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The effects of porous material on the aeroacoustic sound generated in a two-dimensional
low-Reynolds-number flow (Re = 150) past a circular cylinder are studied by direct
numerical simulation in which the acoustic waves of small amplitudes are obtained
directly as a solution to the compressible Navier—Stokes equations. Two models are
introduced for the porous material: the microscopic model, in which the porous material is
a collection of small cylinders, and the macroscopic model, in which the porous material
is continuum characterized by permeability. The corrected volume penalization method
is used to deal with the core cylinder, the small cylinders and the porous material. In the
microscopic model, significant reduction of the aeroacoustic sound is found depending on
the parameters; the maximum reduction of 24.4 dB from the case of a bare cylinder is
obtained. The results obtained for the modified macroscopic model are in good agreement
with those obtained for the microscopic model converted by the theory of homogenization,
which establishes that the microscopic and macroscopic models are consistent and valid.
The detailed mechanism of sound reduction is elucidated. The presence of a fluid region
between the porous material and the core cylinder is important for sound reduction. When
the sound is strongly reduced, the pressure field behind the cylinder becomes nearly
uniform with a high value to stabilize the shear layer in the wake; as a result, the vortex
shedding behind the cylinder is delayed to the far wake to suppress the unsteady vortex
motion near the cylinder, which is responsible for the aeroacoustic sound.
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1. Introduction

Noise reduction is one of the most important problems for various engineering devices.
For example, the maximum speeds of high-speed trains in Japan are often limited by the
allowable sound pressure level of noise radiated from them so as not to disturb residents
near the railroads. The noise is usually dominated by aeroacoustic noise, whose power P
increases rapidly with the characteristic speed U of the device as P o« U°~8. Many efforts
have been devoted to reduce aeroacoustic noise by e.g. changing the shapes of devices
and removing roughness. However, some parts such as pantographs of trains cannot be
removed, which necessitates the need of other methods for noise reduction.

Porous materials have been shown to be effective and promising for noise reduction.
Sueki et al. (2010) applied a porous material to reduce the aeroacoustic noise generated in
the flow past a circular cylinder. Their experiment showed that the noise is significantly
reduced when a solid cylinder is covered by the porous material. The mechanism of
reduction is that the porous material hinders the momentum of the wake and suppresses
the unsteady motion of vortices in the wake (see also Naito & Fukagata 2012). Nishimura
& Goto (2010) studied the effects of pile fabrics on the aeroacoustic noise generated in the
flow past a circular cylinder by experiments. A similar problem was studied numerically
by Xu, Zheng & Wilson (2010). Liu et al. (2015) considered the aerodynamic sound
from tandem cylinders covered by a porous material by numerical simulation. See also
the works of Geyer, Sarradj & Fritzsche (2010), Herr et al. (2014), Delfs et al. (2014),
Giret & Sengissen (2015) and Geyer & Sarradj (2016). Although the above works showed
that a porous material is effective for noise reduction, such materials are not widely
used in reality. This is partly because the detailed mechanism of sound reduction has
not been fully elucidated; in other words, the aeroacoustic sound can be further reduced
by clarifying in more detail the effects of the porous material on the unsteady vortex
motion near the objects, which generates the aeroacoustic sound. Moreover, the lack of
reliable and convenient tools for evaluating sound in flows which involve a porous material
is another reason; experiments are not convenient because it is not easy to change the
parameters and properties of the porous material and the results are often limited; most of
the numerical works so far rely on aeroacoustic analogies, and the disadvantages of these
will be discussed later in this section.

In this paper, we study the effects of a porous material on the reduction of aeroacoustic
sound by direct numerical simulation (DNS); here DNS implies that the sound pressure
is directly obtained by solving the compressible Navier—Stokes equations without using
acoustic analogies or solving additional equations such as a linear wave equation. Our
main objectives are to clarify the detailed mechanism of sound reduction and to reveal
what are essential for sound reduction. Two models of the porous material are considered:
a microscopic model, in which the porous material is a collection of small cylinders,
and a macroscopic model, in which the porous material is a continuum characterized
by permeability. We will show that the results obtained by the two models are in good
agreement, which establishes that the models are reliable tools for investigating the
aeroacoustic sound in flows which involve a porous material; they are also convenient
becaue it is easy to change the geometry and properties of the porous material. For
example, they can be used to optimize the porous material for noise reduction.

DNS has been established as an effective tool of computational aeroacoustics supported
by the rapid development of computational resources (Colonius & Lele 2004; Wang,
Freund & Lele 2006); it has been used to study aeroacoustic sound not only in laminar
flows (Mitchell, Lele & Moin 1995; Inoue & Hattori 1999; Inoue, Hattori & Sasaki 2000;
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Hattori & Llewellyn Smith 2002; Gloerfelt, Bailly & Juvé 2003; Barré, Bogey & Bailly
2008; Miiller 2008; Nakashima 2008; Hattori & Komatsu 2017) but also in turbulent flows
(Mitchell, Lele & Moin 1999; Freund, Lele & Moin 2000). DNS of aeroacoustic sound
has advantages over the hybrid method frequently used in computational aeroacoustics.
In the hybrid method, the sound sources are obtained numerically by solving the
incompressible Navier—Stokes equations assuming low-Mach-number flow and the sound
pressure is calculated using aeroacoustic analogies. The accuracy of the sound should
be carefully addressed because several assumptions including low-Mach-number flow
and compactness of the objects are used in most of the aeroacoustic analogies. More
importantly, feedback from sound or a compressible component on the flow is missing
in the hybrid method. In contrast, DNS requires no assumptions and contains all physics.

We also point out that problems which deal with aeroacoustic sound and the porous
material simultaneously have not been studied by DNS. In the numerical simulation
by Xu et al. (2010), the flow is assumed incompressible and pressure fluctuations in
the near field, which are different from the sound pressure, are used as a measure of
sound pressure; Liu ef al. (2015) converted the results obtained by RANS simulation
to sound using the acoustic analogy by Ffowcs Williams & Hawkings (1969). There
have been many numerical works on incompressible flows involving a porous material.
Most of them use macroscopic models of the porous material such as Darcy’s law
and Brinkman’s equation. Microscopic models are mostly used to derive macroscopic
properties such as permeability (Perrot, Chevillotte & Panneton 2007; Hwang & Advani
2010; Lopez Penha et al. 2011; Matsumura & Jackson 2014; Breugem, van Dijk & Delfos
2015; Matsumura, Jenne & Jackson 2015). For example, Perrot et al. (2007) calculated
the dynamic viscous permeability for a two-dimensional model of a periodic open-cell
aluminium foam not only numerically and but also experimentally, and showed that
numerical simulation gives good prediction of the permeability. Matsumura & Jackson
(2014) studied a two-dimensional flow through periodic packs of polydisperse cylinders
by an immersed boundary method; they showed that the normalized permeability is a
function of porosity and polydiversity. To the best of the authors’ knowledge, however,
numerical studies of microscopic models for compressible flows have been limited to
computational homogenization in the linear acoustic regime in the absence of nonlinear
flows (Gao et al. 2016). It is not evident that the macroscopic models can be used to
simulate compressible flows in which both flows and acoustic waves are affected by the
porous material, although there are some results supporting that Darcy’s law is valid
for propagation of linear acoustic waves in the low-frequency approximations (Fellah &
Depollier 2000); the present study will provide a positive answer to this problem.

