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Abstract

We prove that any metric with curvature less than or equal to −1 (in the sense of A. D. Alexandrov)
on a closed surface of genus greater than 1 is isometric to the induced intrinsic metric on a space-like
convex surface in a Lorentzian manifold of dimension (2 + 1) with sectional curvature −1. The proof is by
approximation, using a result about isometric immersion of smooth metrics by Labourie and Schlenker.
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1. Introduction

In the following, S is a closed, connected, oriented surface. When we speak about
a metric with curvature less than or equal to k or greater than or equal to k, this
means that S is endowed with a distance d satisfying a curvature bound in the sense of
A.D. Alexandrov; see, for example, [6] or Section 5. This metric notion of curvature
bound was initially introduced in the 1940s to characterize the induced metric on
the boundary of convex bodies of the Euclidean space [2]. (In the present paper,
the word metric is used for distance, and induced metric means the induced intrinsic
distance.) While introducing this seminal notion, Alexandrov proved the following
statement.

THEOREM 1.1. Let d be a metric of curvature greater than or equal to 0 on the
sphere S. Then there exists a convex surface in the Euclidean space whose induced
metric is isometric to (S, d).
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Theorem 1.1 was generalized in many ways. Some of them are contained in the
following statement; see the introduction of [9] for details.

THEOREM 1.2. Let k ∈ R and let d be a metric of curvature greater than or equal to
k on a closed surface S. Then there exists a Riemannian manifold R homeomorphic to
S × R of constant sectional curvature k that contains a convex surface whose induced
metric is isometric to (S, d).

In 2017, Fillastre and Slutsky proved an analogous results for metrics with curvature
bounded from above [10].

THEOREM 1.3. Let d be a metric of curvature less than or equal to 0 on a closed
surface S of genus greater than 1. Then there exists a flat Lorentzian manifold L
homeomorphic to S × R that contains a space-like convex surface whose induced
metric is isometric to (S, d).

A natural question is whether an analogue of Theorem 1.2 holds for metrics with
curvature bounded from above. The case k = 0 is given by Theorem 1.3. In the present
paper, we solve the case where k is negative. Up to a homothety, this reduces to the
case k = −1. So the main result of the present paper is the following theorem.

THEOREM 1.4. Let d be a metric with curvature less than or equal to −1 on a
closed surface S of genus greater than 1. Then there exists a Lorentzian manifold L
of sectional curvature −1 homeomorphic to S × R that contains a space-like convex
surface whose induced metric is isometric to (S, d).

The proof of Theorem 1.4 is given by a classical approximation procedure, along
the lines of [10]. The proof relies on the smooth analogue of Theorem 1.4 proved
by Labourie and Schlenker; see Theorem 4.1. We prove Theorem 1.4 showing that
the universal cover of (S, d) is isometric to a convex surface in anti-de Sitter space (see
Section 2), invariant under the action of a discrete group of isometries leaving invariant
a totally geodesic hyperbolic surface. Such groups are usually called Fuchsian, and
the quotient of a suitable part of anti-de Sitter space by such a group may be called
a Fuchsian anti-de Sitter manifold. The main issues in our case, in comparison to
[10], is that we lose the vector space structure given by the Minkowski space—it is
the Lorentzian analogue of the problem of going from Euclidean space to hyperbolic
space. Also, the analogue of an approximation result that is straightforward in the flat
case occupies the whole of Section 5 here.

Let us describe more precisely the content of the present paper. In Section 2
we recall some definitions related to anti-de Sitter space, and define the induced metric
on convex surfaces in this space. In Section 3 we look at surfaces invariant under
the action of Fuchsian groups, and prove several compactness results. In Section 5,
we check that any metric with curvature less than or equal to −1 on S can be
approximated by a sequence of distances given by Riemannian metrics with sectional
curvature less than −1. In Section 4 all the elements are put together to provide a proof
of Theorem 1.4.
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The case where k is positive is still missing to obtain a Lorentzian analogue of
Theorem 1.2. An issue is that it is not clear if the approximation results used in
Section 5 can be applied in the less than or equal to 1 curvature case.

2. Convex surfaces in anti-de Sitter space

2.1. Anti-de Sitter space. In the following we describe a geometric model of the
anti-de Sitter space (of dimension 3) we are most interested in, and illustrate some of
its features. Good references for this material are [3, 4, 12, 14].

Let us consider the symmetric bilinear form

b(x, y) = −x0y0 − x1y1 + x2y2 + x3y3

of signature (2, 2) on R4.

DEFINITION 2.1. We define ÂdS3 as

ÂdS3 = {(x0, x1, x2, x3) ∈ R4 | b(x, x) = −1},

endowed with the pseudo-Riemannian metric induced by the restriction of the bilinear
form b to its tangent spaces.

Hence ÂdS3 is a Lorentzian manifold, and it can be checked that its sectional
curvature is −1.

A tangent vector v to ÂdS3 at a point x is called:⎧⎪⎪⎪⎨⎪⎪⎪⎩
space-like if b(v, v) > 0.
time-like if b(v, v) < 0.
light-like if b(v, v) = 0.

Now let x, y ∈ R4. We say that x ∼ y if and only if there exists λ ∈ R∗ such that
x = λy.

DEFINITION 2.2. We define the anti-de Sitter space of dimension 3 as follows:

AdS3 = ÂdS3/ ∼

endowed with the quotient metric.

It is easy to see that ÂdS3 is a double cover of AdS3. The pseudo-Riemannian metric
induced on ÂdS3 goes down to the quotient.

By definition AdS3 is a subset of the projective space. In order to better visualize it,
we look at its intersection with an affine chart and see its image in R3. Let

ϕ0 : RP3 \ {x0 = 0} → R3

be an affine chart of RP3 defined by

ϕ0([x0, x1, x2, x3]) =
(x1

x0
,

x2

x0
,

x3

x0

)
= (x̄1, x̄2, x̄3). (2-1)
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FIGURE 1. Image of AdS3 in the affine chart ϕ0.

Then ϕ0(AdS3 \ {x0 = 0}) gives

−x2
0 − x2

1 + x2
2 + x2

3 < 0⇒ −1 −
(x1

x0

)2
+

(x2

x0

)2
+

(x3

x0

)2
< 0,

so in this affine chart AdS3 fills the domain

−x̄2
1 + x̄2

2 + x̄2
3 < 1,

which is the interior of a one-sheeted hyperboloid. Notice that AdS3 is not contained
in a single affine chart. In the affine chart ϕ0 we are missing a totally geodesic plane at
infinity, corresponding to {x0 = 0}.

