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Drops subjected to electric fields can deform into singular shapes exhibiting apparent
sharp tips. At high field strengths, a perfectly conducting drop surrounded by a perfectly
insulating exterior fluid deforms into a prolate-shaped drop with conical ends and can
exist in hydrostatic equilibrium. On the conical ends, capillary stress, which is due
to the out-of-plane curvature and is singular, balances electric normal stress which is
also singular. If the two phases are not perfect conductors/insulators but are both leaky
dielectrics and the drop is much more conducting and viscous than the exterior, electric
tangential stress disrupts the hydrostatic force balance and leads to jet emission from the
cone’s apex. If, however, the physical situation is inverted so that a weakly conducting,
slightly viscous drop is immersed in a highly conducting, more viscous exterior, the
drop deforms into an oblate lens-like profile before eventually becoming unstable. In
experiments, the equator of a lenticular drop superficially resembles a wedge prior to
instability. Such a drop disintegrates by equatorial streaming by ejecting a thin liquid
sheet from its equator. We show theoretically by performing a local analysis that a
lenticular drop’s equatorial profile can be a wedge only if an approximate form of the
surface charge transport equation – continuity of normal current condition – is used.
Moreover, we demonstrate via numerical simulation that such wedge-shaped drops do not
become unstable and therefore cannot emit equatorial sheets. We then show by transient
simulations how equatorial streaming can occur when charge transport along the interface
is analysed without approximation.
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1. Introduction

The formation of apparent sharp tips or points along deformable fluid interfaces has been
of interest since it was reported more than four centuries ago by Gilbert (1958) that a
sessile drop can be deformed into a conical profile by an electric field. Remarkably, such
a response appears to also have been known to Lord Rayleigh who, in his seminal paper
on the stability of a charged liquid drop (Rayleigh 1882), had somewhat unexpectedly but
explicitly referred to the emission of fine jets from pointed protrusions on fluid interfaces.
The general subject of the formation of apparent sharp tips or points at interfaces, however,
began to be systematically and widely studied by mathematicians, scientists and engineers
after a series of now-celebrated papers by Zeleny (1914, 1917) on electrical discharges
from the pointed tips of pendant drops. Within a short period following Zeleny’s early
work, the interest in the subject started growing after the publication of a number of
papers during what can now be seen as the dawn of the field of electrohydrodynamics
(EHD) (see below) and the publication of a landmark paper almost a century ago by
Taylor (1934) on emulsions. From a mathematical standpoint, a sharp point along an
interface is the hallmark of a singularity as curvature, and therefore capillary pressure,
often tend to infinity at sharp tips. Moreover, knowledge about the instability of such
pointed interfaces is of tremendous importance in industrial applications in the absence
as well as the presence of electric fields. If the interface is destabilized, entrainment
of one phase into the other can occur. Thus, identifying the operating conditions under
which interface instability followed by entrainment occurs is key in processes that do not
ordinarily involve electric fields – such as emulsification by flow focusing and tip streaming
(Anna, Bontoux & Stone 2003; Suryo & Basaran 2006; Barrero & Loscertales 2007;
Castro-Hernández, Campo-Cortés & Gordillo 2012; Gordillo, Sevilla & Campo-Cortés
2014; Evangelio, Campo-Cortés & Gordillo 2016) as well as selective withdrawal (Cohen
& Nagel 2002; Berkenbusch, Cohen & Zhang 2008) where its occurrence is desirable,
and air entrainment in coating flows (Blake & Ruschak 1979; Scriven & Suszynski 1990;
Simpkins & Kuck 2000; Kamal et al. 2019) where it is undesirable – but also in ones where
electric fields are present (see below).

In the examples that have just been cited, interface deformation is driven by a flow that is
typically extensional in nature and gives rise to hydrodynamic stresses which balance and
grow with capillary stress. However, as has already been stated in the opening paragraph
of this paper, electric fields acting on fluid interfaces also not only lead to the formation of
shapes with singular curvature but the occurrence of such pointed interfaces resembling
cones, cusps and wedges has an extremely rich history in EHD and the topic has remained
at the forefront of research to this day. The goal of this work is to shed light on a recently
discovered but currently poorly understood situation in EHD where an apparently singular
interfacial profile can arise and, in some cases, be destabilized and result in interface
rupture (Brosseau & Vlahovska 2017; Vlahovska 2019; Wagoner et al. 2020; Marín 2021).

When a perfectly conducting drop surrounded by a perfectly insulating but less viscous
exterior fluid is exposed to a strong electric field, the drop deforms in the direction of the
applied field into a prolate profile and eventually takes on a spindle-like shape capped
by conical ends. These sharp tips, which are now referred to as Taylor cones (Taylor
1964) (figure 1a), have been under continuous study since the pioneering experiments on
electrified pendant drops by Zeleny (1914, 1917), sessile soap bubbles by Wilson & Taylor
(1925) and Macky (1930), and free drops by Nolan (1924) and Macky (1931). What is
remarkable is that a conical interface can exist in hydrostatic equilibrium solely under the
balance between normal electric and capillary stresses and in the absence of hydrodynamic
stresses if the drop is perfectly conducting (or perfectly insulating) and the exterior is
perfectly insulating. If, however, the two phases are not perfect conductors/insulators,
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Figure 1. (a) Left: a spherical drop subjected to an electric field – definition sketch. Top right: when subjected
to a strong electric field, a perfectly conducting drop surrounded by a perfectly insulating exterior fluid is
deformed into a prolate spindle shape with conical ends. Bottom: when subjected to a strong electric field,
an LD drop surrounded by a more permittive, conducting and viscous LD fluid, however, is deformed into
an oblate lenticular shape with a wedge-like equator. (b) When oriented about their apexes and overlaid by
appropriately shifting the r-axis in one case and the z-axis in the other, the conical (red line, Taylor cone)
and wedge-like (black line, lens) geometries of the drops shown in panel (a) have similar cross-sections that
appear to overlap locally. Here, ztip and req denote the tip location in the axial direction of the Taylor cone and
the equatorial radius of the lens. All drop shapes shown have been obtained from simulations. Values of the
parameters used in these simulations can be found in Appendix A.

but the drop is a leaky dielectric (LD) (Taylor 1966; Smith & Melcher 1967; Melcher
& Taylor 1969; Saville 1997) that is simply much more conducting than the exterior which
is either perfectly insulating (e.g. a gas) or another LD fluid, electric tangential stresses
enter the picture and disrupt the hydrostatic balance of forces. A thin jet of liquid is then
emitted from the apex of the cone, giving rise to a phenomenon referred to as tip streaming
(Collins et al. 2008, 2013) or cone jetting (Fernández de La Mora 2007; Marín et al. 2007;
Marín, Loscertales & Barrero 2008). If, however, the physical situation is inverted so that
a weakly conducting and slightly viscous LD drop is immersed in a highly conducting
and more viscous LD outer fluid, the drop deforms into an oblate shape and takes on
a lens-like profile before eventually becoming unstable. From a macroscopic view, the
equator of a lenticular drop superficially resembles a wedge prior to instability and such a
drop disintegrates by equatorial streaming where a thin sheet of liquid is ejected from the
drop’s equator (Brosseau & Vlahovska 2017; Wagoner et al. 2020).

We compare side-by-side in figure 1(b) the cross-sections of the spindle and lens-shaped
droplets: when viewed again from a macroscopic perspective, the profiles of the two
drops are remarkably similar near their tips – the two poles in the former case and the
equator in the latter one (Appendix A). While the electrohydrostatic shapes and stability
of highly deformed prolate electrified drops (Miksis 1981; Basaran & Scriven 1982; Joffre
et al. 1982; Basaran & Scriven 1990; Basaran & Wohlhuter 1992; Wohlhuter & Basaran
1992; Ramos & Castellanos 1994b) and the physics that give rise to Taylor cones and
their instability (Taylor 1964; Li, Halsey & Lobkovsky 1994; Ramos & Castellanos 1994a;
Burton & Taborek 2011) have been extensively investigated, similar studies for lens-shaped
droplets which, however, involve flows driven by electric shear stresses, have been lacking.