This paper is organized as follows. In § 2, the problem formulation and the numerical
methods are presented; the microscopic and macroscopic models are also introduced. In
§ 3, the results obtained for the microscopic model are presented, while those obtained for
the macroscopic model are presented in §4. In § 5, the relation between the microscopic
and macroscopic model is discussed by introducing a modified macroscopic model. The
detailed mechanism of sound reduction is discussed in § 6. We provide our conclusions in
§7.

2. Problem formulation and numerical methods
2.1. Problem formulation and models

We consider a compressible flow past a circular cylinder covered by porous material
(figure 1). The circular cylinder is referred to as the core cylinder below. The diameter
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Figure 1. Schematic diagram of flow model. The dark grey region and the light grey region correspond to the
core cylinder (rigid body) and the porous material, respectively.

of the core cylinder is denoted by D, while the velocity of the incoming uniform flow
is denoted by U. The porous material occupies the annulus 0.5D <r < D,/2 = 0.9D
with thickness 7 = 0.9D — 0.5D = 0.4D as in the experiments by Sueki et al. (2010),
although the thickness is changed in § 4 to investigate the effects of the thickness of the
porous material. This value of the thickness may look too large because the drag would
increase which is not desirable; however, this is not the case in applications to high-speed
trains in which increase in the drag of pantographs has negligible effects on the total
drag of the trains and the reduction of the aeroacoustic noise is the most important issue.
The flow is assumed two-dimensional (2-D). The Mach number of the incoming flow
and the Reynolds number based on the core cylinder are fixed to My, = U/coo = 0.2
and Re = pooUD/ 1 = 150, respectively, where ¢, and poo are the speed of sound and
density at infinity, respectively, and p is the viscosity which is assumed constant. This 2-D
low-Reynolds-number flow is chosen because it is a canonical flow frequently studied as
a benchmark problem (Inoue & Hatakeyama 2002; Miiller 2008; Tsutahara et al. 2008).
The fluid is assumed to be an ideal gas.

We introduce two models for the porous material: a microscopic model and a
macroscopic model (figure 2). In the microscopic model, the porous material is a collection
of small cylinders whose diameter is dy = 0.03D; Ny small cylinders are placed at regular
intervals in the azimuthal direction on the circle r = r;(i = 1, ..., N,), which implies that
the total number of the small cylinders is N.Ny. The radius r; is set to

i—

1
h, 2.1
N, 2.1)

ri = (0.9D — 0.5dy) —

so that the outermost cylinders are included in the porous material and touch its boundary
and the innermost cylinders do not touch the core cylinder. The azimuthal positions of
the small cylinders on the adjacent circles differ by t/Ny to form a staggered formation
(figure 2a). The diameter of the small cylinders is set to the smallest value which can be
resolved by the present numerical method and the available computational resources.

In the macroscopic model, however, the porous material is a continuous region
characterized by permeability (figure 2b).

2.2. Numerical methods

We used the corrected volume penalization method (Komatsu, Iwakami & Hattori
2016), which is one of the immersed boundary methods of continuous type and
has been shown to correctly resolve the aeroacoustic sound of small amplitude in
complex and/or time-varying geometry (Komatsu et al. 2016; Hattori & Komatsu 2017;
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Figure 2. (a) Microscopic model (with N, = 3 and Ny = 32) and (b) macroscopic model.

Iwagami et al. 2021). In this method, the compressible Navier—Stokes equations in the
primitive variables (p, u, p), where p is the density of the fluid, u; is the velocity and p is
the pressure, are supplemented with penalization terms as

9 2 ou L) Lty — vop 2.2)
—_— _— u;) = — _— u; — i)l .
or ax b Ko P10 = 20
ou; ou; ap a'L'ij X
A . TR R T S A 2.3
p ( prl axj) P 7 77(ul 0,i) (2.3)
ap ap duj 3T duj X
e ST 4 Ty -1 AT, 2.4
L 0 +yp 0, (y—1 Kaxjaxj + 7 o, nr( 0) |- (2.4)

where 7; = w(du;/0x; + du;/0x; — %(8ul/8x1)8l~j) is the viscous stress tensor, T is the
temperature, Up; and T( are the velocity and the temperature of the rigid bodies,
respectively, 1 is the viscous permeability and 57 is the thermal permeability; ¢, is the
porosity of the rigid bodies originally introduced by Liu & Vasilyev (2007) in order for
the acoustic waves to reflect at the surface of the rigid bodies correctly. The terms which
are proportional to y in (2.2)-(2.4) are called penalization terms. The mask function x is
defined as

1 if x € rigid bodies,

0 otherwise. (2.5)

xx, 1) = {
It is pointed out that the equations in the conservation form (Komatsu ez al. 2016) were
solved numerically in the actual simulations.

The same methods as used by Komatsu et al. (2016) were used for spatial discretization
and time marching. Namely, a finite difference method is adopted to discretize the
above set of equations on a rectangular grid. Spatial derivatives are approximated by
the sixth-order accurate compact scheme (Lele 1992) except for the penalization terms
which are approximated by the central finite difference of fourth-order accuracy. For time
marching, the second-order implicit method is used for the penalization terms, while
the second-order Adams—Bashforth method is used for the other terms. The numerical
domain and computational grids are also set up as was done by Komatsu et al. (2016).
Namely, a wide domain |x|, |y| < 1000D is decomposed into four regions of different grid
spacings required to resolve the flow: the boundary layer region, the flow region, the sound
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region and the buffer region. For the details, see Appendix A; also see Komatsu et al.
(2016) and Hattori & Komatsu (2017). The minimum grid size is set to 4.75 x 103D
and 9.5 x 1073D in the microscopic and the macroscopic models, respectively. The
convergence study performed for the microscopic model confirms that the aeroacoustic
waves are resolved with sufficient accuracy (see Appendix B). The numbers of grid
points are 1794 x 1662 and 1532 x 1540 in the microscopic and the macroscopic models,
respectively. The non-reflecting boundary conditions (Poinsot & Lele 1992) were imposed
at the far boundaries, while possible reflections at the far boundaries were removed by grid
stretching and spatial filtering by the compact scheme of sixth-order accuracy (Lele 1992).

The other parameters were chosen as follows. The Prandtl number Pr = y u/x was set to
0.72, where the ratio of the specific heats y was set to 1.4. In the rigid bodies, the porosity
¢, was set to 0.1 and the viscous and thermal permeabilities were setto n = ny = 10~* as
was done by Hattori & Komatsu (2017). In the macroscopic model, the permeabilities of
the porous material were changed as 107> < 5 = n7 < 103, while the porosity was fixed to
¢, = 0.98. This choice of porosity is discussed in Appendix C, where it is confirmed that
the results were nearly unchanged when a different relation between ¢, and n was used.
Note that the penalization term in (2.2) which involves ¢, is a numerical one introduced
for rigid bodies; in this regard, ¢, is a numerical porosity rather than the actual porosity
of the porous material. The number of small cylinders in the microscopic model was set
to0 <N, <3and 8 < Ny < 150.

The variables were non-dimensionalized with D as the length scale, ¢, as the velocity
scale and p as the unit of density unless stated explicitly.

