the cube. The
fluorescein dye was ejected from holes placed on the rear wall of the cube and was
forced to flow by a controlled syringe pump. Figure 2(d) confirms that there was no
significant perturbation of the main flow through the introduction of the dye. The
configuration of nine holes placed evenly on the rear wall of the cube was chosen
as providing the best results. The fluorescein was excited by means of an appropriate
light source (argon laser in the case of two-dimensional visualisations, and a UV-lamp
for three-dimensional observations).

A two-dimensional particle image velocimetry (PIV) method was used to obtain
quantitative data about the flow field velocity. We have used a standard image PIV
set-up, which consisted of an ImagePro 1600× 1200 12 bit CCD camera with Nikkor
f50 mm, f85 mm and f70–180 mm lenses, a Minilite ND:YAG, double-pulsed laser,
as well as software and hardware delivered by LaVisionr. The flow was seeded with
spherical particles of a typical diameter of 11 µm. For all the PIV measurements,
we used an interrogation window of 32 × 32 pixels with an overlap of 50 %. The
distance between two adjacent vectors in the plane of measurements was equal to
approximately 0.6 mm in the plane parallel to the rear wall of the cube and 0.8 mm
in the measurements of the recirculation zone. The error in the measurements of the
time-averaged vorticity fields was estimated to remain below 5 %.

Data acquisition was done with 15 Hz frequency. Unless otherwise stated, for each
Reynolds number 1000 pairs of snapshots were recorded. From each pair of snapshots
one instantaneous velocity field was determined. Subsequently a streamwise vorticity
component was calculated from the measured velocity of the flow, by numerical
derivation.

3. Experimental results
3.1. Flow regimes

In the range of Reynolds numbers, based on the edge length d and the mean velocity
U from 100 to 400, three different well-defined flow regimes were confirmed in
our experiments. The initial basic flow was found to be steady with orthogonal
symmetry, characterised by the existence of four pairs of streamwise counter-rotating
vortices originating at the lateral edges of the cube. It should be noted that it was
not possible to visualise these basic flow vortices, using LIF, as they were apparently
very weak. Figure 2(a,b) shows only large areas of diffused fluorescein. In contrast,
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Side view
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FIGURE 2. Visualisations patterns of three consecutive regimes: (a,b) the basic flow at
Re = 100, (c,d) the two counter-rotating vortices regime at Re = 250, (e, f ) the hairpin
vortex shedding regime at Re= 300.

(a)

(b)

FIGURE 3. Peristaltic oscillation of the two trails of counter-rotating vortices prior to
regular shedding of hairpin vortices at Re= 277: (a) side view, (b) top view.

it was possible to distinguish these four pairs of vortices using the PIV method (see
figure 4a) where red and blue correspond to anti-clockwise and clockwise longitudinal
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FIGURE 4. Longitudinal vorticity fields at a cross-section placed at x/d = 1.5 from PIV
measurements: (a) the steady basic flow, averaged over all captured images at Re= 132;
(b) the two steady counter-rotating vortices regime, averaged over all captured images at
Re = 239; (c) time evolution of ωx in the hairpin vortex shedding regime at Re = 316
(T is a single cycle).

vorticity respectively. The presence of these vortices can be explained by analysis of
the numerical results obtained by Raul et al. (1990). As mentioned in the introduction,
they report the existence of local maxima of pressure in the vicinity of corners on
the rear wall of the cube. This transversal pressure gradient induces motion of fluid
toward the centre of this wall. Superposition of this motion with streamwise velocity
results in the appearance of four pairs of weak counter-rotating vortices. One can
consider this vorticity, associated with the basic flow, as extrinsic, not related to
instability effects and without onset.

Subsequently, after a regular transition from the basic flow to the two counter-
rotating vortices regime, the observed flow remains steady and only one symmetry
plane is preserved. In figure 2(d) one can recognise two distinct filaments of
fluorescein, which correspond to a major, bean-shaped pair of counter-rotating vortices
visible in the cross-section displayed in figure 4(b). In addition, four minor filaments
of vorticity are present, as a remaining component of the basic flow. In figure 2(c)
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one can clearly observe the manifestation of the influence of the major, bean-shaped
pair of vortices. In the vicinity of the symmetry plane this dipole of vorticity induces
velocity oriented downward. Due to this, the trails of fluorescein move downwards
while being convected downstream.

The presented flow structures of the basic flow (figure 4a) and of the two counter-
rotating vortices regime (figure 4b) can be directly compared with numerical results
obtained by Saha (see figures 4 and 11a in Saha 2004). It is useful to note that the
spatial distribution of longitudinal vorticity is virtually the same for both stationary
regimes.