It is noteworthy that lens-shaped drops have become of interest fairly recently. Indeed,
the instability of lenticular drops is one of several types of instabilities that are exhibited
by oblate drops under the influence of an applied electric field. The oblate instabilities
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of interest arise in situations in which the exterior fluid has a greater permittivity
and is of relatively even greater conductivity than the drop. Such situations have been
experimentally studied by Brosseau & Vlahovska (2017) who fixed the ratio of the inner
to the outer permittivity κ at 0.6 and varied both the ratio of conductivities and that of
viscosities by several orders of magnitude. In their experiments, drops that are spherical
in the absence of electric field deform into oblate shapes at low field strengths. When
the ratio of the conductivity of the inner fluid to that of the outer fluid χ is greater
than approximately 0.01, oblate drops undergo Quincke rotation when the field strength
becomes sufficiently high. The response of oblate drops that are immersed in fluids of
much larger conductivites depends on the ratio of their viscosities. When the ratio of the
outer to the inner viscosity λ is small, oblate drops take on dimpled or discocyte-shaped
profiles and succumb to the dimpling instability where the drops break to form a torus.
When λ, however, is large, the drops take on lenticular profiles and eject thin sheets from
their equators. The steady-state shapes and stability of both dimpled and lenticular drops
have been studied computationally by Wagoner et al. (2020). These authors have paid
particular attention to situations at extreme values of the viscosity ratio, viz. λ� 1 and
λ� 1. An overview of the subject along with recommendations for future studies can be
found in the review by Vlahovska (2019) and in a very accessible article by Marín (2021).

In this paper, we investigate by a combination of steady state, as well as transient
simulations and theory, the apparently singular tips that are formed on the surfaces
of lenticular drops, and also the conditions that are necessary for and the onset of
equatorial streaming upon the destabilization of such drops. We show theoretically by
carrying out a local analysis that the equatorial profile of a lenticular drop can be a
wedge only if an approximate form of the surface charge transport equation known as the
continuity of the normal current condition is employed in lieu of the full charge transport
equation. Moreover, we demonstrate computationally that such wedge-shaped drops do not
become unstable and therefore cannot emit equatorial sheets. We then show by transient
simulations how equatorial streaming can occur when charge transport along the interface
is analysed without approximation. We note that while the steady and dynamic states of
LD drops that exhibit both prolate and oblate deformations have been widely studied in
the literature for fifty years (Feng & Scott 1996; Bentenitis & Krause 2005; Lac & Homsy
2007; Esmaeeli & Sharifi 2011; Deshmukh & Thaokar 2013; Lanauze, Walker & Khair
2013; Zabarankin 2013; Das & Saintillan 2017a), and the recent study by Wagoner et al.
(2020) has reported results on the steady states and stability of lens-shaped drops, the
destabilization of and equatorial streaming from lenticular drops have heretofore not been
demonstrated computationally and hence remain inadequately understood (Marín 2021).

The paper is organized as follows. Section 2 describes the mathematical formulation of
the problem. A brief summary of the numerical method used in the simulations is then
provided in § 3. Section 4 consists of three subsections. In the first, § 4.1, two sets of
steady-state simulation results are presented and supplemented with a high-level overview
of the physics of drop deformation caused by an applied electric field. In the second,
§ 4.2, the physics local to the equator of a lenticular drop is examined theoretically. In the
last, § 4.3, conditions for the stability and instability of the equator as well as equatorial
streaming from unstable drops are shown from dynamic simulations. Section 5 presents
concluding remarks and a summary of possible directions for further study. The paper
closes with two appendices. Appendix A presents a discussion on the values of the
angles in the conical and wedge-like geometries of the drops depicted in figure 1(b).
Appendix B provides a discussion of the range of values of the ratio of electrical
relaxation time to the process/flow time, an issue that has received little attention in the
literature.
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2. Problem statement

The system (figure 1a) consists of two neutrally buoyant phases (i = 1, 2; i = 1, drop;
i = 2, exterior) each of which is an incompressible, Newtonian, LD (Melcher & Taylor
1969; Saville 1997) fluid of constant physical properties (viscosity μi, permittivity εi
and conductivity σi) undergoing Stokes flow. In the absence of an electric field, Ẽi = 0,
the drop is a sphere (radius R). It bears zero net charge. The interface separating the
drop from the exterior has constant surface tension γ as well as constant diffusivity
for charge Ds. We use a cylindrical coordinate system (r̃,Θ, z̃) based at the centre of
the undeformed drop and where these variables stand for the radial, angular and axial
coordinates. The drop is subjected to an electric field Ẽ0 = Ẽ0ez of uniform strength Ẽ0
far from its centre (ez unit vector in z̃ direction). The problem is taken to be axisymmetric
about Θ or around the z̃-axis. It is non-dimensionalized using as characteristic scales R
for length, tc ≡ μ1R/γ for time (tc visco-capillary time), γ /R for hydrodynamic stress,
Ẽ0 for electric field, ε2Ẽ0 for surface charge density and ε2Ẽ2

0 for electric stress. Aside
from the three dimensionless parameter ratios χ ≡ σ1/σ2, κ ≡ ε1/ε2 and λ ≡ μ2/μ1,
three other dimensionless groups arise: (1) electric Bond number NE ≡ ε2Ẽ2

0R/2γ , which
is the ratio of electric to capillary force; (2) dimensionless charge relaxation time in
either phase αi ≡ (εi/σi)/tc (i = 1 or 2), such that α2/α1 = χ/κ; (3) Péclet number
Pe ≡ (R2/Ds)/tc = γR/μ1Ds, which is the ratio of the time scale for charge diffusion
on the surface R2/Ds and the visco-capillary time tc. In what follows, variables without
tildes over them are the dimensionless counterparts of those with tildes over them, e.g. r̃
is dimensional but r ≡ r̃/R is dimensionless.

In both domains (Ω1, which denotes the interior of the drop, andΩ2, which denotes the
region exterior to it), the electric field is irrotational and described by a potential (Ei =
−∇Φi) which obeys the axisymmetric form of Laplace’s equation

∇2Φi = 0 in Ωi. (2.1)

The hydrodynamics in both phases is governed by the axisymmetric continuity and Stokes
equations

∇ · vi = 0, ∇ · T H
i = 0 in Ωi. (2.2a,b)

Here, vi is the velocity and

T H
i ≡ −piI + (μi/μ1)[(∇v)i + (∇v)Ti ] (2.3)

is the hydrodynamic stress where pi is the pressure.
Along the drop surface Sf , the flow and electric field in each phase are coupled through

the traction condition which is the balance of momentum at the interface

n · [T H
i + 2NET E

i ]2
1 = 2Hn, (2.4)

where

T E
i ≡ εi

ε2

(
EiEi − 1

2
E2

i I
)

(2.5)

is the electric (Maxwell) stress tensor (Melcher & Taylor 1969), n is the outward pointing
unit normal to the drop’s surface and 2H ≡ ∇ · n is twice the mean curvature of the
interface (Deen 1998). The notation [x]2

1 denotes the jump in x in going from phase 1 to
phase 2. Mass transfer across Sf is prohibited by the kinematic boundary condition or the
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interfacial mass balance (Kistler & Scriven 1983; Christodoulou & Scriven 1992; Deen
1998)

n · v1 = n · v2 = n · vs, (2.6)

where vs is the velocity of points along the interface. Additionally, along Sf , the tangential
component of both the electric field and velocity field are continuous, viz. t · [Ei]2