3. Results: microscopic model

In this section, we show the numerical results obtained for the microscopic model.
Figure 3 compares the pressure field between Ny = 150, 12 and O for N, = 1, where
Ng = 0 corresponds to the bare cylinder; it shows the mean pressure Ap = p — pso and
the fluctuation pressure defined as Apg,cr = p — p, where p is the time average of p; in the
far field, the fluctuation pressure almost coincides with the sound pressure because Apyycr
satisfies the basic properties of linear acoustic waves as shown in Appendix D. The contour
levels are the same for all panels. The mean pressure distributions are similar, although
some differences are observed in the wake. In figures 3(b) and 3(f), we observe that the
acoustic waves propagate cylindrically from the origin for Ny = 150 and 0; the wavelength
is larger for Ny = 150 than for Ng9 = 0 because the effective diameter of the cylinder
is 1.8D for Ny = 150, while it is D for Ny = 0. However, the acoustic waves are nearly
invisible for Ny = 12 (figure 3d). This figure shows that the sound is significantly reduced
for Ng = 12.

Figure 4 shows the time evolutions of pressure measured at (r, ) = (80, 90°), the drag
F and the lift F for the three cases as in figure 3. The drag and lift are calculated as the
reaction force of the rate of change of momentum owing to the penalization terms:

Fi=— / fidA
s
d
= — | (pujuj+pd; — tj)njdl — — [ pu; dA, (3.1
s dr Jg

where fis the force per unit area owing to the penalization terms, S is any region including
the cylinder and the porous material, and 7 is the unit outward normal vector on S. In the
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Figure 3. Pressure field shown by contour lines of mean pressure Ap =p — poo (a,c,e) and fluctuation
pressure Apgue; =p — p at t = 1100 (b.d, f). Microscopic model with N, = 1. Red lines, Ap > 0; green

lines, Ap = 0; blue lines, Ap < 0. The contour levels are |Ap| < 8.0 x 10~4 with the increment Apine =
5.0 x 1073, (a,b) Ng = 150, (c,d) Ng = 12, (e,f) Ny = 0.

following, the region S is set to the rectangle [—3D, 12D] x [—3D, 3D] after confirming
that the results do not depend on the choice of the region. Nearly sinusoidal oscillations
of the pressure are observed for N, = 150 and 0, while the amplitude and the time period
for N = 150 are larger than those for N, = 0. However, the fluctuation pressure is small
for N, = 12, as observed in figure 3(b). The aeroacoustic sound in the present problem
is dominated by the time variation of the lift (figure 4¢) rather than that of the drag
(figure 4b) in the framework of acoustic analogies: we can observe that the amplitude of
the lift oscillations is larger for N, = 150 than N, = 0; it almost vanishes for N, = 12; and
the time periods of the lift oscillations are the same as those of the fluctuation pressure.
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Figure 4. Time evolution of pressure at (r, 8) = (80, 90°) (a), drag F (b) and lift F, (c). Microscopic model
with N, = 1. Comparison between Ny = 150, 12 and 0.

We will show how the mean drag and the root-mean-square (r.m.s.) amplitude of lift
depend on the number of small cylinders later in this section.

Figure 5 compares the directivity of the sound between Ny = 150, 12 and O for N, = 1;
the r.m.s. amplitudes of the acoustic waves are shown by a polar plot. It shows that the
sound for Ny = 150 and 0 is dominated by a dipolar component with maximum at 0 ~
490°, as is well known for the aeolian tone. However, the directivity for Ny = 12, which
is magnified in figure 5(b), is not of dipolar nature. It shows that the sound arising from
vortex shedding is suppressed nearly completely.

In figure 6, the acoustic power is plotted against the number Ny of small cylinders in the
azimuthal direction. It is calculated at r = 80 as

27 2
Apaye
p= f Bhe)” 4o 3.2)
0 PooCoo
while 23 observation points at 6 = 15°,30°,...,345° are used to discretize the

above integral; 0 = 0° is excluded because the fluctuation pressure is dominated by
hydrodynamic pressure owing to vortices in the wake and the acoustic pressure of the
dipolar sound is small. The acoustic power does not change very much for Ny > 100;
it is approximately five times larger than that for the bare cylinder Ng = 0. For N, = 1,
the acoustic power decreases as Ny decreases for Ng > 15. The minimum at Ny = 12 is
P =5.90 x 1072, which is 0.36 % (24.4 dB reduction) of the bare cylinder and 0.064 %
(32.0 dB reduction) of Ny = 150, showing a significant reduction of the acoustic power.
The reduction effects are weaker for NV, = 2 and 3 as the minimum acoustic power is 25 %
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Figure 5. Directivity of r.m.s. amplitude of pressure fluctuations shown by a polar plot. Microscopic model
with N, = 1. (@) Comparison between Ny = 150 (e - red), Ng = 12 (+ - green) and Ng = 0 (x - blue); (b)
magnified plot of Ng = 12.
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Figure 6. Acoustic power plotted against Ng. Microscopic model: e - red, N, = 1; + - green, N, = 2; X -
blue, N, = 3; B - black, bare cylinder.

(6.0 dB reduction) and 85 % (0.7 dB reduction) of the bare cylinder for N, = 2 and 3,
respectively.

Figure 7 shows contours of vorticity for Ny = 150, 12 and 0 with N, = 1. Two instants
of opposite phase, one of which is the final time of simulation # = 1100, are shown for
each case as the vortex motion is periodic; note that the other instant depends on the case
because the time period is different between the three cases. For Ny = 150 and 0, vortex
shedding behind the cylinder is observed. For N9 = 12, however, vortices are not shed just
behind the cylinder; it is delayed to x &~ 12; a nearly steady wake is formed for 0 < x < 12.
The flow is blocked by the small cylinders so that a thick boundary layer is formed around
the bare cylinder. As a result, the wake is stabilized, for which the details are discussed in
§ 6. In figure 8, the mean flow and the fluctuation of the streamwise velocity are shown
at several positions in the wake. It shows that the mean flow does not change behind the
cylinder for Ny = 12, while the width of the wake quickly broadens for Ny = 150. It also
confirms that the fluctuation is small for Ng = 12. It is interesting to see that the mean
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Figure 7. Vorticity field shown by contour lines. Microscopic model with N, = 1: red lines, @ > 0; blue lines,
w < 0. The contour levels are |w| < 2.0 with the increment Aw = 0.1. The core cylinder is shown by the
filled grey circles, while the outer boundary of the porous material is marked by the black circles. (a) Ny =
150, t = 1078, (b) Ng = 150, t = 1100, (c) Ng = 12,t = 1074, (d) Ng = 12, = 1100, (e) Ny = 0, = 1087,
(f) No =0, t = 1100.
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Figure 8. (a,b) Averaged wake velocity distribution and (c,d) r.m.s. amplitude of wake velocity fluctuation.
Microscopic model with N, = 1. (a,c) Ng = 150, (b,d) Ng = 12.
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Figure 9. (a) Mean drag coefficient, (b) r.m.s. amplitude of lift coefficient and (c) Strouhal number plotted
against Ny. Microscopic model: e - red, N, = 1; + - green, N, = 2; x - blue, N, = 3; square - black, bare

cylinder.

flow and the fluctuation shown in figure 8 are similar to those observed in the experiment
(Sueki ez al. 2010) at Re = 4.6 x 10* shown in figures 10 and 11 of Sueki et al. (2010) in
spite of the large difference in the Reynolds number.

