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Preventing the destruction of articular cartilage has long been a goal in the
treatment of arthritic diseases, in which a combination of cytokines and growth
factors affect the catabolic state of cells within the joint. Normal tissue turnover
can be viewed as a balance between degradation and synthesis of the
macromolecules that constitute the extracellular matrix. This process is tightly
regulated such that highly degradative proteinases are controlled at several
levels, including synthesis and secretion, activation and inhibition. Tissue
destruction occurs when proteinase-mediated degradation exceeds synthesis,
and this is markedly influenced by cytokines and growth factors that stimulate
matrix synthesis as well as the production of proteinases and/or their
endogenous inhibitors. This review outlines current knowledge of factors that
influence cartilage biology, with particular emphasis on chondrocytes and
synovial fibroblasts. Recent findings from the delivery of cytokines to affected
tissues are also summarised, and the potential impact these observations might
have on new therapies for arthritic diseases is discussed.

The goal of generating new and improved
treatments for arthritic diseases of the joints has
not yet been achieved, although progress is being
made. Destruction of articular cartilage is the
hallmark of many of these disabling conditions,
and an imbalance of pro-inflammatory cytokines
over their anti-inflammatory counterparts
promotes the disease process. Therefore, an
understanding of the effects of the various
cytokines and growth factors present during the
disease process on the cells and tissues in the joint
will greatly assist the development of new
therapies. Since tissue destruction is considered
the ‘end-point’ of the disease process, knowledge
of the enzymes involved in this destruction is also

paramount in new drug design. This review
highlights the effects of cytokines and growth
factors on cartilage chondrocytes and synovial
fibroblasts with respect to cartilage matrix
synthesis and repair, and its degradation.

Articular cartilage
Articular cartilage provides a friction-free
surface on which the bones of a joint articulate
during motion. The joints in the lower body
have to support the body weight even at rest. To
fulfil these tasks, articular cartilage must be able
to withstand the compressive forces that the
joint experiences. Two major macromolecules
help to provide this function: proteoglycan and
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collagen. Proteoglycan, of which aggrecan is the
predominant monomer, has a high sulphated
glycosaminoglycan content that attracts water
molecules and hence allows the tissue to swell
and resist compressive forces (Ref. 1). These
proteoglycans are held in the tissue within a
fibrous network of triple-helical type II collagen
fibrils, which are crosslinked and provide
cartilage with its tensile strength. Together,
these macromolecules make up ~25% of the wet
weight of cartilage, with water accounting for
most of the remainder. Other molecules such as
minor collagens (types VI, IX, X and XI) (Ref. 2),
biglycan, decorin, laminin, tenascin and
fibromodulin all assist in maintaining the tissue,
through spatially organising components of the
extracellular matrix (ECM) (Refs 1, 2, 3). One
component of special note is cartilage oligomeric
protein (COMP), which is a member of the
thrombospondin family of proteins. COMP is
present in high amounts in articular cartilage
and its breakdown products have been suggested
to be a marker for disease. A role for the matrix
metalloproteinases (MMPs), as well as serine
proteinases, has been demonstrated in this
breakdown (Ref. 4). Although its true function
remains unclear, COMP is known to interact with
collagen, and given its inter-territorial localisation
in mature cartilage, a structural role seems
probable. This is further supported by the fact
that mutations in COMP give rise to structural
defects.

Cartilage receives nutrients from the synovial
fluid, which is synthesised by the fibroblasts in
the synovial membrane. It is a dynamic tissue
that is constantly being remodelled as old
macromolecules of the ECM are replaced with
new. This matrix is maintained and replaced by
the resident chondrocytes, which only sparsely
populate the tissue. Adequate maintenance of
cartilage is essential for chondrocyte viability
and, conversely, loss of chondrocytes adversely
affects the tissue. Such loss, via apoptosis, is
known to be induced by nitric oxide (NO), which
itself is produced by pro-inflammatory stimuli
such as interleukin 1 (IL-1) and tumour necrosis
factor α (TNF-α) (Ref. 5). These observations
extend to osteoarthritis (OA) cartilage, where
evidence of apoptosis has been found in
abnormal tissue, and a significant correlation
between apoptotic cell numbers and proteoglycan
depletion (with elevated NO levels) has been
shown (Ref. 5); activation of the Fas receptor is

thought to be the apoptotic trigger (see Ref. 5 and
references therein). A feedback loop is therefore
created whereby a healthy matrix supports viable
chondrocytes and vice versa and, by contrast, loss
of chondrocytes through apoptosis favours
deterioration of the ECM.

Arthritic disease
Rheumatoid arthritis (RA) is the most common
inflammatory arthropathy, having a disease
prevalence of 0.5–1.0%. It has a peak age of onset
in the sixth decade and is three times more
common in women. Although OA is generally
more benign than RA, clinical OA of the knee and
hips affects 10–20% of the over 65s, and again is
more common in women. The combined costs to
the UK NHS Executive are £560 million, although
the overall cost in the UK is in excess of £1 billion
(see Ref. 6 and references therein).

 The term RA was coined in 1859 by Sir Alfred
Garrod. He was the first to distinguish gout from
RA, although OA was still included in the RA
heading. The term OA was subsequently used in
1888, but it was not until 1907 that Garrod’s son
finally made the modern-day distinction between
RA and OA. As clinical diagnosis has progressed,
specific criteria have begun to be assigned to
these diseases, although RA and OA are often
still referred to as an inflammatory autoimmune
disease and an erosive disease associated with old
age, respectively. This classification is obviously
over-simplified and some patients might present
in the clinic with a combination of both diseases.
Controversy also exists as to the precise nature of
the initiating factor(s) underlying these diseases,
as well as the enzymes that play a major role in
the destructive process. A vast amount of research
has been undertaken to try to unravel some of
these fundamental questions but, although many
advances have been made, they remain relatively
unanswered. This review focuses on RA but,
where possible, information on OA is also
documented for comparison.