Finally, a Hopf transition, namely from the two counter-rotating vortices to the
hairpin vortex shedding regime, occurs for higher Reynolds numbers and leads to
a time-periodic flow characterised by a regular one-sided hairpin vortex shedding
process. This flow topology is confirmed using both LIF visualisations (figure 2e, f )
and PIV measurements (figure 4c). The symmetry plane of the previous regime, as
well as its orientation, remain the same and are determined by the orientation of the
vertical part of the cube support.

We have also performed a preliminary study of the effect of cube rotation
around the axis aligned with the undisturbed free stream for two Reynolds numbers
Re= 250 and 330, which are typical for the two counter-rotating vortices and hairpin
vortex shedding regimes, respectively. In the first regime, the symmetry plane of the
flow pattern seems to follow the rotation of the cube up to almost α = 30◦, where a
is the tilting angle of the lateral faces. For higher values of α the symmetry plane
tends to be aligned with the vertical diagonal of the cube. Similar behaviour was also
observed for the hairpin vortex shedding regime; however the switch of symmetry
plane occurred around α = 20◦. The quantitative description of the observed effect
requires further investigation.

In the present paper, however, the focus remains on the consecutive transition for
the basic case of α= 0, where cube’s side faces were parallel to the sidewalls of the
water channel. For this case, figure 5 illustrates consecutive patterns of the flow as the
vortex is shed from the recirculation zone. The hairpins appear on one side only, as
a result of the deformation and tilting of the vortex ring formed immediately behind
the obstacle. This process is analogous to those presented in Saha (2004) for the cube
and in Johnson & Patel (1999) for the sphere.

In the present study, peristaltic oscillation or kinking of two trails of counter-rotating
vortices is observed prior to a Hopf bifurcation (figure 3a,b). Similar behaviour is
reported for the case of a sphere (Thompson et al. 2001; Schouveiler & Provansal
2002; Gumowski et al. 2008), for a disk of low aspect ratio (Shenoy & Kleinstreuer
2008; Szaltys et al. 2011; Bobinski et al. 2014) and behind an afterbody (Bohorquez
& Parras 2013). However, it should be noted that Shenoy & Kleinstreuer (2008)
observed that the kinking is accompanied by periodic rotation in disks.

Accurate values of Re for transition onsets will be identified in § 4.

3.2. Length of recirculation zone
In order to investigate the sequence of transitions, the length of the recirculation zone
was determined using the PIV method for a sequence of Reynolds numbers. The
laser sheet coincided with the symmetry plane during the whole investigated range
of Reynolds numbers. For steady flow (the basic flow and the two counter-rotating
vortices regime) the obtained velocity fields were averaged. In the non-stationary
regime the recirculation region oscillates following the hairpin vortex shedding
process. For this reason, at least 15 full periods were taken to obtain a time
average.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

23
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.236


Experimental investigation of flow behind a cube 81

0.5

–0.5

(a)

0

1.0 1.5 2.0 2.5

0.5

–0.5

0

1.0 1.5 2.0 2.5

0.5

–0.5

0

1.0 1.5 2.0 2.5

0.5

–0.5

0

1.0 1.5 2.0 2.5

(b)

(c) (d)

FIGURE 5. Streamline patterns of the lower one-sided vortex shed at Re= 331, obtained
through PIV measurements during a single cycle T . (a) t=T/4, (b) t= 2T/4, (c) t= 3T/4,
(d) t= 4T/4.

The length of the recirculation bubble was defined as the distance from the centre of
the cube to the place where a streamwise component of velocity changes its sign. As it
is difficult to identify this place directly, we have interpolated the positive and negative
values in the vicinity of zero, which gave us the required length L of the recirculation
zone (normalised using a cube edge length d). Figure 6 presents the results obtained,
which agree in trend with the numerical values reported by Saha (2004) (see results
in his table IV). Three additional values were inferred by the present authors from the
streamlines pictures of Saha (2004) (see his figures 10b, 14a and 14b) at the highest
Re values. One can see that the recirculation zone grows with the Reynolds number
up to a Hopf bifurcation from a stationary to an unsteady regime. For the basic flow,
the evolution of L/d deviates from a linear behaviour. The same effect was reported
for a sphere by Tomboulides & Orszag (2000) and Bouchet et al. (2006).