It is of interest to check how the drag and lift vary with the number of the small cylinders.
Figure 9 shows the mean drag coefficient, the r.m.s. amplitude of the lift coefficient and
the Strouhal number plotted against Ng for N, = 1, 2 and 3. They are non-dimensionalized
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using the outer diameter D,, in the left vertical axis, which is suitable for large Ny, and the
inner diameter D in the right vertical axis, which is suitable for small Ny as

F NG D,
vy (3.3)

Cpo=————— CrLmso= , Sto= ,
(1/2)pocU2,D, e (1/2) poc U2, Dy UsoT)
F, F2 D
Cp= . CLm= s, St= : (3.4)
(1/2)poc U2, D (1/2)poc U2,D UsoT)

where T), is the time period of fluid motion. The drag coefficient and the r.m.s. lift
coefficient for the bare cylinder are Cp = 1.337 and Cy, ;4,5 = 0.350, which are close to
the values 1.368 and 0.383 obtained by Ali et al. (2013) and our previous results 1.332 and
0.364 in the body-fitted coordinate system and 1.300 and 0.350 by the volume penalization
method (Komatsu et al. 2016); for (N,, Ny) = (3150) approximately corresponding to the
large cylinder of diameter D, and Re = 270, they are Cp o = 1.379 and Cr, ;5,0 = 0.599,
which are in reasonable agreement with Cp o = 1.358 and Cy, yns,0 = 0.559 obtained by
interpolation using the coefficients at Re = 250 and 300 obtained by Rajani, Kandasamy
& Majumdar (2009). The value of the drag for Ny = 150 coincides with that of the bare
cylinder of diameter 1.8D, which is shown later in figure 14. The drag for Ny > 0 is
larger than that of the bare cylinder in the entire range. There is a range of Ny in which
the drag exceeds the value at N9 = 150: Ny > 40 for N, = 1, N9 > 12 for N, = 2 and
Ny > 8 for N, = 3. The maximum drag coefficient is Cp o = 1.733 or Cp = 3.120 for
(No, Ny) = (20, 3), which is 2.3 times the drag of the bare cylinder. In these ranges, the
distance between the small cylinders is large enough to allow the incoming flow to form a
wake behind them; as a result, the drag exerted on each small cylinder becomes large. It is
pointed out that the drag coefficient for (Ny, N,) = (12, 1), for which the acoustic power is
minimum, is Cp o = 1.036 or Cp = 1.865, which is 40 % larger than the drag of the bare
cylinder. However, the r.m.s. amplitude of lift coefficient does not increase very much
as Ny decreases from Ny = 150. It decreases and nearly vanishes to Cy 5.0 < 0.0072
or Cp rms.0 < 0.013 for 12 < Ny <20 at N, = 1, which corresponds to the significant
reduction of the acoustic power. The Strouhal number does not change significantly for
Ny 2 30, which shows that the effective radius of the porous cylinder is the outer diameter
Do; it increases with decreasing Ny for Ny < 15 as the effective radius shifts gradually to
that of the inner diameter D.

4. Results: macroscopic model
In this section, we show the results obtained for the macroscopic model. Figure 10

compares the fluctuation pressure field between three values of permeability: n = 1073, at
which the porous material can be regarded as a rigid body; n = 10, at which the acoustic
power is minimum; and 1 = 103, at which the porous material can be ignored (the case
of the bare cylinder). This figure is similar to figure 3 showing the fluctuation pressure
field for the microscopic model. In fact, figure 3(a) and figure 10(a) correspond to the
case of the large cylinder of diameter 1.8D, while figure 3(c) and figure 10(c) correspond
to the case of the bare cylinder. However, there is a difference between the states of the
minimum acoustic power: although the amplitude of the fluctuation pressure at n = 10 is
small, weak acoustic waves propagating cylindrically can be recognized in figure 10(b) as
the amplitude of the sound is larger than that in figure 3(b).
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Figure 10. Pressure field shown by contour lines of fluctuation pressure Appye; =p —p at t = 1100.
Macroscopic model. The line colours and the contour levels are the same as in figure 3. (@) n = 1073, (b)
n =10, (c) n = 10%.
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Figure 11. Acoustic power plotted against permeability . Macroscopic model.

Figure 11 shows the acoustic power P plotted against permeability n. The values of
P at n =103 and 10° coincide with those at Ny = 150 and O for the microscopic
model, respectively. The acoustic power increases slightly as 7 increases from n = 1073, It
decreases for 0.2 < n < 10 taking the minimum at n = 10. The acoustic power increases
monotonically with n for n > 10. The minimum value at n = 10 is P = 3.85 x 1077,
which is 4.1% (13.8 dB reduction) of n = 1073 and 22% (6.5 dB reduction) of the
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Figure 12. Directivity of r.m.s. amplitude of pressure fluctuations shown by a polar plot. Macroscopic model.
Comparison between 1 = 1073 (e -red), n =10 (4 - green) and n = 103 (X - blue).
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Figure 13. Vorticity field shown by contour lines. Macroscopic model. The line colours, contour levels and
the cylinders are the same as in figure 7. (a) n = 1073, 1 = 1078, (b) n= 1073, 1 = 1100, (¢) n =10, = 1081,
(d)n = 10,7 = 1100, () n = 103, = 1086, (f) n = 10°, r = 1100.

bare cylinder. This value of P is much larger than the minimum obtained for the
microscopic model. This point will be examined in the next section.

Figure 12 shows the directivity of the sound for n = 1073, 10 and 103. The directivity
nearly coincides with that of the microscopic model (figure 5) for n = 10~ and 10°.
However, the directivity at n = 10 is also dominated by the dipolar component in contrast
to that of Ny = 12 in figure 5. This is understood by the flow field behind the cylinder.
Figure 13 compares the vorticity field in the wake of the cylinder between the three
values of 7. The boundary layer on the cylinder surface is thicker for n = 10 than for
n=10"3 and 10° as in the case of Ny = 12 in the microscopic model (figure 7b).
However, the vortex shedding is only slightly delayed in comparison to the case of the

929 A34-14


https://doi.org/10.1017/jfm.2021.884

https://doi.org/10.1017/jfm.2021.884 Published online by Cambridge University Press

Reduction of aeroacoustic sound by porous material

(@) 20 135
1.8+
el a™h 13.0
. .
]
Lim [ | 425
2 u Q
Szt O
[ 412.0
1.0
]
L 115
0.8 = .
0.6 1 | | | | | 11.0
103 102 1000 100 10" 102 103
(b) 08 714
0.7F
112
om w -
] 11.0
051
: 0.4 . 108 %
2 04 [ ] 3
SENI {06 ©
: ]
0.4
02 [ ]
o
0.1F H0.2
O 1 1 1 1 1 0
1023 102 100 100 100 102 103
(¢) 040
035 F 1020
[ ]
0.30 | "
H0.15
025 F
)
% 020M | L] )
2 {0.10 A
0.15 F
0.10 | 10.05
0.05 |
0 1 1 1 1 1 0
103 102 1070 100 10' 10> 103

n

Figure 14. Mean drag coefficient, r.m.s. amplitude of lift coefficient and Strouhal number plotted against
permeability n. Macroscopic model.

microscopic model. The size of the vortices and the frequency of vortex shedding are
close to those for the large cylinder (n = 1073). However, the effective radius of the
cylinder is close to that of the bare cylinder (7 = 10°). These combined effects make the
acoustic power small, although the reduction rate is smaller than the microscopic model.
Figure 14 shows the mean drag coefficient, the r.m.s. amplitude of the lift coefficient and
the Strouhal number plotted against the permeability. The drag at 7 = 103 coincides with
that of the large cylinder. The drag increases with the permeability for 1073 < 5 < 1. Then
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Figure 15. Minimum acoustic power plotted against thickness % of porous material.

it decreases monotonically for 1 < n < 103, reaching the value for the bare cylinder at
n= 103. The drag coefficient at the minimum acoustic power (at n = 10) is Cp,o = 1.086
or Cp = 1.955, which is 44 % larger than that of the bare cylinder. The amplitude of the lift
coefficient takes a minimum at & 10 for which the acoustic power is minimum; however,
the minimum of Cy s 1S Cr ms,0 = 0.102 or Cr, ;s = 0.184 which is much larger than
that in the microscopic model. The Strouhal number increases smoothly for 1 < 7 < 103,
which suggests that the effective radius of the porous cylinder decreases from Dg to D.