Throughout the paper, we denote by D the disc{
x̄2

2 + x̄2
3 < 1

x̄1 = 0

in the affine chart ϕ0 (see Figure 1).
It is clear from the construction that in the affine chart ϕ0, geodesics (respectively,

totally geodesic planes) are given by the intersection between affine lines (respectively,
affine planes) in R3 and the interior of the one-sheeted hyperboloid described above.
A plane P is space-like if the restriction of the induced metric on P is positive definite.
A convex space-like surface in anti-de Sitter space is a surface that is convex in an
affine chart and has only space-like planes as support planes. The boundary at infinity
of AdS3 is given by

{[x] ∈ RP3 : b(x, x) = 0}/ ∼
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Space-like
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FIGURE 2. Geodesics in an affine model of AdS3.

and we denote it by ∂∞AdS3 (and by ϕ0(∂∞AdS3) the boundary in the affine chart ϕ0).
We can distinguish the type of geodesics in the image of anti-de Sitter space in the
affine chart as follows (see Figure 2).

• A geodesic in AdS3 is space-like if it meets ∂∞AdS3 in two different points.
• A geodesic in AdS3 is light-like if it meets ∂∞AdS3 in only one point.
• A geodesic in AdS3 is time-like if it is strictly contained in the hyperboloid.

Note that AdS3 ∩ {x ∈ R4 | x1 = 0} =: H0 is isometric to the hyperbolic plane. We
use this fact to define the following map. Let Ψ̃ : H2 × R −→ AdS3 be the map defined
by Ψ̃(x, t) = expx(tV), where

• Ψ̃(H2, 0) = H0, and x 
→ Ψ̃(x, 0) is an isometry;
• V is a choice of a unit vector field orthogonal to H0, for the anti-de Sitter metric.

Indeed, we have Ψ̃(x, t) = cos(t)x + sin(t)V with V = (0,−1, 0, 0). For a given x, t 
→
Ψ̃(x, t) is a time-like geodesic loop with time-length 2π. We call an AdS cylinder the
cylinder H2 × [0, π/2[ endowed with the Lorentzian metric gAdS, which is the pullback
of the anti-de Sitter metric by Ψ̃. Let us denote AdS3 ∩ {x ∈ R4 | x1 = r} =: Hr. The
induced metric onto Hr is homothetic to the hyperbolic metric with factor (1 − r2),
and clearly Ψ̃(H2, t) = Hsin(t). In turn,

gAdS(x, t) = cos2(t)gH2 (x) − dt2

where gH2 is the metric on the hyperbolic plane.
It is suitable to work with the image of Ψ̃ in the affine chart considered above. Let us

denote Ψ = ϕ0 ◦ Ψ̃. The set Ψ(H2 × [0, π/2[) is indeed a Euclidean half-cylinder in R3
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FIGURE 3. The AdS cylinder and a convex surface inside.

(see Figure 3). We have Ψ(H2, 0) = D and, for x ∈ H2, t 
→ Ψ̃(x, t) is a vertical half line
from D. We call an affine AdS cylinder the image of H2 × [0, π/2[ by Ψ. For convexity
reasons, we need only to consider a half cylinder.

2.2. Convex functions. For a function u : H2 → [0, π/2[, we denote

Su = {(x, u(x)) | x ∈ H2}.

For every x ∈ H2 we denote by x̄ = Ψ(x, 0) the corresponding point on the disc D,
where Ψ is the map introduced in the previous section. The image of Su in the affine
AdS cylinder is the graph of a function over D, which we denote by ū. We denote by
Sū the image of Su. Hence, ū : D→ R and

(x̄, ū(x̄)) = Ψ(x, u(x)).

For a point x̄ ∈ D we use the notation x̄ = (x̄2, x̄3) for its Euclidean coordinates, and

its Euclidean norm is ‖ x̄ ‖ =
√

x̄2
2 + x̄2

3. By the considerations of the preceding section,
we immediately obtain the following relation.

LEMMA 2.3. In the above notation, ū(x̄) = − tan(u(x))
√

1− ‖ x̄ ‖2.

DEFINITION 2.4. Let u : H2 → R be a function. We say that u is C-convex if

• u ≥ 0 and there is R < π/2 such that u ≤ R < π/2;
• the corresponding function ū is convex.
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It is worth noting that for R ≥ 0, if u = R, then the graph of the map defined
by ū(x̄) = − tan(R)

√
1− ‖ x̄ ‖2 is a half ellipsoid. Also, |ū(x̄)| ≤ tan(R)

√
1− ‖ x̄ ‖2. It

follows that if u is C-convex, then ū is bounded and satisfies ū|∂D = 0.
It is also clear that a bounded convex function ū : D→ R vanishes everywhere if it

vanishes in a point of the open disc D. So we have ū ≤ 0 by definition, and ū < 0 or
ū = 0.

Let us note the following lemma.

LEMMA 2.5. In the image of AdS3 by ϕ0, we have the following properties.

1. Every time-like line passes through the disc D.
2. Every light-like line which does not pass through the boundary ∂∞D must pass

through the disc D.
3. A cone with basis the disc D and with apex in the affine cylinder is a convex

space-like surface.

PROOF. The proofs of the two first points are almost immediate. For the third point,
either a support plane of the cone does not meet the closure ofD, hence it is space-like,
or a support plane of the cone contains a half-line of the cone, then it meets the
boundary of the disc, but by assumption this half-line is not vertical, hence not
light-like, so the plane is space-like. �

LEMMA 2.6. Let u : H2 → [0, π/2[ be a C-convex function. Then the surface Su is
space-like.

PROOF. Let p be a point on the image of Su in the affine half cylinder, and let Cp be
the cone with basis the disc D and apex p. By definition, this cone is contained in the
affine half cylinder. By convexity, a support plane to the surface at p is a support plane
of the cone, so by Lemma 2.5 it must be space-like. �

We say that a sequence (un)n of C-convex functions is uniformly bounded if there is
R < π/2 such that for any n, un < R.

LEMMA 2.7. Let (un)n be a sequence of uniformly bounded C-convex functions. Up
to extracting a subsequence, (un)n converges to a C-convex function u, uniformly on
compact sets.