Following the regular bifurcation, the length of the wake continues to grow with
increasing Reynolds numbers. However the second bifurcation reverses this increasing
trend. The analogous evolution of the recirculation zone, across the whole investigated
Reynolds numbers range, was reported for the case of a disk by Bobinski et al. (2014).
For the case of the wake past a cylinder (Zielinska et al. 1997) and a disk (Meliga
et al. 2009), a similar decrease of the recirculation zone was observed in the unsteady
regime. The nonlinear correction to the mean flow, generated by the Reynolds stress
of the fluctuations of the unstable mode, induces an adverse pumping which stretches
the recirculation loop. The fact that the two stationary counter-rotating vortices do not
modify the recirculation length much implies that these structures do not contribute
significantly to this mean flow correction.
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FIGURE 6. (Colour online) Normalised length of recirculation zone as a function of
Reynolds number.

3.3. Frequency and Strouhal number
To additionally characterise the unsteadiness of the flow, figure 7(b) presents the
evolution of frequency for a range of Reynolds numbers corresponding to the hairpin
vortex shedding regime. The method to estimate the frequency is as follows: for each
Reynolds number 800 pairs of PIV snapshots were recorded, corresponding to at least
12 periods of hairpin vortex oscillations. From the resulting vorticity fields, positive
maxima and negative minima of vorticity were extracted. As the evolution of this
quantity was periodic (see figure 7a), we determined the time interval between several
local maxima and, as a result, also the frequency of hairpin vortex shedding. It has
nearly linear dependence on Reynolds number (with a small modulation observed).
Similar behaviour was reported for the case of vortex shedding behind cylinders
(Goujon-Durand et al. 1994), spheres (Schouveiler & Provansal 2002; Gumowski
et al. 2008) and disks (Bobinski et al. 2014). Knowing the frequency, we have also
determined the Strouhal number St = (f d)/U as a function of the Reynolds number
(figure 7c). Up to Reynolds number Re= 390, it remains almost constant and equal
to 0.125 for these experimental conditions.

We performed two additional experiments in a similar water channel with larger
cross-section (100 mm height and 150 mm width as compared to 100 mm× 100 mm
in the original facility) and for the original and a smaller cube (edge length equal
to 8 mm) to study the blockage effect. The frequency of hairpin vortex shedding
was estimated by observation of 100 periods via LIF visualisations. As shown on
figure 7(c) the Strouhal number obtained was lower: 0.109 and 0.104 for cube edge
length 12 mm and 8 mm, respectively. The corresponding blockage ratios (BR) were
0.96 % and 0.43 %, in comparison with 1.44 % of the original channel (BR is defined
as a ratio of cube and channel cross-section).
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FIGURE 7. (Colour online) (a) Evolution in time of the measured maximal (positive)
and minimal (negative) values of longitudinal vorticity ωx, (b) the observed frequency of
hairpin vortex shedding as a function of Reynolds number and (c) and the corresponding
Strouhal number for different cube size and tunnel blockage ratio.
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The Strouhal number reported in Saha (2004) is 0.094, but in his numerical channel
the corresponding BR was 0.51 %, with free-slip boundary conditions at the sidewalls,
thus without the presence of a boundary layer.

The difference of Strouhal number can be explained by the temporal theory of shear
instabilities, according to which the initial frequency associated with the maximum
growth of linear instability is proportional to the maximal vorticity in the shear layer.
Higher BR (or the presence of a boundary layer) implies the increase of the initial
frequency and the Strouhal number as the maximal shear is higher (see Monkewitz &
Huerre 1982).

3.4. Maximal longitudinal vorticity as a function of streamwise distance
As described earlier, for this type of geometry, three different types of flow structure
can be observed for the investigated range of Reynolds numbers. To further investigate
the transition process we have performed a detailed study of the ωx evolution in the
streamwise direction. For this purpose, a laser sheet was positioned normally to
the undisturbed flow. In the case of the basic flow, an exponential decrease of the
amplitude of ωx was observed due to viscous relaxation. This evolution, in the form of
exp(−x/ξ), is presented in semi-log plot (figure 8a), where ξ = 3.8d is the estimated
attenuation length while now x denotes the distance between the measurement plane
and the rear wall of the cube. We have averaged all the measured vorticity fields for
each Reynolds number and subsequently extracted maximum positive and minimum
negative values of vorticity. The mean of their absolute value is taken as the quantity
describing the spatial evolution of the ωx.