Figure 15 shows the effects of the thickness of the porous material on the minimum
acoustic power. The minimum acoustic power is slightly larger than that of the bare
cylinder for 0 < h < 0.2D. However, it decreases with the thickness for 0.15D < h <
0.5D. It is of some interest to optimize the thickness for sound reduction; however, it
is postponed for a future work because prior to this, we should find the relation between
the microscopic and macroscopic models.

5. Relation between microscopic and macroscopic models

In §4 we showed that the minimum of the acoustic power obtained for the macroscopic
model is much larger than that obtained for the microscopic model (§ 3). In this section,
we introduce a modified macroscopic model and show that the results obtained for
it are consistent with those obtained for the microscopic model. Figure 16(a) shows
the microscopic model with N, = 1. Because we have set the outer small cylinders at
r=0.9D — 0.5d; = 0.885D, it is not appropriate to model the whole region between the
small cylinders and the core cylinder as porous material when N, = 1. Thus we introduce
a modified model as shown in figure 16(b). In this model, there is a region occupied by a
fluid between the core cylinder and the porous material of thickness 4 which models the
small cylinders. This modified model is expected to be closer to the microscopic model
with N, = 1.

Figure 17 shows the acoustic power plotted against the permeability for the modified
macroscopic model. The results with four values of thickness are compared: h =
0.4D, 0.2D, 0.1D and 0.03D. Note that 7 = 0.4D corresponds to the original macroscopic
model. As the thickness decreases, the minimum acoustic power decreases, while the value
of n at the minimum also decreases. The minimum acoustic power for 4 = 0.03D and
0.1D is 7.74 x 1072 at n = 0.6 and 1.13 x 107% at 5 = 2.5, respectively, which are the
same order of magnitude as that of the microscopic model.
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Figure 16. (a) Microscopic model with N, = 1 and Ny = 32 and (b) modified macroscopic model.
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Figure 17. Acoustic power plotted against permeability 1. Modified macroscopic model: square - black,
h=0.4D; e -red, h = 0.2D; + - green, h = 0.1D; x - blue, h = 0.03D.

Figure 18 shows the mean drag plotted against the permeability. The maximum of the
mean drag decreases and shifts to smaller n as the thickness decreases. The maxima for
h =0.03D and 0.1D are close to that of the microscopic model. The wake behind the
cylinder is stabilized as observed in figure 19, which shows the vorticity field for i =
0.03D at n = 0.6 and is similar to that of the microscopic model with (N,, Ng) = (12, 1)
(figure 7d).

The above results for # = 0.03D and 0.1D suggest that the modified macroscopic model
is closely related to the microscopic model. To compare the results obtained with the two
models, we resort to the estimate of the intrinsic permeability of fibrous media obtained by
the theory of homogenization (Berdichevsky & Cai 1993; Boutin 2000; Auriault, Boutin
& Geindreau 2009)

K I B+ - p R? (5.1)
=——1lo —_— . .
TR e

In the above equation, K),7 is the P estimate of the transverse intrinsic permeability, 8 =
Rs/R., Ry is the radius of small cylinders modelling fibres and R, is the external radius of
a fluid shell which contains a small cylinder. The intrinsic permeability is related to the
permeability n and the viscosity u through

_ poocooKpT

D (5.2)
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Figure 18. Drag plotted against permeability 7. Modified macroscopic model: square - black, h = 0.4D; e -
red, h = 0.2D; + - green, h = 0.1D; x - blue, h = 0.03D.
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Figure 19. Vorticity field shown by contour lines. Modified macroscopic model with 2 = 0.03D and n = 0.6.
The line colours, contour levels and the cylinders are the same as in figure 7.

in the present scaling. Naturally, we can set Ry = dy/2. The porosity ¢ in the above
estimate is related to B by ¢ = 1 — B2, which implies that B2 is the ratio of the area Seyl
occupied by the small cylinders to the area S),, of the porous material. In our microscopic

model, we have S, = nt(d;/ 2)2N,N9 and Sp,r = mh(D, — h), which allow us to express
B2 by the parameters in the microscopic model:

Seyi  d2N:Ny
Spor 4h(D0 - h) ‘

Br=1-¢= (5.3)

Substituting (5.1), (5.3) and B8 = Ry/R, into (5.2), the permeability in the modified
macroscopic model is expressed by the parameters in the microscopic model.

The acoustic power and the drag obtained for the microscopic model are compared
with those obtained for the modified macroscopic model as a function of permeability »
using the above equations in figure 20; the microscopic models with N, = 1 and 3 are
compared with the modified macroscopic models with 2 = 0.03D and 0.4D, respectively.
It shows that the results obtained for the two models are in good agreement. In fact,
both the acoustic power and the drag obtained for the microscopic model with N, = 1
nearly collapse with those obtained for the macroscopic model with 27 = 0.03D except for
a small deviation at n = 1, where the corresponding values of Ny are small. The agreement
between the microscopic model with N, = 3 and the macroscopic model with 7 = 0.4D
looks slightly worse because variation of the acoustic power in the microscopic model
occurs at small Ny and the minimum of the acoustic power is out of the range of Npy;
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Figure 20. Comparison between modified macroscopic and microscopic models. (a,b) Acoustic power, (c,d)
mean drag coefficient and (e, f) r.m.s. amplitude of lift coefficient plotted against permeability 1. (a,c) x - blue,
modified macroscopic model with 7 = 0.03D; e - red, microscopic model with N, = 1; (b,d) square - black,
(modified) macroscopic model with 7 = 0.4D; x - blue, microscopic model with N, = 3.

however, the agreement is satisfactory as the overall trend is the same and the maxima of
the drag are close.

Some discussions are required on the applicability of equations derived by
homogenization in the present problem. At first sight, the small cylinders in the
microscopic model are not sufficiently small or the number of them is not sufficiently
large in order for the theory of homogenization to be applicable. However, the relation
derived from the theory of homogenization works satisfactorily as we see above. This is
because the most important assumption in homogenization holds: the Reynolds number
based on the small cylinder is Ud,/v = 4.5, which is sufficiently small; the flow around
the small cylinders can be approximated by the Stokes flow. Therefore, the results support
not only that the microscopic and macroscopic models are consistent but also that these
two models are valid.
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6. Detailed mechanism of sound reduction

In this section, we discuss the mechanism of sound reduction by the porous material in
detail based on the results obtained for the modified macroscopic model.