PROOF. This is a classical property of the corresponding convex functions ūn,
[16, Theorem 10.9], in the special case when the surfaces vanish on the boundary
of the disc D. �

Let un, n > 1, be uniformly bounded C-convex functions converging to a C-convex
function u = u0. Let c : I → H2 be a Lipschitz curve and c̄ : I → D be its image
by Ψ. Then ū ◦ c̄, ūn ◦ c̄ are Lipschitz—the Lipschitz nature of c̄ is independent of
a choice of a Riemannian metric on the disc. By the Rademacher theorem, there
exists a set I0 of Lebesgue measure 0 in I such that for all n ∈ N, ūn is differentiable
on I \ I0.

https://doi.org/10.1017/S1446788720000506 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788720000506


[8] Metrics of curvature ≤ −1 319

LEMMA 2.8. Let un : H2 → R be uniformly bounded C-convex functions converging
to a C-convex function u, and let c : I → H2 be a Lipschitz curve. Up to extracting a
subsequence, for almost all t,

(un ◦ c)′(t)→ (u ◦ c)′(t).

PROOF. The following proof is a straightforward adaptation of [10, Lemma 3.6]. We
first prove the lemma for the corresponding functions ūn and ū, then we deduce the
proof for un and u using continuity and Lemma 2.3. We consider that c̄ is parameterized
by arc-length.

Let 〈·, ·〉 be the Euclidean metric on the affine cylinder, and we use the notation
(

a
b

)
,

with a ∈ D and b ∈ R. Let t be such that the derivatives exist. Let X be the unit vector(
0
1

)
and Y the unit vector

(
c̄′(t)

0

)
; we have 〈X, Y〉= 0. The tangent vector to the curve(

c̄
ūn◦c̄

)
at every point

(
c̄(t)

(ūn◦c̄)(t)

)
is given by

Vn = (ūn ◦ c̄(t))′X + Y ,

and in the plane P spanned by X and Y , the vector

Nn = (ūn ◦ c̄(t))′Y − X

is orthogonal to Vn for 〈·, ·〉. Now because ūn and ū are equi-Lipschitz on any compact
set of D (see [16, Theorem 10.6]) there exists k such that |(ūn ◦ c̄)′(t)| ≤ k for all n ∈ N,
and

‖ Nn ‖ ≤ |(ūn ◦ c̄)′(t)| ‖ Y ‖ + ‖ X ‖ ≤ |(ūn ◦ c̄)′(t)| + 1 ≤ k + 1,

so ‖ Nn ‖ are uniformly bounded. Hence, up to extracting a subsequence, (Nn)n

converges to a vector N. Note that N is not the zero vector, otherwise 〈Nn, X〉 would
converge to 0, which is impossible because 〈Nn, X〉 = −1.

Let Tn be the intersection of the convex surface Sūn defined by ūn and the plane P.
The set Tn is a convex set in P, and Vn is a tangent vector, hence by convexity for any
ȳ ∈ D ∩ P,

〈
Nn,

(
c̄(t)

ūn ◦ c̄(t)

)
−

(
ȳ

ūn(ȳ)

)〉
≥ 0,

and passing to the limit we get
〈
N,

(
c̄(t)

ū ◦ c̄(t)

)
−

(
ȳ

ū(ȳ)

)〉
≥ 0,

which says that N is a normal vector to T (the intersection of Sū with P), hence
〈
N, (ū ◦ c̄)′(t)

(
0
1

)
+

(
c̄′(t)

0

)〉
= 0.
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So there exists λ such that

(ū ◦ c̄)′(t)
(
0
1

)
+

(
c̄′(t)

0

)
= λ lim

n→∞
(ūn ◦ c̄)′(t)

(
0
1

)
+

(
λc̄′(t)

0

)
.

By identification it follows that λ = 1, hence (ūn ◦ c̄)′(t) must converge to (ū ◦ c̄)′(t).
The functions ūn ◦ c̄ and un ◦ c are defined from I ⊂ R to R. By Lemma 2.3.

un ◦ c(t) = arctan
( ūn ◦ c̄(t)

h(t)

)
,

where h(t) = −
√

1− ‖ c̄(t) ‖2, hence un ◦ c is clearly differentiable almost everywhere
for all n ∈ N and

(un ◦ c)′(t) =
(ūn ◦ c̄)′(t)h(t) − (ūn ◦ c̄)(t)h′(t)

h2(t) + (ūn ◦ c̄)2(t)
. (2-2)

Also we have (by hypothesis), for almost all t, that

(un ◦ c)(t) −→
n→∞

(u ◦ c)(t);

hence by continuity (in the relation given by Lemma 2.3) it is clear that

(ūn ◦ c̄)(t) −→
n→∞

(ū ◦ c̄)(t).

Then by the preceding arguments and by continuity again in (2-2) and passing to the
limit, it follows that (un ◦ c)′(t) converges to (u ◦ c)′(t). �

Let u : H2 → R be a C-convex function. For c : [0, 1]→ H2 a Lipschitz curve,
(c, u ◦ c) is a curve on Su, and its length for the anti-de Sitter metric is

Lu(c) =
∫ 1

0

√
cos2(u ◦ c(t))‖c′(t)‖2

H2 − (u ◦ c)′2(t)dt. (2-3)

By Lemma 2.8 above and using the dominated convergence theorem, we get the
following proposition.

PROPOSITION 2.9. Let un : H2 → R be uniformly bounded C-convex functions con-
verging to a C-convex function u, and let c : I → H2 be a Lipschitz curve. Up to
extracting a subsequence, Lun (c)→ Lu(c).

The induced (intrinsic) metric dSu on Su is the pseudo-distance induced by Lu:
for x, y ∈ Su, dSu (x, y) is the infimum of the lengths of Lipschitz curves between x
and y contained in Su. Note that as the AdS cylinder has a Lorentzian metric, the
induced distance between two distinct points on Su may be equal to 0, which is a major
difference with respect to the case of induced metrics on surfaces in a Riemannian
space.
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DEFINITION 2.10. We denote by du the pullback of dSu on H2, so that for every point
x, y ∈ H2,

du(x, y) = dSu ((x, u(x)), (y, u(y))).

From (2-3), as cos ≤ 1, we clearly have the following result.

LEMMA 2.11. In the above notation, for x, y ∈ H2, du(x, y) ≤ dH2 (x, y).

3. Fuchsian invariance

3.1. Convergence of surfaces implies convergence of metrics. The aim of this
section is to state Proposition 3.9. The arguments are quite general and close to those
of [10]. The main point is Lemma 3.4 below, which is the AdS analogue of [10,
Corollary 3.11].

Recall that a Fuchsian group is a discrete group of orientation-preserving isometries
acting on the hyperbolic plane. In the present paper we restrict this definition to the
groups also acting freely and cocompactly.

DEFINITION 3.1. A Fuchsian C-convex function is a couple (u, Γ), where u is a
C-convex function and Γ is a Fuchsian group such that for all σ ∈ Γ we have
u ◦ σ = u.