Once the instability appears, for both the two counter-rotating vortices (Re =
231, 250, 275) and the hairpin vortex shedding regimes (Re = 320, 346, 366), the
longitudinal vorticity ωx grows, reaching a maximum, and then decays in the
streamwise direction. Such spatial behaviour is characteristic for the envelope of
a global mode instability. This spatial variation is presented in figure 8(b). It should
to be noted that in the present study, the maximum of the longitudinal component
of vorticity occurred at x/d = 1.75. Such spatial evolution of the global mode is
also reported for a sphere, for several quantities considered: (i) energy of streamwise
velocity fluctuation (Ormiéres & Provansal 1999; Schouveiler & Provansal 2002),
(ii) root mean square (r.m.s.) of streamwise velocity (Tomboulides & Orszag 2000)
and (iii) longitudinal vorticity (Thompson et al. 2001; Bobinski et al. 2014).

In addition, one can observe that ωx continues to increase after the Hopf transition
(reaching values of the order of 100 compared to the 10−1 in stationary regime).
This is due to the contribution of the periodically shed hairpin vortices which can
be visualised as a street of vortical loops with dominant transversal component
of vorticity. However, as the length of a cube edge is finite, the flow in the
recirculation zone is fully three-dimensional and the shed structures are bent, adding
the longitudinal component of vorticity, which is observable in the plane perpendicular
to the free stream.

3.5. Longitudinal enstrophy as a function of Reynolds number
Using results of PIV measurements obtained with the laser sheet positioned
perpendicularly to the stream, we have calculated the enstrophy ε of the longitudinal
vorticity component ωx, defined as:

ε= 1
|Ω|

∫
Ω

ωx
2dΩ, (3.1)
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FIGURE 8. (Colour online) Vorticity evolution: (a) exponential decrease for the basic flow
at Re= 127, (b) envelope of streamwise vorticity fluctuations for the two counter-rotating
vortices (Re= 231, 250, 275) and the hairpin vortex shedding (Re= 320, 346, 366) regimes.

where |Ω| denotes the area of a two-dimensional domain Ω in which the measurements
take place. As was mentioned in § 3.4, the vorticity distribution in the streamwise
direction is different for the basic flow and for the two subsequent regimes. For this
reason, the distance of the laser sheet from the rear wall of the cube (x/d = 1.5)
was selected so that the highest possible vorticity for all regimes is obtained. For
each Reynolds number, longitudinal enstrophy ε was calculated by time-averaging
of all captured snapshots (even for a non-stationary hairpin vortex shedding regime).
The resulting evolution is presented in figure 9(a). In order to determine when the
transition occurs, we use the method described in the next section.
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FIGURE 9. (Colour online) Extraction of enstrophy components: (a) evolution of
normalised longitudinal enstrophy ε; (b) evolution of stationary instability 1ε2CRV
associated with the two counter-rotating vortices regime; (c) evolution of non-stationary
instability 1εHS associated with the hairpin vortex shedding regime.

4. Analysis of experimental data

Two different and complementary studies of the evolution of longitudinal enstrophy
ε (3.1) are presented in this section.
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The first study concentrates on direct extraction of components corresponding to
the basic flow and to stationary and non-stationary instabilities associated with the
two counter-rotating vortices and the hairpin vortex shedding regimes respectively. The
second one consists of an azimuthal Fourier modal decomposition carried out in order
to obtain a detailed description of bifurcation branches and a more direct physical
description of the wake behaviour.

In addition, we have tested the validity of a supercritical or Landau’s model of
instability to determine the values of both onsets. In the framework of this model,
the squared amplitude of the instability parameter grows linearly with increasing
Reynolds number (in the vicinity of the threshold). We have taken ωx as the parameter
describing the instability. It should be noted that the enstrophy ε is proportional to
the squared longitudinal vorticity and therefore its evolution should remain linear near
the onset (if the supercritical transition takes place).

4.1. Extraction of vortical components
In order to identify transition onsets, different components of enstrophy ε associated
with the observed regimes were extracted. Figure 9(a) presents the evolution of the
longitudinal enstrophy ε (normalised with the free-stream velocity U and the cube
edge length d) in which both bifurcations are clearly apparent.

For the lowest Reynolds numbers only extrinsic vorticity is present (circles in
figure 9a). It is associated with the non-axisymmetric basic flow induced by the
pressure gradient, characterised by four pairs of opposite-sign vortices. The linear
dependence on Reynolds number can be expressed as:

εBASIC

/(
U
d

)2

= ABASIC Re+ BBASIC , (4.1)

where coefficients ABASIC = 2.76 × 10−5 and BBASIC = −2.08 × 10−4 were obtained by
least-squares approximation.