In figure 21, we compare the time-averaged pressure and vorticity fields near the cylinder
among the three cases: (i) # = 0.03D and n = 0.6 at which the acoustic power is minimum
in the modified macroscopic model (figure 21a,b), (ii) h = 0.4D and n = 10 at which the
acoustic power is minimum for 4 = 0.4D or the original macroscopic model (figure 21¢,d)
and (iii) 4 = 0.4D and n = 10~3 which corresponds to the case of the large rigid cylinder
of radius 0.9D (figure 2le,f). At h = 0.03D and n = 0.6, the incoming flow splits into
two parts as it attacks the porous material: a part of the incoming flow intrudes into the
inside of the porous material forming a jet-like flow shown by the positive vorticity region
near r = 0.9D and the negative vorticity region near r = 0.5D; the rest of the incoming
flow forms a boundary layer outside the porous material (figure 215). The boundary
layer outside the porous material separates at & &~ 80° to form a small separation bubble;
however, it reattaches to the surface of the porous material. Alternatively, there is a flow
which permeates from the inside of the porous material into its outside behind the cylinder
or the wake. As a result, a thick shear layer forms in the wake (figure 21b). The resulting
pressure field is nearly constant in the wake (figure 21a), which makes the wake flow nearly
steady and leads to significant reduction of the aeroacoustic sound.

The acoustic power is also reduced at 7 = 0.4D and n = 10, although the reduction rate
is smaller than at 7 = 0.03D and n = 0.6. At h = 0.4D and n = 10, most portion of the
incoming flow permeates into the porous material forming a thick boundary layer from
the front side of the core cylinder (figure 21d); the boundary layer develops into a thick
shear layer in the wake which is similar to that in figure 21(b). One notable difference is
the pressure distribution in the wake: there is non-vanishing pressure gradient in the wake
and the pressure on the surface of the porous material is smaller than that at 2z = 0.03 and
n = 0.6 as shown by the pressure coefficient C, = Ap/((l/Z)Mgo in figure 21(g). As a
result, the flow cannot be steady, although unsteady motion is suppressed in comparison
to the case of large cylinder (figures 2le, f).

7. Concluding remarks

The effects of the porous material on the aeroacoustic sound generated in a
low-Reynolds-number flow past a circular cylinder were studied by direct numerical
simulation. Two models were introduced for the porous material: the microscopic model,
in which the porous material is a collection of small cylinders, and the macroscopic model,
in which the porous material is continuum characterized by permeability. The corrected
volume penalization method (Komatsu et al. 2016; Hattori & Komatsu 2017) enabled
us to capture aeroacoustic waves of small amplitudes as a solution to the compressible
Navier—Stokes equations supplemented by penalization terms without using aeroacoustic
analogies or solving additional equations. In the microscopic model, significant reduction
of the aeroacoustic sound was found depending on the parameters; maximum reduction
was achieved at (N,, Np) = (1, 12), which gave 24.4 dB reduction in comparison to the
bare cylinder. The vortex shedding behind the cylinder is delayed to the far wake to
suppress the unsteady vortex motion near the cylinder, which is responsible for the
aeroacoustic sound. In the macroscopic model, sound reduction was not as significant
as in the microscopic model when the porous material is attached to the core cylinder;
the maximum reduction in comparison to the bare cylinder is 6.5 dB. In the modified
macroscopic model, however, a reduction rate comparable to the case of the microscopic
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Figure 21. Comparison of mean pressure field (a,c,e) and mean vorticity field (b,d, ) near cylinder between
three cases: (a,b) h = 0.03D and n = 0.6 (minimum acoustic power in the modified macroscopic model),
(¢,d) h =0.4D and n = 10 (minimum acoustic power in the original macroscopic model) and (e,f) h = 0.4D
and 5 = 10~3 (large cylinder). The core cylinder is shown by the filled grey semi-circles, while the outer
boundary of the porous material is marked by the black semi-circles. In the pressure fields, time average of Ap
is shown by coloured contour lines with the increment Ap;,. = 107>, The vorticity fields are shown by contour
lines of dyadic contour levels @ = +£0.01 x 2" (n =0, 1, ...): light blue lines, w < 0,0 < n < 5; blue lines,
@ < 0,n > 6;red lines, @ > 0. Panel (g) compares the pressure coefficient C, = Ap/((1/ 2)M§O) on the outer
boundary of the porous material (»r = 0.9D) for the three cases.

model was found when there was a fluid region between the porous material and the core
cylinder. The results obtained for the modified macroscopic model were in good agreement
with those obtained for the microscopic model converted by the theory of homogenization
(Berdichevsky & Cai 1993; Boutin 2000; Auriault et al. 2009), which established not only
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that the microscopic and macroscopic models are consistent but also that these two models
are valid. One of the important findings in the present study is that the reduction effect of
the porous material on the aeroacoustic sound depends strongly on the properties of the
porous material: it depends not only on the thickness of the porous material but also on
the permeability or porosity of the porous material. For instance, the porosity should be
in the range 0.91 < ¢ < 0.96 in order that the sound is reduced more than 20 dB from the
bare cylinder.

It is of interest to compare the present results with the experiment by Sueki et al.
(2010), although the Reynolds number is different. Sueki ef al. (2010) showed the sound
pressure level of the aeroacoustic noise at the vortex shedding frequency is reduced by
approximately 20 dB and 30 dB in comparison to the bare cylinder and the large cylinder,
respectively, while the porosity of the porous materials is larger than 97 %. The maximum
reduction rate in the present study is comparable to the above values, where a 24.4 dB and
32.0 dB reduction in comparison to the bare cylinder and the large cylinder, respectively,
are obtained for the microscopic model; by using the relation (5.3), the porosity at the
minimum can be evaluated as ¢ = 1 — B2 = 94.9 %, which is smaller than the above
value in the experiment. In the modified macroscopic model, however, the porous material
is confined at the boundary of the large cylinder; if the region between the core and the
large cylinders is regarded as the porous material, as in the original macroscopic model,
the value of porosity becomes ¢ = 98.5 %, which agrees with the experiment. As we have
pointed out in § 3, the mean flow and the fluctuation in the wake are also similar to those
observed by Sueki et al. (2010). Therefore, the essential mechanism of sound reduction is
most likely to be the same for the present work and the experiment. This is not surprising
because it is the tonal noise at the vortex shedding frequency that is significantly reduced
in the study by Sueki et al. (2010).

However, we should further check several important differences between the present
case and that of Sueki ef al. (2010): the Reynolds number based on the small cylinder
is 4.5 in the present work, which implies that the flow around the small cylinders is the
Stokes flow; however, the Reynolds number based on the thickness of the small-scale
structures in the porous material in the study by Sueki et al. (2010) is estimated as