We often abuse terminology, using the term ‘Fuchsian’ for a single function u, so
that the Fuchsian group remains implicit.

DEFINITION 3.2. Let (Γn)n be a sequence of discrete groups. (Γn)n converges to a
group Γ if there exist isomorphisms τn : Γ→ Γn such that for all σ ∈ Γ, the τn(σ)
converge to σ.

DEFINITION 3.3. We say that a sequence of Fuchsian C-convex functions (un, Γn)n

converges to a pair (u, Γ), if u is a C-convex function, Γ is a Fuchsian group such that
(un)n converges to u and (Γn)n converges to Γ.

It is easy to see that if (un, Γn) is a sequence of Fuchsian C-convex functions that
converges to a pair (u, Γ), then (u, Γ) is a Fuchsian C-convex function; see, for example,
[10, Lemma 3.17]. Recall the definition of the distance du from Definition 2.10. Recall
also that a C-convex function is differentiable almost everywhere. At a point where u
is differentiable, we denote by ‖ · ‖u the norm induced by the ambient anti-de Sitter
metric on the tangent of Su at this point.

LEMMA 3.4. Let u be a C-convex function. Let K := inf(‖v‖u / ‖v‖H2 ), and let dH2 be
the distance given by the hyperbolic metric (e.g. dH2 = du for u = 0). Then du(x, y) ≥
KdH2 (x, y).

Moreover, if u is Fuchsian, then K > 0.
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PROOF. Let c be a Lipschitz curve between two points x, y ∈ H2. Let v be the tangent
vector field of (c, u ◦ c) whenever it exists. We have

Lu(c) =
∫ b

a
‖v‖u ≥ K

∫ b

a
‖v‖H2 ≥ KdH2 (x, y)

and the first result follows as by definition du(x, y) is an infimum of lengths.
Now let us suppose that u is Fuchsian. Let us suppose that K = 0; that is, there is

a sequence (xn)n such that u is differentiable at each xn, and vn � 0 in TxnH
2 such that

‖vn ‖u / ‖vn ‖H2→ 0. Without loss of generality, let us suppose that ‖vn ‖H2 = 1. Let σn

be isometries of H2 that send (xn, vn) to a given pair (x, v), and let un := u ◦ σn. As u
is Fuchsian, there exists β < π/2 such that u ≤ β, and in turn un ≤ β. By Lemma 2.7,
up to considering a subsequence, (un)n converges to a C-convex function u0. As we
supposed that ‖vn ‖u→ 0, Su0 must have a light-like support plane, which contradicts
Lemma 2.6. �

Note that Lemma 3.4 indicates that in the Fuchsian case, du is a distance and not
just a pseudo-distance.

Let us recall the following classical result; see, for example, [10, Lemma 3.14].
The homeomorphisms in the statement below could also be constructed by hand, for
example using canonical polygons as fundamental domains for the Fuchsian groups;
see [8, Section 6.7].

LEMMA 3.5. Let (Γn)n be a sequence of Fuchsian groups converging to a group Γ
and τn the isomorphisms given in Definition 3.2. There exist homeomorphisms φn :
H

2/Γ −→ H2/Γn whose lifts φ̃n satisfy, for any σ ∈ Γ,
φ̃n ◦ σ = τn(σ) ◦ φ̃n

and such that (φ̃n)n converges to the identity map uniformly on compact sets, that is,

∀x ∈ H2, φ̃n(x) −→
n→∞

x.

Now, let u be a C-convex function and Su the surface described by u. The length
structure Lu given by (2-3) induces a (pseudo-)distance dSu . In turn, dSu induces a
length structure denoted by LdSu

defined in the following way: the length of a curve
(c, u ◦ c) : [0, 1]→ Su is defined as

LdSu
(c, u ◦ c) = sup

δ

n∑
i=1

dSu ((c(ti), u ◦ c(ti)), (c(ti+1), u ◦ c(ti+1))),

= sup
δ

n∑
i=1

du(c(ti), c(ti+1)) = Ldu (c) (see Definition 2.10)

where the sup is taken over all the decompositions

δ = {(t1, . . . , tn) | t1 = 0 ≤ t2 ≤ · · · ≤ tn = 1},
We have the following proposition.
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PROPOSITION 3.6. Let (un)n be a sequence of convex functions such that:

• dun is a complete distance with Lipschitz shortest paths;
• Lun = Ldun

on the set of Lipschitz curves;
• there exists R < π/2 with 0 ≤ un < R.

Then, up to extracting a subsequence, (un)n converges to a convex function u and (dun )n
converges to du uniformly on compact sets.

PROOF. The proof of this proposition is similar to that in [10, Proposition 3.12]. It was
made using Proposition 2.9, the only difference is to use Lemma 2.11 and 3.4 instead
of [10, Corollary 3.11]. �

We recall that in this paper we are using approximation by smooth surfaces. We
note also that by Lemmas 2.11 and 3.4, dun are complete distances on H2, and we have
Lun = Ldun

(because of smoothness; see [7] for more details). We deduce the following
lemma.

LEMMA 3.7. Let (un, Γn) be Fuchsian C-convex functions such that:

• (un, Γn)n converges to a pair (u, Γ);
• there exists R < π/2 with 0 ≤ un < R;
• dun are distances with Lipschitz shortest paths;
• dun converge to du, uniformly on compact sets.

Then on any compact set of H2, dun (φ̃n(.), φ̃n(.)) uniformly converges to du, where φ̃n is
given by Lemma 3.5.

PROOF. By Lemmas 2.11 and 3.4, the topology induced by du on H2 is the topology
for the hyperbolic metric. It follows that for the maps φ̃n of Lemma 3.5, we have that
on compact sets, the maps x 
→ dun (φ̃n(x), x) uniformly converge to 0. By the triangle
inequality, we have

dun (φ̃n(x), φ̃n(y)) − du(x, y) ≤ dun (φ̃n(x), x) + dun (φ̃n(y), y) + dun (x, y) − du(x, y).

By the preceding arguments and Proposition 3.6, for n sufficiently large the right-hand
side is uniformly less than any ε > 0. On the other hand, by the triangle inequality
again, we have

du(x, y) − dun (φ̃n(x), φ̃n(y)) = du(x, y) − dun (x, y) + dun (x, y) − dun (φ̃n(x), φ̃n(y))

≤ du(x, y) − dun (x, y) + dun (x, φ̃n(x)) + dun (y, φ̃n(y))

+ dun (φ̃n(x), φ̃n(y)) − dun (φ̃n(x), φ̃n(y)),

which is uniformly less than any ε > 0 for n sufficiently large (by the same
arguments). �

By definition, if (u, Γ) is a Fuchsian C-convex function, then Γ acts by isometries
on du. In turn, du defines a distance on the compact surface H2/Γ.
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DEFINITION 3.8. For a Fuchsian C-convex function (u, Γ), we denote by d̄u the
distance defined by du on H2/Γ.