Rheumatoid arthritis
RA is a complex disease and, although the
initiating trigger is poorly understood, the
disease is considered to have an autoimmune
basis. Antigens suggested to be the target of
autoimmunity include type II collagen, heat
shock proteins and gp39 (Ref. 7). A genetic
predisposition to RA has been demonstrated,
with an increased susceptibility locus being
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linked to expression of specific HLA-DR4
subtypes (Ref. 8) (see later section entitled
‘Other factors’). One widely accepted hypothesis
has been that RA is a disease driven primarily
by the synovium, which undergoes proliferation
to generate the ‘pannus’ that then invades
articular cartilage and promotes its destruction
(Ref. 9). At this stage of disease, the synovitis
may subside only to reappear later; this cycle of
inflammation followed by remission is typical
of many RA patients, in whom damage to the
cartilage is thought to occur during inflammatory
episodes.

Maintenance of the invasive pannus tissue is
an integral part of disease progression. The
potent angiogenic cytokine vascular endothelial
growth factor (VEGF) appears to play a role in
this process (Ref. 10). Invasion is reduced by
anti-TNF-α  therapy; this might result from
blockade of a cytokine cascade or a reduction in
leukocyte trafficking into the joint (Ref. 11).
Synovial invasion of the cartilage is associated
with the plasminogen activation system (Ref. 12),
and is also a phase in disease when synovial fluid
neutrophils and chondrocytes within the cartilage
might begin to respond to the predominantly
pro-inflammatory stimuli (Ref. 13).

Recent evidence has indicated that tissue
destruction and inflammation might not in fact
be coupled (Ref. 14), and therefore that sustained
degradation of the cartilage ECM might be a
later consequence of the inflammation via
stimulation of the resident chondrocytes. A
variety of pro-inflammatory stimuli are known
to induce chemokine production, including
monocyte chemoattractant protein 1 (MCP-1), in
chondrocytes, which might provide a mechanism
by which cartilage actively promotes disease
progression (Ref. 15). It is also unclear why
activation of synovial fibroblasts persists even
after anti-inflammatory therapy. One possibility
is that the synovial membrane is gradually
repopulated with immature mesenchymal and
bone marrow cells with altered properties. This
hypothesis is supported by work that has shown
elevated expression of the human embryonic
growth factor homologues of wingless and
frizzled in RA fibroblasts compared with OA
and normal cells, suggesting that the synovium
is indeed repopulated with immature cells (Ref.
16). Alternatively, existing cells might undergo
(de)differentiation in some way such that they
then express these embryonic markers.

Osteoarthritis
OA falls into two categories: primary OA occurs
in middle-aged to elderly patients where an
active disease process is often presumed to be a
consequence of joint ‘wear and tear’; secondary
OA occurs at any age as a result of trauma or
disease. In both situations, the central feature is
loss of articular cartilage and a reduced capacity
for repair; the chondrocytes themselves appear to
be the driving force behind these deficiencies. A
focal lesion in the cartilage might lead to abnormal
loading of the surrounding chondrocytes, which,
in turn, respond by promoting a cascade of slow
but persistent degradation of cartilage, ultimately
leading to loss of joint function. The cyclical
disease course of OA has also been proposed to
be the result of sequential cytokine stimulation
followed by a feedback inhibition of autocrine
cytokine and cytokine receptor production,
which affects collagenase synthesis (Ref. 17).
Although not considered an inflammatory
disease, orthopaedic surgeons often comment on
the marked synovial infiltration seen during joint
replacement surgery of OA patients, further
increasing the evidence for the involvement of
pro-inflammatory cytokines such as IL-1 and
TNF-α (Ref. 18).

Matrix metabolism
Degradation and synthesis of cartilage
macromolecules under normal physiological
conditions is kept in equilibrium and can therefore
be viewed as a balance (see Fig. 1). Chondrocytes
and synovial cells respond to a variety of
cytokines and growth factors that stimulate the
production of destructive proteinases. All four
major classes of proteolytic enzymes (aspartic,
cysteine, serine and metallo) are involved in
normal turnover and pathological destruction,
and the pathway that predominates will alter
depending on the resorptive circumstances (Ref.
19). These pathways are not mutually exclusive
and it is highly probable that total degradation of
matrix components involves several pathways
and classes of proteinases.

MMPs are a family of neutral zinc
endoproteinases that collectively degrade all
the components of the ECM (Ref. 20), and have
received considerable attention with respect to
arthritic tissue destruction because their
expression correlates strongly with collagen
degradation (Refs 21, 22), although this is not
always the case (Ref. 23). The MMP family
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Figure 1. The control of degradation of cartilage extracellular matrix (see next page for legend ) (fig001arn).
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contains at least three collagenases [interstitial
collagenase/collagenase 1 (MMP-1), neutrophil
collagenase (MMP-8), and collagenase 3 (MMP-
13)] that can degrade fibrillar collagen (Ref. 20).
MMPs are controlled at several levels (Ref. 24),
including inhibition by a family of endogenous
inhibitors called the tissue inhibitors of
metalloproteinases (TIMPs) (Refs 24, 25, 26). MMP
inhibition has been the subject of much research
in recent years by the pharmaceutical industry
in an attempt to find a highly potent, specific
and bioavailable inhibitor (Ref. 26). Other
metalloproteinases, most notably of the ADAM
(for ‘a disintegrin and metalloproteinase’) family
of proteinases, are also expressed in cartilage (Ref.
27), although their roles in tissue maintenance
and tissue destruction are still unclear. In
particular, a subset of this family known as the
ADAMTS (ADAM with thrombospondin motifs)
proteins contains members that have recently
been found to specifically cleave aggrecan at
the site considered to be pathologically relevant
(Refs 28, 29, 30). At least one of these enzymes
(ADAMTS-5) is also expressed in the synovium
(Ref. 31). Although these  metalloproteinases are
not MMPs, recent evidence indicates that TIMP-3
is a potent inhibitor (Ref. 32).