Re = 0(10%™3), at which vortices are shed from these structures. The flow is assumed
as two-dimensional in the present case, although three-dimensional effects should be
important in high-Reynolds-number flows with three-dimensional structures of the porous
material in the experiment by Sueki et al. (2010). In the present work, the presence of
the fluid region between the porous material and the core cylinder is important, while
there is no such region in the experiment. One layer of small cylinders in our microscopic
model is sufficient for significant reduction of the aeroacoustic sound; this is probably
owing to the low Reynolds number of the flow. It is possible that the three-dimensional
unsteady flow in the small structures of the porous material acts as eddy viscosity so that
their overall effects are similar to the present case, which is of great interest to study as
a future work. Unfortunately, it is hopeless to perform DNS based on the microscopic
model for three-dimensional flows at the Reynolds numbers of the experiments because
of the huge computational costs; comparison of the two models in three-dimensional
moderate-Reynolds-number flows would be feasible, which is one of our future works. The
present results have shown that the microscopic model can be replaced by the macroscopic
model, for which the numerical costs are low, at least in the low-Reynolds-number
flows; this is a starting point for validating the macroscopic model in general,
although more works are required to establish the validity for higher-Reynolds-number
flows.
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It is well known that sound absorption and reduction of the sound speed occur in porous
materials (Cervera et al. 2002). These effects, if present, are correctly taken into account
in the microscopic model as long as the porous material is correctly modelled by the
small cylinders; in the macroscopic model, they are also taken into account at least in the
low-frequency or long-wave approximation under which Darcy’s law is derived (Fellah &
Depollier 2000) because the most important term of volume penalization in our method
coincides with Darcy’s law. In the present case, however, these effects are not significant
because it is the pressure distribution owing to vortices and the cylinders, which is much
larger than the acoustic waves near the core cylinder, that is responsible for the sound
generation; in fact, the time variation of the pressure distribution arising from vortices and
the cylinders produces acoustic waves under the effect of retarded time. Sound absorption
and reduction of the sound speed can be important when multiple objects are placed in the
flow so that the acoustic waves generated near one object reflect from other objects covered
by the porous material. It would be of interest to investigate these effects together with the
effects of elasticity in the porous material, which have been neglected in the microscopic
model; this should be another future work.

When the two models are validated for DNS of the aeroacoustic sound in a flow
involving a porous material, they can be used to optimize and design the shape and porosity
of the porous material to minimize the aeroacoustic sound. In particular, numerical
simulation based on the macroscopic model requires smaller costs for the parameter study
than experiments as the total computational time required for the macroscopic model was
22.0 hours, while it was 58.7 hours for the microscopic model on one node (40 cores)
of PRIMERGY at the Institute of Fluid Science, Tohoku University; the time increases to
738.8 hours for the microscopic model with the minimum grid spacing Axyi,/D = 1.90 x
1073 used for checking numerical accuracy (Appendix B). The adjoint-based optimization
can be implemented to the macroscopic model and is expected to explore new possibilities
for sound reduction. Reduction of the aeroacoustic sound is an important issue in many
engineering applications, as described in § 1. Although the present method focused on the
effects of the porous material, it would be useful to pursue other possibilities as actual
implementation of a reduction method can be prohibited by a number of reasons including
cost, durability and robustness of the effects; it should be pointed out that in the present
method, the drag increases and the actual size of the cylinder becomes large by using the
porous material, which can be a disadvantage in some applications. In this regard, various
methods proposed for suppression of vortex-induced oscillation can also be effective for
reduction of the aeroacoustic sound because they reduce the fluctuation of the force exerted
on the object in general (Wong & Kokkalis 1982; Blevins 1990).
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Appendix A. Computational grids

We adopt a rectangular grid system with non-uniform spacings because the computational
domain should be large enough to capture acoustic waves in the far field and the grid
spacing should be fine enough to resolve boundary layers on the rigid bodies. As performed
by Komatsu et al. (2016), the computational domain is divided into four regions of different
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Figure 22. Computational grids: (a) set-up of computational grids; (b) grid spacing as a function of index

along x axis; and (¢) x coordinate as a function of index along x axis. In panel (c), the magnitude of the x
coordinate is shown in log scale, while the inset shows the x coordinate near the cylinder in linear scale.

grid spacings (figure 22a): (i) the boundary layer region Rp;, in which the grid size is
smaller than 0.005D and 0.01D in the microscopic and macroscopic models, respectively,
(ii) the flow region Ry, in which the grid size is smaller than 0.1D (in both models), (iii)
the sound region Ry, in which the grid size is smaller than D and (iv) the buffer region Rpy.
The grid spacings in the first three regions are small enough to resolve boundary layers
in Ry, vortices in Ry and acoustic waves in Ry. In the buffer region Ry, the grid spacing
is prescribed to be large so that the acoustic waves are damped by the stretching of the
spacing and thereby numerical reflection at the outer boundaries, which is small but does
occur in spite of the non-reflecting boundary conditions, is reduced sufficiently. Table 1
lists the minimum grid size and the boundary layer and flow regions of the microscopic
and macroscopic models. The sound region is larger than the square |x|, |[y| < 100, while
the whole region is |x|, |y| < 1000. The grid spacing is stretched smoothly, as shown in
figure 22(b), as a function of grid index. As a result, the whole region is covered as shown
in figure 22(c); in this figure, the magnitude of the x coordinate is shown in log scale as
a function of grid index, while the inset shows the x coordinate in linear scale near the
cylinder.

Appendix B. Numerical accuracy of DNS of microscopic model

It is important to check the accuracy of DNS in the microscopic model because the
porous material is a collection of small cylinders of radius ds; = 0.03, which demands
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AXpmin Ry Rf (Nx, Ny)

Microscopic 4.75 x 1073 [—1.10, 1.21] x [—1.20, 1.20] [—6.29, 21.2] x [—6.39, 6.39] (1794, 1662)
Macroscopic 9.50 x 1073 [—1.11, 2.12] x [—2.06, 2.06] [—5.72, 16.2] x [—6.67, 6.67] (1532, 1540)

Table 1. Grid parameters. The minimum grid size and the coordinates are non-dimensionalized by D.

coooom =
Mhrowotor

Figure 23. Distribution of magnitude of velocity |u|/Ms.. Microscopic model with (N, Np) = (1, 12). (a)
Contours near the core cylinder; (b) distributions along three lines passing through small cylinders.

sufficiently high resolution. First, the no-slip boundary conditions at the small cylinders
are checked in figure 23, which shows the distributions of the magnitude of velocity
|u|/Mso. In figure 23(a), the distribution is shown by contours. It is confirmed that
the magnitude decreases quickly to zero near the small cylinders located at (x,y) =
(0, 0.885), (£0.443,0.766) and (—0.766, 0.443); the other small cylinders are not
visualized because they are in the region where the magnitude is small. This supports that
the no-slip boundary conditions are satisfied at the small cylinders. Figure 23(b) shows the
distributions of |u|/M« along the three lines x = 0, —0.4418 and —0.7651 passing through
the small cylinders located at (x,y) = (0, 0.885), (—0.443, 0.766) and (—0.766, 0.443);
it is pointed out that the lines do not always pass exactly through the centres of the
small cylinders; the closest grid line is chosen for each cylinder. It is observed that the
velocity decreases quickly to zero at the positions of the small cylinder which are centred
at y = 0.885, 0.766 and 0.443, with intervals of width 0.03. It is also confirmed that the
boundary layers are captured with approximately seven grid points.

Figure 24 compares the time histories of pressure at (r, 0) = (80, 90°) for (N,, Ny) =
(3,60) and (N,, Ng) = (1, 15) between three values of minimum grid spacings in the
porous material: Axp;,/D = 1.90 x 1073 (15.8 grid points in the diameter d;), 4.75 x
1073 (6.3 grid points) and 9.50 x 10~3 (3.2 points). They are in good agreement in
each case. Although small differences are visible for (N,, Ng) = (1, 15), they are small
in magnitude as the amplitude of the fluctuation pressure is approximately 4 x 1079,
which is approximately 1.3 % of that for (N, Ny) = (3, 60). Table 2 compares the acoustic
power calculated for the two cases: P; for (N,, Ny) = (3,60) and P, for (N,, Ng) =
(1, 15). It is pointed out that the latter is close to the minimum of the acoustic power.
We observe that accuracy is sufficient for the two cases; the difference in P; between
AXpin/D = 1.9 x 1073 and 4.75 x 1073 is 0.3 %. Although the relative errors in P, are
higher than those in P (4.4 % between Ax,/D = 1.9 x 107> and 4.75 x 1073), the
sound is significantly reduced in this case so that the errors are apparently amplified by
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Figure 24. Dependence of time evolution of pressure at (r, 8) = (80, 90°) on minimum grid size.
Microscopic model: (a) (Ny, Ng) = (3, 60); and (b) (N, Ng) = (1, 15).