1 = 0
(Faraday’s law) and t · [vi]2

1 = 0 (no slip) where t denotes the unit tangent to Sf in
the cross-sectional plane. The normal component of the electric displacement, however,
suffers a discontinuity which is given by the surface charge density, q ≡ n · [(εi/ε2)Ei]2

1.
In the LD model (Melcher & Taylor 1969), bulk density of charge is zero but surface
charge density on Sf is governed by a transport equation as follows:

α2

[
qt + ∇s · (qv)− Pe−1∇2

s q
]

= [χn · E1 − n · E2] on Sf . (2.7)

Here, subscript t denotes the partial derivative with respect to time t, v is the velocity and
E1 and E2 are the electric fields at Sf , and ∇s is the surface gradient. In this equation, the
terms on the left-hand side represent surface charge transport by convection and diffusion
and the source-like terms on the right-hand side represent charge transport from each
phase to Sf by Ohmic conduction. In the limit that charge transport by diffusion and
convection are negligible (Taylor 1966; Melcher & Taylor 1969), this equation reduces
to the continuity of the normal component of the electric current, n · [(σi/σ2)Ei]2

1 = 0.
We note that this approximate form of the surface charge transport equation results from
formally setting α2 = 0 in (2.7).

3. Simulations and numerical methods

Except when carrying out a local theoretical analysis, the governing equations are
solved by numerical simulation using a transient but axisymmetric, finite-element-based
algorithm over one quadrant of the rz-plane (r, z ≥ 0). The algorithm relies on the elliptic
mesh generation method developed by Christodoulou & Scriven (1992), and which was
later extended to drop dynamics problems with breakup by Notz & Basaran (2004), for
spatial discretization and for enabling capturing the evolution in time (or, as discussed
below, with respect to a control parameter) of highly deformed interface shapes. The
governing equations are solved subject to symmetry conditions along r = 0 (axis of
symmetry) and z = 0 (plane of symmetry). Far from the drop’s centre-of-mass, the electric
potential is set to asymptotically approach that of a uniform field and the flow field is
taken to be stress-free. While the formulation above is general, steady-state solutions
can be obtained by: (i) setting qt = 0 in the surface charge transport equation (2.7); (ii)
replacing the kinematic boundary condition by its steady state form n · v1 = n · v2 = 0
(for a steady flow, n · vs = 0); (iii) adding the capability to do continuation in a parameter
using adaptive parameterization (Abbott 1978), track solution families (Feng & Basaran
1994) and automatically detect points where changes of stability occur (Brown & Scriven
1980; Ungar & Brown 1982; Yamaguchi, Chang & Brown 1984). The steady-state version
of the algorithm reduces to that used by Wagoner et al. (2020). Further details on the
algorithm can be found in publications where similar versions and/or certain portions
of the algorithm employed here are described and which have been used for solving
equilibrium (Basaran & Scriven 1990; Sambath & Basaran 2014), steady state (Basaran &
Scriven 1988; Wagoner et al. 2020) and transient (Collins et al. 2008, 2013) problems in
EHD. In all simulations, Pe = 103 (Collins et al. 2008, 2013). We note that all simulation
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results presented in the paper are insensitive to changes in Pe provided that Pe � 1, as
has already been demonstrated by Wagoner et al. (2020) in their study that involved
computation of only steady-state solutions.

4. Results and discussion

4.1. Qualitative description of drop deformation and results of steady-state simulations
For systems in which the drop is a LD and the outer fluid is an insulator, a situation that is
typically encountered in electrospray ionization spectroscopy (Fenn et al. 1989; Fernández
de La Mora 2007) and electrically driven desalting of crude oil (Waterman 1965; Scott,
DePaoli & Sisson 1994), or for systems in which both phases are LDs, which is common
in operations involving electrospraying of one liquid into another in materials science and
separations applications (Scott & Wham 1988, 1989; Harris, Scott & Byers 1992; Ptasinski
& Kerkhof 1992), the applied electric field can cause drop deformation via two means. One
is by the generation and action of electric normal stress at the interface separating the drop
from the exterior fluid

[T E
nn]2

1 ≡ n ·
[
T E

i

]2

1
· n = 1

2

[
E2

2,n − κE2
1,n + E2

t (κ − 1)
]
, (4.1)

where Ei,n ≡ n · Ei and Et ≡ t · Ei. The other is by the action of hydrodynamic normal
stress at the interface separating the two fluids[

T H
nn

]2

1
≡ n ·

[
T H

i

]2

1
· n, (4.2)

which results from the flows induced by the electric tangential stress acting at the drop
surface [

T E
nt

]2

1
≡ n · [T E

i ]2
1 · t = (

E2,n − κE1,n
)

Et ≡ qEt. (4.3)

In the absence of charge convection and diffusion, the surface charge transport equation
(2.7) reduces to χE1,n = E2,n and the electric stresses take on particularly simple and
readily appreciable forms. In this limit, the electric normal stress (see (4.1)) becomes

[T E
nn]2

1 = 1
2

[
E2

1,n(χ
2 − κ)+ E2

t (κ − 1)
]

= 1
2

{
E2

1,nκ
2
[(χ
κ

)2 − 1
κ

]
+ E2

t (κ − 1)
}
(4.4)

and the expression for the electric tangential stress (see (4.3)) reduces to[
T E

nt

]2

1
= E1,n(χ − κ)Et = E1,nκ

(χ
κ

− 1
)

Et ≡ qEt. (4.5)

While the nature of the stresses can now be examined in general both in the presence and
the absence of charge convection and diffusion, we restrict the following discussion to a
set of material properties that are known from experiments (Brosseau & Vlahovska 2017)
to lead to lens-shaped drops and equatorial streaming. Thus, we focus on situations when
the exterior fluid has a greater permittivity and is of relatively even greater conductivity
than the drop, χ/κ = (ε2/σ2)(σ1/ε1) < 1 and κ = ε1/ε2 < 1. In the absence of charge
convection and diffusion, it then follows from (4.4) that when χ/κ < 1 and κ < 1, the
electric normal stress [T E

nn]2
1 ≤ 0 or is compressive (acts inward) everywhere on the

surface of the drop regardless of its shape. The values of the electric tangential stress
as well as the surface charge density in this limit are discussed below.
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Some useful qualitative insights into how a LD drop would respond to an imposed
uniform electric field can be gained by starting with an analysis of the electric stresses
in the absence of charge convection and diffusion when the drop is spherical. In this limit,
the electric field inside the spherical drop is uniform and given by E1 = 3ez(χ + 2)−1,
where the unit vector ez in the axial direction is related to the unit vectors in spherical
coordinates (ρ, φ,Θ) as

ez = cosφeρ − sinφeφ. (4.6)

Here, ρ is the radial coordinate in spherical coordinates or, equivalently, the distance
measured from the centre of the drop, 0 ≤ φ ≤ π is the cone angle measured from the
positive z-direction, and 0 ≤ Θ < 2π is the angle measured about the axis of symmetry,
and the unit normal and tangent vectors to the surface of the spherical drop are given by
n = eρ and t = eφ . Hence, the normal and tangential components of the electric field at
the surface of the sphere are

E1,n = 3 cosφ
χ + 2

and Et = −3 sinφ
χ + 2

. (4.7a,b)

In this situation, E1,n ≥ 0 and q ≡ E1,n(χ − κ) ≤ 0 on the top half of the drop and
E1,n ≤ 0 and q ≡ E1,n(χ − κ) ≥ 0 on the bottom half of the drop while Et ≤ 0 over the
entire surface. Thus, the electric tangential stress [T E

nt]
2
1 = qEt ≥ 0 on the top half of the

drop and [T E
nt]