The reason for introducing the maps φ̃n from Lemma 3.5 is the following corollary
of Lemma 3.7. Its proof is formally the same as that of [10, Proposition 3.19]. (The
definition of uniform convergence of metric spaces is recalled in Definition 5.1.)

PROPOSITION 3.9. Let (un, Γn) be Fuchsian C-convex functions converging to a pair
(u, Γ). Up to extracting a subsequence, (H2/Γn, d̄un )n uniformly converges to (H2/Γ, d̄u).

3.2. Convergence of metrics implies convergence of groups. The aim of this
section is to prove Proposition 3.10, which may be seen as a kind of converse of
Proposition 3.9. The distance d̄u was defined in Definition 3.8.

PROPOSITION 3.10. Let (S, d) be a metric of curvature less than or equal to −1 and let
(un, Γn) be smooth Fuchsian C-convex functions, such that the sequence (H2/Γn, d̄un )n

uniformly converges to (S, d). Up to extracting a subsequence,

• (Γn)n converges to a Fuchsian group Γ;
• there exists β < π/2 such that 0 ≤ un < β.

Under the hypothesis of Proposition 3.10, let us first prove the convergence
of groups. We first have a consequence of simple hyperbolic geometry; see [10,
Corollary 4.2].

LEMMA 3.11. There exist G > 0 and N > 0 such that for any n > N, for any x ∈ H2,
for every element σn ∈ Γn \ {0},

dun (x,σn(x)) ≥ G.

PROPOSITION 3.12. Under the hypothesis of Proposition 3.10, up to extracting a
subsequence, the sequence (Γn)n converges to a Fuchsian group Γ.

PROOF. First, by Lemma 2.11 we have that, for all x, y ∈ H2,

dun (x, y) ≤ dH2 (x, y),

and by Lemma 3.11 we have that there exist G > 0 and N > 0 such that, for any n > N
and for any x ∈ H2,

G ≤ dun (x,σn(x)) ≤ dH2 (x,σn(x));

in particular, if

Lσn = min
x∈H2

dH2 (x,σn(x)),

we have

G ≤ Lσn .
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The length is uniformly bounded from below, hence by a classical result of
Mumford [13] we can deduce that, up to extracting a subsequence, the sequence of
groups converges. �

LEMMA 3.13. Under the assumptions of Proposition 3.10, there exists M < π/2 such
that for all n, there is xn ∈ H2 such that un(xn) < M.

PROOF. Suppose that the result is false: for a sequence Mk → π/2, there is nk such
that unk ≥ Mk. By the definition of the length structure (2-3), it follows that dunk

≤
cos(Mk)dH2 . In turn, (H2/Γn, d̄un )n has a subsequence converging to 0, which is a
contradiction. �

PROPOSITION 3.14. Under the hypothesis of Proposition 3.10, there exists β < π/2
such that, for any n ∈ N, for any x ∈ H2,

un(x) < β.

PROOF. Let us consider the affine model of anti-de Sitter space. As the sequence
of groups converges, there exists a compact set C ⊂ D that contains a fundamental
domain for Γn for all n. Hence, the points xn given by Lemma 3.13 can be chosen to all
belong to C. The result follows because the convex maps ūn on the disc are zero on the
boundary, so for any compact set C in the interior of the disc, the difference between
the minimum and the maximum of ūn on C cannot be arbitrarily large. �

Proposition 3.10 is now proved.

4. Proof of Theorem 1.4

The proof relies on the two following results.

THEOREM 4.1 [11]. Let (S, d) be a metric induced by a Riemannian metric of sectional
curvature less than −1. Then there exists a C∞ Fuchsian C-convex u : H2 → [0, π/2[
such that d̄u is isometric to d.

THEOREM 4.2. Let (S, d) be a metric of curvature ≤ −1. Then there exists a sequence
(Sn, dn) converging uniformly to (S, d), where Sn are homeomorphic to S and dn are
induced by Riemannian metrics with sectional curvature less than −1.

Although Theorem 4.2 may seem well known, we found no reference for it, so we
prove it in Section 5. Note that we are not aware if the analogue of Theorem 4.2 holds
for metrics of curvature less than or equal to 1.

Let d be a metric of curvature less than or equal to −1 on S. From Theorem 4.2,
there exists a sequence (dn)n of metrics induced by Riemannian metrics with sectional
curvature less than −1 on S that converges uniformly to d. By Theorem 4.1, for each
n ∈ N there exists a Fuchsian C-convex pair (un, Γn) such that d̄un is isometric to dn

and un is smooth. By Proposition 3.10 there is a subsequence of (Γn)n converging to a
Fuchsian group Γ, and β < π/2 such that 0 ≤ un < β.
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So Lemma 2.7 and Proposition 3.9 apply: up to extracting a subsequence, there
is a function u such that the induced distance on d̄u (the quotient of du by Γ) is the
uniform limit of (H2/Γn, d̄un ), that is, the uniform limit of (S, dn). The limit for uniform
convergence is unique, up to isometries [6], so d̄u is isometric to d. Theorem 1.4 is
proved, with L the quotient of the AdS cylinder of Section 2 by Γ.

5. Approximation by smooth metrics

In the following we use the uniform convergence, so let us recall its definition.

DEFINITION 5.1. We say that a sequence of metric spaces (Sn, dn)n converges
uniformly to the metric space (S, d) if there exist homeomorphisms fn : S −→ Sn such
that

sup
x,y∈S
|dn( fn(x), fn(y)) − d(x, y)| −−−−→

n→∞
0.

If Sn = S and fn = id, then this is the usual definition of uniform convergence of
distance functions.

We want to check that a metric of curvature less than or equal to −1 on the closed
surface S can be approximated (in the sense of uniform convergence) by distances
induced by Riemannian metrics with sectional curvature less than −1. We first
approximate by hyperbolic metrics with conical singularities of negative curvature.
Then we ‘smooth’ those cone metrics.