Cysteine proteinases (cathepsins B and L,
which can degrade cartilage and bone) are
expressed in RA synovial lining (Ref. 33), and
have been implicated in cartilage degradation
(Ref. 34). Cathepsin K has received recent
attention because it is now thought to be strongly
associated with pathological bone and cartilage
resorption (Refs 35, 36). Serine proteinases,
particularly those associated with the plasmin
cascade, have also been implicated in tissue
destruction (Refs 12, 37).

The role of MMPs in the pathological
destruction of cartilage is promoted by various
pro-inflammatory cytokines that perturb the
balance between synthesis and degradation of
ECM components to favour matrix breakdown
(see below and also Fig. 1). Proteoglycan (i.e.
aggrecan) loss is a rapid event following pro-
inflammatory stimulation but it can be readily
replaced once the stimulus is removed. Collagen
is more resistant to degradation but is much more
difficult to replace (see Ref. 24 and references
therein). However, a different situation arises
during normal cartilage metabolism (the so-
called physiological ‘steady-state’). Under these
circumstances, degradation of collagen, and
indeed probably proteoglycan, occurs within
the lysosomal system following phagocytosis,
a mechanism shown to occur in fibroblasts
(Ref. 38). Although phagocytosis has not been
described in chondrocytes, CD44-mediated
endocytosis and breakdown of hyaluronate has
been reported (Ref. 39), suggesting differences
in mechanisms of ECM breakdown among
mesenchymal cells. Nevertheless, an equilibrium
exists whereby matrix turnover is tightly
regulated; any disturbance of the various
degradative pathways that prevail might lead to
uncontrolled matrix destruction.

Cytokines and cytokine interactions
Cytokines and growth factors have been
subdivided into those with pro-inflammatory and
those with anti-inflammatory effects; in arthritis,
these generally exhibit either catabolic or anabolic
effects on cartilage, respectively. Considerable
attention has been focused on IL-1 and TNF-α
− two pro-inflammatory cytokines that have been
regarded as pivotal mediators in inflammatory

Figure 1. The control of degradation of cartilage extracellular matrix. Chondrocytes maintain articular
cartilage by replacing degraded components via local synthesis, which is balanced with degradation to prevent
over-deposition of matrix. In arthritic diseases, this equilibrium is shifted towards degradation. Chondrocytes
and synovial cells are stimulated by both (a) anti-inflammatory and (b) pro-inflammatory cytokines, as well as
mechanical stress, and cell–cell and cell–matrix contacts, via a variety of cell-surface receptors. These stimuli
are transferred to the nucleus via intracellular signalling and mechanotransduction pathways, resulting in
activation of gene transcription. Synthesis and secretion of matrix components, including aggrecan and collagen
occurs, as well as enzymes such as aggrecanases (e.g. ADAMTS-5), pro-matrix metalloproteinases (pro-
MMPs) (including procollagenases) and activating enzymes (e.g. MMP-3, membrane-type MMPs and plasmin).
Aggrecanases promote rapid aggrecan loss, and this might be inhibited by tissue inhibitor of metalloproteinase
3 (TIMP-3). Induction of TIMPs, and other inhibitors, via anti-inflammatory agents can block some activating
enzymes that otherwise convert pro-enzymes to their active forms. These activating enzymes might in turn
also require activation. Once the level of active MMPs exceeds the local supply of TIMPs, they can promote
specific cleavage of triple-helical collagen via collagenases, as well as further nonspecific collagen hydrolysis
by other MMPs; aggrecan degradation by MMPs might also occur (fig001arn).
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diseases such as RA. However, several other
cytokines present in the milieu might also be
associated with active disease. The most abundant
include IL-1, -6, -8, -10, -11, -13, -17 and -18, TNF-
α, granulocyte–macrophage colony-stimulating
factor (GM-CSF) and transforming growth factor
β (TGF-β). Less-detectable mediators include
IL-2, -3, -12 and -15, interferon γ (IFN-γ), oncostatin
M (OSM) and leukaemia inhibitory factor (LIF).
IL-4 is rarely detected.

It is important to remember that cytokines
are capable of acting in synergy, whereby the
combined effects of two or more cytokines far
exceeds the effects they exert alone. This issue
cannot be underestimated, and might occur
inadvertently under certain conditions. For
example, insulin-like growth factor 1 (IGF-1) has
been shown to synergise with TGF-β to induce
matrix synthesis (Ref. 40); TGF-β has also been
shown to augment prostaglandin E2 (PGE2)
production in cultured chondrocytes when in the
presence of serum (Ref. 41), a result that is most
likely explained by the presence of IGF-1 in serum.
Hence, culture conditions can significantly alter
the responses to cytokines in vitro and careful
consideration is required to ensure culture
conditions are well defined.