AXpmin/D Py P>

1.90 x 1073 9.22 x 107 5.62 x 1079
475 x 1073 9.24 x 1076 5.87 x 1072
9.50 x 1073 9.29 x 1076 6.93 x 1077

Table 2. Dependence of acoustic power on minimum grid size. Microscopic model.

the small magnitude of the acoustic power. Therefore, the minimum grid size is fixed to
AXpin/D = 4.75 x 1073 in the microscopic model.

Appendix C. Dependence on numerical porosity in macroscopic model

The numerical porosity ¢,, which appears in the penalization term in the conservation
of mass (2.2), was fixed to ¢, = 0.98 in the macroscopic and modified macroscopic
models. It is important to check whether this choice gives correct results. It would be
legitimate to impose that ¢, coincides with the value 0.1 for rigid bodies at n = 10~* and
the penalization term vanishes (¢, = 1) at n — 00. One such equation is

1
149 /)

(figure 25), while there are many other possibilities.

Figure 26 compares the acoustic power obtained with fixed numerical porosity ¢, =
0.98 with that obtained by using (C 1). The two results are nearly equal (note that a few
data are missing for the case using (C 1)), which shows that the results obtained with
fixed numerical porosity are sufficiently accurate. It is pointed out that good agreement is
observed not only for large permeability at which the difference in ¢, is small but also for
small permeability at which the difference is large (figure 25). In fact, the value of ¢, does
not affect the accuracy of DNS as long as the wavelength of the acoustic waves is large
compared to the size of the rigid bodies (Komatsu et al. 2016; Hattori & Komatsu 2017).

Pn n-=107%, (C1)

Appendix D. Properties of fluctuation pressure

In this appendix, we show that the fluctuation pressure satisfies properties of linear
acoustic waves in the far field, which confirms that it nearly coincides with the
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Figure 25. Relation between permeability 1 and numerical porosity ¢, of porous material in macroscopic
model: black solid line, ¢,, = 0.98; red dashed line, (C1).
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Figure 26. Acoustic power plotted against permeability n. Macroscopic model. Comparison between two
different relations between numerical porosity ¢, and n: square - black, ¢, = 0.98; e - red, (C1).

sound pressure. The two-dimensional linear acoustic waves are expressed in the far field
as
A .

P — Poo N 2 cos 6 sin[27f (t — r/co) + Pol, D1
when a dipolar sound source is oscillating sinusoidally. Figure 27 shows the dependence
of the amplitude of fluctuation pressure on the distance from the origin for the microscopic
model of (N, Ng) = (3, 60) and (N,, Ng) = (1, 15); Apfiuc; is measured at 2.5 < r/D <
80, while the directions 6 = 90° for (N,, Ng) = (3,60) and 6 = 120° for (N,, Ny) =
(1, 15) are close to the directions of the maximum amplitude. In both cases, the amplitude
in the far field is nearly proportional to r—!/2, which is a property of the linear
acoustic waves in two dimensions; in fact, r~!/>-dependence is observed in r/D > 15
for (N, Np) = (3, 60) and in r/D 2 40 for (N, Ng) = (1, 15); for small r, the fluctuation
pressure is dominated by the hydrodynamic pressure.

Figure 28 compares the pressure p — p and the fluctuation pressure Apg,e; for the
microscopic model of (N, Ng) = (3, 60); not only the observation points in the far field
but also those in the near field are considered: »/D = 2.5, 5, 10, 20 and 40 with 6 = 90°.
The pressure p — poo at /D = 2.5 and 5 is negative showing that it is affected significantly
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Figure 27. Amplitude of fluctuation pressure plotted against distance from origin. Microscopic model: (a)
(N, Ng) = (3, 60) and (b) (N, Ng) = (1, 15). The observation points are & = 90° (a) and 6 = 120° (b) with
r/D = 2.5,5, 10,20, 30, 40, 50, 60, 70 and 80. The black lines are proportional to /2,

a b
(@) 2.0x1073 )
—3 |
0.0x100 4.0x10
2.0x107 | _ 20x107} A
g S f /
S 407107} %‘? 0x100 K )
Y -3 ‘ \ N
~6.0x10 ox103)
~8.0x103}
—4.0x103}
-1.0x1072 : : : : : :
800 850 900 950 1000 800 850 900 950 1000
t ¢

c —2 - T T
(©) 104102 — 5= =%
=5 —r=20

oz
‘G 5'0X1073- & A A A -
&
% 0x10°
YYVYY
N

—5.0x1073 | 1

~1.0x1072 . - .
800 850 900 950 1000

t-r/c

Figure 28. Comparison between pressure p — po and fluctuation pressure Apg,c;. Microscopic model with
(Ny, Ng) = (3, 60). The observation points are located at r/D = 2.5, 5, 10, 20 and 40 with 6 = 90°: (a) p — po;
(D) Apfiuers (¢) Apfucy multiplied by 2 In panel (c), the horizontal axis is replaced by the retarded time
t—r/cop.

by the hydrodynamic pressure which has a negative mean value. The time average of
the fluctuation pressure Apjpyc is zero by definition (figure 28b). In figure 28(c), the
fluctuation pressure Apg,e, is multiplied by /2 and the retarded time t — r/cq is used
as the horizontal axis. The curves for /D = 2.5 and 5 are larger in amplitude than those
for r/D > 10 which nearly collapse. This also confirms that the fluctuation pressure is
affected significantly by the hydrodynamic pressure for r/D = 2.5 and 5, while in the far
field r/D 2 15, the fluctuation pressure satisfies the property of the linear acoustic waves
as further confirmed below.
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Figure 29. Time evolution of fluctuation pressure Apgyc;. Microscopic model: (a.b) (N, Ng) = (3, 60); and

(c.d) (Ny, Ng) = (1, 15). In panels (a) and (c), Appe observed at r/D = 20, 40, 60 and 80 with 6 = 90° are
shown. In panels (b) and (d), the fluctuation pressure is multiplied by r'/2 to compensate for the dependence

on r, while the horizontal axis is replaced by the retarded time  — r/co.

Figure 29 shows the time evolution of the fluctuation pressure in the far field for the
microscopic model of (N, Ng) = (3, 60) and (N,, Ny) = (1, 15); Appucr is measured at
r/D = 20, 40, 60 and 80, while the direction is & = 90° for which the Doppler effect
arising from the uniform flow vanishes. In figures 29(a) and 29(c), the amplitude and
the phase of the fluctuation pressure depends on r. In figure 29(b), however, the curves
collapse when Apg,e, is multiplied by r1/2 and the retarded time 7 — r/cq is used as
the horizontal axis; it confirms that the fluctuation pressure nearly coincides with the
sound wave propagating linearly from the origin for /D > 20. Similar collapse except
for r/D = 20 is also observed in figure 29(d), which shows that the fluctuation pressure at
r/D = 20 is affected by pseudo sound because the sound is significantly reduced in this
case. In both cases, the fluctuation pressure observed at »/D = 80 is sufficiently close to
the sound pressure.
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