As the Reynolds number is increased, a first bifurcation occurs. One can observe
the change of slope due to the appearance of some additional enstrophy associated
with the two steady counter-rotating vortices regime. This supplementary component,
called stationary instability, is denoted by 1ε2CRV . In order to determine its amplitude,
we extrapolate the value of εBASIC from formula (4.1) for higher Reynolds numbers and
subtract it from the total original ε (see figure 9a). The result describes the growth
of stationary instability related to the appearance of the major pair of bean-shaped
vortices after the regular transition from the basic flow to the two counter-rotating
vortices regime. The total observed longitudinal enstrophy is a superposition of the
basic flow enstrophy εBASIC (four pairs of vortices) and the contribution from the
stationary instability (one pair of vortices) 1ε2CRV . This evolution of corresponding
enstrophy, obtained as the difference of the measured enstrophy and the extrapolated
value of the base state, is presented in figure 9(b). For Reynolds numbers higher
than 190, the linear growth is quite apparent and agrees well with Landau’s model
of instability. The function describing this evolution can be estimated as:

1ε2CRV

/(
U
d

)2

= A2CRV Re+ B2CRV , (4.2)

where A2CRV = 1.11 × 10−4 and B2CRV = −2.07 × 10−2. After performing the linear
extrapolation, the value of first onset is determined as Re1 = 186.
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FIGURE 10. (Colour online) Flow evolution described by streamwise vorticity during the
transition from the basic flow to the two counter-rotating vortices regime; a gradual change
of topology can be observed. (a) Re= 132, (b) Re= 168, (c) Re= 196, (d) Re= 230.

In figure 9(a,b) a continuous change of slope in the vicinity of the regular transition
from the basic flow to the two counter-rotating vortices can be observed. This
relatively smooth transition is due to an imperfect bifurcation and figure 10 illustrates
this process. The change of topology from the basic flow (orthogonal symmetry, with
four pairs of counter-rotating vortices) to the subsequent regime (planar symmetry,
one major pair of counter-rotating vortices) occurs gradually as the transition is
rounded. Two additional problems contribute to the difficulty with the localisation of
the first threshold value. First of all, the basic flow consists of four pairs of extrinsic
vortices produced by the corners of the bluff body and this vortical structure is still
present after the regular transition, when the two intrinsic counter-rotating vortices
appear due to the stationary instability. The second reason is the influence of the
support tube, due to which there exists one preferred symmetry plane.

In addition, we have calculated the imaginary part of the complex eigenvalue of
the velocity gradient tensor (hereinafter denoted λcx, for details see Zhou et al. 1999)
for the two in-plane velocity components, measured on the plane normal to the free-
stream velocity. Figure 11 displays the evolution of λcx as the Reynolds number is
increased. Basically, this criterion does not distinguish the direction of the rotation.
To add this supplementary information λcx has been coloured in accordance with the
sign of vorticity.

One should notice that, contrary to the case of vorticity, λcx is not a linear operator
of a velocity gradient. For this reason, it was not possible to calculate the mean of
λcx directly from time-averages of measured velocity fields. Instead, it was obtained
by averaging instantaneous λcx calculated for each velocity field filtered with a
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FIGURE 11. Evolution of the longitudinal component of λcx as a function of the Reynolds
number (to be compared with figure 10). (a) Re = 132, (b) Re = 168, (c) Re = 196,
(d) Re= 230.

proper orthogonal decomposition (POD) (using the first six modes which represent
approximately 80 % of the total energy of the flow).

In figure 11, one may clearly observe the pattern associated with the basic flow
(four pairs of longitudinal counter-rotating vortices). However, even for higher
Reynolds numbers (Re= 230, figure 11d) no trace of the counter-rotating vortices can
be found with this method. This is in contrast to the spatial distribution of vorticity
(figure 10d) with a clear presence of a major pair of longitudinal counter-rotating
vortices. It seems therefore that the λc criterion, even if the term λ2

c is analogous to
the enstrophy (see Zhou et al. 1999), remains less sensitive than the method based
on an analysis of the enstrophy of longitudinal vorticity.

One should also note that Saha (2004), in his numerical study, claims that the first
transition occurs for higher Reynolds number (in the range of 216–218, compared with
the present 186). Perhaps this difference is due to the fact that he has used relatively
high values of the imaginary part of λc as the threshold to capture the appearance of
the main pair of counter-rotating vortices and first bifurcation. It should also be noted,
that Saha refers to his threshold values ‘as an upper limit of transition’ (see p. 1633
in Saha 2004) rather than as an exact result, recognising apparent limitations of his
numerical method.