5.1. Approximation of metrics by polyhedral metrics. Let (X, d0) be a metric
space such that every pair of points can be joined by a shortest path. A (geodesic)
triangle Δ of X consists of three points x, y, z ∈ X and shortest paths [x, y], [y, z]
and [z, x]. A hyperbolic comparison triangle for Δ is a geodesic triangle Δ̃ in the
hyperbolic space with vertices x̃, ỹ and z̃, such that d0(x, y) = dH2 (x̃, ỹ), d0(y, z) =
dH2 (ỹ, z̃), d0(x, z) = dH2 (x̃, z̃). The interior angle of Δ̃ at x̃ is called the comparison angle
at x of the triangle Δ.
DEFINITION 5.2. Let γ, γ′ be two nontrivial shortest paths issued from the same point
x. Let ∠̃(γ(t)xγ′(t′)) be the angle at x̃ of the comparison triangle Δ̃ with vertices γ̃(t), x̃
and γ̃′(t′) in the hyperbolic plane corresponding to the triangle Δ(γ(t)xγ(t′)) in X. Then
the upper angle at x of γ and γ′ is defined by

lim sup ∠̃
t,t′−→0

(γ(t)xγ′(t′)). (5-1)

DEFINITION 5.3. We say that an intrinsic metric space (X, d0) is CAT(−1) if the upper
angle between any couple of sides of every geodesic triangle with distinct vertices is
not greater than the angle between the corresponding sides of its comparison triangle
in the hyperbolic plane.

Let Bd0 (x, r) be the ball of center x and radius r in (X, d0).
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DEFINITION 5.4. An intrinsic metric space (X, d0) has curvature less than or equal to
−1 (in the Alexandrov sense), if for any x there exists r such that Bd0 (x, r) endowed
with the induced (intrinsic) distance is CAT(−1).

Let us recall the notion of bounded integral curvature [1, Ch. I, page 6]. A simple
triangle is a triangle bounding an open set homeomorphic to a disc, consisting of
three distinct points (the vertices of the triangle) and three shortest paths joining
these points, and which is convex relative to the boundary, that is, no two points of
the boundary of the triangle can be joined by a curve outside the triangle, which
is shorter than a suitable part of the boundary joining the points (see [1] for more
details).

DEFINITION 5.5. An intrinsic distance d0 on a surface S is said to be of bounded
integral curvature (BIC), if (S, d0) satisfies the following property. For every x ∈ S
and every neighborhood Nx of x homeomorphic to an open disc, for any finite system
T of pairwise nonoverlapping simple triangles T belonging to Nx, the sum of the
excesses

δ0(T) = ᾱT + β̄T + γ̄T − π

of the triangles T ∈ T with upper angles (ᾱT , β̄T , γ̄T ) is bounded from above by a
number C depending only on the neighborhood Nx, that is,

∑
T∈T
δ0(T) ≤ C.

The main tool for our approximation result is the following theorem.

THEOREM 5.6 [1, Theorem 2, page 59]. Let ε > 0. A compact BIC surface admits
a triangulation by a finite number of arbitrary nonoverlapping simple triangles of
diameter less than ε.

To prove that the sum of the angles in a cone point is not less than 2π, we also need
the following result, which corresponds to [1, Ch. II, Theorem 11, page 47].

LEMMA 5.7. Let p be a point on a BIC surface such that there is at least one shortest
arc containing p in its interior. Then for any decomposition of a neighborhood of p
into sectors convex relative to the boundary formed by geodesic rays issued from p
such that the upper angles between the sides of these sectors exist and do not exceed
π, the total sum of those angles is not less than 2π.

To get a triangulation of our surface, we use some properties of BIC surfaces, so let
us consider the following lemma.

LEMMA 5.8. A metric of curvature less than or equal to −1 is a BIC surface.

PROOF. We have that a CAT(0) surface is a BIC surface (proved in [10, Lemma 2.18]),
and that a CAT(−1) surface is also a CAT(0) surface (see [5, Ch. II, page 165]). The
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lemma follows because of the local nature of the definition of BIC and curvature less
than or equal to −1. �

For a BIC surface, the angle exists, which means that in (5-1) the limit exists in
place of the limsup [1]. So in the following we speak about angles rather than upper
angles.

THEOREM 5.9. Let (S, d) be a metric of curvature less than or equal to −1 on the
closed surface S. Then there exists a sequence (Sn, dn) converging uniformly to (S, d),
where Sn is homeomorphic to S and dn is the metric induced by a hyperbolic metric
with conical singularities of negative curvature on Sn.

The remainder of this section is devoted to the proof of Theorem 5.9.
Applying Theorem 5.6 and Lemma 5.8, we obtain a triangulation Tε of our surface

in which every simple triangle has diameter less than ε. Replace the interiors of the
triangles of Tε by the interiors of the hyperbolic comparison triangles. We obtain
(S̄ε , d̄ε), which is a hyperbolic metric with conical singularities, corresponding to the
vertices of the triangles. By construction, S̄ε is endowed with a triangulation T̄ε .

LEMMA 5.10. The total angles around the conical singularities of d̄ε are not less
than 2π.

PROOF. By a property of the CAT(−1) spaces, we have that every vertex of Tε
lies in the interior of some geodesic in (S, d) [5, II.5.12]. Applying Lemma 5.7 we
immediately get that the sum of the sector angles αi at any vertex V of the triangulation
Tε in (S, d) is not less than 2π. By definition of the CAT(−1) spaces, we have that the
angles α−1,i of the comparison triangles in the hyperbolic space are not less than the
corresponding angles at every vertex V in the triangulation Tε in (S, d). It follows
that

2π ≤
∑

i

αi ≤
∑

i

α−1,i. �

We want to prove that the finer the triangulation is, the closer d̄ε is to d (for the
uniform convergence between metric spaces). This relies on a series of lemmas.

LEMMA 5.11. Let α be the angle at a vertex of a triangle T in a surface of curvature
less than or equal to −1, and let α−1 be the corresponding angle in a comparison
triangle T−1 in the hyperbolic space. Then

α−1 − α ≤ −area(T−1) − δ0(T).

PROOF. If β and λ are the other angles of T and β−1, λ−1 the corresponding angles in
T−1, then we have

α−1 − α ≤ α−1 − α + β−1 − β + λ−1 − λ = δ0(T−1) − δ0(T) = −area(T−1) − δ0(T). �
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LEMMA 5.12. If T is a triangulation of a compact surface (S, d) with curvature less
than or equal to −1 by nonoverlapping simple triangles, then∑

T∈T
δ0(T) ≥ 2πX(S),

with X(S) the Euler characteristic of S.