Several antagonist factors might reduce the
effects of a given cytokine on cartilage. For
example, the effects of IL-1 can be reduced by
IL-1 receptor antagonist (IL-1RA), which is a
soluble factor that binds IL-1 and prevents it
from binding to its cell-surface receptor. This
might represent the mechanism of action of the
chondroprotective cytokine IL-4, which is known
to upregulate IL-1RA (Ref. 42). Many cells also
express the IL-1 ‘decoy’ receptor (IL-1RII). It is
thought that binding of IL-1 by this receptor
does not lead to signal transduction, although this
has been challenged recently (Ref. 43) and will
require further investigation in the context of
experimental data from animal models. There are
also various other soluble receptors, which can
act as agonists and antagonists [e.g. soluble IL-6
receptor (sIL-6R) and soluble TNF-α receptor
(sTNFR), respectively]. These soluble factors are
important to consider because they can arise from
tissues remote from the cartilage but might have
a profound effect on the chondrocytes.

Pro-inflammatory cytokines
A hierarchy of pro-inflammatory cytokines has
been proposed to exist in arthritic diseases,

whereby IL-1 is the pivotal cytokine at early and
late stages of disease and TNF-α is involved in
disease onset (Ref. 44). Strong arguments have
been proposed for IL-1 as the primary mediator
in light of the IL-1β-knockout mouse, which
lacks chronic erosive arthritis (Ref. 45). However,
other cytokines have also been proposed to be
key players, such as IL-15 (Ref. 46). In addition,
recent evidence suggests that the T-cell-specific
cytokine IL-17 might be the key mediator because
it is produced very early in the disease process
and is known to induce the production of other
pro-inflammatory cytokines (Ref. 47). It is most
probable that more than one of these pro-
inflammatory cytokines are present in an arthritic
joint (e.g. Ref. 48) and that they have varying
effects on the disease process, including inhibition
of matrix synthesis (e.g. Refs 49, 50), upregulation
of matrix-degrading enzymes (e.g. Refs 50, 51, 52,
53, 54), and induction of other pro-inflammatory
agents (e.g. Refs 17, 46, 50, 52, 54, 55, 56). This
concept of multiple cytokines, perhaps acting
synergistically, in arthritic disease has prompted
the suggestion that fully effective anti-cytokine
treatment will most probably be achieved using
a combination therapy (Ref. 57).

Large amounts of NO are produced by
chondrocytes activated by pro-inflammatory
cytokines (see Refs 5, 58 and references therein).
Many studies have shown that NO is at least
partly responsible for IL-1-induced effects such
as suppressed collagen synthesis. NO production
is a consistent feature of arthritic cartilage and
synovium and has been associated with matrix
degradation and chondrocyte apoptosis. Indeed,
inhibitors of NO synthase, which produces NO,
help reduce synovial inflammation and result in
decreased destruction of cartilage and bone in
experimental models of arthritis (Ref. 58).

In general, pro-inflammatory cytokines are
potent mediators and exert their maximal effects
on cells at relatively low concentrations. This is
an important point, especially when considering
cell culture experiments in comparison with
active disease where, for example, synovial
invasion occurs. The localised concentration of
a given cytokine at this invasion front might
be considerably higher than in the remaining
cartilage, and therefore sufficient to affect the
local chondrocyte population. Marked differences
in cell numbers often occur when comparing
cell and tissue culture experiments, such that
responses observed in cell culture at a given
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time point might not always be seen in tissue
culture.

Anti-inflammatory cytokines
The anti-inflammatory cytokines typically
counteract the effects of their pro-inflammatory
counterparts and often promote the synthesis of
ECM components. Many of these cytokines favour
the differentiation of T cells into T helper 2 (Th2)
cells rather than the pro-inflammatory Th1 cells.
Differentiation of T cells along the Th2 lineage is
generally thought to be a more protective mode
of the inflammatory response, owing to their anti-
inflammatory ‘phenotype’. The effects of anti-
inflammatory cytokines include the promotion of
matrix synthesis and repair (e.g. Refs 40, 59, 60,
61, 62, 63), induction of protective enzyme
inhibitors such as TIMPs (e.g. Refs 64, 65, 66),
downregulation of destructive enzymes (e.g. Refs
53, 56, 58, 59, 60), and reduction in the levels of
pro-inflammatory cytokines (e.g. Refs 40, 44, 67).

TGF-β has a major role in chondroprotective
mechanisms and is known to promote matrix
synthesis. Cartilage contains vast stores of TGF-β,
as much as 300–500 ng g−1 of cartilage, with
most of it in the latent, inactive form that
requires proteolytic processing (Ref. 68). Various
hypotheses have tried to explain the physiological
significance of this large excess, and although the
mechanism of TGF-β autocrine regulation is still
not understood, the presence of such reserves
strongly implies a role in cartilage metabolism and
a key role for TGF-β activation. A recent report,
however, has indicated that TGF-β might also
cause synovial hyperplasia and osteophyte
formation (Ref. 69).

Also present at elevated levels in cartilage is
IGF-1, which appears to have a role in stimulating
chondrocyte anabolic activity. This growth factor
is sequestered from its cell-surface receptor in the
ECM by IGF-binding proteins (IGFBPs) and
fibronectin (Ref. 70); this complex system is
termed the IGF-1 axis and tightly regulates the
bioavailability of IGF-1. IGFBP-3 expression
appears to increase with age, paralleling an age-
related decline in matrix synthesis, and is also
overexpressed in OA cartilage where it could
cause metabolic disturbances (Ref. 70). The local
increase in matrix synthesis following injury could
result from damage-induced IGF-1 release from
IGFBP pools. An age-related failure in this system
could thus contribute to degenerative disease, and
gives some credence to the belief that OA is due

to the ‘wear and tear’ of old age. The protective
effects of IGF-1 have been further demonstrated
using adenoviral vectors that specifically result
in its overexpression (see below).