Finally, after further increasing the Reynolds number, a Hopf transition takes place.
Figures 12(a) and 12(b) reveal time sequences of the longitudinal components of ωx

and λcx respectively. They were calculated at subsequent time intervals in the hairpin
vortex shedding regime for Re = 316. The instantaneous snapshots of velocity were
filtered using the POD, with the first six modes representing approximately 80 % of
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FIGURE 12. Temporal evolution of the longitudinal component of (a) the vorticity ωx and
(b) the complex eigenvalue of velocity gradient λcx (for Re = 316). Both are calculated
from the in-plane velocity measured in the laser plane positioned normally to the free-
stream velocity. The sequence was filtered using POD decomposition.

the energy of the flow. Assuming the Taylor hypothesis of frozen turbulence, one may
consider elapsed time as the spatial coordinate in the free-stream direction.

The regular, periodic structure of the flow is clearly observed. Letters A1, A2 and
A3 in figure 12 indicate regions of high values of ωx and λcx due to the influence of
the hairpin legs. They move toward the lower part of the wake as they are advected
downstream (letters C1, C2 and C3 in figure 12a). One may expect that, in these
regions, hairpin heads are formed and, as a result, the transversal components of ω
and λc are more important than the longitudinal components. Note that we have only
measured ωx and λcx, therefore we were unable to visualise the full loop of the hairpin
head (which would require determination of all components of ω and λc).

As is the case for the stationary instability, the non-stationary one can also be
characterised by supplementary enstrophy related to the hairpin vortex shedding
contribution. It can be observed as the second change of slope in figure 9(a). From
the longitudinal enstrophy ε in the hairpin vortex shedding regime, we subtract the
extrapolated component ε2CRV , as we have proceeded in the case of the first instability.
The remainder grows linearly with the Reynolds number (figure 9c) and can be
described by the function:

1εHS

/(
U
d

)2

= AHS Re+ BHS, (4.3)
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where AHS = 1.89 × 10−4 and BHS = −5.39 × 10−2 are again obtained by the least-
squares procedure. The value of the onset of the Hopf bifurcation estimated by the
linear interpolation equals Re2 = 285, compared with 265–270 from Saha (2004).

It should also be noted that the analysis presented above confirms the contribution
of the hairpin vortices to the time-averaged longitudinal vorticity field measured on
the plane perpendicular to the free-stream velocity. As described earlier, in the hairpin
vortex shedding regime the loops of vorticity formed in the recirculation zone are
periodically shed into a far wake. These structures are initially oriented mainly in the
transversal direction. However, as they convect downstream, they are partially bent
and reoriented towards the streamwise direction with a transversally oriented head
and longitudinally oriented legs. Due to the non-stationary additional contribution of
the hairpins legs, the mean value of the maximum of the absolute value of vorticity
is larger than that which would result from the separate stationary instability. This
can be clearly observed in figure 12(b), where letters B1, B2 and B3 refer to the two
counter-rotating vortices, associated with a stationary instability, while A1, A2 and A3
characterise the non-stationary instability, indicating the additional influence of the
hairpin legs.

4.2. Fourier decomposition of the longitudinal vorticity field
To obtain more detailed information about the evolution of the flow field as the
Reynolds number is increased, we have performed azimuthal Fourier decomposition of
the streamwise vorticity. This is justified by the fact that the investigated instabilities
are triggered by azimuthal breaking of symmetries.

The longitudinal vorticity ωx(yi, zj) obtained by measurements at a cross-section of
the channel is available on a Cartesian grid (yi, zj) ∈ R2, where y and z are axes
of the cross-section. These data were reinterpolated over a polar grid (rk, θn) ∈ R2

using an algorithm implemented in MATLABr software. The grid consisted of 140
nodes in the radial and 240 nodes in the angular directions respectively. Subsequently
a sequence of one-dimensional polar Fourier transforms were performed:

Ω(rk,m)=
∑

n

ωx(rk, θn)eimθn . (4.4)

Finally the amplitudes of azimuthal modes were obtained by numerical integration in
the radial direction:

Ω(m)= 1∑
k

rk1r

∑
k

Ω(rk,m)rk1r. (4.5)

The main mode patterns (from m = 0 to m = 4) obtained by the Fourier
decomposition of a time-averaged vorticity field are presented in figure 13 (the
unit of ωx is s−2). Figure 14 shows an example of a longitudinal vorticity field and
the field obtained by reconstruction of the first five azimuthal modes. Similarly to
the previously presented extraction of vortical components, we have also performed
(for each Reynolds number) the decomposition of vorticity fields resulting from the
time-average of all captured snapshots.