PROOF. Let |T | be the number of triangles, |E| the number of edges and |N | the number
of vertices in our geodesic triangulation. We have |E| = 3

2 |T |, so that the Euler formula

|T | − |E| + |N | = X(S)

implies

2|N | − |T | = 2X(S). (5-2)

If we denote by θi the sum of the angles of the triangles around a vertex, then, using
(5-2), it follows that

∑
T∈T
δ0(T) =

N∑
i=1

θi − |T |π =
N∑

i=1

(θi − 2π) + 2πX(S)

The proof follows because θi − 2π ≥ 0 for all i. �

LEMMA 5.13. Let T be an isosceles triangle in the hyperbolic space with diameter less
than a given ε, with edges of length x, x, l and with θ the angle opposite to the edge of
length l. Then

l ≤ sinh(ε)θ.

PROOF. By the hyperbolic cosine law,

cosh(l) = cosh2(x) − sinh2(x) cos(θ),

which is equivalent to

1 + 2 sinh2
( l
2

)
= cosh2(x) − sinh2(x)

(
1 − 2 sin2

(
θ

2

))
,

so
l
2
≤ sinh

( l
2

)
= sinh(x) sin

(
θ

2

)
≤ sinh(ε)

θ

2
. �

LEMMA 5.14. Let ε > 0. Let T be a simple triangle in (S, d) of diameter less than ε
with vertices OXY. Let A (respectively, B) be on the edge OX (respectively, OY) and
at distance a (respectively, b) from O. Let T1

−1 be a comparison triangle for T in the
hyperbolic space, with vertices O′X′Y ′. Let A′ (respectively, B′) be the corresponding
point of A (respectively, B) (that is, on the edge O′X′ (respectively, O′Y ′) and at
distance a (respectively, b) from O′). Then

0 ≤ dH2 (A′, B′) − d(A, B) ≤ −δ0(T) sinh(ε).
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O¢
q1
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Y¢
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X¢

FIGURE 4. Notation for the proof of Lemma 5.14.

PROOF. The first inequality comes from the fact that we are in a CAT(−1) neighbor-
hood ([5, page 158]). Let T2

−1 be the comparison triangle for OAB in the hyperbolic
space drawn such that the edge of length a is identified with O′A′ (see Figure 4).
Let B′′ be the corresponding comparison point for B in T2

−1; that is, B′′ satisfies
d(A, B) = dH2 (A′, B′′) and d(O, B) = dH2 (O′, B′′). By the triangle inequality, we have

dH2 (A′, B′) − d(A, B) = dH2 (A′, B′) − dH2 (A′, B′′) ≤ dH2 (B′, B′′). (5-3)

Let θ1 be the angle at O′ of T1
−1 (that is, the angle at O′ of O′A′B′), and let θ2 be the

angle at O′ of T2
−1 (that is, O′A′B′′).

We have that θ1 − θ2 is the angle at O′ of O′B′B′′, which is isosceles, so by
inequality (5-3) and Lemma 5.13 it follows that

dH2 (A′, B′) − d(A, B) ≤ sinh(ε)(θ1 − θ2).

If β is the angle of T at O, then both θ1 and θ2 are angles corresponding to β in the
different comparison triangles, so by Lemma 5.11,

θ1 − θ2 = θ1 − β + β − θ2 ≤ θ1 − β ≤ −area(T1
−1) − δ0(T),

which leads to the result. �

Now, let us describe a homeomorphism between (S, d) and (S̄ε , d̄ε) in the following
way. The triangle T̄i does not degenerate into segments, since the sum of every
pair of sides is greater than the third. Therefore, the triangles Ti can be mapped
homeomorphically onto the corresponding triangles T̄i, such that the vertices are
sent to vertices and the homeomorphism restricts to an isometry along the edges.
We consider any homeomorphism from the interior of the triangles that extends the
homeomorphism on the boundary. As the surfaces are triangulated by such triangles,
this gives a homeomorphism from S to S̄ε .

For two points H and J on S, we denote by H′, J′ the corresponding points on S̄ε .

FACT 5.15. In the above notation,

−2ε ≤ d̄ε(H′, J′) − d(H, J) ≤ 2ε − 2πX(S) sinh(ε).
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PROOF. The idea of this proof is the same as that of [2, Lemma 2, page 263]. Let us
prove the first inequality. Let H′, J′ ∈ S̄ε , let γ′ be a shortest path joining H′ and J′,
and let γ be a path joining H and J such that the intersection with every triangle T is
a shortest path (that is, each connected piece of γ′ meeting a triangle T ′ from a point
A′ to a point B′ on the boundary of T ′ is associated in T with the shortest path joining
the corresponding (in the sense of Lemma 5.14) points A and B).

Let us denote by γ′i , i = 0, . . . , m + 1, the decomposition of γ′ given by the triangles
it crosses, and by l(γ′i ) their lengths.

As (S, d) is CAT(−1), the length of a connected component of the intersection
of γ′ with T ′ joining two points of the boundary is greater than the length of the
corresponding component of γ in T ([5], page 158). Now, because the diameters are
not greater than ε, we have l(γ0) + l(γm+1) ≤ 2ε and l(γ′0) + l(γ′m+1) ≤ 2ε. It follows that

d(H, J) ≤
m∑

i=1

l(γi) + 2ε ≤
m∑

i=1

l(γ′i ) + 2ε ≤ d̄ε(H′, J′) + 2ε

and in turn that

−2ε ≤ d̄ε(H′, J′) − d(H, J).
The first inequality is now proved.

Let us now prove the second inequality. Consider a shortest path γ joining H and J
in S and let γ′ be a path in S̄ε joining H′ and J′ such that the intersection with every
triangle T ′ is a shortest path (that is, each connected piece of γ meeting a triangle T
from a point A to a point B on the boundary of T is associated in T ′ with the shortest
path joining the corresponding (in the sense of Lemma 5.14) points A′ and B′).

Let us denote by γi, i = 0, . . . , m + 1, the decomposition of γ given by the triangles
it crosses, and by l(γi) their lengths. We find that

d̄ε(H′, J′) − d(H, J) ≤ l(γ′0) + l(γ′m+1) +
m∑

i=1

l(γ′i ) − l(γi).

Since l(γ′0) and l(γ′m+1) are not greater than ε, we have that l(γ′0) + l(γ′m+1) ≤ 2ε. By
Lemma 5.14 it follows that

d̄ε(H′, J′) − d(H, J) ≤ 2ε −
m∑

i=1

δ0(Ti) sinh(ε),

But δ0(Ti) are nonpositive and, moreover, the triangles T are relative convex,
so γ meets each triangle at most once (because, if the shortest path γ meets the
(geodesic) triangle more than once, then there will be two points on the boundary
of the triangle joined by a shortest path lying outside of the triangle, which contradicts
the fact that the triangles are convex relative to the boundary), so −∑m

i=1 δ0(Ti) is less
than −∑

T δ0(T) for all the triangles of the triangulation of S, which is less than −2X(S)
by Lemma 5.12. The second inequality is now proved, and we are done. �

The lemmas above imply the uniform convergence. Theorem 5.9 is now proved.
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5.2. Approximation of polyhedral metrics by smooth metrics.