Recent evidence indicates that some of the
cytokines that have been described as anti-
inflammatory might not always be so. Members
of the IL-6 cytokine family, including IL-6 and
OSM, are known to induce TIMP production from
chondrocytes and fibroblasts, as well as increase
matrix synthesis. These abilities would favour a
chondroprotective role for these cytokines,
although recent evidence now indicates that this
is not always the case (Refs 51, 54, 71). Rather,
when in combination with IL-1 these cytokines
induced a marked catabolic effect by promoting
matrix degradation. A protective role for IL-4 has
been described in arthritis (Refs 72, 73), although
it is also implicated in asthma.

Links between chondrocytes and matrix
Interactions between chondrocytes and the ECM
help to regulate many biological processes
important to cartilage homeostasis and repair,
including cell attachment, differentiation, growth
and survival. The integrin family of cell-surface
receptors plays an important role in mediating
cell–matrix interactions. Several integrins are
expressed on chondrocytes and these serve as
receptors for collagens type II and VI (α1β1, α2β1,
α10β1), vitronectin and osteopontin (αVβ3), laminin
(α6β1) and fibronectin (α5β1) (Ref. 74). Integrins
might be important transducers of mechanical
stimuli because they provide a link between the
cytoskeleton and the ECM. Such links are critical,
for example, for relaying shear-stress-induced
signals (Ref. 75). Expression of integrins can be
regulated by IGF-1 and TGF-β (see Ref. 74 and
references therein). Cross-talk between the
integrin signalling mechanisms has recently
been demonstrated and is thought to play a role
in cartilage homeostasis (Ref. 76). Indeed, an
α Vβ3 antagonist has been shown to reduce
inflammation and improve joint integrity in an
experimental arthritis model (Ref. 77). Moreover,
deregulation of this integrin network might be
important in disease progression.

Cell-surface receptor binding is the primary
means by which cytokines and growth factors
mediate their effects upon cells. In many cases,
very limited amounts of cytokine are required
to elicit a response. A maximal response to IL-1
in chondrocytes can be achieved when as few
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as 40 cell-surface receptors bind ligand (Ref.
78). Observations such as this clearly suggest
that modulation of the number of cell-surface
receptors would not have a marked effect on
cellular responses. However, where cell-surface
receptor expression is limiting, then an increase
in expression might alter the responsiveness of a
given cell type. This is evident for the TNFRs
(which are expressed as two different forms:
TNFR55 and TNFR75); normal chondrocytes
express mainly TNFR55, but pro-inflammatory
cytokines such as TNF-α induce the expression
of TNFR75 (Ref. 79). In OA cartilage, differences
in TNFR distribution have been found and a role
for TNF-α in focal cartilage loss has been reported
(Ref. 80); this role is further supported by evidence
that levels of TNF-α  and TNF-α -converting
enzyme (TACE or ADAM-17) are elevated in OA
cartilage, suggesting a paracrine/autocrine loop
(Ref. 81). A role for CD44, the hyaluronan receptor,
on chondrocytes has been demonstrated in the
maintenance of cartilage homeostasis (Ref. 82); in
particular, this might have implications for
aggrecan turnover.

Chondrocytes are able to respond to a wide
variety of stimuli, suggesting that they have an
extensive repertoire of receptors. When a specific
receptor is absent, responsiveness might be
conferred by the presence of a soluble receptor.
For example, sIL-6R confers IL-6 responsiveness
to chondrocytes (Ref. 83), which normally possess
gp130, the common signalling subunit for IL-6-
type cytokines (Ref. 54). Membrane IL-6R lacks
the cytoplasmic signalling domain and hence does
not contribute to signal transduction other than
by binding to gp130 once it has bound IL-6, as is
the case for sIL-6R. Such findings might be
relevant to RA since sIL-6R is elevated in RA
synovial fluids (Ref. 84) and is known to be
produced by the synovium.

Other factors
Several studies have indicated a small but
consistent increased risk of arthritic disease in
siblings of affected individuals (Ref. 85), although
identical twins show little similarity in the
timing of disease onset. However, twin studies
do support the notion that genetic factors
contribute to increased disease risk: monozygotic
and dizygotic twins have a disease concordance
for RA of 12% and 4%, respectively, which is well
above the background disease prevalence of
0.5–1.0% (see Ref. 85 and references cited therein).

Polymorphisms in several genes associated with
destructive joint diseases have been identified
that might contribute to disease pathogenesis,
such as an IL-6 polymorphism associated with
juvenile chronic arthritis (Ref. 86). Ongoing
studies of a polymorphism in the MMP-1
promoter (already shown to correlate with
tumour invasion in cancer patients) might shed
new light on the role of this proteinase in arthritic
disease.

Autoimmunity is also thought to be a
dominant factor in the pathogenesis of RA, and
autoantibodies to cartilage-specific components
have been detected in serum samples of RA
patients (Ref. 87). Complement activation occurs
adjacent to the cartilage surface, where abundant
co-deposits of immunoglobulin and activated
complement components such as C1s are present.
This component has several novel functions (see
Ref. 88), and is thought to participate in the
pathogenesis of RA through its collagenolytic
activity (Ref. 89), in addition to its role in the
complement cascade. A genetic predisposition
for RA has been identified in the major
histocompatibility complex (MHC) that forms
the human leukocyte antigen (HLA) types (see
Ref. 8 and references therein). Interactions
between antigenic peptide and an HLA molecule
determine the immune response, and the HLA
molecules associated with RA encode a sequence
of amino acids that constitute the ‘shared RA
epitope’. This epitope has been shown to indicate
an increased susceptibility for more-aggressive,
erosive RA. Several models have been proposed
for how this epitope could lead to antigen-specific
T-cell-mediated autoimmunity (see Ref. 8 and
references therein).