Figure 15 presents the energy of the lower modes of enstrophy εm as a function of
time. The higher-order modes m> 5 can be neglected due to their low amplitude. For
this reason, the current analysis concentrates on the first five modes (m = 0, . . . , 4).
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FIGURE 13. (Colour online) Mode patterns of Fourier decomposition for time-averaged
vorticity field at Re= 296. For each mode the range of the colour bar is adjusted to its
amplitude. (a) Mode m= 0, (b) Mode m= 1, (c) Mode m= 2, (d) Mode m= 3, (e) Mode
m= 4.
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FIGURE 14. (Colour online) Time-averaged vorticity field: (a) PIV measurements and (b)
Fourier reconstruction with the first five azimuthal modes at Re= 296.

The leading role of mode m = 1 should be noted, as it contributes the most to the
energy of the flow instability. This mode is strongly associated with both bifurcations,
due to the fact that longitudinal vorticity patterns in both regimes contain only one
symmetry plane and mode m= 1 represents this planar symmetry.

From the study of the temporal behaviour of the streamwise vorticity one can
observe that amplitudes Ω(m) of modes m= 1, 2, 3 have almost sinusoidal behaviour,
while the amplitude of mode m= 4 is significantly less regular. This is due to their
different origins. Modes m = 1, 2, 3 are related to instability effects. In contrast,
mode m = 4 includes the extrinsic vorticity of the basic flow which is orthogonally
symmetric (four symmetry planes inclined at 45◦ one to another) and mode m = 4
also represents this type of symmetry (see figures 11 and 13e), which is already
present in the basic flow state. This is opposite to the situation for axisymmetric
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FIGURE 15. (Colour online) Mode energy evolution in time (Re= 301).

bluff bodies, such as spheres or disks, where the base flow is well represented by
mode m= 0. However, in the case of a cube, there is almost no contribution of this
mode to the flow energy, as the base flow corresponds to the mode m= 4.

In addition, we have investigated the dependence of the modal decomposition on
the Reynolds number in order to compare the values at onsets obtained with this
method and with the previously described extraction of stationary and non-stationary
instabilities as the manifestation of symmetry breaking. This time, we have taken
the enstrophy of the mode m = 1 as a quantity describing the instabilities, as an
order parameter. We test whether this parameter (proportional to the square of
the vorticity) has a linear variation with the Reynolds number, as follows from
Landau’s model. From the results presented in figures 16(a) and 16(b) for the first
and the second transitions respectively, we found the onset values to be Re1 = 184
and Re2 = 284 respectively. The threshold of the first instability was estimated by
extrapolating the amplitude of the mode m = 1 to zero. These values are in a close
agreement with the previous analysis of longitudinal enstrophy which confirms the
validity of the results. Note that stationary instability follows the planar symmetry
given by mode m = 1, as the regular bifurcation is represented by the break of
orthogonal symmetry. For this reason we consider the value of first onset obtained
with azimuthal Fourier decomposition to be more accurate than that obtained by
the separation of stationary and non-stationary contributions to the enstrophy of the
longitudinal vorticity, presented in the previous subsection.

Finally, as the first mode plays the major role in distributing the energy of
longitudinal vorticity for the hairpin vortex shedding regime, we have also analysed
the ratio of nonlinear dependence of the azimuthal modes m = 2, 3, 4 on the mode
m = 1 for the flow prior to the Hopf bifurcation in a two counter-rotating vortices
regime. In figure 17 three data sets are plotted. Each point represents one particular
realisation at a given Reynolds number. The abscissa and ordinate correspond to the
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FIGURE 16. (Colour online) The first five azimuthal modes of enstrophy as a function of
Reynolds number: (a) detailed view of the bifurcation from the basic flow to the two
stationary counter-rotating vortices regime and determination of the onset of transition
(Re1 = 184), (b) an estimate of transition threshold from the two counter-rotating vortices
to the hairpin vortex shedding regime (Re2 = 284).

mode amplitudes Ω(m) and Ω(1)m respectively. The change of Reynolds number is
represented by the variation of colour.

The circles in figure 17(a) denote the evolution of Ω(1)2 as a function of Ω(2).
It illustrates essentially a linear relation, which proves that both these modes are
associated as slave modes.

The squares in figure 17(b) display the dependence of Ω(1)3 as a function of Ω(3).
It differs from a strictly linear evolution due to the higher-order nonlinear couplings.
However, one can see that this deviation is quite weak.
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FIGURE 17. (Colour online) Ratio of nonlinear dependence of amplitude of the azimuthal
modes m= 2, 3, 4 on the amplitude of the first mode, at different Reynolds numbers.