2
1 = qEt ≤ 0 on the bottom half of the drop, and the flow along the free

surface is from the drop’s poles to its equator. When the surrounding fluid is also much
more viscous than the drop (λ� 1), the hydrodynamic normal stresses accompanying the
flow lead to an increase in equatorial curvature and a decrease in curvature at the poles,
thereby inducing the spherical drop to undergo an oblate deformation (Wagoner et al.
2020). Furthermore, in this situation, the electric normal stresses are compressive (act
inward) along the surface of the originally spherical drop, as has already been discussed
in the previous paragraphs. Indeed, the electric normal stresses at the poles of the sphere
are given by E2

1(χ
2 − κ)/2 while that at the equator are given by E2

1(κ − 1)/2. Thus,
when χ → 0, which is a condition that favours equatorial streaming in experiments, the
difference between the electric normal stress at the poles and that at the equator is given by
E2

1(−2κ + 1)/2. Therefore, as long as κ ≥ 1
2 , the electric normal stress at the pole is more

compressive than that at the equator, which also causes the equatorial curvature to increase
and the curvature at the poles to decrease (Wagoner et al. 2020). While the approach that
has just been used to gain qualitative insights into the deformation of spherical drops can be
replicated if the drops were spheroids (Lanauze, Walker & Khair 2015), it is nevertheless
reliant upon and hence limited by the assumption that both charge convection and diffusion
are negligible. Therefore, we examine next the impact of charge convection and diffusion
in two otherwise identical systems.

Figure 2(a) shows in a bifurcation diagram the variation of the steady-state deformation
of the drop D ≡ (z|pole − r|eq)/(z|pole + r|eq) with electric Bond number NE for two
systems. Here, the poles of the drop are located at (r, z) = (0,±z|pole) and req stands
for the equatorial radius of the drop. In both of these systems, the exterior fluid is more
viscous (λ = 25), is more conducting (χ = 10−2) and has a higher permittivity or is more
permittive (κ = 0.5) than the drop. The sole difference between these two systems is that
the balance of normal currents (where α2 = 0) is imposed in one case and the full surface
charge transport equation (with α2 = 2) is used in the other case. Figure 2(a) shows that
when the strength of the applied electric field is weak (NE < 0.5) and consequently the
deformation of the drop is small (|D| < 0.1), drop deformation D varies linearly with NE
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Figure 2. Bifurcation diagram for steady-state solutions when the exterior fluid is more viscous (λ = 25),
conducting (χ = 10−2) and permittive (κ = 0.5) than the drop. (a) Variation of deformation D with electric
Bond number NE when the balance of normal currents is imposed (α2 = 0, red curve) and the full surface
charge transport equation is solved (α2 = 2, grey curve). The open square in panel (a) highlights the region of
the parameter space where the turning point is located when α2 = 2, i.e. when charge convection and diffusion
are accounted for. (b) Zoomed-in view of the portion of the parameter space highlighted by the open square in
panel (a). The turning point along the solution family of α2 = 2 is marked by an open circle.

along each solution family and that there is negligible difference between the response of
the system for which the balance of normal currents applies and the other for which the full
charge transport equation is solved. Evidently, charge convection/diffusion plays a small
role in determining the response of slightly deformed oblate shapes. As NE increases,
however, the steady-state responses of the drops in the two cases begin to differ albeit
while still sharing some common features. In both systems, at larger NE, the variation of
drop deformation with NE slows on the drop-scale (as measured by D) and the stresses at
the equator grow rapidly (Wagoner et al. 2020) with increasing electric Bond number
and/or deformation. While the aforementioned features are common to both systems,
whether charge diffusion and convection are allowed or not changes considerably the fates
of the two solution families at large NE. Although it is well known that accounting for
charge convection reduces the deformation of oblate shapes compared with when it is
neglected (Feng 1999; Das & Saintillan 2017a,b), the impact of these charge transport
mechanisms on droplet stability has heretofore been unknown. Figure 2(b) shows clearly
that a turning point, which signals a change of stability, is encountered along the shape
family for which α2 = 2, no turning point arises along the shape family for which α2 = 0
or when the balance of normal currents is imposed. Figure 3 shows the variation of the
reciprocal of twice the mean curvature at the equator, (2H)|−1

eq , with electric Bond number
NE along the steady-state solution families depicted in figure 2. In both cases, twice
the mean curvature at the equator (its reciprocal) rises (falls) as NE increases, a point
that is discussed further in the next paragraph. In order to gain further insights into the
differences caused by charge convection and diffusion at large NE and which are shown in
figures 2 and 3, we next examine the equatorial normal stresses along these two solution
families.

Figure 4(a) shows the evolution of the equatorial normal stresses, viz. the hydrodynamic
normal stress evaluated at the equator, [T H

nn]2
1|eq, and the absolute value of the electric
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Figure 3. Variation of the reciprocal of twice the mean curvature at the equator, (2H)|−1
eq , with electric Bond

number NE along the steady-state solution families depicted in figure 2 (λ = 25, χ = 10−2 and κ = 0.5). The
colour scheme is identical to that used in figure 2 such that red curves correspond to the system in which the
balance of normal currents holds (α2 = 0), and grey curves correspond to the system when the full surface
charge transport equation is solved (α2 = 2). (a) Here (2H)|−1

eq as a function of NE. The open square in panel
(a) highlights the region of the parameter space where the turning point is located when α2 = 2, i.e. when
charge convection and diffusion are accounted for. (b) Zoomed-in view of the portion of the parameter space
highlighted by the open square in panel (a). The turning point along the solution family of α2 = 2 is marked
by an open circle.

normal stress at the equator, 2NE|[T E
nn]2

1|eq|, with the reciprocal of twice the mean
curvature at the equator, viz. (2H)|−1

eq , for the two shape families of figure 2. In the
undeformed state or when the drop is spherical, (2H)|−1

eq = 1/2. As the deformation of
the drop increases, (2H)|−1

eq decreases. Given that the drop adopts a lenticular profile
and that the radial location of the equator varies only slightly with electric Bond number
for large NE, the precipitous decrease in (2H)|−1

eq with NE shown in figure 3 captures
well the precipitous decrease in the in-plane radius of curvature of the drop at the
equator as NE increases. While figure 4(a) reveals that there are slight differences in the
equatorial normal stresses between the system for which α2 = 0 and that for which α2 = 2
for small deformations ((2H)|−1

eq ≈ 10−1), the differences between these two systems
become stark as (2H)|−1

eq → 0. For the system with α2 = 2, the turning point occurs when
(2H)|−1

eq ≈ 10−3 and for the states near the turning point, the electric normal stress is
an order of magnitude smaller than the capillary and hydrodynamic normal stresses. For
the system with α2 = 0 and for which a turning point is not observed, (2H)|−1

eq is an
order of magnitude smaller at large NE compared with the system with α2 = 2 and all
normal stresses are of comparable orders of magnitude. In other words, no stress can
be neglected as NE increases for the system in which the balance of normal currents is
imposed. Given that instability is not observed in the case of α2 = 0 from simulations
even when (2H)|−1

eq ≈ 10−5, we next theoretically examine the limit (2H)|−1
eq → 0 for

which the equator of the lenticular drop is wedge-like. Furthermore, we perform additional
theoretical analyses to draw certain conclusions about the effect of charge convection
and diffusion on the local behaviour of the various terms in the surface charge transport
equation.
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Figure 4. Equatorial normal stresses for the steady-state solutions depicted in figure 2. (a) Variation of the
equatorial normal stresses with the reciprocal of twice the mean curvature at the equator, (2H)|−1