Gene regulation in cartilage metabolism
Gene regulation through cytokine stimulation
is mediated via specific signal-transduction
pathways, an area of research that has prompted
the search for novel therapeutic targets for
many diseases, including inflammatory arthritis.
Several transcription factor families, including
AP-1, NF-κB and STAT, have been implicated in
gene regulation in inflammation (see Ref. 90
and references cited therein). Moreover, the
activity of these transcription factors is regulated
by mitogen-activated protein kinase (MAPK)
pathways. Cross-talk and/or interplay between
these pathways might contribute to increased
transcription of some catabolic genes (e.g. Ref. 91).
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This level of complexity is compounded when
combinations of cytokines appear to have
synergistic effects on gene transcription, and this
can be problematic when trying to reproduce in
vivo effects in vitro.

The advent of potent synthetic inhibitors of
factors involved in a variety of signal-transduction
pathways has begun to allow a more detailed
analysis of the specific pathways that are
involved in the regulation of genes considered to
be important in the disease process. This applies
not only to the degradative enzymes such as
the collagenases but also to their inhibitors
such as the TIMPs (e.g. Ref. 92). Furthermore,
the identification of endogenous regulators of
transcription factors such as those for STAT
proteins has also allowed more detailed analyses
of specific pathways that are utilised in the
transcriptional activation of certain genes (e.g.
Ref. 93).

Genetic approaches to understanding
arthritis

Although pro-inflammatory cytokines and the
MMP family of enzymes have been strongly
implicated in the pathological destruction of
cartilage, considerable controversy still exists
as to the identity of a specific cytokine(s) and
MMP(s) that are involved in the disease process.
In particular, the identity of the collagenase
responsible for the destructive turnover of
cartilage collagen has been much debated
since collagenase 3 (MMP-13) was discovered
(Ref. 94). This finding led to a reappraisal of the
observations made using murine models of
arthritis because rodents appeared to lack the
homologue of human collagenase 1 (MMP-1);
such a homologue has, however, now been
described (Ref. 95). In humans, it is likely that all
three collagenases are elevated at some stage in
the disease process but that their regulation is not
co-ordinated. To date, few studies have assessed
multiple MMP expression in diseased tissues,
although those that have clearly identify MMP-1
and MMP-13 as being strongly associated with
RA synovitis (e.g. Ref. 96).

Transgenic studies
To address some of these issues, transgenic
animals have been developed to either
overexpress or ‘knock-out’ expression of MMPs
and various cytokines to identify their impact
(Table 1). A role for both IL-1 and TNF-α has

been demonstrated in these studies. Several
MMP-transgenic mice have been developed and
interestingly no MMP knockout has been lethal;
indeed, several of the knockouts have phenotypes
similar to the wild-type animals, suggesting a
degree of redundancy within the MMP system.
However, one transgenic study has suggested that
MMP activation might be a key step in cartilage
erosion (Ref. 97).

The major findings relevant to arthritic
disease include the following. First, aggrecan
cleavage at the ‘aggrecanase’ site still occurred
in stromelysin 1 (MMP-3) knockout mice (Ref.
98), clearly implicating the recently identified
aggrecanase (ADAMTS) enzymes (Refs 28, 29,
52) in the specific cleavage of aggrecan;
furthermore, in less-aggressive models of
arthritis, fewer erosions were found in the
MMP-3 knockout mice, suggesting a role for
MMP-3 in collagenase activation. Second, the
MMP-9 knockout had no obvious phenotypic
defects, although there was a delay in long bone
growth (Ref. 99). Perturbed vascularisation and
ossification of the growth plate appeared to
account for the MMP-9 knockout effects,
indicating an important developmental role for
this enzyme. Third, the MT1-MMP (MMP-14)
knockout mice developed dwarfism, osteopaenia
and a spontaneous arthritis (Ref. 100), and had
severe defects in skeletal development and
angiogenesis (Ref. 101). The shortening of bones
in these mice is a consequence of decreased
chondrocyte proliferation in the proliferative zone
of the growth plates. Defective vascular invasion
of cartilage promotes enlargement of the
hypertrophic zones of the growth plate, which
delays the formation of secondary ossification
centers. Activation of latent gelatinase A (MMP-
2) was also deficient, suggesting that MMP-14 is
essential for its activation in vivo. It is unclear
whether a nutritional defect might be the cause
of some of these observations.

Other genes relevant to cartilage that have
been targeted in knockout studies include
ADAM-17 and ADAMTS-1, although experiments
to assess the effects on cartilage remain to be
reported. Loss of ADAM-17, the enzyme
responsible for releasing TNF-α from the cell
surface, results in mice with respiratory distress
and abnormal lung development, implicating this
enzyme in lung morphogenesis (Ref. 102).
ADAMTS-1-null mice have growth retardation
and impaired female fertility (Ref. 103).
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Gene therapy in arthritis
Another approach that has begun to receive
much attention recently is that of adenoviral
overexpression of (anti-inflammatory) cytokine
genes in the joint to study the effects of individual
cytokines on cartilage homeostasis and to
ameliorate disease (Table 2). The viruses are
attenuated so as to be infectious but unable to
replicate. Recombinant adeno-associated viral
(rAAV) vectors might be advantageous for in vivo
gene therapy for arthritis because of their ability
to transduce both fibroblasts and chondrocytes
(Ref. 104). These studies have confirmed the
protective nature of TGF-β and IGF-1, which has
prompted the notion that such vectors could be
used in the targeted repair of cartilage injury (Refs
59, 60). However, caution should also be used

when interpreting such studies with a view to
treating human disease. Another study using
TGF-β recently reported synovial hyperplasia and
osteophyte formation (Ref. 69) – findings that cast
some doubt on the use of this growth factor as a
reparative agent for cartilage damage.