PROPOSITION 5.16. Let d be the metric induced by a hyperbolic metric with conical
singularities of negative curvature on the closed surface S. Then there exists a
sequence (Sn, dn) converging uniformly to (S, d), where Sn is homeomorphic to S, and
dn is a metric induced by a Riemannian metric of sectional curvature less than −1.

We use the same method as in [15, Lemma 3.9], but we choose the cone in anti-de
Sitter space (Figure 5), rather than the hyperbolic space H3.

PROOF. Let p ∈ S be a singular point of the polyhedral hyperbolic metric d. Consider
a neighborhood Up of p in S that does not contain any other singular point of d.
As the curvature is supposed to be negative, the neighborhood Up equipped with the
restriction of the metric d will be isometric to the neighborhood of a space-like circular
cone Cp in the affine model of the anti-de Sitter space, such that the singularity p
corresponds to the apex of Cp. Consider a sequence of smooth convex functions, whose
graphs coincide with the cone Cp outside a neighborhood of the apex, and converging
to Cp (this is very classical; see, for example, [15, Lemma 3.9]).

Using Gauss’s formula, one can easily check that the sectional curvature for the
induced metric on the smooth approximating surfaces is less than or equal to −1.
We can multiply those metrics by any constant λ > 1 to get the sectional curvature
less than −1. As the surfaces differ only on a compact set, and as the approximating
sequence is smooth, it follows from (2-3) that the induced distances are uniformly
bi-Lipschitz to the hyperbolic metric. From this and Proposition 2.9, it is classical to
deduce that the induced distances converge locally uniformly (hence uniformly in this
case); see, for example, the proof of [10, Proposition 3.12].

Circular cone

Cp
Smooth

surface
p

FIGURE 5. Smooth surface and circular cone in anti-de Sitter space.
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The proposition follows by applying this procedure simultaneously to all singular
points of the metric d. �

Let d be any metric of curvature less than or equal to −1 on a compact surface S.
We obtain a sequence (dn)n from Theorem 5.9, and for each dn, a sequence (dnk )k from
Proposition 5.16. Theorem 4.2 follows from a diagonal argument.

Acknowledgements

This work is a part of the author’s doctoral thesis completed under the supervision
of F. Fillastre, and the author is most grateful to him for his constant attention and
advice. The author is also most grateful to an anonymous referee, whose comments
helped greatly improve the presentation.

References
[1] A. D. Aleksandrov and V. A. Zalgaller, Intrinsic Geometry of Surfaces, translated from the Russian

by J. M. Danskin. Translations of Mathematical Monographs, 15 (American Mathematical Society,
Providence, RI, 1967).

[2] A. D. Alexandrov, A. D. Alexandrov Selected Works. Part II: Intrinsic Geometry of Convex
Surfaces (ed. S. S. Kutateladze), translated from the Russian by S. Vakhrameyev (Chapman &
Hall/CRC, Boca Raton, FL, 2006).

[3] F. Bonsante and J.-M. Schlenker, ‘Maximal surfaces and the universal Teichmüller space’, Invent.
Math. 182(2) (2010), 279–333.

[4] F. Bonsante and J.-M. Schlenker, ‘Fixed points of compositions of earthquakes’, Duke Math. J.
161(6) (2012), 1011–1054.

[5] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319
(Springer-Verlag, Berlin, 1999).

[6] D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in
Mathematics, 33 (American Mathematical Society, Providence, RI, 2001).

[7] A. Y. Burtscher, ‘Length structures on manifolds with continuous Riemannian metrics’, New York
J. Math. 21 (2015), 273–296.

[8] P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Modern Birkhäuser Classics,
Reprint of the 1992 edition (Birkhäuser, Boston, 2010).

[9] F. Fillastre, I. Izmestiev and G. Veronelli, ‘Hyperbolization of cusps with convex boundary’,
Manuscripta Math. 150(3–4) (2016), 475–492.

[10] F. Fillastre and D. Slutskiy, ‘Embeddings of non-positively curved compact surfaces in flat
Lorentzian manifolds’, Math. Z. 291(1–2) (2019), 149–178.

[11] F. Labourie and J.-M. Schlenker, ‘Surfaces convexes fuchsiennes dans les espaces lorentziens à
courbure constante’, Math. Ann. 316(3) (2000), 465–483.

[12] G. Mess, ‘Lorentz spacetimes of constant curvature’, Geom. Dedicata 126 (2007), 3–45.
[13] D. Mumford, ‘A remark on Mahler’s compactness theorem’, Proc. Amer. Math. Soc. 28 (1971),

289–294.
[14] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied

Mathematics, 103 (Harcourt Brace Jovanovich, New York, 1983).
[15] D. Slutsky, ‘Métriques polyèdrales sur les bords de variétés hyperboliques convexes et flexibilité

des polyèdres hyperboliques’, PhD Thesis, Université Toulouse III Paul Sabatier, 2013.
[16] R. Tyrrell Rockafellar, Convex Analysis, Princeton Landmarks in Mathematics, Reprint of the 1970

original, Princeton Paperbacks (Princeton University Press, Princeton, NJ, 1997).

https://doi.org/10.1017/S1446788720000506 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788720000506


334 H. Labeni [23]

HICHAM LABENI, CY Cergy Paris Université, Laboratoire AGM,
UMR 8088 du CNRS, F-95000 Cergy, France
e-mail: e-mail: hicham.labeni@cyu.fr

https://doi.org/10.1017/S1446788720000506 Published online by Cambridge University Press

mailto:hicham.labeni@cyu.fr
https://doi.org/10.1017/S1446788720000506

	1 Introduction
	2 Convex surfaces in anti-de Sitter space
	2.1 Anti-de Sitter space
	2.2 Convex functions

	3 Fuchsian invariance
	3.1 Convergence of surfaces implies convergence of metrics
	3.2 Convergence of metrics implies convergence of groups

	4 Proof of Theorem 1.4
	5 Approximation by smooth metrics
	5.1 Approximation of metrics by polyhedral metrics
	5.2 Approximation of polyhedral metrics by smooth metrics