eq . The colour
scheme is identical to that used in figure 2: red curves represent stresses when the balance normal currents
holds (α2 = 0), and grey curves represent stresses when the full surface charge transport equation is solved
(α2 = 2). Dash–dot–dotted curves represent the hydrodynamic normal stress, [T H

nn]2
1, at the equator and solid

curves represent the absolute value of the electric normal stress, 2NE|[T E
nn]2

1|, at that location. The horizontal
arrow pointing from right to left, with |D| ↑ above it, indicates the direction in which the drop deformation D
increases. The open squares in panel (a) highlight the region of the parameter space where the turning point
is located when α2 = 2. (b) Zoomed-in view of the portion of the parameter space highlighted by the open
squares in panel (a). The turning point along the solution family of α2 = 2 is marked by open circles. While
the horizontal (abscissa) axis is still (2H)|−1

eq , the vertical axis label and the ordinate values on the right are
those for [T H

nn]2
1 at the equator and the corresponding quantities on the left are those for 2NE|[T E

nn]2
1| at that

location. Note that while the open circles indicate the values of the stresses and the reciprocal of twice the
mean curvature at the turning point with respect to NE, the curves showing the variation of stress with (2H)|−1

eq

may not even exhibit turning because (2H)|−1
eq unlike NE (as in figure 2) is not the control parameter.

4.2. Local theoretical analysis in the neighbourhood of the equator
As can be seen from the simulation results shown in figure 1 and experimental images in
figure 2 of Brosseau & Vlahovska (2017), from the macroscale point of view the equator
of the lenticular drop resembles a wedge. Hence, we will now carry out a local analysis
to theoretically determine the electric field and stress distributions for a perfect wedge
and compare these predictions with simulation results. In the analysis, we consider an
infinite planar wedge of semiangle β, and place the origin of a polar coordinate system
(r̂, θ ) at the apex of the wedge (figure 5a). The angle of the wedge at the equator of the
lenticular drop is acute (0 < β < π/2), and the drop (which is less conducting, viscous
and permittive) occupies the portion of the region corresponding to θ > (π − β) and the
exterior surrounding fluid (more conducting, viscous and permitting) occupies the portion
of the plane given by θ < (π − β) (here, we only consider half the domain or the range 0 ≤
θ ≤ π because the profile of the wedge is symmetric about the midplane (θ = 0,π)). For
this wedge, we search for local solutions to Laplace’s equation (2.1) that are antisymmetric
about the midplane and are non-dominant over the electric potential corresponding to a
uniform applied field far away. Solutions of this type are well known and/or easily obtained
using separation of variables,

φ2(r̂, θ) = A2r̂n sin (nθ) ,

φ1(r̂, θ) = A1r̂n sin (n (π − θ)) ,

}
(4.8)
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Figure 5. (a) Schematic of a portion of an infinite planar wedge of semiangle β with a local polar coordinate
system (r̂, θ) based at its tip. (b) Variation of the absolute value of the electric potential evaluated along the

free surface (|φfs|) with radial distance from the equator r̂ ≡
√
(r|eq − r)2 + z2. The green open square symbols

denote simulation results for the steady-state system considered in figure 2 (α2 = 0, λ = 25, χ = 10−2, κ =
0.5) when NE = 2.4. The solid black line labelled as 1.2r̂2/3 of slope 2/3 in log–log coordinates is a best fit to
the computational results. Thus, the simulation results are in excellent accord with the theoretically predicted
variation of the electric potential (∼ r̂2/3) along the surface of the wedge that is obtained from the local analysis
of the wedge. While the simulations and theory are in excellent agreement with one another when r̂ � 1, the
former begin to deviate from the latter as r̂ → 0 because the profile of a real drop is always rounded and not
pointed at its equator no matter how small the drop’s radius of curvature becomes at (req, 0).

where A2 and A1 are constants, and the index/exponent n is real, positive and less than
one. Determining the electric field (Ei = −∇Φi) from the interior and exterior electric
potentials given in (4.8), we then impose the continuity of the tangential component of
the electric field and the balance of normal currents (after setting α2 = 0 in (2.7)) at the
surface of the wedge (θ = π − β) to obtain the following condition relating χ , β and n:

− χ = tan (nβ)
tan (n (π − β))

. (4.9)

For given χ and β, (4.9) has a solution with 0 < n < 1 giving rise to a singular electric
field at the apex of the wedge where |Ei| ∼ ∂φi/∂ r̂ ∼ r̂n−1. Relations similar to (4.9)
have been obtained for the formation of cones when a drop of a dielectric fluid is
surrounded by another dielectric (Li et al. 1994) and a conducting drop is immersed in
a dielectric medium (Taylor 1964). For a conical geometry, the out-of-plane curvature
becomes singular as the apex of the cone is approached (Taylor 1964; Li et al. 1994).
The traction boundary condition (2.4) in that situation demands that the square of the
normal component of the electric field blows up in the same manner as the curvature,
thereby uniquely selecting the value of n that is appropriate in that problem. By contrast,
in the present problem both the in-plane and out-of-plane curvatures are invariant with
distance from the apex of the wedge and no such conclusion can be made about the value
of n. (Note: the unit normal to the wedge is n ≡ eθ , the unit vector in the θ direction.
Therefore, 2H = ∇ · n = 0. Since the wedge is a two-dimensional shape, the in-plane
and out-of-plane curvatures both equal zero.) Although (4.9) contains two unknowns and is
highly nonlinear, interrogating it proves highly worthwhile. In particular, we seek solutions
to (4.9) in the limit that the outer fluid is indefinitely more conducting (χ → 0) than the
inner one, which represents the region of the parameter space for which lenticular drops
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form and equatorial streaming occurs (Brosseau & Vlahovska 2017). In this limit, it can
be easily shown that the only suitable solution to (4.9) is given by

n = 1
2 (1 − β/π)

. (4.10)

This rather simple relation shows that for any acute-angled wedge (β < π/2) on which the
balance of normal currents is imposed, the electric field becomes singular as the apex of
the wedge is approached. Moreover, the more acute the wedge angle is, the stronger is the
divergence in electric field: when β → π/2, n → 1 and when β → 0, n → 1/2.

In order to test these predictions, it proves worthwhile to compare the steady-state
solutions computed in § 4.1 with (4.8) and (4.9)–(4.10). Figure 5(b) shows the computed
variation of the absolute value of the electric potential evaluated along the free
surface of the drop (|φfs|) with radial distance measured from the drop’s equator r̂ ≡√
(r|eq − r)2 + z2. The simulation results depicted in figure 5(b) have been obtained from

the steady-state simulations for the system given in figure 2 with the balance of normal
currents imposed (α2 = 0, λ = 25, χ = 10−2, κ = 0.5) at an electric Bond number of
NE = 2.4. For this set of parameters, the semiangle of the wedge formed at the equator
of the drop predicted from simulations is approximately π/4 radians. Substitution of this
angle into (4.9) predicts that n = 2/3. As can be clearly seen in figure 5(b), the radial
variation of the electric potential for a wedge predicted from theory, φ ∼ r̂2/3, agrees well
with computational predictions of the electric potential near the equator (r̂ � 1) of a real
drop obtained from simulations.