Clinical implications
While researchers have been trying to understand
the factors and mechanisms underlying the
disease processes, clinicians have been equally
busy treating an ever increasing number of
patients. This increase in number is partly due to
improvements in general medical care, changes
in lifestyles and the fact that many populations
are increasing in age. Together, these factors are
having considerable impact on the long-term

Table 1. Effects of cytokine transgenes on experimental arthritis (tab001arn)

Gene Genotypea Findings Refs

IL-1α O Full signs of destructive arthritis 112

IL-1β K Normal inflammatory but defective acute-phase responses; 113, 114
resistance to CIA and protection against cartilage destruction
in streptococcal-cell-wall arthritis

TNF-α O Chronic arthritis (inhibited by antibodies to IL-1RI) 108

TNFRI K Milder CIA at a reduced incidence; however, once the joint is 115
affected, the disease progresses to the same end-stage as in
wild-type mice

IL-6 K Inflammatory cell infiltration in knee joints diminishes, but cartilage 116
proteoglycan loss is enhanced during the early acute phase

Only a transient inflammation during AIA, and no chronic synovitis 117
in zymosan-induced arthritis

EGF O Growth retardation and reduced IGFBP3 levels; accumulation of 118
pre-hypertrophic chondrocytes in the growth plate and abnormal
osteoblast proliferation

IFN-γR K CIA occurs earlier than in wild-type mice 119

FcR K Joint swelling reduced in AIA although sustained inflammation  97
evident; chondrocyte death and matrix erosion absent

Inflammation and cartilage destruction prevented 120

a O indicates the gene is overexpressed, and K indicates that the gene is knocked out.

Abbreviations: AIA, antigen-induced arthritis; CIA, collagen-induced arthritis; EGF, epidermal growth factor;
FcR, Fc receptor; IFN-γR, interferon γ receptor; IGFBP-3, insulin-like growth factor binding protein 3; IL-1,
interleukin 1; IL-6, interleukin 6; IL-1RI, type I IL-1 receptor; TNF-α, tumour necrosis factor α; TNFRI, TNF-α
receptor I (TNFR55).
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Table 2. Effects of adenovirus-transfected mediators on experimental arthritis (tab002arn)

Factor Cell/tissue targeteda Effect on matrix components Refs

BMP-2 Chondrocyte Stimulated proteoglycan synthesis even following IL-1 stimulation 62

Plasmin RA synovial fibroblast Reduced cartilage matrix degradation; reduced cartilage invasion 12
inhibitor

c-Fos Chondrocyteb Decreased proteoglycan synthesis and TIMP-1 expression, with 121
an increase in MMP-3; decreased type II collagen expression
with elevated MMP-1

OSM Synovium Increased synovial cell proliferation, with pannus-like appearance 71
and infiltration of mononuclear cells; increased matrix deposition

TGF-β1 Chondrocyte Increased matrix synthesis while maintaining type II collagen 59
phenotype

Restored proteoglycan synthesis following IL-1 stimulation 62

Cartilage Increased proteoglycan and collagen synthesis 60

Synovium Synovial hyperplasia and chondroosteophyte formation at the 69
cartilage–syonvium junction

IGF-1 Cartilage Induced proteoglycan synthesis but did not have anti- 122
inflammatory or chondroprotective effects

Induced matrix synthesis; maintained long-term chondrocyte 61
phenotype in culture

Chondrocyte Stimulated proteoglycan type II and collagen synthesis; restored 62
proteoglycan synthesis following IL-1 stimulation

iNOS Chondrocyte Reduced IGF-1; stimulated proteoglycan synthesis 123

IL-4 Chondrocyte Prevented chondrocyte death and cartilage erosion; enhanced 124
proteoglycan synthesis and reduced MMP expression; reduced
IL-1β and nitric oxide production from synovium; inflammation
unaffected

Joint CIA model: reduced disease prevalence and paw swelling; 125
attenuated synovitis and delayed disease onset

IL-4, IL-13 Fibroblast (xenograft) Significantly reduced disease severity 126

IκBα Synovial fibroblast Blocked IL-6, IL-8 and MMP production 127

Chondrocyte Blocked IL-6, IL-8 and MMP production 127

CTGF Chondrocyte Stimulated expression of aggrecan and collagen types II and X 63

IL-1RII Keratinocyte graftb CIA model: reduced clinical and histological parameters of 111
disease; reduced IL-6 expression

Abbreviations: BMP-2, bone morphogenic protein 2; CIA, collagen-induced arthritis; CTGF, connective
tissue growth factor; IGF-1, insulin-like growth factor 1; IκBα, inhibitor of nuclear factor kappa B; IL-1,
interleukin 1; IL-1RII, type II IL-1 receptor; IL-4, interleukin 4; IL-13, interleukin 13; iNOS, inducible nitric
oxide synthase; MMP, matrix metalloproteinase; OSM, oncostatin M; RA, rheumatoid arthritis; TIMP, tissue
inhibitor of metalloproteinase; TGF-β, transforming growth factor β.

a Although a specific cell or tissue is described in the studies, the virus is likely to primarily infect synovial
cells. However, specific differences between studies might be a result of a more localised infection (e.g.
cartilage versus synovium).
b This was a stably transfected line.
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management of arthritis sufferers, not least
financially.