In contrast, one may observe in figure 17(c) (data set represented by triangles)
that Ω(1)4 as a function of Ω(4) significantly differs from linear behaviour. For
small mode amplitude corresponding to low Reynolds numbers, the mode m = 4 is
uncoupled and independent from Ω(1), representing only the extrinsic vorticity. As
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Reynolds number is increased the fully nonlinear coupling appears, represented by
continuous growth of the ratio Ω(1)4/Ω(4).

This confirms our earlier hypothesis, that the mode m = 4 corresponds to the
vorticity structure induced by the geometry of the cube and it is not related to the
instability effect connected with modes m= 1, 2, 3 (intrinsic vorticity). It is consistent
with previously obtained results associated with the evolution in time of the energy
of modes for unsteady flow in a hairpin vortex shedding regime.

5. Conclusions

We have presented experimental results for the wake flow behind a cube and
analysis of corresponding flow instabilities in the Reynolds number range of 100–400.
Existence of three well-defined regimes was confirmed, namely the non-axisymmetric
basic flow, the regular state with two counter-rotating vortices and the hairpin vortex
shedding regime. In the wake of a cube, unlike axisymmetric bluff bodies, one
observes longitudinal vorticity in the basic flow originating from a transversal gradient
of pressure induced by corners of the obstacle. The wake consists of four pairs of
counter-rotating vortices with orthogonal symmetry.

Subsequently, after a regular bifurcation, two threaded counter-rotating vortices
appear while the flow preserves only one symmetry plane. The observed vorticity
field is a result of interaction between the basic flow vorticity and a dipole of vorticity
related to a regular, stationary instability. Finally, due to a Hopf bifurcation, the flow
becomes periodically time-dependent with regular oscillations of the recirculation
zone manifested by one-sided hairpin vortex shedding. The symmetry plane and its
orientation remain the same as in the previous regime. The scenario of transitions
agrees with a previous numerical simulation of the wake behind a cube carried out
by Saha (2004).

In order to estimate the values for the bifurcation onsets, we have extracted from the
longitudinal vorticity the components associated with each investigated regime, namely
the basic flow component, the stationary instability related to the two counter-rotating
vortices and the non-stationary instability corresponding to the hairpin vortex shedding
regime. We have shown that the squared amplitude of both instability fluctuations
depends linearly on Re−Recr which is consistent with a supercritical instability (Recr

is the appropriate onset of either regular or Hopf bifurcation). We observe a rounding
in the first bifurcation or an imperfect bifurcation, originating essentially from the
initial existence of longitudinal vorticity of the basic flow and the influence of the
cube support.

We have also shown a different spatial evolution in the streamwise direction of
maximum vorticity between the basic flow and regimes related to both consecutive
instabilities. The former decreases exponentially as it is an extrinsic phenomenon,
while the two latter, being intrinsic, have a global mode envelope.

Another very important result of this investigation is the accurate measurement
of the change of ωx caused by the Hopf bifurcation (from the two counter-rotating
vortices to the hairpin vortex shedding regime). In the stationary flow the counter-
rotating vortices are well defined but their magnitude is weak. When the Hopf
bifurcation occurs and the flow becomes periodic, the mean amplitude of maximum
vorticity extracted from the time-averaged vorticity field continues to increase. This
growth is larger than predicted by the contribution of a separate stationary instability.
It is due to the reorientation from the transversal to streamwise direction of the
periodically shed hairpin vortex heads.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

23
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.236


Experimental investigation of flow behind a cube 97

Acknowledgements
The authors thank Laurette Tuckerman for the help with modal analysis, as well

as Tomasz Bobinski for fruitful discussion concerning the subject of this paper. We
would like also to acknowledge Xavier Benoit Gonin for technical assistance.

REFERENCES

ACHENBACH, E. 1974 Vortex shedding from spheres. J. Fluid Mech. 62, 209–221.
AUGUSTE, F., FABRE, D. & MAGNAUDET, J. 2010 Bifurcations in the wake of a thick circular disk.

Theor. Comput. Fluid Dyn. 24, 305–313.
BAGCHI, P. & BALACHANDAR, S. 2004 Response of the wake of an isolated particle to an isotropic

turbulent flow. J. Fluid Mech. 518, 95–123.
BOBINSKI, T., GOUJON-DURAND, S. & WESFREID, J. E. 2014 Instabilities in the wake of a circular

disk. Phys. Rev. E 89, 053021; doi: 10.1103/PhysRevE.89.053021.
BOHORQUEZ, P. & PARRAS, L. 2013 Three-dimensional numerical simulation of the wake flow of

an afterbody at subsonic speeds. Theor. Comput. Fluid Dyn. 27 (1–2), 201–218.
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