While the simulation results shown in figure 2 under the balance of normal currents
agree well with the local solution proposed here, the existence of a wedge-like solution
when surface charge convection and diffusion are included is unlikely. In contrast to the
problems studied by Li et al. (1994) and Taylor (1964), static solutions to the infinite wedge
may not even be possible as the traction boundary condition, (2.4), requires that the electric
tangential stress acting on the surface of the idealized wedge be balanced by viscous stress
acting there. Moreover, given that the electric and viscous stresses become singular as the
apex of the wedge is approached, it is likely that the convection term in (2.7) becomes
singular unless α2 = 0. In order to account for charge convection and diffusion, we next
examine solutions to (2.2a,b) in the local polar coordinate system of figure 2. Solutions
to flow problems of this type are well known in terms of the stream function ψ(r̂, θ)
which is governed by the biharmonic equation (Huh & Scriven 1971; Michell 1899). To
determine the stream function, we once again use separation of variables and represent
the stream function as ψ(r̂, θ) = r̂mf (θ). To focus attention on the salient predictions
of the analysis, we report below only the radial dependence of the solutions that are
obtained from it. When represented in the aforementioned functional form, the velocities
and hydrodynamic stresses scale as r̂m−1 and r̂m−2, respectively. Balancing hydrodynamic
and electric stresses allows one to relate the radial behaviour of the electric potential to the
radial behaviour of the stream function (m = 2n). With this relation, the radial scaling or
the dependence on r̂ of each term in (2.7) (in steady-state form) can be examined:

α2

⎛⎜⎝∇s · qv︸ ︷︷ ︸
∼r̂3n−3

− Pe−1∇2
s q︸ ︷︷ ︸

∼r̂n−3

⎞⎟⎠ = χn · E1 − n · E2︸ ︷︷ ︸
∼r̂n−1

. (4.11)

Given that each term scales differently with radial distance r̂, it is not possible to find
a solution for which all terms balance as r̂ → 0. Thus, a wedge-like description of the
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equator is unlikely when α2 /= 0. Moreover, these findings make plain that any theoretical
investigation into the instability of the equator and consequently into equatorial streaming
should not be based on the assumption of negligible charge convection and/or diffusion.

4.3. Dynamic simulations
While the steady-state simulations reported in § 4.1 and in Wagoner et al. (2020) reveal the
existence of a critical electric Bond number NE,c above which the drop becomes unstable
when α2 /= 0, the dynamical formation of a lens-shaped droplet and the eventual onset and
growth of the instability at its equator have not been examined by simulations. In order to
uncover the dynamical behaviour of oblate drops when α2 = 0 and α2 /= 0, we next report
simulation results on the dynamics of the two systems considered in figure 2 (λ = 25,
χ = 10−2, κ = 0.5). In both simulations, the system initially at time t = 0 is at static
equilibrium where a quiescent spherical drop is surrounded by a quiescent outer fluid. The
electric field is then impulsively turned on and held at that value for all times t > 0. In the
simulations for the system in which the continuity of the normal current condition applies
(α2 = 0), the value of the electric Bond number is NE = 2.4 while in those in which the
full charge transport equation is solved (α2 = 2), the electric Bond number NE = 3.691.
At field strengths corresponding to these Bond numbers, the results of figure 2 suggest
that the system of α2 = 0 will eventually attain a steady state while the system of α2 = 2
for which NE > NE,c (here, the value of NE = 3.691 is just a little larger than the value of
NE,c ≈ 3.6901 at the turning point) will be unstable.

Figure 6(a) shows the time evolution of the equatorial curvature, 2H|eq, in these two
situations, and figures 6(b) and 6(c) show the late-stage evolution of the equatorial profiles
of the oblate drops when NE = 2.4 for α2 = 0 and when NE = 3.691 for α2 = 2. In the
situation in which the balance of normal currents (α2 = 0) applies, figure 6(a) shows that
as time advances, the equatorial curvature grows rapidly and overshoots the steady-state
prediction (as does the radial location of the equator) but subsequently decays back to
the steady-state value (without oscillations). Thus, the drop’s response in the aftermath
of the overshoot is very similar to that of a simple mechanical system that exhibits
overdamping. The dynamics exhibited by the system in which both charge convection
and diffusion are in play (α2 = 2) is quite different. In this case, the equatorial curvature
initially grows rapidly but then the growth slows. During these stages, the shape of the
equator is almost wedge-like. Instability sets in as the curvature reaches its maximum
value and is subsequently followed by a rapid decrease in curvature similar to that observed
in tip streaming from prolate drops (Collins et al. 2008). This rapid decrease in equatorial
curvature is accompanied by the ejection of a radial sheet of liquid, as shown in figure 6(c).
Moreover, figure 6(c) reveals that as the sheet radially expands and simultaneously thins,
fluid is collected in a rim at the equator. In the final stages, the radially expanding sheet
becomes unstable and begins to break into rings, as has also been observed in experiments
by Brosseau & Vlahovska (2017). In order to better understand the transient response of
the drops shown in figure 6, we next examine the dynamical evolution of the flow fields
inside (Ω1) and outside (Ω2) the drops that are generated by the applied electric field.
Figure 7 shows the drop shapes and the instantaneous streamlines in Ω1 and Ω2 for the
transient simulations depicted in figure 6. In each panel (a–c), a vertical line has been
drawn through the middle of the frame to: (i) denote not only the axis of symmetry (r = 0)
but also (ii) separate results for the system for which the balance of normal currents
condition is imposed (α2 = 0 for NE = 2.4) that are displayed to the left of r = 0 from
those when the full charge transport equation is solved (α2 = 2 for NE = 3.691) that are
displayed to the right of r = 0. The horizontal dashed line represents the midplane z = 0.
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Figure 6. (a) Evolution in time t of the equatorial curvature (2H)|eq obtained from simulations for the two
systems considered in figure 2 (λ = 25, χ = 10−2, κ = 0.5). The results denoted by the red curve are those for
a system for which the continuity of the normal current condition has been imposed (α2 = 0) when NE = 2.4.
The results denoted by the grey curve are those for a system for which the full charge transport equation
accounting for charge convection and diffusion has been solved (α2 = 2) when NE = 3.691. Transient interface
profiles depicting the late-stage evolution of the drop’s shape near the equator when (b) α2 = 0 and NE = 2.4
and (c) α2 = 2 and NE = 3.691. In panel (b), the interface overshoots its equilibrium profile and then tends to
that profile as time increases, paralleling the temporal response exhibited by twice the mean curvature at the
drop’s equator.

Figure 7(a) depicts the two systems during the initial stages (t ≈ 5) of drop deformation
following the sudden application of the electric field and when both drops are still nearly
spherical in shape. Figure 7(a) shows that for the set of dimensionless parameters used in
these simulations, the electric tangential stress drives flow from the poles to the equator
in accord with the discussion presented earlier in § 4.1. Because of the presence of both
the midplane of symmetry and the line (axis) of axisymmetry, these electric tangential
stresses produce a recirculating flow within the drops. Figure 7(a) shows that the classical
quadrupole recirculation pattern that has been known since G. I. Taylor’s field-defining
paper (Taylor 1966) and which is often depicted in publications pertaining to EHD flows
within LD droplets has not yet developed fully within the entirety of the drops but only
near their centres, i.e. the origin. Moreover, as can be seen in figure 7(a), the recirculations
and the flows generated by the electric field can be characterized by the occurrence of
stagnation points, or locations at which there is no flow and/or where the fluid velocity
vanishes (v = 0). In figure 7(a), it is readily seen that stagnation zones exist at a number
of locations within the drop: there are stagnation points at the origin and near the two
poles, and a ring of stagnation has developed at the midplane near the drop’s equator. As
time advances and during the intermediate stages of drop deformation (t ≈ 30), figure 7(b)
shows that as drop deformation increases, the stagnation points along the axis of symmetry
move inward and the ring of stagnation moves radially outward. As shown in figure 6(a)
the equatorial curvature of the drop of α2 = 2 grows much more rapidly initially compared
with that of the drop of α2 = 0. It is clearly seen in figure 7(b) that the ring of stagnation
is much closer to the equator of the drop of α2 = 2 (right) than that of the drop of α2 = 0
(left). This observation suggests that the proximity of the stagnation ring and the equator
is correlated with the drop’s equatorial curvature, an idea that is further strengthened by
the results shown in figure 7(c). While it is clear from figure 7 that the stagnation ring
shifts radially outward as the drop deforms, the rearrangement of the flow field for times
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α2 = 0 α2 = 2 α2 = 0 α2 = 2 α2 = 0 α2 = 2

time (t)