During the past ten years, several synthetic
MMP inhibitors have been developed for the
treatment of arthritic disease (see Ref. 26).
Enthusiasm was increased when the first full-
length crystal structure of a collagenase (MMP-1)
was determined (Ref. 105) to assist such
developments. However, despite considerable
improvements in bioavailability and avoidance of
gut modification, MMP inhibitors have generally
not been very successful, because of lack of
efficacy. Furthermore, adverse side effects of these
inhibitors, presumably due to inappropriate
inhibition of metalloproteinases other than those
thought to be involved in the disease process, have
also been reported. Metalloproteinases, including
the MMPs, have many normal physiological roles
and considerable debate has arisen as to whether
a broad-spectrum inhibitor or a highly specific
inhibitor should be used (Refs 26, 106). This is
an important and fundamental issue and is
biased by how data are interpreted. Some MMP
inhibitors have been used with limited success in
cancer treatment, but none has yet been used
successfully to treat arthritic patients. Whether a
specific enzyme responsible for tissue destruction
in RA or OA will be identified is also a highly
debated point, but is of considerable importance
in minimising side effects.

One of the major landmarks in the treatment
of RA has been anti-TNF-α therapies; in studies
of such therapies ~70% of patients showed
some benefit (Ref. 107). However, the remaining
30% of apparent non-responders presumably
have a disease that is mediated by another pro-
inflammatory agent, assumed by many to be
IL-1. This is supported by data from a TNF-α-
overexpressing transgenic mouse model, where
treatment with antibodies to IL-1RI completely
prevented the otherwise spontaneous arthritis
(Ref. 108). A combinational therapy with both anti-
TNF-α and anti-IL-1 has therefore been proposed
(Ref. 57). This is further supported by the
finding that elevated levels of the natural anti-
inflammatory agent IL-1RA can occur in RA (Ref.
109). Furthermore, treatment with IL-1RA has
been shown to be efficacious against arthritic joint
disease (Ref. 110), and the decoy receptor IL-1RII
blocks experimental arthritis (Ref. 111). These
observations might therefore indicate the most
promising avenues to pursue towards providing
a markedly better prognosis for patients with

arthritic conditions, and might ultimately be
complemented by gene therapy techniques
using attenuated adenovirus to deliver highly
efficacious anti-inflammatory mediators.

Unfortunately, these new treatments are
expensive. The medical services could find
themselves in the predicament of being able to
offer a good chance of stopping disease
progression in some patients (but not all), but
probably at the expense of treating a much larger
number of patients who would obtain some
benefit from the more traditional treatments
already available. This situation therefore
suggests that there is still a need for small-
molecule drugs that prevent joint destruction.
Financial constraints aside, researchers and
clinicians alike continue to strive towards being
able to offer improved treatment for these chronic
and disabling diseases.
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Further reading, resources and contacts

Newcastle Rheumatology: information about the research projects in rheumatology in Newcastle, UK

http://www.ncl.ac.uk/rheumatology

Arthritis Research Campaign: the major funding organisation for rheumatological research in the UK

http://www.arc.org.uk

Arthritis & Rheumatism: the highest-rated, peer-reviewed rheumatological journal

http://www.interscience.wiley.com/jpages/0004-3591/

Arthritis Research: a relatively new research journal available online

http://www.arthritis-research.com

Cytokine and Growth Factor Reviews: publishes excellent articles, available on the web

http://www.elsevier.com/locate/cytogfr

General sites about arthritis and various treatment regimens

http://www.arthritis.about.com/health/arthritis
http://www.healthtalk.com
http://www.arthritisinsight.com

The MEROPS database (Ref. 128) has helped to reform the nomenclature of proteinases. Many have more
than one trivial name; in addition, some cannot be conveniently separated by their catalytic activity and
are thus not neatly covered by the International Union of Biochemistry and Molecular Biology (IUBMB)
enzyme nomenclature system. It is now strongly recommended that researchers use the MEROPS
identifier when discussing a particular proteinase to avoid possible confusion. This database is constantly
being updated as new proteinases are described.

http://www.merops.co.uk

An excellent and easy-to-read rheumatological textbook for medical students:

Athanasou, N.A. (1999) Colour Atlas of Bone, Joint and Soft Tissue Pathology, Oxford University Press,
Oxford, UK.

A useful overview of the MAPKs that are utilised by many pro-inflammatory cytokines:

Chang, L. and Karin, M. (2001) Mammalian MAP kinase signalling cascades. Nature 410, 37-40, PubMed
ID: 11242034

The following papers/reviews provide an excellent reference point for:

• Bone loss in rheumatoid disease

Lane, N.E. and Goldring, S.R. (1998) Bone loss in rheumatoid arthritis: what role does inflammation play? J
Rheumatol 25, 1251-1253, PubMed ID: 98339373

Gravallese, E.M. and Goldring, S.R. (2000) Cellular mechanisms and the role of cytokines in bone erosions
in rheumatoid arthritis. Arthritis Rheum 43, 2143-2151, PubMed ID: 20489573

• Catabolic events in rheumatoid disease

Birkedal-Hansen, H. (1995) Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol 7, 728-735,
PubMed ID: 96107563

(Continued on next page)
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Features associated with this article

Figure
Figure 1. The control of degradation of cartilage extracellular matrix (fig001arn).

Tables
Table 1. Effects of cytokine transgenes on experimental arthritis (tab001arn).
Table 2. Effects of adenovirus-transfected mediators on experimental arthritis (tab002arn).
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