(a) (b) (c)

Figure 7. Transient drop shapes and instantaneous streamlines inside and outside the drops for the systems
considered in figure 6 (λ = 25, χ = 10−2, κ = 0.5). In each panel (a–c), the results shown to the left of the
axis of symmetry (r = 0) – the vertical line that runs through the middle of the frame – are those of the
system for which the continuity of the normal current condition has been imposed (α2 = 0) when NE = 2.4,
and the results to the right of r = 0 are those of the system for which the full charge transport equation has
been solved (α2 = 2) when NE = 3.691. Here, the horizontal dashed line represents the midplane z = 0. In this
figure the colour scheme is identical to that of figure 2(a) such that the drop (which is less viscous, permittive
and conducting) is shaded in light blue and the exterior (which is more conducting, permittive, and viscous) is
shaded in grey. In panel (a), the drops are virtually spheres, and time t = 5.523 for the system on the left-hand
half of the frame and t = 6.649 for that on the right. In panel (b), the drops are approximately spheroids, and
t = 29.484 for the system to the left of r = 0 and t = 30.787 for that to the right of r = 0. In panel (c), both
drops are lenticular in shape, and t = 46.815 for the system on the left and t = 40.5271 for the system on the
right.

beyond this point can be better appreciated by zooming-in on the region of space near
the drop’s equator. Therefore, in what follows, the late stage local dynamics of the drops
are depicted in figure 8(a–c) for the system of α2 = 0 and figure 8(d–f ) for the system of
α2 = 2. Figures 8(a) and 8(d), which show such zoomed-in views of the results depicted
in figure 7(c), reveal that the radial location of the equator and the stagnation ring are not
identical or that the two do not coincide. Most interestingly, careful examination of the
results shown in figure 8(d–f ) makes plain that the stagnation ring remains inside the drop
even as the equatorial sheet is ejected from it. While highly significant, this observation is
also surprising as it has been assumed in recent experimental studies that the equator of the
drop itself is a location where v = 0 (Brosseau & Vlahovska 2017; Vlahovska 2019) and
that the ejection of the sheet is directly tied to the stability of stagnation points considered
by Tseng & Prosperetti (2015) (Vlahovska 2019). While the stagnation ring in the case
α2 = 2 remains inside the drop for all time, figure 8(a–c) shows that in the situation in
which the balance of normal currents is imposed (α2 = 0), as time advances the stagnation
ring translates radially outward from inside the drop, (panel (a)), to outside the drop, (panel
(b)), and in the final stages translates radially inward until the stagnation ring lies at or
coincides with the equator, (panel (c)).

The aforementioned translation of the stagnation ring can be used to also help shed light
on the overdamped response of the drop’s equatorial radius req following the overshoot that
is shown in figure 6(b). When the stagnation ring lies within (outside) the drop, n · vi > 0
(n · vi < 0) at the equator and consequently (2.6) demands dreq/dt > 0 (dreq/dt < 0)
or that req increases (decreases) in time. It is only when the equator itself is a ring of
stagnation that a steady state is achieved (n · vi = 0). As made evident by the overshoot in
2H|eq shown in figure 6(a), the translation of the stagnation ring from the interior to the
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Figure 8. Zoomed-in views of the vicinities of the equators of drops showing the late-stage transient drop
shapes and instantaneous streamlines inside and outside them for the systems considered in figures 6 and 7
(λ = 25, χ = 10−2, κ = 0.5). In each panel (a–f ), the horizontal dashed line represents the midplane z = 0.
(a–c) Drop shapes and streamlines for the system for which the continuity of the normal current boundary
condition has been imposed (α2 = 0 when NE = 2.4) at times t = 46.815, 54.907 and 77.1623. (d–f ) Drop
shapes and streamlines for the system for which the full charge transport equation has been solved (α2 = 2
when NE = 3.691) at times t = 40.527, 76.2616 and 77.8774. In this figure, the same colour scheme as those
used in figures 2(a) and 7 has been adopted so that light blue shading is used in the drop (which is less viscous,
permittive and conducting) and grey shading is used in its exterior (which is more conducting, permittive and
viscous).

exterior of the drop alters the balance of normal stresses at the equator, but we leave the
details behind this overshoot in normal stresses for the future.

While the ability to precisely predict and/or control the size of the droplets formed
in streaming instabilities is of great scientific and technological interest, it is of utmost
importance in applications. Although precise scaling laws have been developed for the size
and charge (or current) of the drops produced in EHD tip streaming (Fernández de La Mora
2007; Marín et al. 2007; Collins et al. 2008, 2013), the key parameters dictating the size of
drops emitted in EHD equatorial streaming are poorly understood. Since χ � 1 and κ =
O(1) in experiments on equatorial streaming (Brosseau & Vlahovska 2017), it is desirable
to probe the impact of both the viscosity ratio λ and the ratio of the electrical relaxation
time to the characteristic time α2 on the breakup of the equatorial sheet. Therefore, we next
consider two sets of simulations in which (1) we fix χ , κ and λ but vary α2, and (2) we fix
χ , κ and α2 but vary λ. Figure 9 shows interface profiles obtained from these simulations
that highlight the late-stage dynamics of the instability of ejected equatorial sheets as they
approach breakup. In the first set of simulations, we see that at fixed χ = 10−2, κ = 0.5
and λ = 50, a fivefold increase in α2, from α2 = 1 (red) to α2 = 5 (green), leads to a
dramatic increase in sheet thickness, length and the wavelength of interface undulations at
which the sheet will break into rings. In the second set, figure 9 clearly shows that at fixed
χ = 10−2, κ = 0.5 and α2 = 2, a quadrupling of the viscosity ratio, from λ = 25 (black,
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Figure 9. Effects of α2 and λ on the late-stage dynamics and interface profiles depicting the instability of
the ejected equatorial sheets for systems of χ = 10−2 and κ = 0.5. For each system, there is a unique critical
electric Bond number NE,c such that sheet ejection/instability occurs when NE > NE,c. Colour coding: red
curve, system of α2 = 1 and λ = 50 when NE = 3 (NE,c = 2.9736); green curve, system of α2 = 5 and λ = 50
when NE = 5.2 (NE,c = 5.1488); black curve, α2 = 2 and λ = 25 when NE = 3.691 (time evolution of which
is shown in figure 6c) (NE,c = 3.6901, details of which are shown in figures 2 and 3); blue curve, α2 = 2 and
λ = 100 when NE = 3.4 (NE,c = 3.3421). Inset near the top of the main figure is a zoomed-in view of portions
of the sheets that are shown in the main figure.

results of figure 6c) to λ = 100 (blue), leads to the inverse outcome where sheet thickness,
length and wavelength of undulations dramatically decrease. Moreover, comparison of the
case for which λ = 100 with that when λ = 25 reveals that the radial location at which the
sheet becomes unstable shifts inward, i.e. to smaller values of the radial coordinate r. This
latter outcome pertaining to the effect of the viscosity ratio obtained from simulations has
also been observed in the experiments of Brosseau & Vlahovska (2017): the size of the ring
and that of the droplets shed during equatorial streaming both decreased as the viscosity
ratio λ increased (note that their definition of λ is the reciprocal of that used here). Clearly,
α2 and λ cause changes to the dynamics in an inverse manner, as can be nicely seen by
comparing the red and blue curves in figure 9: when α2 and λ are both doubled (red →
blue), the resulting sheet at the incipience of breakup has roughly the same dimensions as
the original. The same outcome is also seen when α2 and λ are roughly halved (green →
black).

5. Conclusions and outlook

When a drop is surrounded by a more conducting, permittive and viscous exterior fluid
and subjected to a weak electric field, the resulting electric tangential stresses at the
drop-ambient fluid interface generate flows which drive the drop to adopt an oblate
shape. At the equator of such a drop, capillary and electric normal stresses act inward
while normal hydrodynamic stress acts outward. Further increase in the magnitude of the
electric field strengthens the flow while the overall drop shape remains unaffected from
macroscale point of view. Indeed, the growing equatorial electric normal stress acts to
arrest deformation on the scale of the drop but increases deformation local to the equator,
causing the drop to adopt a lens-like or a lenticular shape.
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When surface charge convection and diffusion are excluded from the analysis, such
a drop remains stable as electric field strength is increased and even as the radius of
curvature at the equator shrinks to a value five orders of magnitude smaller than the
original radius of the drop. In the limit that this radius of curvature tends to zero, the
cross-section of the equator of the drop resembles a wedge or a corner. By performing
a theoretical analysis of an infinite planar wedge, it has been demonstrated in this paper
that the electric stresses become singular in a very particular way at the tip of the wedge.
The predictions obtained from this local analysis have been confirmed by interrogating
solutions obtained from full steady-state simulations. However, when surface charge
convection and diffusion are included in the analysis or the full charge transport equation
is considered, both steady state and transient simulations show that the drop becomes
unstable at a finite radius of curvature at the equator. Indeed, the wedge theory breaks down
when these additional mechanisms of charge transport which are always present in practice
are included in the analysis. For the first time, we report in this paper numerical simulations
that show the transient formation of lens-shaped drops and their destabilization beyond a
critical value of the electric field strength (or electric Bond number) which gives rise to
sheet ejection at the equator, i.e. equatorial streaming.

The analyses and results presented in this work can be extended in a number of fruitful
directions. Among others, the present paper has left numerous issues pertaining to the
initiation and eventual instability of the sheet as open problems in EHD. With respect to
the former, it would be useful to determine how various features of the equatorial sheet
such as its thickness vary with the dimensionless parameters. The results of a very brief
foray into such issues has been presented in figure 9 but plainly more extensive studies are
needed to develop a clear understanding of the effects of the various dimensionless groups
on sheet emission from lenticular drops. Similar studies have been carried out in the case
of EHD tip streaming but developing a comprehensive understanding of the physics in that
problem took many decades to complete (Fernández de La Mora 2007; Collins et al. 2013;
Ganán-Calvo et al. 2018). Equally interesting but more challenging is the question of how
the growing sheet itself destabilizes and disintegrates into a large number of droplets.

Based on the results presented in this paper and also in Wagoner et al. (2020), the
equilibrium shapes and stability of oblate drops that are surrounded by a more conducting
and permittive exterior fluid under an applied electric field are now well understood.
When the exterior fluid is more viscous than the interior one (λ ≡ μ2/μ1 � 1) as in
this paper, there now also exists a reasonably good understanding of how such lenticular
drops become unstable and emit equatorial sheets. However, a good understanding of
the dynamics that occurs once drops become unstable when the exterior fluid is less
viscous than the interior one (λ ≡ μ2/μ1 � 1) does not yet exist. While it is known that
the equilibrium shapes of such drops are discocytes, transient simulations are needed to
uncover the dynamics that occurs when such drops become unstable and succumb to the
dimpling instability.
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Appendix A. Cone and lens angles

In this appendix, we elaborate on certain features of the shapes of Taylor cones and lenses
in the vicinity of the apexes of the drops shown in figure 1. The cone angle of 49.3◦
predicted by Taylor has been shown to be valid for an inviscid, conducting drop that is
surrounded by a passive insulating medium (Burton & Taborek 2011). In situations in
which the drop is not inviscid but has a finite viscosity, the cone angle decreases as the
Ohnesorge number (Oh ≡ μ1/

√
ρ1Rγ where μ1 and ρ1 are the viscosity and density of

the drop fluid) increases and reaches ≈ 30◦ when Oh = 1 (Collins 2008). The conical
shape shown in figure 1 is for a perfectly conducting drop of Oh = 0.01 that is surrounded
by a passive medium. The lens shape in figure 1 has been obtained for the same set of
parameters that is used throughout the manuscript, viz. α2 = 0, κ = 0.5, χ = 10−2 and
λ = 25. Simulations for the lens-shaped drops in the α2 = 0 limit show little variation
in the wedge angle with λ and/or χ as the reciprocal of twice the mean curvature
of the interface at the equator tends to zero, viz. (2H)−1

eq → 0, in the limit of λ� 1
and χ � 1.

Similarly, it has been shown by Betelú et al. (2006) and Fontelos, Kindelán & Vantzos
(2008) that the cone angle is insensitive to changes in a number of parameters when a
drop of a perfectly conducting fluid is surrounded by a perfectly insulating exterior fluid
in the Stokes flow limit. First, the cone angle remains unchanged as the viscosity ratio
is varied when the drops are supercritically charged, i.e. above the Rayleigh limit (see
figure 4 in Betelú et al. (2006)). Second, the cone angle remains unchanged as drop charge
and external field strength are varied when the pair of values of these two quantities is
large enough to cause instability (see figure 4 in Fontelos et al. (2008)).

Appendix B. Value of α2 used in simulations

The value of α2 = 2 used in most of the simulation results reported this paper is based on
the experiments of Brosseau & Vlahovska (2017) and certain reasonable assumptions that
we had to make to arrive at an approximate value of this dimensionless group. Moreover,
and reassuringly, the response of oblate drops – formation of lens-shaped drops prior to
instability and equatorial streaming upon instability – when α2 /= 0 remains qualitatively
unchanged as the value of α2 is varied.

In the experiments of Brosseau & Vlahovska (2017), the drop fluid (phase 1) was
silicone oil and the exterior fluid (phase 2) was castor oil. Both fluids have conductivities
of the order of 10−12 S m−1. The conductivity of the suspending fluid was varied by the
addition of a dopant which was an organic, non-surface-active electrolyte. The ratio of
the permittivities in all experiments was κ = 0.6. The dielectric constant of castor oil has
been reported by a number of other researchers to be ε2/ε0 = 4.5 (Zahn & Shumovich
1985), where ε0 = 8.85 × 10−12 F m−1 is the permittivity of free space. The addition of
the dopant increased the conductivity of the castor oil by two to six orders of magnitude.
The viscosity of the castor oil was μ2 = 0.69 Pa s. The viscosity of the silicone oil was
adjusted so that the viscosity ratio ranged as 0.1 ≤ λ ≤ 1000 (we remind the reader that
their definition of λ is the inverse of that used in this paper). The value of the surface
or interfacial tension was reported to be γ = 0.0045 N m−1 for all drop-exterior fluid
combinations and the typical radius of the undeformed drop was R = 0.001 m. According
to figure 3 in their paper, equatorial streaming would occur in the experiments, for example,
if the outer conductivity was increased by a factor of 2500 by the addition of the electrolyte
and the inner viscosity was made 25 times smaller than the outer viscosity. The value of
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α2 in this situation would then be

α2 = ε2γ

σ2μ1R
= (4.5 × 8.85 × 10−12 F m−1)(0.0045 N m−1)

(2.5 × 10−9 S m−1)

(
0.69
25

Pa s
)
(0.001 m)

≈ 2.6. (B1)

This value is therefore of the same order of magnitude as the value of α2 = 2 that is used
in the simulations carried out in this paper.
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